Differences in the relationship between BMI and percentage body fat between Japanese and Australian-Caucasian young men

Masaharu Kagawa¹, Deborah Kerr¹, Hayato Uchida² and Colin W Binns¹*

¹School of Public Health, Curtin University of Technology, Perth, Australia
²School of Human Science and Environment, University of Hyogo, Japan

(Received 28 July 2005 – Revised 12 December 2005 – Accepted 10 January 2006)

This cross-sectional study aimed to determine ethnic and environmental influences on the relationship between BMI and percentage body fat, using a sample of 144 Japanese and 140 Australian-Caucasian men living in Australia, and eighty-eight Japanese men living in Japan. Body composition was assessed by anthropometry using standard international methods (International Society for the Advancement of Kinanthropometry protocol). Body density was predicted using Durnin and Womersley’s (1974) equation, and percentage body fat was calculated from Siri’s (1961) equation. Significant (P<0.05) ethnic differences in stature, body mass and BMI were observed between Japanese and Australian men, but no ethnic differences were observed in their percentage body fat and height-corrected sum of skinfold thicknesses. No differences were found in the BMI–percentage body fat relationship between the Japanese subjects living in Australia and in Japan. Significant (P<0.05) ethnic differences in the BMI–percentage body fat relationship observed from a comparison between pooled Japanese men (aged 18–40 years, BMI range 16.6–32.8 kg/m²) and Australians (aged 18–39 years, BMI range 16.1–31.4 kg/m²) suggest that Japanese men are likely to have a greater percentage body fat than Australian men at any given BMI value. From the analyses, the Japanese men were estimated to have an equivalent amount of body fat to the Australian men at BMI values that were about 1.5 units lower than those of the Australians (23.5 kg/m² and 28.2 kg/m², respectively). It was concluded that Japanese men have greater body fat deposition than Australian-Caucasians at the same BMI value. Japanese men may therefore require lower BMI cut-off points to identify obese individuals compared with Australian-Caucasian men.


Obesity is one of the most rapidly increasing health problems in the world, not only in developed countries, but also in less affluent economies. The prevention and treatment of obesity are major issues in public health because of the relationship of obesity with other chronic diseases, including diabetes, various cancers, hypertension and CVD.

Because of its convenience and high specificity in detecting subjects with a high percentage body fat (%BF; Roche, 1996), BMI (body mass (kg)/height (m)²) has been frequently used as an indicator of relative fatness and classification of obesity. The WHO (1997) has proposed BMI cut-off points to be used as the universal standard for a classification of obesity (Table 1). In Japan, the Japanese Society for the Study of Obesity (JASSO) has proposed new Japanese-specific BMI cut-off points (similar to the WHO classification) that have since been accepted as the standard classification for obesity in Japan (Matsuzawa et al. 2000; Table 1). Using the JASSO classification, the National Nutrition Survey reported that the proportion of Japanese men with a BMI over 25 has increased 1.5 times between 1982 and 2002 in all age groups, and approximately 30% of men aged 30–69 years old are classified as ‘obese’ (Kenkou Eiyou Jouhou Kenkyukai, 2003).

The use of BMI in this way has a number of limitations, including its inability to distinguish between fat mass and non-fat mass (Norgan & Ferro-Luzzi, 1982; Garn et al. 1986; Ross et al. 1988). These limitations may become an important issue when comparing ethnic groups with distinctively different body proportions or physiques. Several studies have suggested that the relationship between BMI and %BF (i.e. the BMI–%BF relationship) varies with age, gender and ethnicity (Schaefer et al. 1998; Deurenberg et al. 2002; Chang et al. 2003). Asian individuals, including Chinese, Malays and Japanese, have more body fat than Caucasians at the same BMI values (Deurenberg et al. 1998, 2003; Gallagher et al. 2000; Ko et al. 2001). Moreover, other studies have also confirmed that Asians have higher morbidity at lower BMI values than Caucasians (Bei-Fan, 2002; Deurenberg-Yap et al. 2002; Jia et al. 2002; Lee et al. 2002; Li et al. 2002; Moon et al. 2002). Deurenberg et al. (2002) suggested differences in body build between Asians and Caucasians, including differences in relative leg-to-trunk length, slenderness and muscularity, as some of the reasons for this difference in the BMI–%BF relationship between ethnic groups. The same group further suggested differences in the

Abbreviations: %BF, percentage body fat; DXA, dual energy X-ray absorptiometry; ISAK, International Society for the Advancement of Kinanthropometry; JASSO, Japanese Society for the Study of Obesity; TEM, technical error of measurement; WPRO, Western Pacific Region of WHO.

