WHEN IS THE ALGEBRA OF REGULAR SETS FOR A FINITELY ADDITIVE BOREL MEASURE A σ-ALGEBRA?

THOMAS E. ARMSTRONG

(Received 4 May 1981; revised 3 December 1981)

Communicated by J. B. Miller

Abstract

It is shown that the algebra of regular sets for a finitely additive Borel measure μ on a compact Hausdorff space is a σ-algebra only if it includes the Baire algebra and μ is countably additive on the σ-algebra of regular sets. Any infinite compact Hausdorff space admits a finitely additive Borel measure whose algebra of regular sets is not a σ-algebra. Although a finitely additive measure with a σ-algebra of regular sets is countably additive on the Baire σ-algebra there are examples of finitely additive extensions of countably additive Baire measures whose regular algebra is not a σ-algebra. We examine the particular case of extensions of Dirac measures. In this context it is shown that all extensions of a $\{0,1\}$-valued countably additive measure from a σ-algebra to a larger σ-algebra are countably additive if and only if the convex set of these extensions is a finite dimensional simplex.

Keywords: Borel measure, regularity, extensions of measures, completion regular compact space, Borel regular compact space.

Introduction and synopsis

In [16], Kupka noted that if a vector-valued Borel measure on a compact Hausdorff space X is countably additive then its algebra of regular sets is in fact a σ-algebra. In Question 3.3.1 of [16], he asked whether countable additivity is necessary for this result. We essentially answer this question in the negative but do show that a good deal of countable additivity is implicit in the assumption that the algebra of regular sets of a finitely additive Borel measure is a σ-algebra. More specifically we show that, on any σ-algebra contained in the algebra of regular

© Copyright Australian Mathematical Society 1982
sets of a finitely additive Borel measure μ, μ is countably additive (Lemma 1). If in fact the algebra of regular sets for μ is a σ-algebra then it includes the μ-completion of the Baire algebra and μ agrees with the canonical regular extension of μ to the Borel algebra from the Baire algebra at least on the σ-algebra of regular sets (Propositions 3 and 5). In fact, the latter statement holds even if μ is only assumed to be countably additive on the Baire algebra but with the algebra of regular sets not necessarily a σ-algebra. Corollary 3.1 answers Kupka’s question affirmatively for completion regular compact Hausdorff spaces. Here a finitely additive Borel measure is countably additive if and only if its algebra of regular sets is σ-algebra. Corollary 3.2 shows that on any infinite compact Hausdorff space there is a finitely additive Borel measure which does not have a σ-algebra of regular sets. This follows from Proposition 4 which asserts that a Boolean algebra admits a non-countably additive measure if and only if it is not Cantor separable if and only if its Stone space is not an almost P-space, a result of independent interest.

The latter part of the paper examines the regular algebras of finitely additive Borel measures μ whose restriction to the Baire algebra is countably additive when μ is $\{0, 1\}$-valued on the Baire algebra. Proposition 6 deals with the convex compact set of all extensions of a countably additive $\{0, 1\}$-valued measure δ on a σ-algebra Σ_1 to a larger σ-algebra Σ_2. It is shown that this convex compact set is finite dimensional if and only if all extensions of δ are countably additive. Otherwise, there exist 2^c mutually singular non-atomic purely finitely additive extensions or $c \{0, 1\}$-valued extensions where $c = 2^{\aleph_0}$, (Corollary 6.1). This is applied to the case where Σ_1 is the Baire algebra, Σ_2 is the Borel algebra and δ is δ_x for some non-G_δ-point $x \in X$. If the extensions of δ_x to the Borel algebra are all countably additive there is a countably additive extension μ whose regular algebra is just the δ_x-completion of the Baire algebra. However, for this to be true X must be topologically pathological near x.

We conclude with an example which yields finitely additive Borel measures whose regular algebras are not σ-algebras yet contain the Baire algebra. If real valued measurable cardinals exist an example is given of a countably additive Borel measure whose regular σ-algebra is properly contained in the Borel algebra and properly contains the completed Baire algebra.

1. When is the algebra of regular sets for a finitely additive Borel measure a σ-algebra?

\mathfrak{B}_0 and \mathfrak{B} denote, respectively, the Baire and Borel σ-algebras on X. $C(X)$ denotes the real continuous functions on X and $\mathfrak{M}(X)$ the dual of $C(X)$. $\mathfrak{M}(X)$ is identified, as usual, with both $CA(\mathfrak{B}_0)$ the countable additive Baire measures.
and with \(CA_\lambda(\mathcal{B}) \) the regular countably additive Borel measures. For any Boolean algebra \(\mathcal{A} \), \(BA(\mathcal{A}) \) denotes the finitely additive real measures of bounded variation on \(\mathcal{A} \) with \(CA(\mathcal{A}) \) the band of countably additive elements of \(BA(\mathcal{A}) \). If \(\mu \in BA^+(\mathcal{B}) \) we denote by \(\text{Reg}(\mu) \) all \(A \in \mathcal{B} \) so that \(\inf\{\mu(\theta \setminus K) : K \text{ compact } \subset A \subset \theta \text{ open}\} = 0 \). Note that \(\text{Reg}(\mu) \) is an algebra which is \(\mu \)-complete in \(\mathcal{B} \) in that whenever \(\{A_n\} \) is an increasing sequence and \(\{B_n\} \) is a decreasing sequence in \(\text{Reg}(\mu) \) with \(A_n \subset B_n \) for all \(n \) and with \(\lim_{n \to \infty} \mu(B_n \setminus A_n) = 0 \) then \(A \in \text{Reg}(\mu) \) provided \(A \in \mathcal{B} \) and \(A_n \subset A \subset B_n \) for all \(n \). For any algebra \(\mathcal{A} \subset \mathcal{B} \), \(\mathcal{A}^\lambda \) will denote its completion in \(\mathcal{B} \) with respect to the finitely additive Borel measure \(\mu \). Thus, \(\text{Reg}(\mu) = (\text{Reg}(\mu))^\lambda \). This lemma was pointed out by Douglas Dokken. It is a generalization of Problem 7 on page 11 of [6].

