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SOME RESULTS ON L-INDISTINGUISHABILITY FOR 
SL(r) 

FREYDOON SHAHIDI 

Introduction. Fix a positive integer r. Let AF be the ring of adeles of a 
number field F. For a parabolic subgroup P of SLn we fix a Levi 
decomposition P = A/TV, and we let 

aM = Horn (X(M)Q, R). 

Let W(M) = W(CLM) be the Weyl group of a^. It follows from a recent 
work of James Arthur [1,2] (also cf. [3] ) that, among the terms appearing 
in the trace formula for SLr(AF), coming from the Eisenstein series, are 
those which are a constant multiple (depending only on M and w) of 

(1) trace (MplP(w, 0)1 (a, />,/) ) 

where a is a cusp form on M(\F) satisfying wo ~ a, 

/ e C?(SLr(\F) ), 

and 

w e W(M)rcg 

(WG(aM)reg in the notation of [2, 3] ). Here W(M)Teg is the set of all w e 
W(CLM) for which aG is the space of fixed vectors. MP\P(wy 0) is the 
Langlands' M-function [12], and the operator /(a, P,f) is given by 

I(o, PJ) = j s u A f ) l(a, P)(gV(g)dg, 

where /(a, P) is the representation of SLr(AF) induced from a. 
To have W(M)Teg non-empty. P is forced to be the intersection of a 

parabolic subgroup P of GLr with SLr whose Levi factors are isomorphic 
to m copies of GLp, where/? and m are positive integers with r = mp. Then 
W(M) is isomorphic to the symmetric group in m letters and W(M)reg is 
equal to the Coxeter conjugacy class in W(M) which contains the 
permutation wc sending \ -* m —* m — 1 —>...—» 2 —> 1. 
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These terms are of particular interest (cf. [3] ) and are not expected to 
cancel with other terms coming from the Eisenstein series. 

On the other hand, there are cusp forms on a certain endoscopic group 
(cf. [13, 17, 18]) of SLr(AF), namely the group of elements in GLp(AF) 
whose determinants have norm one, where E is a cyclic extension of F of 
degree m, which are not expected to lift to cusp forms on SLr(AF). 
Consequently, there must be no contribution from their traces to the final 
form of the trace formula for SLr(AF). These are the terms which are 
expected to cancel off the terms of form (1). Local components of these 
traces are linear combinations of characters, each taken over an L-packet, 
of representations of local components of SLr(AF), whose coefficients are 
the values of the pairings between the corresponding S-groups and the 
representations in the corresponding L-packets (cf. [13] ). In fact, using 
the conjectured transfer of orbital integrals (cf. [13] ), these traces on the 
group of elements of norm one in GLp(AE), when stabilized, lift to such 
linear combinations. Similar linear combinations must then be expected 
for local components of (1) (cf. [11] for SL2), and the purpose of this paper 
is to establish them over non-archimedean places. 

More precisely, let k be a non-archimedean local field. Let G = SLr(k), 
r = mp, and denote by P the parabolic subgroup of G whose Levi factors 
are isomorphic to the intersection of G with M c GLr(k) which is a 
product of m copies of GLp(k). We assume that P is standard in the sense 
that it contains the subgroup of upper triangulars. Write P = MN with the 
Levi factor M = M Pi G. Let a be an irreducible tempered representation 
of M. Then a defines an L-packet {a} of tempered representations of M 
(cf. Section 1). Let 

T = © a. 

Set 
/(a, P) = Ind a and / (T , P) = Ind T. 

P^G P^G 

Let 

W{o) = {w G W(M\ wo ^ a}. 

Then in fact W(o) = W(T) (cf. [6] ). Inspired by [5, 6], to every w e G 
representing an element of W(o), we attach a pair of complex functions 
cow and cô  0, the first one on M, which depends upon the realization of T 
with WT (except when {a} is a singleton in which case co w= CÔW0); and the 
second, a character of M0 , the stabilizer of any a c T, which does not (cf. 
Lemma 1.2); and in Section 1 of this paper we show that the set of all CÛWQ 
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(w G W(o) ) is a group which when o is in the discrete series is isomorphic 
to the P-group R(o) defined in general by A. W. Knapp and G. 
Zuckerman [10] (cf. Proposition 2.4 of the present paper). 

Next, we observe that the local components of MP\P(w, 0) are the 
standard intertwining operators [14, 15, 19], defined by 

A(o, w)f(g) = JN f(w']ng)dn (g e G), 

where w i s a representative of a permutation matrix w e W(O) in G (cf. 
Section 2), and Nw c N is defined as in Section 2. H e r e / e F(a, P ) , the 
space of / ( a , P) . Similarly, we define A (r, w ) / f o r / i n the space of 7(r, P ) . 
We observe that ^4(T, W) intertwines the irreducible constituents o f / ( T , P ) , 
sending those in / (a , P ) to themselves. 

Now, we consider a particular (and significantly important) normaliza
tion of these operators. The normalizing factors are defined in terms of 
certain local Langlands' root numbers and L-functions (cf. [7, 9, 15, 16] ). 
We refer to Section 2 of the present paper for their exact definitions. For 
each w <E W(O), let R(o, w) (as well as P ( T , W) ) be this normalized 
operator. 

