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Steady flow at low Reynolds (Re) number through a planar channel with converging or
diverging width is investigated in this study. Along the primary direction of flow, the small
dimension of the channel cross-section remains constant while the sidewalls bounding the
larger dimension are oriented at a constant angle. Due in part to ease of manufacturing,
parallel-plate geometries such as this have found widespread use in microfluidic devices
for mixing, heat exchange, flow control and flow patterning at small length scales. Previous
analytical solutions for flows of this nature have required the converging or diverging
aspect of the channel to be gradual. In this work, we derive a matched asymptotic solution,
validated against numerical modelling results, that is valid for any sidewall angle, without
requiring the channel width to vary gradually. To accomplish this, a cylindrical coordinate
system defined by the angle of convergence between the channel sidewalls is considered.
From the mathematical form of the composite expansion, a delineation between two
secondary flow components emerges naturally. The results of this work show how one
of these two components, originating from viscous shear near the channel sidewalls,
corresponds to convective mixing, whereas the other component impresses the sidewall
geometry on streamlines in the outer flow.

Key words: Hele-Shaw flows, microfluidics, boundary layer structure

1. Introduction
Microfluidic channels with varying rectangular cross-section find practical application in
chemistry, biological sciences and engineering (Stone & Kim 2001; Whitesides & Stroock
2001; Whitesides 2006). In particular, planar converging and diverging microchannels
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have appeared in designs for chemical reaction mixers (Lin & Yang 2007; Wang et al.
2017), microscale heat exchangers (Ghaedamini, Lee & Teo 2013; Yong & Teo 2014),
microscale rheometers (Nguyen, Yap & Sumargo 2008; Oliveira et al. 2008) and passive
valves and flow rectifiers (Tesla 1920; Olsson, Stemme & Stemme 1995; Chen et al. 2012;
Duryodhan, Singh & Agrawal 2014; Hu et al. 2022). The ease of fabrication afforded
by parallel-plate architectures has, in large part, encouraged its ubiquity across these
microfluidic platforms (Hong & Quake 2003; Kim et al. 2012; Hashimoto, Langer &
Kohane 2013). In turn, this ubiquity has motivated efforts to model flow through planar
channels of varying widths at low Reynolds number (Re). For heat transfer, mixing
phenomena, and flow rectification effects in planar microchannel devices, two distinct flow
domains are relevant: an inner flow in the vicinity of sidewall boundaries, and an outer flow
throughout the remaining physical domain. Here, the terms ‘inner’ and ‘outer’ are defined
according to general perturbation theory (Nayfeh 1973; Hinch 1991), in the sense that
the problem solution conforms to one regime in the near vicinity of a boundary, denoted
as the ‘inner region’, and that it conforms to another in a region far from the boundary,
denoted as the ‘outer region’. Boundary layers by this definition are not exclusive to high-
Re flow regimes, although certain types associated with high-Re flow, particularly the
Prantl boundary layer (Panton 2013, Chapter 16.4), are especially well known.

Several early studies on Hele-Shaw flow through planar channels develop matched
asymptotic solutions in order to model both inner and outer flow domains with precision.
Perturbation theory is attractive for developing an intuitive understanding of such a
flow, where two or more flow regimes are easily described in isolation (Lamb 1932).
In the analysis of Hele-Shaw flow around an obstructing body, Balsa (1998) used this
approach to relate the streamwise vorticity of the flow to the curvature of the obstruction.
Subsequently, Lauga, Stroock & Stone (2004) developed several key insights concerning
the three-dimensionality of flow through a rectangular cross-section of varying width and
curvature. Lauga et al. proved analytically the existence of secondary flow in all cases
where the channel cross-section is not constant; this principle has been noted elsewhere
and frequently exploited as a mechanism for laminar microchannel mixing (Groisman &
Steinberg 2001; Stroock et al. 2002; Watts & Haswell 2005; Hardin et al. 2015; Ward &
Fan 2015). Both perturbation analyses by Balsa (1998) and Lauga et al. (2004) were
formulated about a geometric parameter relating the largest and smallest length scales
of the microchannel.

Numerical modelling and experimental studies have also been carried out on
planar microchannels with varying width. Duryodhan et al. (2013, 2017) produced
numerical simulations of planar microchannels converging or diverging at a constant
angle, modelling pressure drop against flow rate for various permutations of the
geometry. Symmetric diverging–converging channels were also studied computationally
by Singhal & Ansari (2016), again with a focus on pressure drop across the channel as a
function of flow rate and geometric parameters. Later work by Tao et al. (2018) developed
empirical correlations between the pressure drop and flow rate across the channel for
a symmetric converging–diverging planar microchannel, with extensive dimensional
analysis of the parameter space, and validated with numerical simulations; subsequent
work by the same group (Tao et al. 2020) extended this approach to cases of converging–
diverging channels comprising different angles for their convergence and divergence
features. Goli, Saha & Agrawal (2019, 2022, 2024) also produced several numerical studies
on the diodicity of pressure drop across asymmetric converging–diverging and diverging–
converging geometries under moderate-Re flow regimes, also with validation of results by
experiment.
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Reference(s) Planar microchannel geometry Sidewall angle Re range Model type(s)

(Balsa 1998) Infinite width, with cylindrical
obstruction

< O (1) < O (1) Analytical

(Lauga et al. 2004) Gradually varying width and
or/or curvature

< O (1) < O (1) Analytical

(Ghaedamini et al. 2013) Sinusoidal diverging–converging
(i.e. ‘wavy wall’) feature

≤ 114◦ O (100) Numerical

(Duryodhan et al. 2013, 2017) Diverging or converging width ≤ 16◦ O (100) Empirical &
numerical

(Yong & Teo, 2014) Sinusoidal diverging–converging
(i.e. ‘wavy wall’) feature

≤ 50◦ O (100) Numerical

(Singhal & Ansari, 2016) Straight diverging–converging
(i.e. ‘diamond’) width feature

≤ 4◦ O (100) Numerical

(Tao et al. 2018, 2020) Straight converging–diverging
(i.e. ‘hourglass’) width feature

≤ 20◦ O (100) Empirical &
numerical

(Goli et al. 2019, 2024) Straight diverging–converging
(i.e. ‘diamond’) width feature

≤ 140◦ O (100) Numerical

(Goli et al. 2022) Straight converging–diverging
(i.e. ‘hourglass’) width feature

≤ 16◦ O (100) Numerical

(Bhattacharya et al. 2024) T-shaped mixer with sinusoidal
wavy walls

≤ 86◦ O (100) Numerical

(Parsekian, 2020); present
study

Diverging or converging width < 180◦ (any) < O (1) Analytical

Table 1. Summary of previous modelling work for single-fluid flow through planar microchannels. All listed
references assume laminar, incompressible flow of a Newtonian fluid, and all analytical models listed are
perturbation solutions.

These numerical studies have been primarily concerned with flow rectifier devices for
Newtonian fluids, characterised in terms of pressure drop, flow resistance and diodicity.
Additionally, steady flows in planar microchannels with wavy sidewalls have been inves-
tigated computationally for chemical mixing and heat exchange applications. Ghaedamini
et al. (2013) described interrelated contributions from boundary layer phenomena,
dead zones and chaotic advection in the determination of microscale heat exchanger
performance, and produced design guidelines for optimal heat exchange in passive
microfluidic devices. More recently, Bhattacharya et al. (2024) considered concentration
mixing in T-shaped micromixers with wavy sidewalls, applying correlations between
mixing performance, pressure drop and channel geometry towards device optimisation.
These previous modelling efforts are summarised in table 1 in relation to the present work.

Across this body of previous work, the complexity of the parameter space has
necessitated various simplifying assumptions and concessions to study scope. In
particular, the analytical solutions listed in table 1 are limited to mathematically small
sidewall angles, gradual variations in channel cross-sectional width and slow viscous
flow regimes. Nevertheless, the solutions derived by Balsa (1998) and Lagua, Stroock &
Stone (2004) provide precise mathematical definitions with rich physical interpretations,
as is characteristic of the matched asymptotic approach (Nayfeh 1973; Hinch 1991).
By contrast, the numerical studies in table 1, despite fewer restrictions with respect to
the flow regime and channel geometry, are limited by the cumulative computational
burden of simulating many permutations of the problem set-up. Furthermore, while
computational investigations have been highly effective in identifying correlations within
a finite parameter space, the physical bases for those correlations are not always obvious
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Figure 1. Isometric views of the channel geometry for (a) planar converging flow and (b) planar diverging flow.
(c) Top-down view of the channel geometry. Unit vectors for coordinates r , θ and z are denoted as er , eθ and
ez respectively.

or definitive. An ongoing discussion among researchers over the appropriate choice of
parameter space, particularly with respect to characteristic length scale (Duryodhan,
Singh & Agrawal 2013; Singhal & Ansari 2016; Goli, Saha & Agrawal 2019), reflects
this difficulty.

In pursuit of fundamental insights to increase understanding of planar channel flows,
further efforts to describe the flow analytically can offer significant value. The goal of
this study is a mathematical solution valid for any angle of convergence or divergence
ranging from 0 to π/2, and which can resolve the significant aspects of both bulk flow
and boundary layer phenomena. Noting the successes of prior analytical studies for steady
flow in planar channels, and building on ideas originally developed in the PhD thesis
of Parsekian (Parsekian 2020), this work develops a matched asymptotic solution for
the three-dimensional velocity and pressure fields for steady viscous Newtonian flow
through planar converging and diverging channels. In contrast to previous analyses, this
work does not assume a Cartesian frame of reference, but rather a cylindrical one whose
origin is defined by the sidewall angle. Furthermore, in its pursuit of a model that does
not require a gradual change in channel width, the analysis adopts as its geometric
perturbation parameter a modified aspect ratio, which is independent of the gradualness
of cross-sectional width change.