Lemma 1. If \(\Sigma \) is a \(\sigma \)-algebra contained in \(\text{Reg}(\mu) \) for \(\mu \in BA^+(\mathcal{B}) \) then \(\mu \) is countably additive on \(\Sigma \).

Proof. It must be shown that if \(\{D_n\} \subset \Sigma \) is a disjoint sequence with union \(D \) then \(\mu(D) = \sum_{n=1}^{\infty} \mu(D_n) \). That \(\mu(D) \geq \sum_{n=1}^{\infty} \mu(D_n) \) is immediate. If we show that \(\mu(D) \leq \sum_{n=1}^{\infty} \mu(D_n) + \varepsilon \) for any \(\varepsilon > 0 \) the assertion will be established. Pick \(K \) compact \(\subset D \) with \(\mu(D) \leq \mu(K) + \varepsilon/2 \). Pick \(\theta_n \) open with \(D_n \subset \theta_n \) and with \(\mu(\theta_n \setminus D_n) \leq \varepsilon 2^{-n-1} \). Since \(K \subset D \subset \bigcup_{n=1}^{\infty} \theta_n \) there is an integer \(m \) so that \(K \subset \theta_1 \cup \cdots \cup \theta_m \). For this \(m \) it is true that \(\mu(K) \leq \sum_{n=1}^{\infty} \mu(\theta_m) \leq \sum_{n=1}^{\infty} \mu(\theta_n) < \sum_{n=1}^{\infty} \mu(D_n) + \varepsilon/2 \). Thus, \(\mu(D) < \sum_{n=1}^{\infty} \mu(D_n) + \varepsilon \).

Remark. Lemma 1 is a consequence of Proposition 1.6 in Chapter V of [4] and of Lemma 1 of [25].

Corollary 1.1. a) If \(\mu \in BA^+(\mathcal{B}) \) and \(\text{Reg}(\mu) \) is a \(\sigma \)-algebra then \(\mu \) is countably additive on \(\text{Reg}(\mu) \).

b) \(\text{Reg}(\mu) \) is a \(\sigma \)-algebra if and only if \(\mu \) is countably additive on the \(\sigma \)-algebra generated by \(\text{Reg}(\mu) \).

Proof. Only b) needs to be established. This is done in the standard fashion. Let \(\{D_n\} \) be a disjoint sequence in \(\text{Reg}(\mu) \) with union \(D \). Let \(\theta_n \) be open with \(D_n \subset \theta_n \) and \(\mu(\theta_n \setminus D_n) \leq 2^{-n-1} \varepsilon \) for a given \(\varepsilon > 0 \). Let \(m \) be such that \(\mu(\bigcup_{n=m+1}^{\infty} D_n) \leq \varepsilon/4 \). Let \(K_n \subset D_n \) for \(n = 1, \ldots, m \) be compacts with \(\mu(D_n \setminus K_n) < \frac{1}{4} \varepsilon m^{-1} \). We have \(\mu([\bigcup_{n=1}^{\infty} \theta_n] \setminus \bigcup_{n=1}^{m} K_n) \leq \varepsilon \) with \(\bigcup_{n=1}^{m} K_n \subset D \subset \bigcup_{n=1}^{\infty} \theta_n \). Thus, \(D \in \text{Reg}(\mu) \). Thus, \(\text{Reg}(\mu) \) is a \(\sigma \)-algebra if \(\mu \) is countably additive on the \(\sigma \)-algebra generated by \(\text{Reg}(\mu) \). The converse follows from a).
LEMMA 2. Let \(A \in \text{Reg}(\mu) \).

i) There exists a \(G_\delta A_\delta \in \text{Reg}(\mu) \) and an \(F_\sigma A_\sigma \in \text{Reg}(\mu) \) with \(A_\sigma \subset A \subset A_\delta \) and
\[\mu(A_\delta \backslash A_\sigma) = 0. \]

ii) There exists a \(G_\delta A_\delta \in \mathcal{B}_0 \cap \text{Reg}(\mu) \) and an \(F_\sigma A_\sigma \in \mathcal{B}_0 \cap \text{Reg}(\mu) \) with
\[A_\sigma \subset A_\sigma \subset A_\delta \subset A_\delta. \]

iii) \(\mu(A) = \mu(A_\sigma) = \mu(A_\delta) = \mu(A_\sigma) = \mu(A_\delta) = \sup\{\mu(K) : K \text{ compact Baire} \subset A_\sigma\} = \inf\{\mu(G) : G \text{ open Baire} \supset A_\delta\}. \)

iv) There is an \(A_0 \in \mathcal{B}_0 \cap \text{Reg}(\mu) \) with \(\mu(A \Delta A_0) = 0. \)

PROOF.

i) Immediate from the definition of regularity.

ii) Let \(A_\sigma = \bigcup_{n=1}^{\infty} K_n \) and \(A_\sigma = \bigcap_n G_n \) where \(K_n \) is compact and \(G_n \) is open for all \(n \). By Urysohn's Theorem there is a compact \(G_\delta, K_\delta, m \) satisfying \(K_\delta \subset K_\delta, m \subset G_\delta \) for all \(n, m \). Set \(K_n = \bigcap_{m=1}^{\infty} K_\delta, m \). \(K_\delta \) is a compact \(G_\delta \) and \(K_\delta \subset K_\delta \subset A_\delta \) for all \(n \). Set \(A_\sigma \) equal to the \(F_\sigma \), \(\bigcup_{n=1}^{\infty} K_\delta \). \(A_\sigma \) is obtained analogously as a countable intersection of open \(F_\sigma \) sets.