Finally, using the results of [6], we observe that there exists a finite set A 
c k* such that if we fix a base representation 77-1 c / ( T , P ) , then every 
other representation in 7(r, P ) is of the form a • 77 j for some unique 1 ¥= a 
e A, where 

and a - TT\ is defined by 

(à • 7Ti)(g) = 7T\(â~]gà) (g e G). 

Fixing 771 c / ( T , P ) , write 77<; = ci ' 7T\, and let 

4 a = {a G /J|T7„ C / (a , P ) } . 

Finally, for every 77 c / ( T , P ) , let X77 be its character. Then our Theorem 
3.1 asserts that: there exist a realization of r with WT and a base 
representation IT\ C / ( T , P ) such that for e v e r y / G C^°(G): 

trace (P(a , w)/(a , P , / ) ) = 2 wM.(2)xWû(/), 

and furthermore if 771 is changed, the coefficients uw(a) remain 
proportional. 

Moreover, Corollary 3.7 implies that with a suitable change of the above 
realization and introduction of a new set A' c ,4 of indices with 
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representatives a in M0, together with a bijection aa:A
f = Aa, defined for 

every a c T, we have 

trace (*(a, w)/(a, /> , / ) ) = 2 « W ) X^ ( a )(/)-

Now, suppose or is in the discrete series and assume that there exists 4>: Wk 

—» LM, generating {a} (cf. [6] ). Then 

R(a) = S(<t>)/SM(<t>) 

(Proposition 1.9) and, pulling back an element ee e S(<£) to COH,Q
 G ^(°0 

and accepting the previous conjectural discussion, uw$(a) is the pairing 
(#, ira„(a)) conjectured by Langlands [13] in this case. 

One consequence of the proof of Theorem 3.1 is Corollary 3.6 which for 
every w e W(r), computes the effect of A(T, W) on the subspaces of 
/ ( T , P). 

The functions cow and i^-groups are studied in Section 1, most of which 
is based on the results of [6]. Intertwining operators and their 
normalization are explained in Section 2. Section 3 is devoted to the proof 
of Theorem 3.1. 

The results are expected to generalize to any reductive group, but the 
proofs are based on two facts which are particular to the group SLn The 
first that every irreducible admissible representation of M is a subrepre-
sentation of the restriction of one of M to M, and that there exists a 
simply transitive M-action on this restriction, and the second that the 
tempered representations of GLr{k) are non-degenerate and therefore 
possess Whittaker models [8]. The first result is due to S. S. Gelbart and 
A. W. Knapp [6]. We must remark that our Theorem 3.1 does not make 
use of their working hypotheses. 

When m = r = 2, P is minimal and Theorem 3.1 becomes Lemma 3.6 of 
[11] whose proof, even though short, is fairly involved. In the present 
paper, the results of [16] play a very important role in providing us with a 
method which applies to the general case. 

Many thanks are due to James Arthur. First for inviting me to the 
University of Toronto where I obtained these results. Second for his warm 
hospitality which made my stay very pleasant and useful. Third, but not 
last, for generously sharing his insights and ideas with me. I would also 
like to thank the Department of Mathematics at the University of Toronto 
for their hospitality. 

1. Preliminaries and i?-groups. Let p and r be two positive integers. 
Assume that p divides r. Let m be such that r = mp. For a 
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non-archimedean local field /c, let G = SLr(k) and G = GLr(k). Let P be 
the standard parabolic subgroup of G attached to the partition/? + . . . + 
p = r of r. Set P = P n G. It is a standard parabolic subgroup of G. For 
global reasons (cf. [3] ), explained in the introduction, these are the only 
parabolic subgroups of G in which we are interested. Write P = MN and 
P = MN with standard Levi factors M and M. Then M = M n G. 

Let a be an irreducible tempered representation of M. We start with the 
following lemma. 

LEMMA 1.1. There exists an irreducible tempered representation o of M 
such that o is a constituent ofa\M. Furthermore, suppose O] is another such 
representation of M; then there exists a character v G k* of k* such that o\ 
= a ® v • det. 

Proof Let ZQ denote the center of G. Then M • Zç is an open normal 
subgroup of M such that MIM • ZQ is finite abelian. Now the existence of 
a follows from Lemma 2.3 of [6]. To prove the second assertion, we first 
observe that using an argument similar to Lemma 2.6 of [11], one can 
conclude that 

Ind (o\M) = Ind a\G 

is multiplicity free. Consequently, so is a\M. Then by Lemma 2.4 of [6], 
there exists a character of M, which can easily be shown is of the form 
v • det, v G k*, such that 

d\ = a ® r det. 

Remark. From now on, whenever we use a character v G P as a 
character of M or G, we shall in fact mean the character v • det. 

Let Wk be the Weil group of k over /c, and let <j> be an admissible 
homomorphism from W^ into LM, the L-group of M which may be 
considered to be the quotient of 

m 

* s 
GLp(C) X . . . X GLp(C) 

by C*, embedded diagonally there. Clearly <J> is an admissible homomor
phism from Wk into LG = PGLr(C). Then, as in [6], § lifts to an 
admissible homomorphism <#> from Wk into LG = GLr(C). Furthermore, 
the image of Wk under <j> lies inside 
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m 

LM = GLp(C) X ... X GLp(C). 