2. Problem formulation

2.1. Physical domain
The geometry of the problem is represented in figure 1. The analysis herein develops
a solution for the two scenarios represented in figure 1, wherein the channel sidewalls
are straight and oriented at a constant angle of convergence or divergence, 2Θ . Previous
studies on converging planar flows (Duryodhan et al. 2013; Singhal & Ansari 2016; Goli
et al. 2019) have remarked on the difficulty of selection of characteristic length scales,
since the width of the channel is not constant for Θ �= 0. To address this difficulty, the
approach here develops a solution along an arc with radius of curvature R, where 2RΘ

is the length of the arc bounded by the channel sidewalls, as shown in figure 1(c). Such
an arc can be constructed at any arbitrary location within the domain of interest, as long
as its radius coincides with lines tangent to the sidewalls at the points of intersection. The
mathematical treatment here adopts a cylindrical coordinate system centred at the point
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of intersection for these two tangent lines, with planar channel boundaries located at ±H
along the z-axis. With these geometric definitions established, RΘ and H emerge as the
two natural length scales for mathematical analysis. In the discussion that follows, it will
be shown that the velocity and pressure fields lend themselves naturally to an asymptotic
solution along this arc, using this cylindrical coordinate system.

The three-dimensional geometry of the present problem is reminiscent of Jeffery–
Hamel flow, which describes two-dimensional flow emanating from a point source, or
converging towards a point sink, at the intersection between two angled walls (Panton
2013, Chapter 14.7). Both problems comprise diverging or converging flow in the vicinity
of straight sidewalls oriented along a constant angle. However, the wall boundaries at
z = ±H in figure 1, which are not present in the case of Jeffery–Hamel flow, are highly
influential for the flow regime and the form of the solution. Beyond the obvious difference
in dimensionality, the characteristic length scale for the flow, and therefore, the balance
between inertial and viscous forces, is determined significantly by the distance between
these wall boundaries. Furthermore, whereas Jeffery–Hamel flow can be solved exactly
for arbitrary Re, such solutions are not readily extensible to the case shown in figure 1.
The present work aims to apply several simplifying assumptions, detailed in the section
that follows, that permit an analytical solution for flow regimes that occur regularly in the
context of practical microfluidic applications.

2.2. Flow regime and assumptions
The present analysis assumes incompressible, steady flow, and the viscosity of the fluid
is assumed to be Newtonian within the range of shear rate achieved within the channel.
The velocity field is assumed to be independent of the pressure profiles far upstream and
downstream from the arc located at r = R, −Θ ≤ θ ≤ Θ , as illustrated in figure 1(c). The
ratio between the channel depth, H , and the sidewall arc length illustrated in figure 1, RΘ ,
is assumed to be small. This ratio is the local inverse aspect ratio of the channel cross-
sectional arc, denoted as the small geometric parameter α � 1, and is defined as follows:

α = H

RΘ
. (2.1)

Additionally, inertial forces are assumed to be negligible compared with viscous forces.
Validating this assumption requires a mathematical definition of Re. The following is
adopted for the present analysis:

Re = 2ρQ/ (H + RΘ)

μ
, (2.2)

where Q is the volumetric flow rate through the channel, ρ is the fluid density and μ is
the dynamic viscosity. This definition of Re implies the average radial velocity component
as the characteristic velocity, and as the characteristic length, the hydraulic diameter of the
cross-sectional arc illustrated in figure 1, Dh , which is defined as follows:

Dh = 2H RΘ

H + RΘ
. (2.3)

For the special case of Θ → 0 and RΘ → W , which equates to laminar steady flow
through a straight rectangular channel of constant width W and height H , the characteristic
velocity reverts to the average unidirectional flow velocity. The constant coefficient
included in the definition of Re ensures that, for this same special case, Dh reverts to
its conventional definition of hydraulic diameter for a constant rectangular cross-section
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Dh|RΘ→W,Θ→0 = 2H W

H + W
= 4Ah

Ph
, (2.4)

where Ah is the area, and Ph is the wetted perimeter, of the rectangular channel cross-
section. Finally, it is worth remarking that, in contrast to many of the computational studies
listed in table 1, the definition of Re given by (2.2) considers only the local cross-section
arc, rather than a larger section of the channel along a range of r . The justification for this
distinction is the assumption of fully developed flow, which precludes effects sufficiently
far upstream and downstream from influencing flow at the cross-section arc.

It is important to appreciate that α scales proportionally to r−1 along the length of the
channel according to the definition in (2.1). Furthermore, as α → 0, H + RΘ → RΘ and
thus, according to (2.2), Re also scales approximately with r−1 provided that α � 1. In
other words, if α � 1 and Re � 1 at the narrowest channel width under consideration,
then the assumption of small α and small Re also holds for wider sections of the channel.
It is, of course, possible to conceive various scenarios that fail to satisfy either one or
both of these assumptions. However, from a practical standpoint – that is, in a functional
microfluidic device – it is not unusual for both of these conditions to be satisfied.

Finally, a point of caution is also warranted regarding the assumption of fully developed
flow in relation to the sidewall angle, Θ . Practical implementations of the geometry shown
in figure 1 presumably require an inlet and outlet somewhere along the channel, each
displaced sufficiently from the cross-sectional arc of interest that developing flow effects
can be neglected. As Θ → π/2, the inlet or outlet associated with the widening end of
the channel requires an increasingly large distance from the cross-section arc in order for
the assumption of fully developed flow to apply, unless the pressure field solution of the
following analysis is purposefully contrived upstream and downstream of the region of
interest by some alternative means.

2.3. Governing equations and boundary conditions
Given the stated assumptions, governing equations for continuity and momentum are,
respectively,

∇ · u = 0, (2.5a)

0 = −∇ p + μ∇2u, (2.5b)

where u denotes the vector representation of the velocity field, and p is the scalar pressure
field.

In the cylindrical coordinate system, the governing equations are expressed as follows:

1
r

∂

∂r
(rur ) + 1

r

∂

∂θ
(uθ ) + ∂

∂z
(uz) = 0, (2.6a)

∂p

∂r
= μ

[
1
r

∂

∂r

(
r
∂ur

∂r

)
+ 1

r2
∂2ur

∂θ2 + ∂2ur

∂z2 − ur

r2 − 2
r2

∂uθ

∂θ

]
, (2.6b)

1
r

∂p

∂θ
= μ

[
1
r

∂

∂r

(
r
∂uθ

∂r

)
+ 1

r2
∂2uθ

∂θ2 + ∂2uθ

∂z2 − uθ

r2 + 2
r2

∂ur

∂θ

]
, (2.6c)

∂p

∂z
= μ

[
1
r

∂

∂r

(
r
∂uz

∂r

)
+ 1

r2
∂2uz

∂θ2 + ∂2uz

∂z2

]
, (2.6d)

where ur, uθ and uz are the components of u along unit vectors er, eθ and ez, respectively.
Asymptotic approximations of the velocity and pressure fields are developed around

the small parameter α from (2.1). To represent (2.6a)–(2.6d) in dimensionless form, the
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following scaling is used:

r = H

α
r̂ , θ = θ̂ , z = H ẑ, (2.7a)

(ur , uθ , uz) =
(

Q

RH
ûr ,

Q

RH
ûθ ,

Q

(R)2 ûz

)
=
(

αQ

H2

) (
ûr , ûθ , αûz

)
, (2.7b)

p =
(

μQ

H3

)
p̂. (2.7c)

Based on (2.7a)–(2.7c), H , αQ/H2 and μQ/H3 are, respectively, the length scale,
velocity scale and pressure scale adopted by the present analysis. The dimensionless
governing equations in the cylindrical coordinate system are given by (2.8a)–(2.8d), with
hats on all dimensionless variables dropped hereafter for brevity:

1
r

∂

∂r
(rur ) + 1

r

∂

∂θ
(uθ ) + ∂

∂z
(uz) = 0, (2.8a)

∂p

∂r
= α2 1

r

∂

∂r

(
r
∂ur

∂r

)
+ α2 1

r2
∂2ur

∂θ2 + ∂2ur

∂z2 − α2 ur

r2 − α2 2
r2

∂uθ

∂θ
, (2.8b)

1
r

∂p

∂θ
= α2 1

r

∂

∂r

(
r
∂uθ

∂r

)
+ α2 1

r2
∂2uθ

∂θ2 + ∂2uθ

∂z2 − α2 uθ

r2 + α2 2
r2

∂ur

∂θ
, (2.8c)

∂p

∂z
= α4 1

r

∂

∂r

(
r
∂uz

∂r

)
+ α4 1

r2
∂2uz

∂θ2 + α2 ∂2uz

∂z2 . (2.8d)

For the channel shown in figure 1(c), the cross-section arc is located at dimensionless
coordinate r = 1/Θ . The limit in which Θ → 0 represents the special case of flow through
a straight rectangular duct, whose velocity field is known (Panton 2013, Chapter 11.2). In
the dimensionless polar cylindrical coordinate system, the remaining channel walls are
located at z = ±1 and θ = ±Θ . Symmetry of the solution about z = 0 and θ = 0 can be
inferred based on the geometry of the channel. The velocity field governed by the equations
above is therefore subject to the following boundary conditions:

ur |θ=Θ = uz|θ=Θ = ur |z=1 = uθ |z=1 = 0, (2.9a)
uθ |θ=Θ = uz|z=1 = 0, (2.9b)

∂ur

∂θ

∣∣∣∣
θ=0

= uθ |θ=0 = ∂uz

∂θ

∣∣∣∣
θ=0

= ∂ur

∂z

∣∣∣∣
z=0

= ∂uθ

∂z

∣∣∣∣
z=0

= uz|z=0 = 0, (2.9c)

where (2.9a) represents no-slip boundary conditions, (2.9b) represents no-flux boundary
conditions and (2.9c) represents symmetry about θ = 0 and z = 0,

The velocity field is also subject to the following flow rate condition:∫ 1

−1

∫ Θ

−Θ

ur rdθdz = ∓1, (2.9d)

where −1 on the right-hand side of (2.9d) corresponds to flow through a planar channel
with converging sidewalls, and 1 corresponds to diverging sidewalls.