iii) From the definition of regularity the \(K_n \) in ii) may be chosen with
\[\mu(A) = \sup\mu(K_n) \leq \sup\mu(K_n) \leq \sup\{\mu(K) : K \text{ compact Baire} \subset A_\sigma\} = \mu(A). \]
Thus, \(\mu(A) = \sup\{\mu(K) : K \text{ compact Baire} \subset A_\sigma\} \). Similarly, \(\mu(A) = \inf\{\mu(G) : G \text{ open Baire} \supset A_\delta\} \).

iv) Set \(A_0 = A_\delta \) or \(A_\sigma \).

Plachky, [20], shows that if \(\nu \) is a finitely additive probability on a Boolean algebra \(\mathcal{A} \) and \(BA_+ (\mathcal{A}, \nu, \mathcal{B}_2) \) denotes the convex compact set of extensions of \(\nu \) to a probability measure on a larger algebra \(\mathcal{B}_2 \) then \(\mu \in BA_+ (\mathcal{A}, \nu, \mathcal{B}_2) \) is extreme if and only if for all \(A_2 \in \mathcal{B}_2 \) and \(\epsilon > 0 \) there is an \(A_1 \in \mathcal{A} \) with
\[\mu(A_1 \Delta A_2) < \epsilon. \]
Thus, in Lemma 2, \(\mu \), on \(\text{Reg}(\mu) \), is an extreme extension of its restriction to \(\mathcal{B}_0 \cap \text{Reg}(\mu) \).

PROPOSITION 3. If \(\mu \in BA_+ (\mathcal{B}) \) is such that \(\text{Reg}(\mu) \) is a \(\sigma \)-algebra then
\(\mathcal{B}_0 \subset \text{Reg}(\mu) \).

To establish this we first consider the case \(X = [0,1] \). Let \(Y \) denote those \(x \in (0,1) \) so that \(\inf\{\mu(\theta) : x \in \theta \text{ open}\} = 0. \) The complement of \(Y \) is at most countably hence \(Y \) is dense. Each \(\{x\} \) with \(x \in Y \) is in \(\text{Reg}(\mu) \) with \(\mu(\{x\}) = 0. \)

For \(\epsilon > 0 \) let \(\theta \) be an open set containing \(x \in Y \) with \(\mu(\theta_x) < \epsilon, K_\epsilon^- = [0, x) \setminus \theta_x \) and
\(K_\epsilon^+ = (x, 1] \setminus \theta_x. \) Both \(K_\epsilon^- \) and \(K_\epsilon^+ \) are compact. It is easily verified that
\[\lim_{\epsilon \to 0} \mu(K_\epsilon^-) = \mu(\{0, x\}) \) and \(\lim_{\epsilon \to 0} \mu(K_\epsilon^+) = \mu((x, 1]). \)
Thus, \(\{0, x\}, (x, 1]) \subset \text{Reg}(\mu) \). It follows that all intervals, open, closed, or half open, whose endpoints
are chosen from \(Y \) belong to \(\text{Reg}(\mu) \). The \(\sigma \)-algebra generated by these intervals is \(\mathcal{B}_0 = \mathfrak{B} \). Since \(\text{Reg}(\mu) \) is a \(\sigma \)-algebra \(\mathcal{B}_0 = \text{Reg}(\mu) \). This establishes this case.

Let \(X \) be arbitrary and let \(f: X \to [0, 1] \) be continuous. Let \(\nu \) be the finitely additive Borel measure on \([0, 1]\) which is the image of \(\mu \) under \(f \). Thus, for Borel \(A \subset [0, 1] \), \(\nu(A) = \mu(f^{-1}(A)) \). Just as in the countably additive case \(A \in \text{Reg}(\nu) \) if and only if \(f^{-1}(A) \in \text{Reg}(\mu) \). Consequently, \(\text{Reg}(\nu) \) is a \(\sigma \)-algebra hence is equal to the Borel algebra of \([0, 1]\) by the special case just established. Thus, \(f \) is measurable for the \(\sigma \)-algebra \(\text{Reg}(\mu) \). Since \(f \) is arbitrary it follows that all \(f \in \mathcal{C}(X) \) are \(\text{Reg}(\mu) \)-measurable. Thus, since \(\mathcal{B}_0 \) is the smallest \(\sigma \)-algebra so that all \(f \in \mathcal{C}(X) \) are \(\mathcal{B}_0 \)-measurable, \(\mathcal{B}_0 \subset \text{Reg}(\mu) \). This establishes the proposition.

In [4], Babiker and Knowles define a space \(X \) to be completion regular if and only if every \(\mu \in \mathcal{C}(\mathcal{B}_0) + \mathcal{C}(\mathfrak{B}) \) is completion regular in the sense of Berberian [5]. That is, each \(\mu \in \mathcal{C}(\mathcal{B}_0) + \mathcal{C}(\mathfrak{B}) \) has a unique extension in \(\mathcal{B} \mathcal{A}(\mathfrak{B}) \). Alternatively \(X \) is completion regular if and only if \(\mathfrak{B} \) is the \(\mu \)-completion of \(\mathcal{B}_0 \) for all \(\mu \in \mathcal{C}(\mathcal{B}_0) + \mathcal{C}(\mathfrak{B}) \). Examples of completion regular spaces include all perfectly normal compact Hausdorff spaces \(X \). In [5] Berberian notes that if \(X \) is completion regular all points must be \(G_\delta \)'s. Under the assumption that the continuum is real valued measurable an example may be constructed of a non-completion regular \(X \) each of whose points is a \(G_\delta \). In order that \(X \) be completion regular it is necessary and sufficient that every Borel set be regular with respect to the paving of compact \(G_\delta \)'s for all countably additive Borel measures. This corollary is easily deduced from the definition of completion regularity.