Write <|>(w) = ((J>j(w), . . . , <J>w(w) ), where each <j>,- is an admissible 
homomorphism from Wk into GLp(C). By Langlands' conjectured 
reciprocity (cf. [6] ), let a, be the representation of GLp(k) attached to <j>h 

1 ^ i ^ m. Then similar arguments as in Theorems 4.1, 4.2, and 4.3 of [6] 
show that, if a = ® a,-, then the irreducible constituents of o\M provide the 
L-packet of M attached to 4>. For this reason, for every o in Lemma 1.1 
containing a, we use {a} to denote the irreducible constituents of a\M and 
we call them the L-packet attached to o. 

Now, let 

/(à, P) = Ind a. 

Observe that since a is tempered, /(a, P) is irreducible [8]. Set r = a|M. 
Then, if 

/(a, P) - Ind o and / (T , P) = Ind T, 

we have 

/(a, />) c /(r, P) = /(a, P) |6. 

From the results of [6], it is clear that irreducible constituents of / (T , P) 
constitute a tempered L-packet for G. For an irreducible admissible 
representation p of G, let 

X(p) = {/x G /c*|p = p ® /x • det}. 

Incidentally, we would like to remark that, when r is a prime, X(p) is a 
r-group. A similar notion is defined for an irreducible admissible 
representation of M. 

Now, from Lemma 2.1 of [6], it follows that the number of irreducible 
constituents of /(r, P), i.e., the number of elements in the L-packet of G 
provided by /(a, P), is equal to the cardinality n of X(I(o, P) ). As we 
mentioned in the proof of Lemma 1.1, the fact that /(a, P)\G is 
multiplicity free can be proved by an argument similar to Lemma 2.6 of 
[Hi-

Write 

/(T, P) = © 77, 
/ = 1 
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Let 

G7Ti = {g G G\g7Tl = 77,}, 

where giTj is the representation h ]—> 7r,(g~ lhg) of G. Now, Corollary 2.2 of 
[6] implies that Gn is independent of / and is in fact equal to the 
subgroup 

GQ = {g ^ G\p(del g) = 1 for all v in X(I(c, P) ) } 

of G. 
Again by Lemma 2.1 of [6], G/G() acts simply transitively on the set of 

Trfs. Since Go ^ G, we may choose the representatives of G/GQ to be of 
the form 

2 = ( ^ ••. ° ) e GL,.(A) 

with # €= /c*. 
Now, consider the map a i—> G0 • a from A:* onto G/GQ. From the 

definition of GQ, it follows that the kernel of this map is equal to 

Nd = n .. Ker *\ 
y e . V ( / ( à , / ) ' ) ) 

and therefore we have an isomorphism 

k*/Nd = G7G(). 

If we now fix a representation 7T| in the L-packet, we can index other 
representations in the L-packet by a fixed set 

A = {fl/ll ^ / ^ W, ^ = 1} 

of representatives of k*/Nd. More precisely, we let ira denote ~â{n\, 1 ~ i = 
n. Similar remarks can be applied to the pair (M, M). 

Now, let W(M) denote the Weyl group of A in G. It is isomorphic to Sm, 
the symmetric group in m letters. Again for global reasons (cf. [3] ), we are 
particularly interested in those elements of W(M) which lie in the Coxeter 
conjugacy class. More precisely, the conjugacy class which contains the 
elements wn defined by the permutation 1 —» m —> m — 1 —»....—» 2 —» 
1. As in [2, 3], we denote this conjugacy class by W(M)reg. We observe 
that, modulo the center of G, only the trivial element of the center of M 
can be fixed by an element of \\ (A/)rcg. 

The following lemma is crucial. It is basically Lemma 2.4 of [6] and we 
have only rearranged its proof. 
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L E M M A 1.2. a) Let w G G, representing the element of W(M), be such 
that wo = o. Choose a such that odd. Fix an intertwining operator <j>:o\M 
= wo\M. Then there exists a non-zero complex valued function ccwo on M, 
which depends on 4> (except when a\M = a ) , but is independent ofo and the 
choice of o in its class, such that for all m G. M, o(m~~ ) • wo (m) acts as 
coHa(m) on the space of o (here o runs over its L-packet). Furthermore, the 
restriction cow0 of œwo to M Q , the stabilizer of any representation in the 
L-packet of o, is a character of MQ which is independent of § and the choice 
of o in its L-packet. Moreover it is trivial on M, and therefore factors through 
the determinant. In particular, when X(o) is trivial, cowa is a character of 
M. 

b) Let uw0 = coM; a|Af 0. Extend coWjo in any way to a character of M which 
we still denote by co^ 0- Then wo = o® CO^Q- ^n particular, UWQ is unique up 
to an element of X(cf), and thus, modulo X(o), COWQ determines a unique 
class. 

c) Suppose w is changed to w' = ws with s e M. Define <J/:T = W'T by <f>' 
= r(s~ )(j>. Then for each o, coM/ a = cowo, and cow/ o = W^Q- In particular, 
cowo is independent of the choice of w in G. 

Proof. We first realize r = a\M, and WT, which are equivalent on the 
same space, i.e., let wo denote <p~~l • wo • <j>. To prove the existence of coH, a , 
we only need check that for every m e M and h e M 

(1.2.1) o~l(m) • wo (m) • o(h) = o(h) • o~ (m) • wo(m). 