Finally, the pressure field must be evaluated relative to its value at a reference point,
which may be located outside the cross-section arc. This is formalised as the following:

p|(r,θ,z)=(rp,0,0) = P, (2.9e)

where P denotes the pressure at point (r, θ, z) = (rP , 0, 0).
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2.4. Asymptotic expansion representation
Setting α = 0 reduces the order of (2.8a)–(2.8d) such that the θ -axis boundary conditions
cannot all be satisfied simultaneously. Therefore, this analysis seeks a composite expansion
incorporating an inner velocity field V ≡ (Vr , Vθ , Vz), which is valid near θ = Θ , and
an outer velocity field U ≡ (Ur , Uθ , Uz), which is valid far from the θ -axis boundaries.
In physical terms, V represents the boundary layers of the flow at the sidewalls of the
channel. U , which represents outer flow beyond the influence of these boundary layers, is
nevertheless influenced by the varying channel width by virtue of continuity.

For the outer velocity solution, an asymptotic expansion of the following form is
assumed:

(Ur , Uθ , Uz, p) = (Ur,0, Uθ,0, Uz,0, p0) + α(Ur,1, Uθ,1, Uz,1, p1) + O(α2). (2.10)

The notation O(αn) denotes terms that are of order αn . Substituting (ur , uθ , uz, p) =
(Ur , Uθ , Uz, p) in (2.8a)–(2.8d) and separating terms of the same order into separate
equations yields the following asymptotic expansion formulation of the governing
equations for the outer velocity:

1
r

∂

∂r
(rUr,n) + 1

r

∂

∂θ
(Uθ,n) + ∂

∂z
(Uz,n) = 0, (2.11a)

∂pn

∂r
= ∂2Ur,n

∂z2 , (2.11b)

1
r

∂pn

∂θ
= ∂2Uθ,n

∂z2 , (2.11c)

∂pn

∂z
= 0, (2.11d)

subject to the following boundary conditions:

Ur,n
∣∣
z=1 = Uθ,n

∣∣
z=1 = 0, (2.12a)

Uz,n
∣∣
z=1 = 0, (2.12b)

∂Uθ,n

∂z

∣∣∣∣
z=0

= ∂Ur,n

∂z

∣∣∣∣
z=0

= Uz,n
∣∣
z=0 = 0, (2.12c)

p0|(r,θ,z)=(rp,0,0) = P, (2.12d)

p1|(r,θ,z)=(rp,0,0) = 0, (2.12e)

where (2.12a) represents no slip, (2.12b) represents no flux, (2.12c) represents symmetry
about z = 0 and (2.12d) and (2.12e) express pressure at a known reference point. These
equations are valid for n = 0, which produces the O(1) governing equations, and n = 1,
which produces the O(α) governing equations, for the outer region.

To study the velocity field near θ = Θ , a scaled inner variable ξ = (θ − Θ)/α is
introduced, and an asymptotic expansion of the velocity field of the following form is
assumed:

(Vr , Vθ , Vz, p) = (Vr,0, Vθ,0, Vz,0, p0) + α(Vr,1, Vθ,1, Vz,1, p1) + O(α2). (2.13)

Here, it is worth noting that the governing equations, expressed generally as (2.8a)–
(2.8d), and for the outer regions as (2.11a)–(2.11d), have so far contained only powers
of α2 among their constant coefficients. This might suggest α2 as the appropriate choice
of small parameter for the asymptotic expansion, were it not for the coefficient powers
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of α that appear when the governing equations are expressed in terms of the scaled inner
variable. The inner variable scaling elevates the order of terms containing derivatives of θ

in (2.8a)–(2.8d), and even produces two terms of O(α−1), which warrants the following
order O(α−1) inner equations for continuity and θ -momentum, respectively:

1
r

∂

∂ξ
(Vθ,0) = 0, (2.14a)

1
r

∂p0

∂ξ
= 0. (2.14b)

The O(α−1) expressions for conservation of r -momentum and z-momentum are both
trivial.

Inner expansion terms of O(1) and O(α) can be organised under the following
expression of (2.8a)–(2.8d):

1
r

∂

∂r
(r Vr,n) + 1

r

∂

∂ξ
(Vθ,n+1) + ∂

∂z
(Vz,n) = 0, (2.15a)

∂pn

∂r
= 1

r2
∂2Vr,n

∂ξ2 + ∂2Vr,n

∂z2 − 2
r2

∂Vθ,n−1

∂ξ
, (2.15b)

1
r

∂pn+1

∂ξ
= 1

r2
∂2Vθ,n

∂ξ2 + ∂2Vθ,n

∂z2 + 2
r2

∂Vr,n−1

∂ξ
, (2.15c)

∂pn

∂z
= 0, (2.15d)

where n = 0 produces the O(1) governing equations, and n = 1 produces the O(α)

governing equations, for the inner region.
Here, a minor issue arises. The z-velocity components appear in exactly one governing

equation, (2.15a), which expresses continuity. However, the θ -velocity component which
appears in the same equation, also fails to appear in the momentum equations of the
same order. As a result, the O(αn) governing equations, as formulated above, afford
fewer equations than needed to resolve the unknown velocity components. This issue
can be remedied by resorting to the O(αn+1) conservation of θ -momentum and (αn+2)
conservation of z-momentum equations. This pair of higher-order equations can be
combined into a new equation which contains Vθ,n+1 and Vz,n , and crucially, none of
the other velocity components. This additional set of equations is expressed as follows:

1
r2

∂3Vθ,n+1

∂ξ2∂z
+ ∂3Vθ,n+1

∂z3 + 2
r2

∂2Vr,n

∂ξ∂z
= 1

r3
∂3Vz,n

∂ξ3 + 1
r

∂3Vz,n

∂ξ∂z2 . (2.16)

In a physical sense, (2.16) reflects the requirement that pressure field terms and
corresponding velocity field terms must be self-consistent. Although the derivation of
(2.16) requires resorting to higher-order governing equations, this approach does not
require explicit definitions for the higher-order terms that appear in those equations, and is
therefore is permissible according to standard perturbation methods. Detailed intermediate
steps in the derivation of (2.16) are provided in Appendix A.

The velocity and pressure in the inner region are subject to the following boundary
conditions:

Vr,n
∣∣
ξ=0 = Vz,n

∣∣
ξ=0 = Vr,n

∣∣
z=1 = Vθ,n+1

∣∣
z=1 = 0, (2.17a)

Vθ,n+1
∣∣
ξ=0 = Vz,n

∣∣
z=1 = 0, (2.17b)
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∂Vr,n

∂z

∣∣∣∣
z=0

= ∂Vθ,n+1

∂z

∣∣∣∣
z=0

= 0, (2.17c)

where (2.17a) expresses no slip, (2.17b) expresses no flux and (2.17c) expresses symmetry
about z = 0.

2.5. Computational simulation
Validation of the analytical solution of the converging slot domain is performed using an
implementation of the semi-implicit method pressure linked equation (SIMPLE) solver.
Originally developed by Patankar and Spalding (Patankar & Spalding 1972; Patankar
1980), SIMPLE is a finite volume formulation of the problem that utilises a staggered grid,
with pressure computed at cell centres, and velocity computed at boundary facets. In this
method, a pressure guess is used to generate a corresponding velocity field; the pressure is
corrected to account for the local residuals of continuity; and the corrected pressure and a
corresponding velocity correction are used to generate the next iteration in each successive
improvement to solution accuracy. The influence of the pressure field on the velocity is
‘semi-implicit’ in the sense that, at each mesh element, contributions from neighbouring
elements are accounted for in the calculation of velocity from pressure, and ignored in the
calculation of a pressure correction from velocity. The termination condition for SIMPLE
is based on the error calculation for continuity, in which these neighbour contributions are
not ignored, thus ensuring accuracy of the converged solution.

The majority of assumptions outlined in § 2.2 are also used for the computational model,
summarised as follows:

(i) Incompressible, steady flow.
(ii) Newtonian viscosity.

(iii) Negligible inertial terms (i.e. Re � 1).
(iv) α � 1.

In place of the final assumption used in the analytical formulation – that of fully
developed flow – the pressure states at the upstream and downstream domain boundaries
of the computational model are specified directly. To facilitate comparison between
the analytical and computational results, the dimensionless representation of continuity
from (2.8a), and the dimensionless representation of conservation of momentum from
(2.8b)–(2.8d), are used as the governing equations for the model.

The validation study of this work uses a structured cylindrical mesh, spanning from
r = 1/2Θ to r = 3/2Θ , from θ = 0 to θ = Θ and from z = 0 to z = 1 for each case, with
a scaling factor of α−1 along the θ -dimension applied to the θ = Θ boundary cells. For
the transition between the scaled boundary cells and interior cells, a growth ratio of 1.3
for cell width along θ is used. The purpose of this scaling factor is to resolve the velocity
field in the near vicinity of the sidewall, in sufficient detail to enable comparison with the
analytical solution. In total, six distinct meshes, summarised table 2, are considered. An
example of the mesh domain is plotted in figure 2, for the first case tabulated in table 2.

The velocity boundary conditions used for the computational study are the same as
those for the analytical formulation, as expressed in (2.9a)–(2.9c). However, rather than
assuming fully developed flow within the computational domain, the following pressure
conditions are used for the inlet and outlet boundaries:

p|r=1/2Θ = (p0 + αp1)|r=1/2Θ, (2.18a)
p|r=3/2Θ = (p0 + αp1)|r=3/2Θ, (2.18b)
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Mesh no. Θ α r-grid size θ-grid size z-grid size Total cells

1 π/4 0.2 30 27 20 16 200
2 π/4 0.1 30 26 20 15 600
3 π/4 0.05 30 27 20 16 200
4 π/6 0.1 30 27 20 16 200
5 π/3 0.1 30 25 20 15 000
6 7π/16 0.1 30 25 20 15 000

Table 2. Summary of mesh parameters for each validation case reported in this study.

Inlet

θ-symmetry

(a) (b)

Inlet

Sidewall

Outlet

Outlet

Figure 2. The mesh used for case 1 of table 2, with α = 0.2 and Θ = π/4, visualised in (a) isometric view
and (b) from the top down.

where p0 and p1 represent, respectively, the O(1) and order O(α) terms in the asymptotic
expansion defined in (2.10), whose solution form is derived later in § 3.3 of this work.
Equation (2.18a) expresses the pressure condition at the channel outlet (for converging
flow) and (2.18b) expresses the pressure condition at the channel inlet (again, for
converging flow). These pressure conditions are adopted to facilitate direct comparison
between the analytical solution and the computational validation results.