Corollary 3.1. Let \(X \) be completion regular. The following are equivalent for \(\mu \in \mathcal{B} \mathcal{A}(\mathfrak{B}) \)

a) \(\text{Reg}(\mu) \) is a \(\sigma \)-algebra

b) \(\text{Reg}(\mu) = \mathfrak{B} \)

c) \(\mu \in \mathcal{C}(\mathcal{B}_0) + \mathcal{C}(\mathfrak{B}) = \mathcal{C}(\mathcal{B}_0) + \mathcal{C}(\mathfrak{B}) \).

Corollary 3.2. If \(X \) is an infinite compact Hausdorff space there is a \(\mu \in \mathcal{B} \mathcal{A}(\mathfrak{B}) \) so that \(\text{Reg}(\mu) \) is not a \(\sigma \)-algebra.

Proof. Any extension \(\mu \) to \(\mathfrak{B} \) of a member of \(\mathcal{B} \mathcal{A}(\mathcal{B}_0) \setminus \mathcal{C}(\mathcal{B}_0) \) will do. The non-emptiness of \(\mathcal{B} \mathcal{A}(\mathcal{B}_0) \setminus \mathcal{C}(\mathcal{B}_0) \) is a special case of Proposition 4.

We are interested in determining for which infinite Boolean algebras \(\mathcal{A} \) every element of \(\mathcal{B} \mathcal{A}(\mathcal{A}) \) is countably additive. If no infinite strictly decreasing sequence in \(\mathcal{A} \) has a lower bound then, automatically, \(\mathcal{B} \mathcal{A}(\mathcal{A}) = \mathcal{C}(\mathcal{A}) \). Such Boolean algebras are termed Cantor separable in [28]. Cantor separable Boolean algebras \(\mathcal{A} \) are characterized in terms of their Stone space \(X_\mathfrak{B} \) by the fact that each
The algebra of regular sets for a Borel measure

non-empty zero set has a non-empty interior. Completely regular spaces X with the aforementioned property are called *almost P-spaces* in [17] and have been studied in [7], [10] and [27]. Thus, \mathcal{G} is Cantor separable if $X_\mathcal{G}$ is an almost P-space. Notice that if \mathcal{G} is σ-complete it is not Cantor separable if it is infinite. $\beta N \setminus N$ is the most familiar example of an almost P-space [9, 65.8]. Graves and Wheeler in [10] give a method for producing a large class of almost P-spaces. The following proposition was pointed out by R. F. Wheeler.

Proposition 4. *The following are equivalent for an infinite Boolean Algebra \mathcal{G}.*

a) \mathcal{G} is Cantor separable

b) $X_\mathcal{G}$ is an almost P-space

c) $BA^+(\mathcal{G}) = CA^+(\mathcal{G})$.

Proof. We already have a) \Leftrightarrow b) \Rightarrow c). Let us assume c) and see that this implies b). Notice that all $\{0,1\}$-valued elements of $BA^+(\mathcal{G})$ are countably additive. Phrased in terms of the corresponding ultrafilters on \mathcal{G}, this says that if $\{A_n; n \in \mathbb{N}\}$ is a decreasing sequence in an ultrafilter then $\emptyset \neq \inf_n A_n$. That is, there is an $A_\infty \in \mathcal{G}$ with $\emptyset \neq A_\infty \subset A_n$ for all n. Since every decreasing sequence of non-empty elements of \mathcal{G} lies in an ultrafilter this says that no decreasing sequence of non-empty elements of \mathcal{G} has \emptyset as infimum. In particular, regarding \mathcal{G} as the clopen algebra of $X_\mathcal{G}$, the intersection of a decreasing sequence of non-empty clopen sets (that is, a zero set) has non-empty interior. Thus, c) implies both a) and b).

Remark. We use the term δ-ultrafilter for an arbitrary Boolean algebra to denote any ultrafilter whose corresponding $\{0,1\}$-valued measure is countably additive.

A compact Hausdorff space X is called *Borel regular* [19], or *Radon*, [21], if and only if $CA^+(\mathcal{B}) = CA_1^+(\mathcal{B})$ if and only if every $\mu \in CA^+(\mathcal{B}_0)$ has a unique extension, the regular extension, to \mathcal{B} belonging to $CA^+(\mathcal{B})$. If $\mu \in CA_1^+(\mathcal{B}) \setminus CA_1^+(\mathcal{B}_0)$ then $\text{Reg}(\mu)$ is a super-σ-algebra of \mathcal{B}_0 properly contained in \mathcal{B}. The canonical example of a non-Borel regular space is the compact ordinal space $[0, \omega_1]$ where ω_1 is the first uncountable ordinal. There are countably additive $\{0,1\}$-valued extensions of the Dirac measure δ_{ω_1} from \mathcal{B}_0 to \mathcal{B} other than the regular extension [9, ex. 53.10a]. An example of a Borel regular space X which is not completion regular is the one point compactification $D \cup \{\infty\}$ of a discrete space D with uncountable non-real-valued measurable cardinal, [8, ex. 6.2]. The Dirac measure δ_{∞} has extensions from \mathcal{B}_0 to \mathcal{B} other than the regular one but all must be purely finitely additive [2], [13], since they induce on D finitely additive,
diffuse [2], probability measures. We shall be primarily concerned with $\text{Reg}(\mu)$ for μ non-countably additive yet with μ countably additive on \mathcal{B}_0 but occasionally with μ countably additive and non-regular on \mathcal{B}. In any case, μ_{reg} will denote the unique element of $CA^+_1(\mathcal{B})$ agreeing with μ on \mathcal{B}_0.