Then the existence of cowa would immediately follow from Schur's Lemma. 
Fix m e M. Then for every h e M, mhm~l e M, and therefore by our 
realization 

r(mhm~]) = wr(mhm~l) 

or 

wo(mhm~l) = o(mhm~l) 

which implies (1.2.1). 
The fact that cowa is independent of a is now a consequence of Lemma 

1.1. Clearly, it also depends only on the class of o. 
Next, for mj e M Q , write 

o(ml ) • wo(mx) = aW0$(m\)I 

on the space Va of a, where cow; a 0 = <*Val^o ( w e n a v e n o t v e t proved that 
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coH, a o is independent of the choice of a in its L-packet). Multiplying both 
sides on the right by wa(m2) and on the left side by o(m2 ), w?2 G MQ, 
then implies 

<*Va,o(^l) ' ^w,a,0(^2K = ^ w ^ o O l " ^ ( o n Va\ 

proving that ww ai0 is a character of M0. The fact that ww,a 0 is independent 
of the choice of a in its L-packet will be proved as a corollary of part b). 
The rest of part a) follows from definitions. 

To prove the second assertion, write 

yV 

a\M = © a, 
i= 1 

with o\ = a. 
Choose m G M, such that mo\ = az. Then m(wai) = woh and 

a(m) • wa(m~]) • o)wa0(m) 

acts on the space of az as an scalar Bwa.(m). Observe that for m G M0, 
BwAm) = 1- Now, if m G M and ra0 G M0, then on the space Va. of 

BW(Ji(mm0) = a(m)(oW(Ji0(mo)wa(m" ' Jw^.^mmo) 

= ̂ W"0-
Define 2?̂  on F = © /==i Fa. to be BWOi(m) on Fa. for any m Œ M such 
that maj = or Then an argument similar to the one given at the end of the 
proof of Lemma 2.4 of [6] implies 

B - wo(m) = d(m)œwa0(m) • B. 

Now, suppose a' is another element in the L-packet. Then from the 
equivalence 

it follows that 

Restricting to M0, we then have 

<*Va,o <<V,a',oOO = 1, Vm G M0. 

This proves the independence of uw a^\MQ = cow, Q from the choice of a in 
its L-packet. 
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From now on, we shall use coM.() to denote the unique class of 6ovv0 

modulo X(o). Now, let w be as in Lemma 1.2. 

COROLLARY 1.3. The functions (coM a } a satisfy the following cocycie 
relation. 

coM,a(mra') = ù)wrfo(m)ù)^a(m') (m, m' e M). 

In particular 

<*w%a
]o(a) = coH a(3 - 1) (a €E A). 

Proof Fix a in T. Let / be the identity on K0. Then 

a~\m)wo(m) = cowa(w)7. 

But for ra' e M, 

^OO^a = ^m'a and wa(/;i')Ka = Vm>a. 

Consequently 

a~ (m)wa(m)Fa = d~](m)wd(m)wd(iri )Vm'a 

= (0M%o(m)U'a(w'_,)K,„'a. 

Multiplying both sides on the left by o(m'), we get 

a~1(mm , _1)wa(mm ,"1)Kma = iovva(w ^(w^vvaCra'"1)^^ 

or 

œwm>a(mm'~]) = œwa(m)unj)ia(nï ]). 

Changing o to m , _ 1 a now completes the corollary. 

Now, fix 7Ti c / ( T , P), irreducible, and A as before, and let Aa a A be 
the set of all a G. A such that a • TT\ is in /(a, P). Let 

Then bwa(m) = 1 for all m G M0. Furthermore, it is easy to check that 

bw,a(mm0) = bwJm) 

for all m G M and ra0 e M0. Again, let 

N~ = n _ Ker ^ 
c e I ( / ( à 1 / ) ) ) 

which is independent of the choice of a. We then have 

LEMMA 1.4. The functions bwa and coH,0 are both junctions on k*/Nd. 
Consequently for each a e A0, the value of o)wa(a) is independent of the 
choices of the representatives of k*/Nd. 
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Proof. Using simple standard intertwining operators and Lemma 1.2, 
the following equivalences are clear. 

7(5, P) ® uwfi S / (à 0 uwJ0, P) 
S I(wd,JP) 
= /(a, /»). 

Here we have realized COWQ with o)H,0 • det for some unique (oM;0
 G £*• 

Thus 

6Vo e * ( / (£ , /* ) ) and ay0(#a) = 1. 

For &w,a, suppose a = na\ where n <E Nd and a' <E k*. Then *>(«)= 1 
for all ^ <= ^( / (a , P) ) and in particular for all v e X(O). But then by 
Corollary 2.2 of [6], n e M0. Now 

bw%a(a) = bH^a(naf) = 6M;,a(tf') 

which completes the lemma. 

Since throughout this paper M is fixed, we use W{o) to denote the 
following subgroup of W{M) 

W(o) = {w <= W(M)\wo = o}. 

For every w e ^ (a ) , Lemma 1.2 attaches a family of functions (<oH a } , 
where a, runs over the L-packet of o. 

Fix M; as before. Choose /, uniquely, such that 77] c J(on P). Let coM be 
the function on M defined by 

um(m) = uw,a.(m). 

It is clearly well defined, but its values depend on the choice of TT\. It can 
also be explained in terms of where nm\ appears. In fact we have 

LEMMA 1.5. Choose I, uniquely, such that mir\ c /(a/, P). Then 

ww(w) = uWO/(rn~l). 