* Corresponding author: Professor C. Binns, fax +61-8-9266-2958, email c.binns@curtin.edu.au
BMI–%BF relationship between two Chinese populations living in different countries (Deurenberg et al. 2002). This may indicate environmental influences on body physique.

These studies suggest that, in the classification of obesity, population-specific cut-off points for BMI should be used based on corresponding levels of total body fatness for each ethnic population. To reflect such ethnic differences in the BMI–%BF relationship, a new BMI classification was proposed specifically for the population living in the Asian-Pacific region (Western Pacific Region of WHO (WPRO); WHO/IASO/IOTF, 2000; Table 1). In addition, the WHO has recently proposed BMI values of 23, 27·5, 32·5 and 37·5 kg/m² as the cut-off points that indicate the need for public health action to prevent health risks for Asian populations (WHO, 2004).

Until now, only one study has examined ethnic differences in the BMI–%BF relationship in Japan, and this study was restricted to middle-aged men and women (Gallagher et al. 2000). From assessment of body composition using dual energy X-ray absorptiometry (DXA), Japanese individuals are likely to have a higher %BF than a Caucasian population at any given BMI value. There have, however, been no published studies assessing this relationship in younger Japanese adults.

The objective of the present study was to determine whether ethnic differences exist in the BMI–%BF relationship in young Japanese and Australian-Caucasian men living in Australia, and in Japanese men living in Japan.

### Method

#### Subjects

The inclusion criteria for the study were for the subjects to be men aged between 18 and 40 years old. Japanese subjects were defined as those holding Japanese nationality who recognized themselves to be of Asian background. Australian subjects were included if they identified themselves as Australian and recognized themselves as being of ‘Caucasian’ (Europid) ethnic background, rather than Asian, Hispanic, Black or Aboriginal Torres Strait Islanders. Using convenience sampling, a total of 144 healthy Japanese and 140 Australian-Caucasian men living in Australia (Perth, Western Australia) and eighty-eight Japanese men living in Japan (Himeji, Hyogo Prefecture) were recruited and included in the statistical analysis. A total of 79% of the Japanese men whose data were obtained in Australia reported that they had lived in Australia for less than 1 year. The median duration of stay in Australia was 3 months.

The study was approved by the Human Research Ethics Committee of Curtin University of Technology and adhered to the principles of medical research established by the National Health and Medical Research Council (1999). Informed consent was obtained from each subject prior to participation in the study.

Body composition of the subjects was measured by anthropometry using the protocol of the International Society for the Advancement of Kinanthropometry (ISAK) (Norton & Olds, 1996). The method was chosen because of its portability and cost-efficiency compared with other methods, such as DXA and underwater weighing, to collect data in different countries. Comparing DXA results obtained from different machines and manufacturers with varying software versions is problematic (Fogelholm & Lichtenbelt, 1997; Kistorp & Svendsen, 1998). Therefore, anthropometry that was carried out by anthropometrists with a known level of technical error of measurements (TEM) was chosen in the current study.

Measurements included height, body mass, eight skinfold thicknesses (triceps, subscapular, biceps, iliac crest, supraspinale, abdominal, front thigh, medial calf), five girths (arm relaxed, arm flexed and tensed, waist, hip, calf) and two bone breadths (humerus, femur). Height and body mass were measured without shoes. All subjects were asked to wear light clothing, such as shorts and a T-shirt. Japanese and Australian-Caucasian men living in Australia were measured by a level 3 anthropometrist accredited by ISAK. The level 3 anthropometrist demonstrated an intra-tester TEM of within 5% for skinfolds and within 1% for other measurements, as recommended by ISAK (Gore et al. 1996), from duplicate anthropometric measurements using twenty randomly chosen subjects. The measurements of Japanese men living in Japan were made by the same level 3 anthropometrist and three level 1 anthropometrists. All participating level 1 anthropometrists demonstrated acceptable limits of TEM (an inter-tester TEM of within 5% for skinfolds and within 2% for other measurements, and an intra-tester TEM of within 7.5% for skinfolds and within 1.5% for other measurements), as recommended (Gore et al. 1996), prior to their involvement in data collection.