Proposition 5. Let $\mu \in BA^+(\mathcal{B})$ be countably additive on \mathcal{B}_0. On $\text{Reg}(\mu)$, μ and μ_{reg} coincide.

Proof. Let $A \in \text{Reg}(\mu)$. One can, in the proof of Lemma 2, find A_σ an F_σ in $\text{Reg}(\mu)$ and A_δ a G_δ in $\text{Reg}(\mu)$, so that $A_\sigma \subset A \subset A_\delta$ and so that $\mu(A_\delta \setminus A_\sigma) = 0$. Let $(A^\sigma, A^\delta) \subset \mathcal{B}_0 \cap \text{Reg}(\mu)$ with $A_\sigma \subset A^\sigma \subset A^\delta \subset A_\delta$. Then, $\mu(A) = \mu(A^\sigma) = \mu_{\text{reg}}(A^\sigma) = \mu_{\text{reg}}(A)$.

In the remainder of the paper we will be dealing fairly exclusively with extensions μ of Dirac measures δ_x for $x \in X$ from \mathcal{B}_0 to \mathcal{B}. All such extensions must be $\{0,1\}$-valued on $\text{Reg}(\mu)$. If $A \in \text{Reg}(\mu)$ then $\mu(A) = 0$ if and only if $x \notin A$.

Proposition 6. Let $\Sigma_1 \subset \Sigma_2$ be σ-algebras of subsets of a set Ω. Let $\delta \in CA^+_1(\Sigma_1)$ be $\{0,1\}$-valued. Let η be the σ-ideal in Σ_2 of sets of outer measure 0 under δ.

i) If the quotient algebra Σ_2/η is finite then $BA^+_1(\Sigma_1, \delta, \Sigma_2)$ is a finite dimensional subset of $CA^+_1(\Sigma_2)$.

ii) If Σ_2/η is infinite there is a family $\{\mu^1_i\} \subset BA^+_1(\Sigma_1, \delta, \Sigma_2)$ of mutually singular, non-atomic, purely finitely additive measures whose cardinality is 2^c where c is the continuum.

Proof. There is an affine bijection from $BA^+_1(\Sigma_1, \delta, \Sigma_2)$ to $BA^+_1(\Sigma_2/\eta)$. If $\mu \in BA^+_1(\Sigma_1, \delta, \Sigma_2)$ then $\mu(A) = 0$ for all $A \in \eta$ hence μ induces on Σ_2/η an element, also denoted by μ, in the usual fashion. This gives the affine bijection.

ii) If Σ_2/η is infinite it is an infinite F-algebra as in [3]. By Corollary 3.2.3 of [3] there is a family $\{\mu_i\}$, of cardinality 2^c, of mutually singular non-atomic probability measures on Σ_2/η all with the same negligible sets. Pulling back under the affine bijection from $BA^+_1(\Sigma_1, \delta, \Sigma_2)$ to $BA^+_1(\Sigma_2/\eta)$ one obtains the same sort of family in $BA^+_1(\Sigma_1, \delta, \Sigma_2)$. If $\mu_s \in \{\mu_i\}$ is countably additive there can be no other countably additive $\mu_r \in \{\mu_i\}$ for $\mu_r \perp \mu_s$ and both have the same nullsets. Delete μ_s if necessary so that no element of $\{\mu_i\}$ is countably additive. Each μ_i has a non-trivial purely finitely additive part which is a multiple of a purely finitely additive μ_i' which is easily verified to belong to $BA^+_1(\Sigma_1, \delta, \Sigma_2)$. Furthermore, μ_i' must be non-atomic for each i. This establishes ii).
Suppose that Σ_2/η is finite and has n atoms \{a_1, \ldots, a_n\}. Corresponding to each a_i is an $A_i \in \Sigma_2$ which is such that if $A \in \Sigma_2$ then $A_i \setminus A \in \eta$ or $A \cap A_i \in \eta$. The \{(0,1)\}-valued measure δ_i on Σ_2/η or in $BA_1^+(\Sigma_2, \delta, \Sigma_2)$ corresponding to a_i is an extreme point of $BA_1^+(\Sigma_2/\eta)$ and $BA_1^+(\Sigma_2/\eta) = \text{conv}(\delta_1, \ldots, \delta_n)$. To show that $BA_1^+(\Sigma_2, \delta, \Sigma_2) \subseteq CA^+(\Sigma_2)$ it suffices to show that each δ_i, considered as an element of $BA_1^+(\Sigma_1, \delta, \Sigma_2)$, is in $CA^+(\Sigma_2)$. To this end let $\{E_n\}$ be an increasing sequence in Σ_2 with $\delta_i(E_n) = 0$ for all n. We have $E_n \cap A_i \in \eta$ for all n hence, by the σ-completeness of η, we have $(\bigcup_n E_n) \cap A_i \in \eta$. Thus, $\delta_i(\bigcup_n E_n) = 0$. This establishes countable additivity of δ_i hence establishes i).

Remarks. Recall from [2] that a measure μ is strongly finitely additive if and only if there is a partition \{A_n: n \in N\} with $\mu(A_n) = 0$ for all n. Any purely finitely additive probability measure is the sum of countably many strongly finitely additive measures, [2]. In ii) purely finitely additive measures may be replaced by strongly finitely additive measures.