Proof. For each m e. M, the mapping/ H-> f, from m • I(on P) onto 
I(mon P) defined by/](g) = f(m~]gm) defines an isomorphism which 
commutes with the action of G. Consequently, 

nfjTi c I(moh P), 

which implies a/ = mor Now by Corollary 1.3, we have 
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= w , > X 
which completes the lemma. 

Now, if we change our base representation TT\ to another representation 
ir[ C I(OJ, P) for some unique y, then the function œw would certainly 
change. The following lemma describes this change. 

LEMMA 1.6. Let oj = mjOifor some m} G M. Then 

\ a / ^ ) = wH,ff/(w;>vyi0((m)wvl./M((mm/77r1) 

for all m G M. 

Proof. By Corollary 1.3 

« W ^ f f i " 1 ) = uwmai(m~])iowai(mmj) 

= <°H,a,(W )wM-,a l(W/-)(0M.,a/(w) 

which proves the lemma. 

Now, given w G W(a), let, as before, 

Define 

R(°) = {<*V,ok e W(a)}; 

we have: 

LEMMA 1.7. /£(a) is a group under the multiplication 

WW!,0 ' w w 2 ,0 = W*V,M/2,0 

and the inverse operation 
- 1 

Proof Fix m G Af0, and choose o c r. Then on Fa 

a_1(m)wiw2a(m) = wW]W2fl(m)I 

which, using Lemma 1.1 and w2o = a, can be written as (again on Va) 

o~~x(m)w7p(m)w7p(m~x)w\w7p(m) = a)W2$(m)G)w o(m)I. 
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Thus 

w w, ,0 * WM-2 .0 = <*\v,w2.0 

and the lemma follows. 

Set 

W'(o) = {w e W(a) \o = wo}. 

We now have 

PROPOSITION 1.8. The group R(o) is isomorphic to the quotient 
W(o)/W\o). 

Proof. Let 0 be the map from W(o) onto R(o) defined by 0(w) = oy0-
We only need to show W\o) = Ker (0). First suppose <ow;0 = 1. Extend 
cow0 to M again to be equal to the trivial character of M. Then by part b) 
of Lemma 1.2, wo = a. Thus u- e W'(a)- Conversely, choose w e W(a). 
Then again by part b) of Lemma 1.2, 

wo = o® œwQ = a. 

where cow0 denotes an extension of uw$. But then c5vv0 ^ X(a) which 
implies 

<«Vo = ^M-.OI^O = ^ 

completing the proposition. 

Remark. In Proposition 2.4 of the next section we shall prove that when 
o is in the discrete series, those w e W(o) which belong to W'{o) are 
exactly the ones which make the Plancherel measure zero, and therefore 
our Z?-group is in complete agreement with its definition given in general 
in [10]. 

Finally for w e W(O)/ W\O), let <oM.0 e k* be the character of k* fixed 
in Lemma 1.2. Then by part b) of the same lemma, 

wo = d® cou. o ' det, 

and consequently 

/(a, P) ^ I(wo, P) 

= /(à, P) ® wM,o 

and therefore cow0 ^ ^ ( / ( a , P) ). Furthermore, the map w M> <OM,0 is well 
defined if we consider the image Ô3H 0 o f covv 0 inside X(I(oy P) )/X(o), and 
moreover it establishes an injection from R(o) into X(I(o, P))/X(o). 
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Now, assume a is in the discrete series. Take co e X(I(O, P) ). Then 

/ (a , P) = I(o ® w, P ) , 

and from Theorem 5.4.4.1 of [19] it follows that wo = o ® co for some w G 
W(M). Then wa = a for every a in a|M, and the map w H * CÔM, 0 is onto 
X(I(o, P) )/X(o), establishing an isomorphism 

R(o) = X(I(o, P))/X(o). 

Now, let (j) be the homomorphism of W^ into [ M to which the L-packet 
a\M is attached. Let S(<}>) be the S-group of <J> when <J> is being considered 
as a map into LG. More precisely, it is the quotient of the centralizer of the 
image of <J> inside LG by its connected component . Similarly define the 
S-group SM(4>) f ° r the original <f>, i.e., as a map into L M. Then by theorem 
4.3 of [6], 

X(I(o, P) ) = S(<t>) and X(a) = SM(4>). 

Therefore, we have: 

P R O P O S I T I O N 1.9. a) Suppose o is in the discrete series. Then the mapping 
w I—» COM.Q establishes an isomorphism between R(o) and S(<f>)/S\f(<t>\ where 
4> is the homomorphism from W^ into LM to which the L-packet of o is 
attached. 

b) Under the same assumption, suppose that the L-packet of 4>: W^ —> M 
is a singleton. Then R(o) = S(<j>). In particular assume P is minimal. Then 
R(a) = S(4>). 

The following two lemmas are important . 

L E M M A 1.10. Fix IT\ C I(oh P) and ir\ c I{or P) and let A0 and A'G c A 

be the sets of all a e A and a' e A such that a • TT\ C / ( a , P) and a' • m\ C 
/ ( a , P ) , respectively. Choose aj e A, uniquely, such that IT\ = ~a^\. Assume a 
G Aa and a! e A'0 are so that a7T\ = aVj. Then as a runs in A, the values of 
wM..a(2) and uw,a(a') are proportional. More precisely 

<*Va,(2) = w ^ ) • uw,ofà'Y 

Proof. Since <277j = 2zy • aVj we have « = Zja'. But now by Corollary 
1.3 

<*w,of&) = ^w.o^aj) 
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L E M M A 1.11. Choose o\ and o2 in the L-packet of o. Fix TT\ C I(oh P). 