#### Table 1. Differences in cut-off points for obesity between available BMI classifications

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt; 18·5</td>
<td>Underweight</td>
<td>Underweight</td>
<td>&lt; 18·5</td>
<td>Underweight</td>
</tr>
<tr>
<td>18·5 ≤ – &lt; 25</td>
<td>Normal range</td>
<td>Normal range</td>
<td>18·5 ≤ – &lt; 22·9</td>
<td>Normal range</td>
</tr>
<tr>
<td>25 ≤ – &lt; 30</td>
<td>Obese class I</td>
<td>Pre-obese</td>
<td>23 ≤ – &lt; 24·9</td>
<td>Overweight (at risk)</td>
</tr>
<tr>
<td>30 ≤ – &lt; 35</td>
<td>Obese class II</td>
<td>Obese class I</td>
<td>25 ≤ – &lt; 29·9</td>
<td>Obese class I</td>
</tr>
<tr>
<td>35 ≤ – &lt; 40</td>
<td>Obese class III</td>
<td>Obese class II</td>
<td>30 ≤</td>
<td>Obese class II</td>
</tr>
<tr>
<td>40 ≤</td>
<td>Obese class IV</td>
<td>Obese class III</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>


WHO (1997): The WHO proposed the definition of obesity at a WHO Consultation on Obesity convened in Geneva (WHO, 1997).

WPRO (2000): The Steering Committee of the Regional office for the Western Pacific Region of WHO, the International Association for the Study of Obesity (IASO), and the International Obesity Task Force (IOTF) proposed BMI cut-off points that are suitable for populations living in the Asia-Pacific region (WHO/IASO/IOTF, 2000).
The height-corrected sum of skinfold thicknesses was calculated to adjust ethnic differences in height between subjects:

$$\text{Height-corrected sum of skinfold} = \Sigma X_i \times (170-18/\text{height in cm})$$

where \(\Sigma X_i = \text{triceps} + \text{subscapular} + \text{biceps} + \text{supraspinale} + \text{iliac crest} + \text{abdominal} + \text{front thigh} + \text{medial calf skinfolds in millimetres.}$$

In order to determine \%BF using anthropometry, body density is first calculated using a prediction equation and then converted into \%BF values. In the current study, body density was predicted using an equation developed by Durnin and Womersley (1974):

$$\text{Body density} = 1.1765 - 0.0744 (\log_{10} X_i);$$

where \(X_i = \text{triceps} + \text{biceps} + \text{subscapular} + \text{iliac crest skinfolds in millimetres.}$$

Body fat was predicted using Siri’s \%BF prediction equation (Siri, 1961). Although Asians were suggested to have a fat-free mass density greater than the assumed value (i.e. 1.1 g/ml), no significant ethnic differences were observed between Asian and Caucasian men (Werkman et al. 2000; Deurenberg-Yap et al. 2001). A previous study comparing \%BF results obtained from whole-body scanning by DXA and \%BF calculated from anthropometry showed comparable \%BF results obtained from whole-body scanning by DXA and anthropometry.

A regression analysis was undertaken to determine ethnic differences in the BMI–\%BF relationship. As there was no significant difference in the BMI–\%BF relationship between Japanese individuals living in Japan and living in Australia, the two groups were combined (n 232). Figure 1 is a scatter plot of the BMI–\%BF relationships in each group after natural log transformation. Significant (\(P<0.05\)) ethnic differences in the BMI–\%BF relationship between the Japanese and Australian groups were observed. In comparison to the Australian-Caucasian men, Japanese men showed significantly greater \%BF at any given BMI value.