Actually ii) asserts only that such a family of probabilities exists in $BA(\Sigma_2/\eta)$. This is true if η is replaced by the ideal generated by the null sets of a non \{(0,1)\}-valued measure or Σ_2/η by an arbitrary F-algebra.

Corollary 6.1. If Σ_2/η is infinite there exist c purely finitely additive \{(0,1)\}-valued elements of $BA_1^+(\Sigma_1, \delta, \Sigma_2)$.

Proof. There is a strongly finitely additive non-atomic $\mu \in BA_1^+(\Sigma_1, \delta, \Sigma_2)$. Let $\{A_n\} \subset \Sigma_2$ be an increasing sequence with $\mu(A_n) = 0$ for all n and with $\bigcup_n A_n = \Omega$. Let \mathcal{B} denote the algebra Σ_2/η and let $X_\mathcal{B}$ be its Stone space. $BA_1^+(\Sigma_1, \delta, \Sigma_2)$ is affinely homeomorphic to the Bauer simplex of Radon probability measures on $X_\mathcal{B}$. Let $\tilde{\mu}$ be the Radon measure on $X_\mathcal{B}$ corresponding to μ so that if $A \in \Sigma_2/\eta$ or if $A \in \Sigma_2$ then $\mu(A) = \tilde{\mu}(A]$ where $[A]$ is the clopen set in $X_\mathcal{B}$ corresponding to A. We have $\mu(A) = \int 1_A(x)\tilde{\mu}(dx) = \int \chi_{[A]}(x)\tilde{\mu}(dx)$ (where $x \in X_\mathcal{B}$ are considered as ultrafilters on \mathcal{B}). If there were a set Z with outer measure $\tilde{\mu}^*(Z) > 0$ of δ-ultrafilters $x \in X_\mathcal{B}$ (so that each χ_x is countably additive on \mathcal{B}), it would follow that $0 = \lim_{n \to \infty} \mu(A_n) = \lim_{n \to \infty} \int 1_{[A_n]}(x)\tilde{\mu}(dx) \geq \tilde{\mu}^*(Z) > 0$. Since this is impossible $\tilde{\mu}$-almost all $x \in X_\mathcal{B}$ have χ_x purely finitely additive. Since $\tilde{\mu}$ is non-atomic there is a compact perfect set $Y \subset \text{supp}(\tilde{\mu}) \subset X_\mathcal{B}$ so that if $x \in Y$ then χ_x is purely finitely additive. Y contains at least c elements.

Corollary 6.2. If \mathcal{B} is a Boolean algebra then $\mu \in BA_1^+(\mathcal{B})$ is purely finitely additive with corresponding measure $\tilde{\mu}$ on the Stone space $X_\mathcal{B}$ only if μ-almost all $x \in X_\mathcal{B}$ are not δ-ultrafilters.
We may apply the preceding results to the case where $\mathcal{B}_0 = \Sigma_1$ and $\mathcal{B} = \Sigma_2$. A \{0, 1\}-valued measure δ on \mathcal{B}_0 is a Dirac measure δ_x. η will be denoted by η_x. η_x consists of those Borel sets in X contained in a σ-compact subset of $X' = X \setminus \{x\}$. We are only interested in the case where $\mathcal{B}/\eta_x = \mathcal{B}_x$ has cardinality larger than 2 so that $\{x\}$ is not a G_δ.

Proposition 7. Let x be a non-G_δ point in X.

i) If \mathcal{B}_x is finite the elements of $BA^+_1(\mathcal{B}_0, \delta_x, \mathcal{B})$ form a finite dimensional simplex in $CA^+_1(\mathcal{B})$. In this case there is a $\mu \in BA^+_1(\mathcal{B}_0, \delta_x, \mathcal{B})$ with $\text{Reg}(\mu) = \mathcal{B}_0^\delta = \mathcal{B}_0^\mu$.

ii) If \mathcal{B}_x is infinite there is a family of cardinality 2^ω of singular non-atomic purely finitely additive elements of $BA^+_1(\mathcal{B}_0, \delta_x, \mathcal{B})$ and a family of cardinality c of \{0, 1\}-valued purely finitely additive elements.

Proof. We need only find in case i) a $\mu \in BA^+_1(\mathcal{B}_0, \delta_x, \mathcal{B})$ with $\text{Reg}(\mu) = \mathcal{B}_0^\mu$. Let $\{\delta_x, \delta_1, \ldots, \delta_n\}$ denote the extreme points of $BA^+_1(\mathcal{B}_0, \delta_x, \mathcal{B})$ where δ_x is the usual Dirac measure on \mathcal{B}. We assert that $\mu = \frac{1}{n}(\delta_1 + \cdots + \delta_n)$ has $\text{Reg}(\mu) = \mathcal{B}_0^\mu$. Suppose not. Note that $\mathcal{B}_0^\mu = \mathcal{B}_0^\delta$ is the largest subalgebra of \mathcal{B} to which δ_x has a unique extension. Note also that δ_x agrees with μ on $\text{Reg}(\mu)$ by Proposition 5. There is an extreme extension δ of δ_x from \mathcal{B}_0^μ to $\text{Reg}(\mu)$ other than δ_x hence other than μ. This extreme extension δ is the restriction of one of $\{\delta_1, \ldots, \delta_n\}$ to $\text{Reg}(\mu)$, say δ_1. Since all extreme extensions of δ_x to $\text{Reg}(\mu)$ are $\{0, 1\}$-valued there is an $A \in \text{Reg}(\mu)$ with $0 = \delta_x(A) = \mu(A)$ and $\delta_1(A) = 1$. But $\mu(A) = \frac{1}{n}(\delta_1(A) + \cdots + \delta_n(A)) \geq \frac{1}{n}$ which is impossible. Thus, $\text{Reg}(\mu) = \mathcal{B}_0^\mu$.