3. Analytical solution

3.1. Outer solution
The following form of the O(1) and O(α) pressure field expansions can be found to satisfy
the governing equations expressed as (2.11a) and the boundary conditions given by (2.12a):

pn − Pn = Cn,0 ln
(

r

rP

)
+

∞∑
m=1

(−Cn,m,1r−m + Cn,m,2rm) cos(mθ)

−
∞∑

m=1

(−Cn,m,1rP
−m + Cn,m,2rP

m)+
∞∑

m=1

(−Cn,m,3r−m+ Cn,m,4rm) sin(mθ),

(3.19)
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where P0 = P and P1 = 0 express the reference pressure condition, and Cn,0, Cn,m,1,
Cn,m,2, Cn,m,3 and Cn,m,4 are constants to be determined from the flow rate condition
and by matching between inner and outer solutions.

Taking partial derivatives of (3.19), substituting into (2.11a) and twice integrating with
respect to z gives the following form of the outer velocity field:

Ur,n = −1
r

{
Cn,0 +

∞∑
m=1

m
(
Cn,m,1r−m + Cn,m,2rm) cos(mθ)

+
∞∑

m=1

m
(
Cn,m,3r−m + Cn,m,4rm) sin(mθ)

}(
1 − z2

2

)
, (3.20a)

Uθ,n = 1
r

{ ∞∑
m=1

m
(−Cn,m,1r−m + Cn,m,2rm) sin(mθ)

+
∞∑

m=1

n
(−Cn,m,3r−m + Cn,m,4rm) cos(mθ)

}(
1 − z2

2

)
, (3.20b)

Uz,n = 0. (3.20c)

3.2. Inner solution
Inner velocity terms must be determined starting with the O(α−1) contributions that
appear in (2.14). In conjunction with the no-flux boundary condition at ξ = 0, (2.14a)
requires that Vθ,0 = 0. Equation (2.14b) implies, helpfully, that the O(1) pressure terms
are inherited from the outer flow. Furthermore, a re-examination of (2.15c) with these
results reveals that the O(α) pressure terms are inherited from the outer region as well.

Taking a separation of variables approach, the following solution form can be found to
satisfy (2.15b) and the boundary conditions in (2.17) for Vr,0 and Vr,1:

Vr,n =
(

∂pn

∂r

∣∣∣∣
θ=Θ

){ ∞∑
m=1

Em exp {δmrξ} cos (δmz) −
(

1 − z2

2

)}
, (3.21a)

where n = 0 corresponds to the O(1) solution, n = 1 corresponds to the O(α) solution,
δm = (1/2)(2m − 1)π and Em = (−1)m−12/δ3

m .
The remaining non-zero velocity components are Vθ,1, Vz,0 and Vz,1, which appear in

(2.15a) and (2.16). These equations are satisfied by the following solution forms of the
velocity θ - and z-components:

Vθ,1 = −1
r

(
∂p0

∂r

∣∣∣∣
θ=Θ

) ∞∑
m=1

{
Emrξ exp {δmrξ} cos (δmz)

+ (1 − exp {δmrξ})
[

F Em cos (δmz) −
(

F − 1
δm

)
1
δ4

m
g′(z)

]}
, (3.21b)

Vz,n = −1
r

(
∂pn

∂r

∣∣∣∣
θ=Θ

) ∞∑
m=1

(
F − 1

δm

)
exp {δmrξ}

[
En sin (δmz) − 1

δ3
m

g(z)

]
. (3.21c)

The coefficients δm , Em , F and g(z) that appear in (3.21a)–(3.21c) are defined as
follows:
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δm = 1
2

(2m − 1) π, (3.22a)

Em = (−1)m−1 2
δ3

m
, (3.22b)

F =
∞∑

m=1

(
6
δ5

m

)
, (3.22c)

g(z) =
∑∞

m=1
[
(Fδm − 1) Em sin (δmz) /δm

]
∑∞

m=1
[
(Fδm − 1) /δ4

m

] . (3.22d)

Intermediate steps used to arrive at these solution forms are provided in Appendix A.

3.3. Composite solution
To construct a composite solution, matching between the outer solutions and each of the
inner solutions is required. Matching between U and V can be accomplished using van
Dyke’s rule, which asserts

lim
α→0

{U (θ = αξ + Θ)} = lim
α→0

{V (ξ = (θ − Θ) /α)}. (3.23)

Matching the O(1) outer and inner solutions requires that constant coefficients C0,m,1,
C0,m,2, C0,m,3 and C0,m,4 that appear in (3.19) and (3.20a)–(3.20c) must be zero for all m.
Similarly, matching the O(α) solutions requires that C1,m,1 = 0 for all m �= 1, C1,1,1 =
[C0,0/ sin(Θ)]∑∞

n=1(6/δ5
n) and C1,m,2 = C1,m,3 = C1,m,4 = 0 for all m. Alternatively,

these same results can be produced by matching by means of an intermediate variable.
The constant coefficients C0,0 and C0,1, which remain unknown following the matching
procedure, must be determined based on the flow rate condition.

After matching, a composite velocity can be constructed from the superposition of inner
and outer solutions, subtracting the redundant contributions from the inner and outer
velocity components, called the overlap. Here, it is necessary to include inner velocity
contributions at both sidewall boundaries: the boundary at θ = Θ , which corresponds to
V , and the boundary at θ = −Θ , which corresponds to V reflected about the plane of
symmetry at θ = 0. Similarly, it is necessary to subtract the overlap corresponding to each
boundary. The overlap corresponding to the intermediate region near θ = Θ is defined as
limα→0{U(θ = αξ + Θ)}, or equivalently, limα→0{V (ξ = (θ − Θ)/α)}, while the overlap
corresponding to the opposite sidewall boundary can be defined as the same overlap
reflected about θ = 0. After subtracting the overlap and collecting terms, the composite
solutions can be expressed as follows:

p = P + (C0,0 + αC1,0) ln
(

r

rP

)
− αC0,0 F

sin(Θ)

(
cos (θ)

r
− 1

rp

)
+ O(α2), (3.24a)

ur = −1
r

[
C0,0 + αC1,0 + α

C0,0 F

r

cos (θ)

sin(Θ)

] (
1 − z2

2

)
+ 1

r

[
C0,0 + αC1,0

+α
C0,0 F

r
cot(Θ)

] [
2

∞∑
n=1

En exp
{
−δn

rΘ

α

}
cosh

{
δn

rθ

α

}
cos (δnz)

]
+ O(α2),

(3.24b)

uθ = − α

r2 C0,0 F
sin(θ)

sin(Θ)

(
1 − z2

2

)
+ 2

r2 C0,0

∞∑
n=1

{
exp

{
−δn

rΘ

α

} (
rΘ sinh

{
δn

rθ

α

}
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− rθ cosh
{
δn

rθ

α

})
[En cos (δnz)]

}
+ 2α

r2 C0,0

∞∑
n=1

{
exp

{
−δn

rΘ

α

}
sinh

{
δn

rθ

α

}

×
[

F En cos (δnz) −
(

F − 1
δn

)
1
δ4

n
g′(z)

]}
+ O(α2), (3.24c)

uz = − 2
r2

(
C0,0 + αC1,0 + α

C0,0 F

r
cot(Θ)

)
·

∞∑
n=1

exp
{
−δn

rΘ

α

}
cosh

{
δn

rθ

α

}

×
(

F − 1
δn

) [
En sin (δnz) − 1

δ3
n

g(z)

]
+ O(α2). (3.24d)

Finally, the flow rate condition from (2.9d) must be applied to determine the constant
coefficients C0,0 and C1,0. This flow rate condition can be expressed in terms of the
asymptotic expansion as follows:∫ 1

−1

∫ Θ

−Θ

(ur,0 + αur,1)rdθdz = ∓1 + O(α2), (3.25)

where −1 + O(α2) on the right-hand side of (3.25) denotes flow through a planar channel
with converging sidewalls, and 1 + O(α2) denotes flow through a planar channel with
diverging sidewalls. Evaluating this integral using the expressions in (3.24a)–(3.24d)
provides the following definitions for C0,0 and C1,0:

± C0,0 = 3
4Θ

[1 − αΘ cot(Θ)F]−1 , (3.26a)

± (C0,0 + αC1,0) = 3
4Θ

, (3.26b)

where a positive sign on the left-hand sides of (3.26a)–(3.26b) denotes converging
sidewalls, and a negative sign denotes diverging sidewalls. Intermediate steps in the
application of the flow rate condition are provided in Appendix B.

With these definitions, the pressure field and pressure gradients along the arc located at
r = 1/Θ can be expressed as follows:

±p = P − 3
4Θ

[
ln (rPΘ) + β

(
cos (θ) − 1

rpΘ

)]
, (3.27a)

±∂p

∂r
= 3

4
[1 + β cos (θ)] (3.27b)

±1
r

∂p

∂θ
= 3

4
β sin (θ), (3.27c)

±∂p

∂z
= 0, (3.27d)

where P is a known reference pressure at r = rP , and the signs of the left-hand sides
of (3.27a)–(3.27c) are positive for channels with converging sidewalls and negative for
channels with diverging sidewalls. Additionally, the parameter β expresses the magnitude
of variation of the pressure gradient along θ , in terms of Θ and α, and is defined as follows:

β = αΘ F csc(Θ)

1 − αΘ F cot(Θ)
. (3.28)
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After substituting these definitions into (3.24a)–(3.24c), the O(α) expansion for the
velocity field along the arc located at r = 1/Θ can be expressed as follows:

±ur = −3
4

[1 + β cos (θ)]
(

1 − z2

2

)
+ 3

4
[1 + β cos(Θ)] Sr1 + O(α2), (3.29a)

±uθ = −3
4
β sin (θ)

(
1 − z2

2

)
+ 3

4
β

(
sin(Θ)

F

)
(Sθ1 + Sθ2) + O(α2), (3.29b)

±uz = −3
4
Θ [1 + β cos(Θ)] Sz1 + O(α2), (3.29c)

where the signs of the left-hand sides of (3.29a)–(3.29c) are positive for channels with
converging sidewalls and negative for channels with diverging sidewalls, and Sr1, Sr2,
Sθ1, Sz1 and Sz2 are functions involving infinite summations, defined as follows:

Sr1 (θ, z) = 2
∞∑

m=1

Em exp{−δmα−1} cosh
{

δm

α

θ

Θ

}
cos (δmz) , (3.30a)

Sθ1 (θ, z) = 2
∞∑

m=1

{
1
α

exp
{
−δm

α

}(
sinh

{
δm

α

θ

Θ

}
− θ

Θ
cosh

{
δm

α

θ

Θ

}) [
Em

F
cos(δmz)

]}
,

(3.30b)

Sθ2 (θ, z) = 2
∞∑

m=1

{
exp

{
−δm

α

}
sinh

{
δm

α

θ

Θ

} [
Em cos (δmz) −

(
1
δ4

m
− 1

Fδ5
m

)
g′(z)

]}
,

(3.30c)

Sz1 (θ, z) = 2
∞∑

m=1

exp
{
−δm

α

}
cosh

{
δm

α

θ

Θ

} (
F − 1

δm

) [
Em sin (δmz) − 1

δ3
m

g(z)

]
,

(3.30d)
where the coefficients δm , Em , F and g(z) that appear in (3.30a)–(3.30d) follow the same
definitions as previously given in (3.22a)–(3.22d).