From a linear regression analysis, ‘best fit’ \%BF prediction equations for Japanese and Australian men were determined using age and BMI as independent variables and also assessed ethnic differences in the interaction. Age did not have a significant impact on the relationship and no ethnic difference in interaction was observed, which being therefore excluded from the final regression equation. The final equation was: \(\text{Ln} \%\text{BF} = -3.321 - 0.123 \times \text{Ethnicity; 1 = Japanese, 0 = Australian}) + 1.941 \times (\text{Ln BMI}), (R^2 = 0.548, \text{SEE} = 0.21)\), where \(\text{Ln} = \text{natural log. A variable ‘Ethnicity’ had a standard error of 0.024 and 95 \% CI of 0.08 and 0.17.}\)

Using these equations, \%BF was estimated for BMI values of 20, 25 and 30 kg/m\(^2\), which are the BMI levels classified as average, overweight and obese, respectively by the WHO. At a BMI of 20 kg/m\(^2\), the \%BF of Japanese and Australian men was 13.7 \% and 12.1 \%, respectively by the WHO. At a BMI of 25 kg/m\(^2\), their \%BF were 21.1 and 18.7, respectively, and at a BMI of 30 kg/m\(^2\), their \%BF were 25.6 and 23.7, respectively.

Table 2. Results of body composition assessment obtained by anthropometry

<table>
<thead>
<tr>
<th></th>
<th>Japanese in Australia (n 144)</th>
<th>Japanese in Japan (n 88)</th>
<th>Australians in Australia (n 140)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>Mean SD</td>
<td>Mean SD</td>
<td>Mean SD</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>171.5 ± 5.3</td>
<td>172.9 ± 5.3</td>
<td>161.2 ± 6.1</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>64.2 ± 8.8</td>
<td>64.1 ± 8.9</td>
<td>77.1 ± 11.4</td>
</tr>
<tr>
<td>BMI (kg/m(^2))</td>
<td>21.8 ± 2.6</td>
<td>21.5 ± 2.8</td>
<td>23.5 ± 2.9</td>
</tr>
<tr>
<td>Total body fat (%BF)</td>
<td>16.4 ± 6.0</td>
<td>16.6 ± 5.1</td>
<td>17.3 ± 5.7</td>
</tr>
<tr>
<td>Sum of eight skinfold thicknesses (mm)</td>
<td>78.4 ± 32.7</td>
<td>80.1 ± 37.5</td>
<td>92.3 ± 43.2</td>
</tr>
<tr>
<td>Height-corrected sum of eight skinfold thicknesses (mm)</td>
<td>77.9 ± 32.7</td>
<td>78.9 ± 36.5</td>
<td>86.8 ± 40.3</td>
</tr>
</tbody>
</table>

* Significantly different from Japanese living in Australia at the 0.05 level using ANOVA.
† Significantly different from Japanese living in Japan at the 0.05 level using ANOVA.
‡ Significantly different from Japanese living in Australia at the 0.05 level using ANCOVA.
§ Significantly different from Japanese living in Japan at the 0.05 level using ANCOVA.
of 30 kg/m², the results were 30.1% for Japanese and 26.6% for Australian-Caucasian men respectively.

To determine BMI values that reflect the %BF of each ethnic group, %BF values of Australian men at BMI values of 25 and 30 kg/m² were entered into the above prediction equation for Japanese men. The resulting BMI values were 23.5 and 28.2 kg/m², respectively. This suggests that Japanese men require BMI values of about 1.5 kg/m² units lower to determine body fatness that is equivalent to that of Australian-Caucasian men who are classified as overweight or obese.

Table 3 shows the sensitivity and specificity of the WHO classification (with the cut-off point of 25 kg/m²) and the WPRO classification (with the cut-off point of 23 kg/m²) for the study group. The results showed that when the WHO classification was applied to Japanese men, only 33.3% of those who have %BF of above 20 were identified, whereas using the WPRO classification, 64.7% of Japanese men with a %BF of above 20 were identified. By comparison, applying the WHO classification to Australian-Caucasian men allowed the identification of 70% of those who had a %BF of 20 and above, this value increasing to 90% if the WPRO classification was used. Hence it can be assumed that the WHO classification is appropriate for Australian-Caucasian men but not for Japanese men, if the sensitivity of the test is the major criteria.

