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On M&thieu Functions of Higher Order.

By Professor PIERRE HUMBERT.

(Received 18th April 1922 Read 10th June 1922.)

The definition and properties of Mathieu (or elliptic-cylinder)
functions are well known to the members of this Society, owing to
the appearance in its Proceedings from time to time of various
papers by different authors, wherein these functions are discussed.
The object of the present paper is to introduce a new kind of
function which can be considered as a generalisation of Mathieu
functions, and for which we propose the name of "Mathieu
Functions of Higher Order."

1. Definition of the functions by a differential equation. Let us
consider the differential equation of the second order.

%^+2vcotz^ + (a + ^cosz)y = 0.... (1)
az~ az

where k and v are given constants, and a a constant of which the
value is still unfixed. I t is obvious, from the general theory of
differential equations with periodic coefficients, that, when special
values (depending on k and v) are given to a, equation (1) can be
satisfied by periodic functions of z, with period 2n\ These
periodic solutions we propose to study.

When k is zero, the differential equation becomes

(2)

and it is readily seen that it admits of periodic solutions when
a is equal to n(n + 2v), where n is any positive integer. The
differential equation is then identical to Gegenbauer's equation, and

its periodic solutions are the polynomial C"n (cos s) of Gegenbauer,
and its associated function of the second kind (which shall be
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denoted by H"n (cos z) ). The periodic solutions of equation (2) are
therefore, according to the value of a,

Cj(cosz), Ci^cosz), C£(cosz),

Hi (cosz), H\ (cosz), H\ (cosz),

Hence the following result: The differential equation (I) is satisfied,
when suitable values are given to a, by a set of periodic Junctions,
reducing, ivhen k is zero, to a function C or a function U. We

shall denote any of these functions by the symbol J/Jj (z; k), or,

more briefly, M"n (z); but they can be divided into two sets—even

functions of z, which shall be denoted by E"n (z), and which reduce

to Cv
n (cos z) when k is zero ; and odd functions, (fn (a), reducing to

Ifn (cos z). Periodic solutions of equation (1), i.e. Mathieu
functions of higher order, are therefore, according to the value of a,

When v is zero, equation (1) reduces to Mathieu's equation, so

that its solutions reduce to Mathieu functions, B"n (z) to cen (z),

andO^(z) toseK(ss).

2. The integral-equation.—As may be expected, these functions
satisfy an integral equation analogous to Whittaker's integral-
equation for Mathieu functions. When v is an integer, one readily
obtains the equation

e*«"'"»u sm"u£?n(u)du (3)

If v is not an integer, this integral equation must be written

j* (* ) = A I <,*«-.«..Sin
2>uM*n{u)du,

J -r

the function M which occurs there having the property that the
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product sin2* u M"n (M) must not be an odd function of u. For
instance, if v = J , we have

E\ (z) = X «*««*«»« sinu 0\ (u) du

which is an integral equation of the first kind.

3. The Junctions JVf, £ and Q.—Let us make a change of
function by putting

Then this new function is a periodic solution of the differential
equation

If we denote by £"„ and (%, even and odd solutions of this equation,
we have

£* = sin* 2 Ev
n, if v is even ;

£* = sin* z 0*, if v is odd, and so on,
and we can write the homogeneous integral equation of the second
kind, with a symmetrical nucleus,

£"„ (z) = \ I «* °°"0G*" sin* 2 sin* M £* (w) rfw,

where v is supposed to be an even integer, the modifications when
v is odd or not integral being obvious.

When k = 0, fi* reduces (v being even) to sin* z C* (cos z), and
when v is zero, to cen (z).

Now, when v = 1, equation (4) reduces to

5 | + (a+l+Fcos2«)3/ = 0 (5)
az

which is of Mathieu's type. But, when k is zero, we know that
the only valid values of a are n(n + 2v), i.e. n (n + 2); then
a + l = (» + l)2, and the solutions of (5) are cen+1(z) and sen+1 (z) •
therefore

e\ (z) = cen+1 (z), O\ (z) = ««„+! (2),
and

^(,)=!M^0i(2) = ^ .
v ' sin z v sin z
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If we make k — 0 se,,+l reduces to sin (n + 1) z, so that El (z)
sin (n + 1) z

becomes : , which is, as is well known, equal to Ci(coaz),
S1O.Z n\ /I

thus confirming our new result.
The ^(-functions being solutions of a homogeneous integral

equation with a symmetrical nucleus, there exist between two of
them, with different lower indices, such relations as, if v is even,

which, when k = 0, becomes

Cn"(coss) Cv
m (cosz) sin2' z dz = 0,

a well-known formula for Gegenbauer's polynomials.