It is worth remarking that the infinite summation terms in (3.30a)–(3.30d) can be
computed numerically and truncated to reasonable accuracy after only a few terms in each
series.

3.4. Composite solution plots
The behaviour of the O(α) composite expansion in the intermediate region, where the
solution from (3.29a) and (3.30) transitions between inner and outer approximations, is
illustrated in figure 3. For three illustrative values of α, figure 3 overlays the inner, outer
and composite expansions within the domain bounded by −3 ≤ ξ ≤ 0. This range for the
scaled coordinate ξ is sufficiently large to encompass significant contributions from both
the inner and outer velocity expansions. Respectively, figures 3(a)–3(c) each comprise
separate subplots for each velocity component, alongside a graphical illustration of the
plot range along ξ , the scaled inner θ coordinate.

A few notable features of the perturbation solution can be observed in these plots.
First, the size of the boundary layer at the sidewall scales with α, which offers
further confirmation for the choice of scaled inner variable. This is also reflected in
the mathematical forms of the inner velocity components, whose largest terms are
of order O(α), and which diminish to zero as ξ → 0. Second, ur is the dominant
velocity component within the channel, particularly for small α, which underscores
the convenience of the cylindrical coordinate system for analysing the flow problem.
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α = 0.20

(a)

(i) (ii) (iii)

(i) (ii) (iii)
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Figure 3. Matching between inner and outer velocity field solutions plotted along the intermediate region
for (a) α = 0.2, (b) α = 0.1 and (c) α = 0.05. The channel cross-section geometry is plotted on the leftmost
sub-figure in each row of sub-figures, with a dashed arc representing the portion of the channel along which the
velocity components are plotted. The r -velocity components are plotted in sub-figure (i) of each row, θ -velocity
components are plotted in sub-figure (ii) of each row, and non-zero z-velocity components are plotted in
sub-figure (iii) of each row.

This aspect of the problem formulation neatly delineates between a primary flow
component and the other, secondary, flow components. Third, among the three velocity
components, the θ -velocity exhibits the most diverse and interesting behaviour in the
transition between the inner and outer regions. In this sense, the θ -velocity in the inter-
mediate region can be thought of as reconciling between an outer radial flow, and a more
complex three-dimensional flow near the sidewall boundaries, where the radial component
exemplifies the outer flow regime, and the z-component exemplifies the inner flow regime.

The form of the O(α) perturbation solution for pressure is plotted in figure 4. The radial
and circumferential gradients are shown in figures 4(a) and 4(b) respectively, while the
gradient along z is not plotted, since it is zero to mathematical order O(α). These gradients
are cosine and sine curves centred at θ = 0, which follows directly from their mathematical
expressions in (3.27b) and (3.27c). The highest possible peak amplitude across the channel
arc, for either pressure gradient component, is β, and is achieved as Θ → π/2.

The value of β, as defined in (3.28), is determined entirely by the channel geometry,
and it is therefore worth remarking on the relationship between α, Θ and the variation
in pressure across the channel. Figure 4(c) plots the relationship between β and α, which
exhibits a power-law scaling for fixed Θ , while figure 4(d) presents a weak, nonlinear
relationship between β and Θ for various values of α. However, this does not necessarily
equate to a weak influence of Θ on the variation of pressure across the channel; here, it is
important to recall that Θ defines the valid bounds of θ in figures 4(a) and 4(b), and the
pressure variation across the channel is therefore influenced by Θ quite strongly. The value
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Figure 4. Pressure gradients in a converging channel. Radial and circumferential components are plotted
against θ in (a) and (b), respectively for several values of β. The value of β, the magnitude of gradient variation
along θ , is plotted versus Θ for various α in (c), and versus α for various Θ in (d).

of α is also influential on shape of the pressure field, in the sense that pressure variation
along the cross-section arc diminishes with α according to a power-law relationship.

3.5. Streamlines
Figure 5 plots the streamlines for the O(α) perturbation solution for converging flow,
averaged through the channel depth (z). Three illustrative cases are represented here: Θ =
π/12 in figure 5(a) corresponds to a channel encroaching upon the special case of a straight
rectangular cross-section, Θ = π/4 in figure 5(b) represents a case of moderately large Θ

and Θ = 7π/16 in figure 5(c) approaches the special case of planar flow at an abrupt
contraction. For all three cases, α = 0.2.

At first glance, the shapes of these streamlines are straightforward throughout the
majority of the physical domain, exhibiting some measure of complexity only in very
near proximity to the channel sidewalls, and closely conforming to the overall channel
convergence angle everywhere else. Similar plots generated with smaller α exhibit
streamline shapes that conform even more strongly to the sidewall geometry. This
conformal behaviour is well known among Hele-Shaw flows generally, and therefore
expected as α → 0. Near the sidewalls, the streamlines curve gradually inward along
the channel circumference, along θ , as flow converges. Only in the nearest vicinity of
the sidewall do the streamline shapes appear to reverse this trend; however, this range
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Figure 5. Streamlines of the O(α) perturbation solution for velocity, averaged across z, in the converging
planar channel from r = 1/(2Θ) to r = 3/(2Θ), with α = 0.2. Streamlines spanning the entire channel width
(−Θ < θ < Θ) are plotted in (a)–(c). Streamlines near the sidewall at θ = Θ are plotted in (d)–( f ), with a log
scale used for the scaled inner coordinate ξ . The dotted curved lines in (a)–(c) denote the vertical axis range
for each corresponding plot among (d)–( f ). Three separate cases of sidewall angle are represented: (a), (d)
Θ = π/12, (b), (e) Θ = π/4 and (c), ( f ) Θ = 7π/16.

of proximity to the wall is well below O(α2), which, arguably, puts it beyond the stated
resolution of the perturbation solution as originally formulated.

3.6. Pressure and velocity contours
The order O(α) pressure field solution is plotted in figure 6 for various permutations of
channel geometry. Here, the influence of α can be seen by comparing across the rows of
panels, and the influence of Θ , can be seen by comparing across columns. The dotted
line in each contour plot denotes the cross-section arc at rΘ = 1, and serves as a useful
point of reference to judge visually the distortion of the pressure field. This distortion
is, perhaps not surprisingly, most extreme for large channel sidewall angles. Comparing
the pressure plots across each row, it can be seen that the effect of decreasing α is to
drive the pressure field towards conformance with the overall channel geometry, such that
the pressure contours become orthogonal to the streamline shapes plotted in figure 5. In
figure 6(i), α = 0.05 is sufficiently small to ensure this conformance even for a planar
channel geometry approaching that of abrupt contraction.

Similar visualisations of the O(α) solution can also be constructed for the velocity
components. These are shown in figure 7 for three representative values of α, and in figure
8(a–c) for three representative values of Θ . All cases represented in these plots share
several important features. First, as observed in the matching visualisations from figure 3,
the dominant velocity component is oriented along r , with secondary flow along θ in both
the inner and outer regions. Second, the domain of influence for uz is highly localised
to the regions near the channel sidewalls, whereas uθ spans both inner and outer regions.
And third, the primary and secondary flow components differ by roughly one to two orders
of magnitude, which ensures that, for the outer regions of the physical domain, most flow
behaviour is captured by the primary flow component, ur , alone.

The influence of channel inverse aspect ratio, α, on the velocity field can be seen by
comparing the three cases represented in figure 7. Decreasing α across figure 7(a–c) – that
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Figure 6. Contour plots of the O(α) perturbation solution for pressure plotted across the physical domain from
r = 1/(2Θ) to r = 3/(2Θ) for nine different cases: (a)–(c) α = 0.2, (d)–(e) α = 0.1 and (g)–(i) α = 0.05; (a),
(d), (g) Θ = π/6, (b), (e), (h) Θ = π/3 and (c), ( f ), (i) Θ = 7π/16.
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Figure 7. Contour plots of the O(α) perturbation solution for velocity. The value of ur is plotted for α = 0.2,
α = 0.1 and α = 0.05 in (a), (b) and (c), respectively. The value of uθ is plotted for α = 0.2, α = 0.1 and
α = 0.05 in (d), (e) and ( f ), respectively. Lastly, uz is plotted for α = 0.20, α = 0.1 and α = 0.05 in (g), (h) and
(i), respectively.

is, approaching pure Hele-Shaw flow in the converging channel – drives ur toward a two-
dimensional parabolic profile along z. For uθ , decreasing α across figure 7(d–f ) has the
effect of shifting the outer edges of velocity contours toward the channel sidewalls, with
the interior contour edges gradually tapering towards zero at the centre of the channel.
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Figure 8. The r -velocity contours at α = 0.1 compared for (a) Θ = π/6, (b) Θ = π/3 and (c) Θ = 7π/16. (d)
The value of β, the magnitude of variation of the pressure gradient along θ , normalised against its minimum
possible value for each α and plotted against Θ , with normalised β values corresponding to panels (a)–(c)
indicated. (e) Value of 1+β plotted without normalisation against the full range of possible Θ .