Discussion

This study examined ethnic differences in the relationship between BMI and body fat deposition expressed as %BF using Japanese and Australian-Caucasian adult men. Previous studies have found that Asians, including Chinese and Malay-Singaporeans, have a greater amount of body fat than Caucasians at the same BMI values (Wang et al. 1994; Deurenberg et al. 2002). The current study supported the findings from these previous studies. The Japanese men in this study had a higher %BF even though their BMI was within the normal range by the WHO classification.

In the present study, Japanese men had the same mean %BF as Australian-Caucasian men but lower BMI values. Using the ‘best fit’ equation obtained from the current study, the BMI values at which the Japanese men could be expected to have the same %BF that Australian Caucasian men had at BMI values of 25 kg/m² (WHO pre-obese) and 30 kg/m² (WHO obese class I) were 23.5 and 28.2 kg/m², respectively. That is, the equivalent BMI cut-off points were approximately 1.5 kg/m² units lower in the Japanese population. This indicates that application of the WHO classification to Japanese men may underestimate the proportion of the population who are obese. In comparison to the WHO classification, the WPRO classification that was proposed specifically for Asians and those living in the Pacific region (WHO/IASO/IOFF, 2000) appropriately classifies BMI values of 23.5 and 28.2 kg/m² into the categories of ‘overweight (at risk)’ and ‘obese class I’.

The JASSO classification was based on the level of health risk observed in epidemiological studies. In a study of 3582 Japanese men aged between 30 and 59 years, Tokunaga et al. (1988) found that Japanese had the lowest health risk at a BMI value of 22.2 kg/m². Yoshiike et al. (2000) conducted a meta-analysis of fifteen cohort studies with a total sample size of 151720 subjects (79766 men and 71954 women), aged between 30 and 79 years, to examine the risk of developing health problems such as hypertension and high blood cholesterol, glucose and triacylglycerol levels. After controlling for confounding variables, the study compared the odds ratio of the health risks of seven BMI categories (18–19.9, 20–24.9, 25–29.9, 30–34.9, >35 kg/m²), using the BMI category of 20–24 kg/m² (median = 22) as the baseline. The results indicated a significant increase in health risk as BMI increased. From these results, JASSO stated that a BMI of 22 kg/m² is the optimal value for Japanese adults in order to maintain the lowest health risk. JASSO further proposed that ‘standard body mass’ should be derived from a BMI value of 22 kg/m² (i.e. standard body mass = 22 [height in meters]²) and recommended that Japanese maintain the body mass calculated by this equation to maintain health.

In our study, the BMI of Japanese men equivalent to a BMI of 25 kg/m² in Caucasians (when comparing %BF) was...
23.5 kg/m². This value is consistent with the studies by Toku-
naga et al. (1988) and Yoshiike et al. (2000). In the future,
epidemiological studies of health risk and adiposity should
include measures of %BF as well as BMI. This would further
assist in defining BMI cut-off levels for risk. As obesity is
defined as a condition of excessive fat deposition (WHO/
IASO/IOTF, 2000), actual body composition data, in conjunc-
tion with epidemiological data, should be used to set the BMI
cut-off points in order to improve the specificity of BMI when
it is used as a screening tool for overweight and obesity. To
support the utility of lower BMI cut-off points for Japanese
men, the current study showed an improvement in detecting
Japanese men with an excessive amount of body fat when the
WPRO classification was used (64.7%), compared with the
result using the WHO classification (33.3%).

The findings of the current study are supported by the
results of Hsieh et al. (2000), who examined the degree of
central fat accumulation using the waist-to-height ratio
together with lifestyle variables in 2668 men. For individuals
with higher levels of abdominal fat, they found an increasing
risk of developing various health problems even within the
BMI range of 20–24 kg/m². In addition, a recent study of a
large Japanese sample of wider age range (20–79 years old;
Ito et al. 2003) indicated that the cut-off point of BMI for
Japanese from body composition assessments using anthropo-
metry and DXA in relation to cardiovascular risk was around
23.5 kg/m² for men. Both studies reinforce the importance of
determining BMI cut-off points after a consideration of body
composition data.