Let A0] and A0l be as above. If a fir \ c I(o\, P) and a) IT\ C I(OI, P)-, I = 
1, . . . «], then with, possibly, a rearrangement of [a]}, the values of tow(a/) 
and <oM,(2/) are proportional. 

Proof Set 

and 

Then 

Nd = n . Ker *> 
v^X(I(o,P)) 

N'd = O Ker p. 

k^/N^/m/N^ = k*/m, 

and /7] is the cardinality of Nf
d/Nd, and therefore the same for both d] and 

a2. Let & i , . . . , Z?,?! be the set of representatives of N'd/Nd in y4. Fix a\ e 
^ a ] and a\ e ^4ar Then 

and 

But now 

and 

Aai - {axbt\i = 1, . . . , w,} 

^a2 = {a'\bi\i = 1, . . . , « i} . 

W ^ a ^ l ^ i ) = w^af-(2l)ww,af-(*i) 

Uwjffibi) = WM,,a.(29(0^^.(6/), 

using a simple argument as in Lemma 1.2 since /?, G À/ 0 . This proves the 
lemma. 

2. Intertwining operators and normalizing factors. Fix a complex 
number s, and let V(s. d. P) be the space of all the smooth functions / 
from G into the space of a such that 

f(mng) = 8~' iz'(m)d(m)f(g). 

for all m ^ M, n & 7V\ and g e (5. Here 

S^m) =• idet Ad;:0i7)L 

where n is the Lie algebra or /V, Ad„ denotes the adjoint representation of 
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M on n, and the absolute value is that of k. Now, let I(s, a, P) be the 
representation of G obtained by right translations. In other words 

I(s, a, P) = Ind a 0 8p. 

Observe that 7(0, a, P) = /(a, P) was defined in Section 1. 

For a permutation w e JT(M) = W(M), we choose a representative in 
G which we denote by w. We will be more specific about these 
representatives in a moment. Now, let TV- denote the transpose of N, and 
set 

Nw = N H wN~w~{. 

Given / e V(s, a, P), define 

^(5 , a, w)/(g) = JNJ(w-]ng)dn (g e G). 

It is proved in [19] (also see [14, 15] ) that for Re (s) » 0, the integral is 
absolutely convergent, and furthermore, as a function of s, has a 
meromorphic continuation to the whole complex plane. We still use A (s, a, 
w)f(g) to denote this continuation. Let A(s, a, w) be the corresponding 
operator. Observe that ^4(0, a, w) sends F(0, a, P) into F(0, wa, P), where 
as before wo is defined by 

wo(m) = à(w~'ww). 

We use A (a, w) to denote A (0, a, w). We finally remark that since A (a, w) 
is non-zero and /(a, P) is irreducible, the map A(o, w) is in fact onto, or 
more precisely a bijection. 

Now, let F(a, P)be the space of I (a, P). Given/ e K(a, P) l e t / = / G . 
Then the mapping/ H->/from V(a, P) into V(r, P), T = a|M, induces an 
isomorphism between /(a, P) |G and 7(r, P). In particular 

A (a, w)f = ^ ( T , W ) / 

where 4̂ (T, W) is defined to be the value of the analytic continuation of the 

integral 

at s = 0, w i th / e K(.s, T, P) and g e G. /! (s, a, u>) may have a pole at s = 
0 and therefore A(T,W) may not be defined, but we are only interested in a 
normalization of it which is in fact unitary and therefore well defined. 

We shall now explain our normalizing factors. 
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As in [15], write w~ = w\ • w2 • • • • wi(w)> where each wz is a simple 
reflection in W(M) and furthermore there is no other decomposition of 
w~] whose number of factors is less than /(w), in other words a reduced 
decomposition of iv - 1 . The number l(w) is unique while the decomposi
tion itself is not. For each /, 1 ^ / ^ /(w), define a matrix cz as follows. 
Suppose wt interchanges/11 and7 4- 1th blocks. Then cz is a diagonal matrix 
in G which is equal to one everywhere along its diagonal except aty + 1 
block, where it is equal to the scalar matrix (— \)p. Observe that the 
matrices €zwz and consequently the representative w, defined by 

W " 1 = €]W] € / ( H J ) * Wl{^ 

are all in SLr(k) = G. It follows from a standard lemma on reduced 
decompositions that w~] is independent of the decomposition of w~l. For 
every w, this is the representative which we would like to fix throughout 
this paper. 

Now, for each /, let ot\ and aZ2 be two adjacent representations of 
îvz-_i . . . . w{o which are interchanged by wz. 