Finally, comparing figure 7(g–i) shows that, as α → 0, the velocity contribution of uz is
increasingly relegated to the near vicinity of the sidewalls, while the magnitude of uθ

diminishes across the entire width of the channel.
In contrast to α, varying Θ influences the shapes of the velocity contour plots with

relative subtlety. Figure 8(a–c) plots contours of ur across the channel cross-section arc
for three representative cases of Θ , with α = 0.1 for all three cases. The lack of variation
among the contour shapes in figure 8(a–c) reflects the form of the mathematical expression
from (3.29a)–(3.29c), wherein ur , uθ and uz all scale in some manner proportionally
with β, which encapsulates the geometry of the channel. Therefore, here it is helpful
to scrutinise the relationship between Θ and β, in order to understand the influence
of Θ on the O(α) velocity field solution. This relationship is plotted in figure 8(d–e),
with β normalised to its minimum value as Θ → 0 in figure 8(d), and the 1+β scaling
value plotted without normalisation in figure 8(e). The general point conveyed by this
visualisation is that the direct influence of the value of Θ on β is weak. Even for large α,
the range of variation for β across Θ falls within one half of the minimum value of β

for the same value of α. In turn, the narrow range of possible β for a given value of α is
reflected as minimal variation among the velocity contour plots of figure 8(a–c).

3.7. Physical interpretation
Here, some additional remarks are warranted regarding the physical meaning of the results
shown in figures 4–8. First, much of the behaviour evident in visualisations of the pressure
and velocity solutions can be discerned directly from the mathematical forms of the O(α)

solutions themselves, (3.29a)–(3.29c). These expressions convey that the pressure field
is two-dimensional to mathematical order α; that the velocity field has one primary flow
component oriented along r , which is constant along the cross-section arc to leading order;
that the velocity field also comprises two secondary flow components, one of which,
uz , is of O(α) and confined to the regions in near proximity of the channel sidewalls;
and that continuity balance within the inner region necessitates an additional
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O(α) θ -velocity component, which matches to an O(α) contribution in the outer region
of the channel.

The dimensionless parameters describing the channel geometry are α and Θ , and the
visualisations of §§ 3.5 through 3.6 elucidate several aspects of their influence on both
the pressure and velocity fields. Decreasing α drives the solution towards the case of pure
Hele-Shaw flow, where flow in the channel is parabolic along z and oriented along the
primary flow direction, r . In the context of the planar converging or diverging channel,
this effectively orients the pressure field orthogonally to the chosen cylindrical coordinate
system, and forces the pressure field towards a two-dimensional configuration, which the
perturbation model predicts accurately to order α. Additionally, the relative importance
of the two secondary flow components diminishes as α → 0, in manners distinct to each
component: uθ diminishes in magnitude, while uz diminishes in terms of the size of its
domain of influence relative to the full span of the channel.

With respect to increasing Θ , the perturbation analysis predicts a warping of the
pressure field that becomes increasingly significant as α → 1. The velocity field solution,
however, appears largely insensitive to Θ when plotted across the channel cross-section
arc in terms of dimensionless cylindrical coordinates. In physical terms, this insensitivity
reflects the fact that the majority of variation in velocity behaviour effected by Θ is cap-
tured by the problem formulation itself. The constituent parts of the problem formulation –
in particular, the orientation of the coordinate system, and the dimensional scaling of the
domain – describe the influence of Θ accurately, at least to mathematical order O(α).

4. Computational validation

4.1. Case results
Here, numerical results derived using the SIMPLE methodology described in § 2.5 are
presented as a basis for validation of the perturbation analysis results from § 3. The
preceding discussion has structured many observations in terms of the relationships
between pressure and velocity, and the geometric parameters α and Θ . Therefore, the
computational results are organised into one set of cases spanning a range of α with
constant Θ , shown in figure 9, and a second set of cases spanning a range of Θ

with constant α, shown in figure 10. The selection of these cases is tailored towards
illustrating where the shortcomings of the perturbation analysis become apparent, while
still highlighting its accuracy to the expected mathematical order.

Comparing the streamline and pressure plots for the three cases in figure 9(a–c), the
computational model confirms both the expected streamline shapes and pressure contour
results from the discussions around figures 5 and 6, respectively. The primary velocity
component, ur , in figure 9(d–f ), and as well as the secondary velocity uθ in figure 9(g–i)
are also in close agreement with the analytical results shown in figure 7(a–f ). The results
for uz in figure 9( j–l), however, illustrate well how the expected O(α) accuracy of the
perturbation analysis can become consequential. All three results, when compared with
the identical cases computed using the perturbation solution in figure 7(g–i), suggest
that the analytical solution slightly under-predicts the size of the domain of influence
for uz , although the general shape of this velocity component near the sidewalls is the
same for both computational and analytical results. Furthermore, for the case of α = 0.2,
the numerical simulation predicts significant uz contributions in the outer regions of the
channel domain. These differences do not appear to be an artefact of the mesh selection,
and repeating the simulations with as little as half the mesh grid count used in this study
produces numerical results that are visually identical to those in figure 9.
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Figure 9. Pressure and velocity results of the numerical simulation for three illustrative cases of converging
planar channel flow. (a)–(c) Overlays of the streamlines from r = 1/(2Θ) to r = 3/(2Θ) overlaid on contour
plots of the pressure field. Contours of velocity along r = 1/Θ are shown for (d)–( f ) ur , (g)–(i) uθ and ( j)–(l)
uz . Each case is organised as a column in the grid of panels: α = 0.2 is shown in (a), (d), (g), ( j); α = 0.1 is
shown in (b), (e), (h), (k); and α = 0.05 is shown in (c), ( f ), (i), (l). Here, Θ = π/4 in all three cases.

The validation results in figure 10(a–c), similarly, agree with the pressure contour
plots in figure 6(d–f ), and depict streamline shapes conforming closely to the converging
geometry of the channel, also in agreement with the perturbation analysis results. The
velocity plots, however, do exhibit significant differences relative to the perturbation
solution results in figures 7 and 8. The contour shapes for ur are influenced noticeably
by the choice of Θ , becoming more focused inward towards the centre of the channel with
increasing Θ . Here, uθ does not differ remarkably in shape between the three cases, but
does differ in magnitude, commensurate with the corresponding differences in ur . The
differences among uz are perhaps the most illustrative, suggesting an under-estimation
on the part of the perturbation solution in the span of uz near the sidewalls, and for
increasingly large Θ , the emergence of uz contributions in the outer regions that do
not appear in the O(α) perturbation solution. Interestingly, the computational results do
confirm that, as predicted by the perturbation solution, uz contributions confined to the
regions near the sidewall span the same fraction of the channel angle regardless of the
choice of Θ .

4.2. Validity of analytical solution
The numerical results reported in figures 9 and 10 corroborate the predictions of the
perturbation solution of (3.29a) to a large degree. The evident differences between the
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Figure 10. Pressure and velocity results of the numerical simulation for three illustrative cases of converging
planar channel flow. (a)–(c) Overlays of the streamlines from r = 1/(2Θ) to r = 3/(2Θ) overlaid on contour
plots of the pressure field. Contours of velocity along r = 1/Θ are shown for (d)–( f ) ur , (g)–(i) uθ and ( j)–(l)
uz . Each case is organised as a column in the grid of panels: Θ = π/6 is shown in (a), (d), (g), ( j); Θ = π/3 is
shown in (b), (e), (h), (k); and Θ = 7π/16 is shown in (c), ( f ), (i), (l). Here, α = 0.1 in all three cases.

numerical and analytical results are both reasonably within the advertised O(α) accuracy,
and helpful for illustrating one additional point of physical significance in the model
formulation. Specifically, the non-zero uz contributions in the outer regions evoke terms of
O(α2) and smaller that appear in (2.8b)–(2.8c), which were discarded in formulating the
O(1) and O(α) governing equations for the outer regions. These terms are sufficiently
large to influence the pressure field to O(α2). Were the perturbation analysis to be
extended to encompass further corrections, these corrections would account for said terms
as well.

The validity of the perturbation analysis, like any analysis, extends only as far as the
simplifying assumptions hold true. Considering that one of the key assumptions for this
model is the restriction of α � 1, it is worth emphasising that the cases of figures 9 and 10
comprise relatively large α. Here, the numerical results reported in figures 9 and 10 are
helpful in illustrating specific examples of what ‘relatively large’ may mean. In the context
of the perturbation analysis developed in this work, even α ∼ 10−1 may be large enough
to produce obvious inaccuracies, especially for abrupt sidewall angles for the channel.
But this does not preclude the perturbation model from practical application among its
intended range of problems: low-Re flow in planar microchannels, with channel sidewalls
converging at an arbitrary finite angle, and with small channel depth relative to the width
between sidewalls.
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5. Conclusions
In this work, an analytical solution for flow within a planar channel of varying width
using the method of matched asymptotic expansions has been developed. The results of
this analysis delineate two secondary flows: one throughout the domain that conforms to
the channel sidewall geometry, and a second confined to the region near the sidewalls
that implies convective mixing. While the flow field derived in this study is in general
agreement with previous investigations of similar geometries, the present perturbation
analysis is constructed around a different coordinate system (cylindrical) and perturbation
parameter (the inverse channel aspect ratio, α) than in these previous studies. Precisely
because the chosen coordinate system and perturbation parameter have relevant physical
meaning, the delineation between distinct secondary flows emerges naturally from the
analysis. Numerical modelling results verify that this approach is valid insofar as the
formative assumptions hold true, and that the analysis produces results which are accurate
to mathematical order α.

The results of this study bear out three significant benefits inherent to the present
mathematical approach. Firstly, the solution from this study is valid for small, moderate
and even abrupt changes in channel width, provided that α and Re are sufficiently
small, and provided that the flow is far removed from inlet and outlet effects. Secondly,
the solution accuracy is easily expressed, according to the form of the perturbation
expansion, and valid regardless of the abruptness of change in channel width, since the
perturbation parameter is itself decoupled from that aspect of the channel geometry.
Thirdly, the analytical result imposes a minimal computational burden and offers relatively
uncomplicated implementation.