Corollary 7.1. If \mathcal{B}_x is infinite and $\mu \in BA^+_1(\mathcal{B}_0, \delta_x, \mathcal{B})$ has $\text{Reg}(\mu) \neq \mathcal{B}_0^\mu$ there is a $\nu \in BA^+_1(\mathcal{B}_0, \delta_x, \mathcal{B})$ with $\text{Reg}(\nu)$ a proper subset of $\text{Reg}(\mu)$.

Remark. We know of no case in which x is a non-G_δ point for which i) holds in Proposition 7. For the case $X = [0, \omega_1]$ and $x = \omega_1$ one may set A_0 equal to the relatively closed set in $[0, \omega_1]$ consisting of limit ordinals, and set $A_n = \{\alpha + 1: \alpha \in A_{n-1}\}$ for $n \in \omega$. Then $[0, \omega_1) = \cup_n A_n$. Each A_n is in $\mathcal{B} \setminus \eta_x$ hence \mathcal{B}_x is infinite. A similar argument shows that if D is an infinite discrete set with uncountable cardinality then $X = D \cup \{\infty\}$ has \mathcal{B}_x infinite then $x = \infty$.

Corollary 7.2. If \mathcal{B}_x is finite there is a closed set $E \subset X'$ whose complement is σ-compact and is such that E has a partition $\{E_1, \ldots, E_n\}$ with each E_i closed. Within each E_i the set \mathcal{B}_i of non-σ-compact closed sets forms a δ-ultrafilter of closed sets. If $E_i \cup \{x\} = X_i$ is considered as the one point compactification of E_i then δ_x
has a one dimensional simplex of extensions to the Borel sets of \(X_i \). The extreme extension \(\delta_i \) is defined by \(\delta_i(A) = 1 \) if and only if \(A \) contains an element of \(\mathcal{F}_i \) for \(i = 1, \ldots, n \).

Proof. Let \(\{ \delta_0, \delta_1, \ldots, \delta_n \} \) be the extreme elements of \(BA^+_i(\mathcal{B}_0, \delta_x, \mathcal{B}) \) with \(\delta_0 \) the regular extension. For each \(i = 1, \ldots, n \) there is a \(\delta \)-ultrafilter \(\mathcal{F}_i \) of closed subsets of \(X' \) so that \(\delta_i(A) = 1 \) if and only if \(A \) meets each element of \(\mathcal{F}_i \). One may find \(\{ F_1, \ldots, F_n \} \) so that \(F_i \in \mathcal{F}_i \) for \(i = 1, \ldots, n \) and so that \(F_i \cap F_j \in \eta_x \) for all \(i \neq j \). One may find an open \(\sigma \)-compact \(\theta \subset X' \) with \(F_i \cap F_j \subset \theta \) for all \(i, j \). Let \(E_i = F_i \setminus \theta \) for all \(i \) and let \(E = \bigcup_{i=1}^n E_i = X' \setminus \theta \). Any extension \(\delta \) of \(\delta_x \) to the Borel sets of \(X_i \) with \(\delta(x) = 0 \) may be extended to an element of \(BA^+_i(\mathcal{B}_0, \delta_x, \mathcal{B}) \) with \(\delta(E_i) = 1 \). We must have \(\delta = \delta_i \) which establishes the corollary.

Corollary 7.3. If \(\mathcal{B}_x \) is finite every closed set in \(X' \) contains a dense \(\sigma \)-compact subset.

Proof. We may, by Corollary 7.2, assume that \(BA^+_i(\mathcal{B}_0, \delta_x, \mathcal{B}) = \{ \delta_x, \delta \} \) so that \(\mathcal{F} = \{ F \text{ closed in } X': \delta(F) = 1 \} \) is the set of non-\(\sigma \)-compact closed sets in \(X' \).

Assume that \(X' \neq \mathcal{F} \) for any \(E \in \eta_x \). If this is the case then \(E \in \eta_x \) implies that \(\mathcal{F} \in \eta_x \). To see this note that if \(\mathcal{F} \notin \eta_x \), then \(\mathcal{F} \in \mathcal{F} \) and \(\mathcal{F} \notin \eta_x \), Since \(\mathcal{F} \) is the closure of \(E \cup \mathcal{F} \in \eta_x \) one has a contradiction.