To proceed, we let $ be an additive character of k. Assume that the 
largest ideal on which \p is trivial is the ring of integers 0 of k. Fix a 
complex number s, and for a pair of tempered representations p\ and P2 of 
GLp(k), let e(s, p\ X p2, \p) and L(s, p\ X p2) be the local Langlands root 
number and L-function attached to the pair (ph p2) by H. Jacquet, I. I. 
Piatetski-Shapiro, and J. A. Shalika in [9] (see also [7] ). Their definitions 
are fairly involved but we only remark that e(sh p\ X p2, i/>) and L(s, p\ X 
P 2 ) 1 are, respectively, a monomial and a polynomial in q~\ and 
furthermore they are the local factors appearing in the functional equation 
satisfied by global forms, if any, for which px and p2 are local components 
(cf. [7] ). Moreover, we observe that by Proposition 9.4 of [9], L(s, p\ X p2) 
is holomorphic for Re (s) > 0. To conclude this discussion, we give an 
explicit formula for L(s, p\ X p2), when either p\ or p2 is supercuspidal. 
For each /, / = 1, 2, let oij be the central character of pz. Denote by û a 
uniformizing parameter for 0. This is an element satisfying \œ\ = q~x. 
Then it follows almost immediately from the definitions that L(s, p\ X p2) 
= 1, if either there is no s0 e C such that p\ = p2 ® | det \s°, or <0]<o2 is a 
ramified character, and 

L(s,p, X p2) = (1 - (o l W 2(5) ?- '»)-1 

otherwise (cf. Section 2.3 of [14] ). 
Let wfQr and w^p be, respectively, permutation matrices in GLr{k) and 

GLp(k) whose only non-zero (in fact 1) entries are along their second 
diagonals. Then 
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m 

w'6,p = (w'o,P> w0,p) M 

is a matrix in GLr(k). Set WQ = WQP - w'0r. We now define the following 
diagonal matrix 

*o 

/ G GLr(k) 
-I G GLr(A:) 

( ~ ' m / 2 _° ) G GL,(£) /> odd and m = 2(4). 

/? even or m = 0, 1(4) 
/? odd and m == 3(4) 

At all cases, set w0 = e0WQ. Then vv0 G SLr(k) = G. We now write 

5 = 0 a,,-

and for each y let co1?/ be the central character of o\j. We also define the 
following factor 

r0(a, w) 

m/2 

7 = 1 

( - 1 ) p odd and m = 2(4) 

[ otherwise. 

The significance of this factor will be explained later. 
Given /, 1 ^ / ^ /(vv), again let o}\ and o^2 be two adjacent 

representations of w7_i . . . . w\o which are interchanged by w, (wfs are 
permutations). 

LEMMA 2.1. £tfc/z of the two factors r0(a, w) #/?<i 

/ ( H ) 

I E c(0, af-, X a,-2, ^)L(1, a,-, X 5U) /L(0, a,-, X a,-2), 

and (consequently) their product, are independent of the decomposition ofw; 
nor do they depend on the choice ofo. Here 07 2 denotes the contragradient of 
the representation oi2, i = 1, . . . . , /(w). 

Proof. The first assertion follows from the corollary of Lemma 2.1.2 of 
[14]. To prove the second assertion, we observe that any other choice of a 
is of the form a 0 v for some v G k*. Then every a]y will change to o\ }• ® v 
which results in a change of every w\j to co\jVp, 1 — j = m. The fact that 
the root number and the L-function remain the same is now trivial. The 
same is true for r0(a, vv) which completes the lemma. 
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Now, we set 

l(w) 

r(T, w) = r0(a, w) • I I c(0, a,-j X a, 2, ^) 

X L ( l , a/fl X az-2)/L(0, a,-, X a / 2 ) . 

This is the normalizing factor in which we are interested. Observe that 
when a and a are components of global forms, the coefficient r0(a, w) is 
equal to 1 and our normalizing factor reduces to 

/(H)) 

I t €(0, af-, X a,2, ^ )L(1 , a,-j X az-2)/L(0, a,-! X az-2). 
/ = 1 

This has a particularly important global significance (cf. [12] ). 
If for every element w e W(M) = W(M), we choose a representative w 

in G as before, and let A(T, W) be the value of the analytic continuation 
of 

at 0, then our normalized operator R(r, w) is defined by 

R(T, W) = r(r , W)V4(T, W) . 

Now, let w be equal to the full Coxeter element (or rather its inverse) wc 

in W(M). More precisely, wc is the permutation 1 —> m —> ra — 1 —> . . . . 
—» 2 —> 1. We then have 

L E M M A 2.2. Suppose w = wc. Assume wco = o. Then 
a) There exists an irreducible tempered representation IT of GLp(k) and <o 

e k * w/7/z com G X(7r) SWC/Î /AU/ 

a = 0 (77 0 <o7). 

,4 fly 6>//zer 77 w of the form 77 0 *> • det jor some v ^ k* and therefore the 
L-packet generated by 77 is unique. Furthermore, for a given 77, LO is unique 
modulo the elements of X(IT). 

b) The normalizing factor r(r, wc) is given by 

m — 1 

r(r , wr) = rQ l i e (0, 7T X (TT 0 <oy), i//) 

X L ( l , 77 X (77 0 w"y) ) /L(0 , 77 X (77 0 co;) ), 
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where r0 = <o(— 1) if p is odd and m = 2(4), and r0 = 1 otherwise. 

Proof, a) Write 

m 
a = ® ohj. 

Let co denote cow0 as a character of k*. Then by part b) of Lemma 1.2 wra 
= a 0 co. Now part a) follows immediately if we let 77 = o\m. 

b) First observe that wc = w\2 w w _ j m is a reduced decomposi
tion of wc and therefore 

<jj \ = 77 0 60 and oi2 = 77 0 co /+1 , / = 1, . . . , m — 1. 