This work contributes new fundamental understanding to the body of knowledge
concerning steady viscous flow through planar channels. For some applications of these
types of flows – for example, reaction chemistry and heat exchange – the present findings
may be applied towards enhancement of microfluidic mixing. For others, such as flow
cytometry (Schrum et al. 1999; Mao et al. 2009) and pattern generation (Stoecklein et al.
2017; Parsekian & Harris 2020), the results of this work may be useful towards the inverse
goal. In future studies, the present work may provide a helpful foundation for further
mathematical analyses specialised for specific applications, either in conjunction with or
in place of fully computational models.
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Appendix A.
This section provides intermediate steps for the derivations of solutions for the θ - and z-
velocity components as discussed in § 3.2. The numbering and naming conventions here
are the same as in § 3.2.

The O(1) and O(α) inner velocity components for z, appear in exactly one of the
governing equations of corresponding order, (2.15a). However, (2.15a) also contains Vθ,1
(expressed as leading order) and Vθ,2 (expressed as O(α)), which leaves two sets of two
unknown components and only one equation available to resolve each set. The difficulty in
determining these unresolved velocity components is that continuity alone is insufficient to
define them fully. To obtain the additional equation required, the highest-order equations
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governing conservation of momentum and involving Vθ,1 and Vz,0 must be considered.
For Vθ,1, this is (2.15c), reproduced below as (A1)

1
r

∂p2

∂ξ
= 1

r2
∂2Vθ,1

∂ξ2 + ∂2Vθ,1

∂z2 + 2
r2

∂Vr,0

∂ξ
. (A1)

For Vz,0, the relevant equation comes from the O(α2) correction to the z-momentum
balance

∂p2

∂z
= 1

r2
∂2Vz,0

∂ξ2 + ∂2Vz,0

∂z2 . (A2)

Combining (A1) and (A2) by taking partial derivatives and equating yields (2.16),
expressed in its O(1) form below as (A3)

1
r

∂2 p2

∂∂ξ∂z
= 1

r2
∂3Vθ,1

∂ξ2∂z
+ ∂3Vθ,1

∂z3 + 2
r2

∂2Vr,0

∂ξ∂z
= 1

r3
∂3Vz,0

∂ξ3 + 1
r

∂3Vz,0

∂ξ∂z2 . (A3)

Expressed in (2.16) is the requirement that the pressure field correction associated with
Vθ,1 and Vz,0 be self-consistent.

To determine Vθ,1 and Vz,0, each component will be expressed as a superposition
of particular solutions, Vθ,1P and Vz,0P , and homogenous solutions, Vθ,1H and Vz,0H ,
respectively. First, using the expression for Vr,0 from (3.21a), the terms (1/r)(∂/∂r)(r Vr,0)

and (2/r2)(∂2Vr,0/∂ξ∂z) which appear in (2.15a) and (2.16) are evaluated as follows:

1
r

∂

∂r
(r Vr,0) = 1

r

∂

∂r

(
r

∂p0

∂r

∣∣∣∣
θ=Θ

){ ∞∑
n=1

En exp {δnrξ} cos (δnz) −
(

1 − z2

2

)}

+
(

∂p0

∂r

∣∣∣∣
θ=Θ

) ∞∑
n=1

δnξ+ exp {δnrξ} En cos (δnz) , (A4)

2
r2

∂2Vr,0

∂ξ∂z
= −2

r

(
∂p0

∂r

∣∣∣∣
θ=Θ

) ∞∑
n=1

δ2
n En exp {δnrξ} sin (δnz) , (A5)

where δn = (1/2)(2n − 1)π and En = (−1)n−12/δ3
n .

It will be shown later, during matching, that (∂/∂r)(r(∂p0/∂r) = 0. Applying this result
here for the sake of brevity and substituting (A4) into (2.15a), the O(1) continuity balance
in the inner region can be expressed as follows:

1
r

∂

∂ξ
(Vθ,1P) + ∂

∂z
(Vz,0P) = −1

r

(
∂p0

∂r

∣∣∣∣
θ=Θ

) ∞∑
n=1

δnrξ exp {δnrξ} [En cos (δnz)] ,

(A6)
1
r

∂

∂ξ
(Vθ,1H ) + ∂

∂z
(Vz,0H ) = 0. (A7)

Similarly, substituting the result from (A5) into the O(1) version of (2.16) provides the
following additional relation between the θ -velocity and z-velocity:
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1
r2

∂3Vθ,1P

∂ξ2∂z
+ ∂3Vθ,1P

∂z3 − 1
r3

∂3Vz,0P

∂ξ3 − 1
r

∂3Vz,0P

∂ξ∂z2 = 2
r

(
∂p0

∂r

∣∣∣∣
θ=Θ

)

×
∞∑

n=1

δ2
n En exp {δnrξ} sin (δnz) , (A8)

1
r2

∂3Vθ,1H

∂ξ2∂z
+ ∂3Vθ,1H

∂z3 − 1
r3

∂3Vz,0H

∂ξ3 − 1
r

∂3Vz,0H

∂ξ∂z2 = 0. (A9)

Equations (A6) and (A8) are both satisfied by a particular solution of the following form:

Vθ,1P = −1
r

(
∂p0

∂r

∣∣∣∣
θ=Θ

) ∞∑
n=1

Enrξ exp {δnrξ} cos (δnz) , (A10)

Vz,0P = 1
r

(
∂p0

∂r

∣∣∣∣
θ=Θ

) ∞∑
n=1

En

δn
exp {δnrξ} sin (δnz) . (A11)

As written above, this solution satisfies no slip and no flux at ξ = 0, as well as no
slip at z = −1, 1. However, it does not satisfy no flux at z = −1, 1. Furthermore, in the
limit that ξ → −∞, Vθ,1P decays to zero, whereas a function parabolic along the z-
axis is required for matching with the outer solution. The necessary compensation for
this inhomogeneous boundary condition must be provided by the remaining θ -velocity
component. To determine Vθ,1H , such that (A7) and (A9) are satisfied, a separation of
variables approach is taken

Vθ,1H = −1
r

(
∂p0

∂r

∣∣∣∣
θ=Θ

) ∞∑
n=1

Ξn (rξ) Z ′
n(z), (A12)

Vz,0H = 1
r

(
∂p0

∂r

∣∣∣∣
θ=Θ

) ∞∑
n=1

Ξ ′
n (rξ) Zn(z). (A13)

Here, the factor (1/r)(∂p0/∂r)|θ=Θ has been included for convenience in later
calculations, and to permit matching with the outer solution. Alternatively, a generic
function of r could have been used in its place and found to be (1/r)(∂p0/∂r)|θ=Θ during
the matching procedure.

In order to satisfy no slip and no flux the θ -axis boundary, to ensure that matching with
the outer solution is possible and to ensure that (2.15a) and (2.16) are both satisfied, the
following definition of Ξn is used:

Ξn (rξ) = [
1 − exp {δnrξ}], (A14)

Ξ ′
n (rξ) = [−δn exp {δnrξ}]. (A15)

Next, to satisfy no slip along z-axis boundaries and enable matching with a velocity
profile that is parabolic along the z-axis, the following definition of Zn is used:

Zn(z) = F
En

δn
sin (δnz) −

(
F − 1

δn

)
1
δ4

n
g(z), (A16)

Z ′
n(z) = F En cos (δnz) −

(
F − 1

δn

)
1
δ4

n
g′(z), (A17)

where F is a constant, and g(z) is a function of z, both yet to be determined. Here, F and
g(z) must be chosen to satisfy the inhomogeneous boundary conditions, as well as (2.16).
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With the definitions in (A14)–(A17), the superposition of Vθ,1P and Vθ,1H for all
positive integers n approaches the following as ξ → −∞:

lim
ξ→−∞

{
Vθ,1P + Vθ,1H

}= −1
r

(
∂p0

∂r

∣∣∣∣
θ=Θ

) [
F

(
1 − z2

2

)
− g′(z)

∞∑
n=1

(
F

δ4
n

− 1
δ5

n

)]
.

(A18)
To ensure that matching with the outer θ -velocity is possible, the coefficient of g′(z) in

(A18) must be zero, thus implying the following definition for F :

F =
∑∞

n=1
(
1/δ5

n

)
∑∞

n=1
(
1/δ4

n

) = 6
∞∑

n=1

1
δ5 ≈ 0.6302. (A19)

The expression in (A19) incorporates the identity
∑∞

n=1(1/δ4
n) = 1/6.

Next, the function g(z) can be determined by enforcing no slip at ξ = 0.
The superposition of Vz,0P and Vz,0H evaluated at ξ = 0 is given by the following:

Vz,0P
∣∣
ξ=0 + Vz,0H

∣∣
ξ=0 = −1

r

(
∂p0

∂r

∣∣∣∣
θ=Θ

) ∞∑
n=1

(
F − 1

δn

) [
En sin (δnz) − 1

δ3
n

g(z)

]
.

(A20)
Setting the right-hand side of (A20) equal to zero implies the following:

∞∑
n=1

(
F − 1

δn

) [
En sin (δnz) − 1

δ3
n

g(z)

]
= 0. (A21)

Equation (A21) above requires the following definition of g(z):

g(z) =
∑∞

n=1
[
6
∑∞

m=1
(
1/δ5

m

)− (1/δn)
]

En sin (δnz)∑∞
n=1

[
6
∑∞

m=1
(
1/δ5

m

)− (1/δn)
] (

1/δ5
n

) . (A22)

This result satisfies the no-flux boundary condition at z = −1, 1 automatically, and
together with (A19), yields definitions of Vθ,1H and Vz,0H that satisfy both governing
equations.