Fartows Properties of the M-functions.—When 2 V is integral
if we make the change of function

we obtain for F(z) the differential equation

~ + 2(l -v)cotz^- + F{a + 2u-
dz% dz

which can be written

—, + W cot z^- + (a1 + k* cor2 z) F= 0,
dz* dz

where v' = 1 - v, and where a', when k = 0, becomes equal to
ln + 2v - 1) (n + 2v - 1 + 2v'). This equation for F, therefore, is a
Mathieu equation of higher order, and its periodic solutions are

of the form M ̂ _ , . Hence the remarkable formula

M*n(z) = sin1 "2" sa/n+2r-i(*),
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where M, in each member, must be replaced by E or 0 according
to the value of v. For instance, if v = 0, we obtain

J » - s i n *(%_, ,

and, if v = £, the identity,

E\ = E\ .

It is readily seen that, when k tends to zero, the function

M "n ( cos"1 — J becomes equal (a constant factor being omitted)

to the product x~" Jn + i> {ix), where «/is a Bessel function. When
k = 0, the integral equation (3) reduces to the known form

Cn (cos i) = A, f e"m' t"-l Jn + v
Jo

(t) dt.

5. The functions of the elliptic-hyper cylinder.—Let us consider
a four-dimensional space, where the Cartesian coordinates are
x, y, z, t, and make the change of variables

x = sin p sin <r cos <f>
y = sin p sin er sin <f>
z = i cos p cos a-
t = t.

The hypersurfaces t = const, and <f> = const, are hyperplanes, and
the hypersurfaces p = const, (or tr = const.) are hypercylinders
parallel to the t-axis. In three-dimensional space these are the
hyperboloids of revolution

sin2 p cos2 p
= 1.

We shall term these hypersurfaces, hyperbolic-hypercylinders,
which by a slight change of notations become elliptic-hyper-
cylinders.

Laplace's equation A # = 0 with four variables is readily found
to be in this new system

Z / dU\ d ( dU\ cos'p - cosV &U
0 = —-I sm p sin <r— ) - — I sin p sin cr -^- I + —: : r—r-

dp\ dp} da-\ do-/ sin p sin <r 3 ^

+ sin p sin <r (cos2 p - cos2 cr) —-.
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We can try to solve it by taking

U(p, <r, <f>, t) = cos TO <f> e" sin"1 p sin™ <r FMt k (ft er)

where the function Fmi h (p, <r), which can be called a function of
the hyperbolic (or elliptic) hypercylinder, satisfies the partial
differential equation

dw d2r , ,. dv ,x dr
3 7 - i ? + <2»+l)cotp — - ( 2 » + l ) c a t < r -

+ A2(cosV-cos2o-) F=0 (6)

It is obvious that we can take, as a solution of this equation
(of which I made a general study in Comptes Rendus Acad&mie des
Sciences, January 1922), a product of a function of p alone, yi(p),
and of a function of o- alone, y2 (o"), which functions shall satisfy
ordinary differential equations. That for yl (p) is

?^± + (2m + 1) cot p^-+(h? co
dp dp

whose A. is an arbitrary constant, the equation for y2(<r) being
exactly similar. Now this is exactly the differential equation for
Mathieu functions of higher order, so that we obtain the following
interesting result: a solution of equation (6) is

M*+i(p; h) 2fJ+l(<rj h),

or, in other words, the product of two Mathieu functions of higher
order is an elliptic-hypercylinder function. It is analogous to the
fact that the product of two Gegenbauer's polynomials is a harmonic
hyperspherical function.

If m is zero, the corresponding function will be a zonal one; we
have then to consider a function M\, which reduces, when k is
zero, to the Legendre polynomial Pn (cos z), itself a zonal spherical
function.

6. The general integral-equation.—It is easy to verify that our
functions are solutions of other integral equations, analogous to
(3), but with new nuclei. For instance, generalising a result of
the theory of Mathieu functions, we can write

Ev
n (s) = X I (cos z + cos u) ~ " Jv \% &(cos z + cos u) ] sin2* uE?n (w) du.
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But it is a matter of greater interest to extend this result, and to
consider the following problem: to find the general function
G (z, u) such that

El (*) = A f G (z, u) sin ^ u < (M) du.
J -r

It is obvious, first of all, that G must be periodic and even in
z and u; afterwards, by a very simple method, using the differential
equation for E and integrating by parts, we can show that G
must satisfy the partial differential equation

oft /y 32 si 7\ C 7\ C*
- ~ -T—r + 2vC0t« 2 V COt M H A2 (COS1 Z - COS2 u) G = 0 .

dz2 du1 dz 9M
 v '

But this is equation (6) for elliptic-hypercylinder functions,
where 2ro +1 = 2c, or m = *• - £, and A = k. Hence the very curious
result: even Mathieu functions of higher order are solutions of
the homogeneous integral equation

f (z, «)sin2" uy(u)du,

where V is an elliptic-hypercylinder function, even and periodic
in z and u.
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