No study to date has examined the BMI–%BF relationship
specifically for young Japanese men. The findings of the cur-
rent study suggest that using BMI with the ordinal WHO or
JASSO classification would largely misclassify young adult
Japanese men, who have a high total body fat level. To
reduce the misclassification of overweight and obesity in
this population, it is recommended that a classification is
used that reflects an appropriate BMI–%BF relationship for
Japanese men. From the currently available classifications
for Japanese individuals (Table 1), the WPRO classification
proposed by the WHO/IASO/IOTF (2000) provides the most
appropriate BMI cut-off points to define overweight and obe-
رity for this specific group. An alternative would be to use the
BMI values of 23.0 and 27.5 kg/m², values chosen by the
WHO as the cut-off points for public health action in their
most recent report (WHO, 2004).

One limitation of the current study is that data were only
collected on young men. Furthermore, owing to the relatively
small sample size, the results of the current study may not be
generalizable to the wider population. Future research should
include both male and female subjects and use a larger
sample size. The current study did not show any significant
differences in the BMI–%BF relationship between Japanese
men living in different countries. This could be because of a
minimum impact of environment on the physique of Japanese
men because of their already Westernized lifestyle in Japan, or
because this group had not lived in Australia for long enough
to alter their physique.

To further examine environmental influences on the
relationship, a longitudinal study that follows up Japanese
men living overseas to monitor any changes in body compo-
sition over time is required. In addition, the calculated %BF
from the anthropometric equation that was used in the current
study has unknown validity. It is therefore recommended that
the current findings be confirmed using advanced body com-
position methods such as DXA in future studies. Furthermore,
a limited number of cross-ethnic or cross-cultural studies have
been undertaken using Japanese subjects. It is recommended
that further comparisons of Japanese living in different
countries and regions be completed to assess any environmen-
tal impact on their BMI–%BF relationships.

Conclusion
The current study showed ethnic differences in the BMI–%BF
relationships between Japanese and Australian-Caucasian
men. The Japanese men had a greater %BF than the Austra-
lian-Caucasian men at any given BMI value. This indicates
that Japanese men may be at greater risk of developing
health conditions associated with excessive fat deposition at
lower BMI values than Australian-Caucasian men. When
using the BMI as a screening tool for obesity, such ethnic
differences in the BMI–%BF relationships should be con-
sidered. It is strongly recommended that studies use the classi-
fication system with BMI cut-points relevant to the body
composition of the ethnic group being studied.

Acknowledgements
The authors express their gratitude to Associate Professor
M. Ouchi (School of Engineering), Miss T. Masuda and
Miss T. Nishiwaki (School of Human Science and Environ-
ment) of the University of Hyogo, who assisted with recruit-
ment of the subjects and data collection in Japan.

References
Bei-Fan Z (2002) Predictive values of body mass index and waist cir-
cumference for risk factors of certain related diseases in Chinese
adults: study on optimal cut-off points of body mass index and
waist circumference in Chinese adults. Asia Pacific J Clin Nutr
11, S685–S693.
agreement between two methods of clinical measurement. Lancet
1, 307–310.
F-H (2003) Low body mass index but high percent body fat in Tai-
waneese subjects: implications of obesity cutoffs. Int J Obes Relat
Metab Disord 27, 253–259.
adolescents have more subcutaneous adipose tissue than Dutch
Caucasians of the same age and body mass index. Asia Pacific J
Clin Nutr 12, 261–265.
different from Caucasians and from each other in their body
mass index/body fat per cent relationship. Obes Rev 3, 141–146.
and percent body fat: a meta analysis among different ethnic
fat percentage and cardiovascular risks at low body mass index
levels among Singaporean Chinese, Malays and Indians. Obes


National Health and Medical Research Council (1999) National Statement on Ethical Conduct in Research Involving Humans Aus Inf Canberra ACT.