Let \(\{ \theta_\alpha \} \subset \eta_x \) be a sequence indexed by ordinals \(\alpha \) defined by transfinite induction so that \(\theta_\alpha \) is a proper subset of \(\theta_{\alpha+1} \) and so that \(\theta_\alpha = \bigcup_{\beta < \alpha} \theta_\beta \) if \(\alpha \) is a limit ordinal. The last element \(\theta_\lambda \) of this sequence occurs for a limit ordinal \(\lambda \) so that \(\mathcal{F} \in \mathcal{F} \) hence so that \(\theta_\lambda \notin \eta_x \). Since \(\eta_x \) is \(\sigma \)-complete \(\lambda \) is of uncountable cofinality. Let \(\psi_\alpha = \theta_{\alpha+1} \setminus \theta_\alpha \) for \(\alpha < \lambda \) and let \(\psi_\lambda = X' \setminus \theta_\lambda \). We have \(X' = [\bigcup \{ \psi_\alpha: \alpha < \lambda \}] \cup [\bigcup \{ \theta_\alpha: \alpha < \lambda \}] \). The open set \([\bigcup \{ \psi_\alpha: \alpha < \lambda \}] \) is dense in \(X' \) hence is not in \(\eta_x \). The closed set \(\bigcup \{ \theta_\alpha: \alpha < \lambda \} \) is \(\sigma \)-compact hence is in an open \(\theta_\infty \in \eta_x \). Let \(D = \{ \alpha < \lambda: \psi_\alpha \setminus \theta_\infty \neq \emptyset \} \). The open sets \(\{ \psi_\alpha: \alpha \in D \} \) together with \(\theta_\infty \) cover \(X' \). Thus, \(\text{card}(D) \geq \aleph_1 \). If \(K \) is a compact set in \(X' \) it is covered by \(\theta_\infty \) together with finitely many \(\psi_\alpha \) with \(\alpha \in D \) hence a \(\sigma \)-compact set is covered by \(\theta_\infty \) together with countably many \(\psi_\alpha \) with \(\alpha \in D \). Let \(\{ D_n: n \in N \} \) be a countable partition of \(D \) into uncountable sets. For each \(n \) let \(U_n = [\bigcup \{ \psi_\alpha: \alpha \in D_n \}] \). The family \(\{ U_n: n \in N \} \) is a disjoint family of open sets with \(\bigcup \{ U_n: n \in N \} = \bigcup \{ \psi_\alpha: \alpha \in D \} \). Since \(\sigma \)-compact \(F \) meets only countably many \(\psi_\alpha \), no \(U_n \) is in \(\eta_x \). Thus, \(\mathcal{B}_x \) is infinite which is impossible. Thus, \(X' = \mathcal{F} \) for some \(E \in \eta_x \). This demonstration also establishes, if \(F \in \mathcal{F} \) replaces \(X' \), that \(F = \mathcal{F} \) for some \(E \in \eta_x \), which establishes the corollary.
In the unlikely event that \mathcal{B}_x be finite for some non-G_δ-point x, Proposition 7 gives a countably additive $\mu \in BA_1^+(\mathcal{B}_0, \delta_x, \mathcal{B})$ with $\text{Reg}(\mu) = \mathcal{B}_0^\mu$. We conclude by giving an example where $\text{Reg}(\mu)$ is always larger than \mathcal{B}_0^μ.

Example 8. Let X be the one point compactification $D \cup \{x\}$ of an uncountable discrete space. \mathcal{B}_0 consists of countable sets in D and their complements in X, $\mathcal{B} = 2^X$ and η_x consists of countable sets in D hence is a maximal ideal in \mathcal{B}_0 and \mathcal{B}_0 is μ-complete for any $\mu \in BA_1^+(\mathcal{B}_0, \delta_x, \mathcal{B})$. The $\mu \in BA_1^+(\mathcal{B}_0, \delta_x, \mathcal{B})$ with $\mu(\{x\}) = 0$ are identified with elements of $BA_1^+(2^D/\eta_x)$ or with elements of $BA_1^+(2^D)$ which annihilate η_x hence are those $\mu \in BA_1^+(2^X)$ with $\mu(A) = 0$ if A is countable in X. If $\mu \in BA_1^+(\mathcal{B}_0, \delta_x, \mathcal{B})$ then μ agrees with δ_x on $\text{Reg}(\mu)$. If $A \subset D$ has $\mu(A) = 0$ then $A \in \text{Reg}(\mu)$ since A is open whereas $A \cup \{x\} \not\in \text{Reg}(\mu)$. Thus, $\text{Reg}(\mu)$ consists of $A \subset D$ with $\mu(A) = 0$ and the complements in X of these A. Let η_μ denote the ideal in 2^D of μ-negligible sets. η_μ is a maximal ideal in $\text{Reg}(\mu)$ and $2^D/\eta_\mu$ satisfies the countable chain condition. On the other hand $2^D/\eta_x$ does not satisfy the countable chain condition since D has an uncountable partition into uncountable sets. Thus, $\eta_x \not\subseteq \eta_\mu$ and $\mathcal{B}_0^\mu \not\subseteq \text{Reg}(\mu)$.

Note that if the cardinality of D is not real-valued measurable, [1], [2], then all elements μ of $BA_1^+(\mathcal{B}_0, \delta_x, \mathcal{B})$ with $\mu(\{x\}) = 0$ must be purely finitely additive. If the cardinality of D is real-valued measurable any countably additive diffuse measure m on 2^D gives an element of $CA_1^+(\mathcal{B}_0, \delta_x, \mathcal{B})$ singular to δ_x and $\text{Reg}(\mu)$ is guaranteed to be strictly between \mathcal{B}_0 and \mathcal{B}. If $\mu \in BA_1^+(\mathcal{B}_0, \delta_x, \mathcal{B})$ is purely finitely additive it is a countable convex combination $\sum \{\lambda_n \mu_n: n \in \mathbb{N}\}$ of strongly finitely additive $\{\mu_n\} \subset BA_1^+(\mathcal{B})$. Each μ_n must be in $BA_1^+(\mathcal{B}_0, \delta_x, \mathcal{B})$. From the definition of strong finite additivity there exist $\{A_m^n: m \in \mathbb{N}\} \subset \eta_{\mu_n}$ which partition D. We have $\{A_m^n: m \in \mathbb{N}\} \subset \text{Reg}(\mu_n)$. Since $D \not\subseteq \text{Reg}(\mu_n)$ it is impossible for $\text{Reg}(\mu_n)$ to be σ-algebra even though $\mathcal{B}_0 \subset \text{Reg}(\mu_n)$.

Remark. Karel Prikry and Richard Gardner pointed out Example 8.

References

The algebra of regular sets for a Borel measure

Department of Mathematical Sciences
Northern Illinois University
De Kalb, Illinois 60115
U.S.A.