With terms collected and simplified, the superposition of particular and homogenous
components of Vθ,1and Vz,0 may be expressed as follows:

Vθ,1 = −1
r

(
∂p0

∂r

∣∣∣∣
θ=Θ

) ∞∑
n=1

{
Enrξ exp {δnrξ} cos (δnz)

+ (1 − exp {δnrξ})
[

F En cos (δnz) −
(

F − 1
δn

)
1
δ4

n
g′(z)

]}
, (A23)

Vz,0 = −1
r

(
∂p0

∂r

∣∣∣∣
θ=Θ

) ∞∑
n=1

(
F − 1

δn

)
exp {δnrξ}

[
En sin (δnz) − 1

δ3
n

g(z)

]
. (A24)

The process for determining the remaining inner velocity component, Vz,1, follows the
same process as for Vz,0. The order O(α) inner governing equation for continuity, (2.15a)
with n = 1, is reproduced below as (A25)

1
r

∂

∂r
(r Vr,1) + 1

r

∂

∂ξ+
(Vθ,2) + ∂

∂z
(Vz,1) = 0. (A25)

Two additional equations are required to define Vθ,2 and Vz,1 fully, and can be found in
the O(α2) correction to conservation of inner θ -momentum, and the O(α3) correction to
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conservation of inner z-momentum

1
r

∂p3

∂ξ
= 1

r

∂

∂r

(
r
∂Vθ,0

∂r

)
+ 1

r2
∂2Vθ,2

∂ξ2 + ∂2Vθ,2

∂z2 − Vθ,0

r2 + 2
r2

∂Vr,1

∂ξ
, (A26)

∂p3

∂z
= 1

r2
∂2Vz,1

∂ξ2 + ∂2Vz,1

∂z2 . (A27)

Since Vθ,0 = 0, (A26) reduces to the following:

1
r

∂p3

∂ξ
= 1

r2
∂2Vθ,2

∂ξ2 + ∂2Vθ,2

∂z2 + 2
r2

∂Vr,1

∂ξ
. (A28)

Combining (A27) and (A28) by taking partial derivatives and equating yields the order
O(α) expression of (2.16), reproduced below as (A29)

1
r2

∂3Vθ,2

∂ξ2∂z
+ ∂3Vθ,2

∂z3 + 2
r2

∂2Vr,1

∂ξ∂z
= 1

r3
∂3Vz,1

∂ξ3 + 1
r

∂3Vz,1

∂ξ∂z2 . (A29)

The solution for Vz,1 is of the same form as Vz,0, with the O(α) pressure field correction
in place of the leading-order pressure field

Vz,1 = −1
r

(
∂p1

∂r

∣∣∣∣
θ=Θ

) ∞∑
n=1

(
F − 1

δn

)
exp {δnrξ}

[
En sin (δnz) − 1

δ3
n

g(z)

]
. (A30)

Appendix B.
This section provides some intermediate steps for the application of the flow rate condition,
as discussed in § 3.3. Subsequently, the composite solution is expressed in terms of θ and
simplified to a reasonable degree. The numbering and naming conventions here are the
same as in § 3.3.

The flow rate condition from (3.25) is reproduced as (B1) below∫ 1

−1

∫ Θ

−Θ

(
ur,0 + αur,1

)
rdθdz + O(α2) = ∓1, (B1)

where the left-hand side of (B1) is negative for planar channel flow with converging
sidewalls and positive for planar channel flow with diverging sidewalls. Substituting the
composite expansion for ur from (3.24b), the left-hand side of (B1) becomes the following:

∫ 1

−1

∫ Θ

−Θ

(ur,0 + αur,1)rdθdz + O(α2) = 4
∫ 1

0

∫ Θ

−Θ

[
C0,0 + αC1,0

+ α
C0,0

r

( ∞∑
n=1

6
δ5

n

)
cot(Θ)

] [ ∞∑
n=1

En exp
{
−δn

rΘ

α

}
cosh

{
δn

rθ

α

}
cos (δnz)

]
dθdz

− 2
∫ 1

0

∫ Θ

−Θ

[
C0,0 + αC1,0 + α

C0,0

r

( ∞∑
n=1

6
δ5

n

)
cos (θ)

sin(Θ)

](
1 − z2

2

)
dθdz + O(α2).

(B2)
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Evaluating the integrals in this expression gives the following:

∫ 1

−1

∫ Θ

−Θ

(ur,0 + αur,1)rdθdz = 8

(
C0,0 + αC1,0 + α

r
C0,0

( ∞∑
n=1

6
δ5

n

)
cot(Θ)

)

×
∞∑

n=1

En

δ2
n

sin (δn)
(
αr−1) exp

{
−δn

rΘ

α

}
sinh

{
δn

rΘ

α

}

− 4
3

[
ΘC0,0 + αΘC1,0 + α

r
C0,0

( ∞∑
n=1

6
δ5

n

)]
. (B3)

Making use of the identity En sin(δn)/δ
2
n = 2/(δn)

5, this expression can be further
simplified as follows:

∫ 1

−1

∫ Θ

−Θ

(ur,0 + αur,1)rdθdz = 4
3

α

r

[
C0,0 + αC1,0 + α

r
C0,0

( ∞∑
n=1

6
δ5

n

)
cot(Θ)

]

×
∞∑

n=1

6
δn

5

[
1 − exp

{
−2δn

rΘ

α

}]
− 4

3

[
ΘC0,0 + αΘC1,0 + α

r
C0,0

( ∞∑
n=1

6
δ5

n

)]
.

(B4)

Finally, for the purposes of determining C0,0 and C1,0 along the arc depicted in
figure 1(c), the expression in (B4) can be evaluated at r = 1/Θ and further simplified
as follows:∫ 1

−1

∫ Θ

−Θ

(ur,0 + αur,1)rdθdz = −4Θ

3
(C0,0 + αC1,0)

+ α2 4Θ

3

(
C1,0 + C0,0Θ cot(Θ)

∞∑
n=1

6
δ5

n

) ∞∑
n=1

6
δn

5 − α
4Θ

3
C0,0

∞∑
n=1

6
δn

5 exp
{
−δn

α

}

− α2 4Θ

3

(
C1,0 + C0,0Θ cot(Θ)

∞∑
n=1

6
δ5

n

) ∞∑
n=1

6
δn

5 exp
{
−δn

α

}
. (B5)

It should be noted that terms containing exp{−δn/α} in (B5) are of lesser order than
O(α2). In fact, limα→0(exp{−δn/α}/αn) = 0 for any positive real n, so terms containing
exp{−δn/α} are of lesser order than O(αn) for any positive n. Thus, the original expression
for the flow rate condition in (B1) can be expressed as follows:

− 4Θ

3
(C0,0 + αC1,0) + O(α2) = ∓1, (B6)

where −1 on the right-hand side of (B6) applies to converging sidewalls in the planar
channel, and 1 on the right-hand side of (B6) applies to diverging sidewalls. For a
converging channel, any C0,0 and C1,0 such that C0,0 + αC1,0 = 3/4Θ are sufficient
enforce the flow rate condition to order O(α). Similarly, C0,0 + αC1,0 = −3/4Θ is
required to enforce the flow rate condition to O(α) for a diverging channel.

Precise definitions for C0,0 and C1,0 are given implicitly by (B5) and (B6). However,
since these definitions are somewhat unwieldy, it is also useful to express closed-form
approximations accurate to order O(α exp{1/α}), which can be obtained by including
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O(α2) terms in the expression for the flow rate condition

− 4Θ

3
(C0,0 + αC1,0) + α2 4Θ

3

(
C1,0 + C0,0Θ cot(Θ)

∞∑
n=1

6
δ5

n

) ∞∑
n=1

6
δn

5

+ O (α exp {1/α}) = ∓1, (B7)

where −1 on the right-hand side of (B7) applies to converging side walls in the planar
channel, and 1 on the right-hand side of (B7) applies to diverging side walls.

Discarding terms of order O(α exp{α−1}) and substituting C0,0 + αC1,0 = ±(3/4Θ),
(B7) can be rearranged to give the following definition for C0,0:

C0,0 = ± 3
4Θ

[
1 − αΘ cot(Θ)

∞∑
n=1

6
δ5

n

]−1

, (B8)

where a positive sign of the right-hand side of (B8) applies to converging sidewalls in the
planar channel, and a negative sign applies to diverging sidewalls.
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Chaotic mixer for microchannels. Science 295, 647–651.

TAO, R., JIN, Y., GAO, X. & LI, Z. 2018 Flow characterization in converging-diverging microchannels. Phys.
Fluids 30, 112004.

TAO, R., NG, T., SU, Y. & LI, Z. 2020 A microfluidic rectifier for Newtonian fluids using asymmetric
converging–diverging microchannels. Phys. Fluids 32, 052010.

TESLA, N. 1920 Valvular conduit. US Patent 1 329 559.
WANG, K., LI, L., XIE, P. & LUO, G. 2017 Liquid–liquid microflow reaction engineering. React. Chem. Engng

2, 611–627.
WARD, K. & FAN, Z.H. 2015 Mixing in microfluidic devices and enhancement methods. J. Micromech.

Microengng 25, 094001.
WATTS, P. & HASWELL, S.J. 2005 The application of microreactors for small scale organic synthesis. Chem.

Engng Technol. 28, 290–301.
WHITESIDES, G.M. 2006 The origins and the future of microfluidics. Nature 442, 368–373.
WHITESIDES, G.M. & STROOCK, A.D. 2001 Flexible methods for microfluidics. Phys. Today 54, 42–48.
YONG, J.Q. & TEO, C.J. 2014 Mixing and heat transfer enhancement in microchannels containing converging-

diverging passages. J. Heat Transfer 136, 041704-1–041704-11.

1019 A50-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
55

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10555

	1. Introduction
	2. Problem formulation
	2.1. Physical domain
	2.2. Flow regime and assumptions
	2.3. Governing equations and boundary conditions
	2.4. Asymptotic expansion representation
	2.5. Computational simulation

	3. Analytical solution
	3.1. Outer solution
	3.2. Inner solution
	3.3. Composite solution
	3.4. Composite solution plots
	3.5. Streamlines
	3.6. Pressure and velocity contours
	3.7. Physical interpretation

	4. Computational validation
	4.1. Case results
	4.2. Validity of analytical solution

	5. Conclusions
	Appendix A. 
	Appendix B. 
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages true
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