Now, straightforward calculations show that if w = wc, then r0(a, vv) = r0. 
We only need remark that r0 is well defined. In fact, any other choice of co 
is of the form 606o0 with COQ £ X(IT). Then for odd p 

cocoo(-l) = wcog( - l ) 

= ^ ( - 1 ) -

It remains to show that 

m—\ m—\ 

I I ^ ( 1 , 77 X (77 0 CO"-7') ) = I I L ( l , 77 X (77 0 60 '̂) ). 
7 = 1 7 = 1 

But then by properties of L-functions we have 

m — 1 m — 1 

I I L ( l , 7? X (77 0 CO"7') ) = I I L ( l , 77 X (77 0 <0~^) ) 
7 = 1 7 = 1 

m— 1 

= I I L ( l , 77 X (77 0 C O m ^ ) ) 
7 = 1 

m— 1 

= I I L(\, 77 X (77 0 «•>')), 
7 = 1 

which completes the lemma. 

C O R O L L A R Y 2.3. Le^ m' be a positive integer with mf ^ m. Denote by Sm> 
the symmetric group in mf letters. Let w be the permutation in Sm', defined by 
\ ^ mf —•> mf — 1 —>. . . 2 —> 1. Fix an embedding p of Sm> into Snv Suppose 
p(w)r = T. Choose o such that a\M = T. Then with notation as before 
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l(p(w) ) l(p(w) ) 

I I L(l9aiA X a,-2) = I I L ( l , a M X a,-2). 
/ = 1 1 = 1 

Proof. This can easily be proved if one uses the corollary after Lemma 
2.1.2 of [14] together with Lemma 2.2 of the present paper. 

Now, let w e W(M). Then w is conjugate to a product of elements of 
type p(w) for different pairs (m\ p). Furthermore this element (product) is 
unique. In fact, every conjugacy class in w(M) has a unique permutation 
of this type. From now on, for every conjugacy class C in W(M)9 let wc be 
this unique permutation, and denote by wc its representative in G as 
before. The full Coxeter element wc would now be only an example for 
which the conjugacy class is the Coxeter conjugacy class which we denote 
by c = W{M)Kg. 

Finally for the sake of completeness we prove: 

PROPOSITION 2.4. For every positive root a generating N, let wa be the 
corresponding transposition, and let W'\o) be the subgroup of W(o) 
generated by those transpositions wafor which the Plancher el measure /x(a, 
wa), defined by 

A(o9 wa)A(o9 wa ) = /x(a, wa)~\ 

is zero. Suppose a is in the discrete series. Then W(o) = W"(p). 

Proof. Given two positive integers / and k with / > /c, let a = (/, k) be 
the corresponding positive root. Denote by wa the corresponding 
transposition. Then as in Theorem 1.1 of [6], every 1 ¥= w G W\O) is a 
product of transpositions, each of which is again in W\o). Consequently 
W\o) is generated by transpositions. Thus to prove W\o) = (W"o), we 
only need to show that they are generated by the same transpositions. 
Therefore first assume wa e W'(o), a = (/, k). Write 

m 

à = g> oXr 

Then o\j = o\k. By Theorem 6.1 of [16], up to a positive constant 
multiple, ju(a, wa) is equal to 

\L(l,oul X a u ) | 2 / | L ( 0 , a u X a u ) |2. 

It follows from the properties of these L-functions (cf. [9] ) that since o\ / 
and o\ k are both unitary, the numerator which is never zero will also have 
no poles, and therefore the zeros of ju(a, wa) are all given by the poles of 
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L(0, au X oLk). 

But then from Propositions 9.1 and 9.2 of [9], it follows that L(s, oxl X 
o\ i) has a pole at s = 0 which implies wa e W"(a) ( m t r u s direction being 
tempered is enough). Conversely, suppose wa e W"(o), a = (/, k). Then 
L(s, aj / X d\ k) has a pole at s = 0. As in Proposition 9.2 of [9], write/? = 
at with « and t positive integers, and let 7TQ be an irreducible unitary 
supercuspidal representation of GLa(k) such that 

is the unique discrete series component of 

\nà(GLp{k\ Q, irv TT2, TT,), 

where TT1 = 770 ® a(^+1)/2-/^ i g / g ^ a(g) = | det g|, and g is the 
obvious standard parabolic subgroup of GLp(k). Similarly, choose positive 
integers b and q with /> = bq, and an irreducible unitary supercuspidal 
representation of a0 of GLh(k) such that 

where a, - a0 ® a ( ^ " I ) / 2 ' , 1 ^ / ê #. Then by Proposition 9.2 of [9], 

L(s, cru X aLA) = H L(5, 7T! X a,), 

and consequently there exists an /, \ ^ i ^ q, such that L(s, pj X of) has a 
pole at s = 0. Now from our previous discussion of L-functions for 
supercuspidal representations, we conclude that TT\ = ot which immedi
ately implies a = b and therefore t = g. Furthermore TTQ = <J0 ® a' '. But 
since / is an integer and a0 and TTQ are both unitary, this implies that / = 1 
and TTQ = o0. Consequently o\j = a ^ which implies wa G H/V(a). This 
completes the proposition. 

3. The theorem. Let xp be as in the previous section. Denote by U the 
subgroup of upper triangular matrices in G with ones on their diagonals. 
Set 

X(w) ~~~ Hui- -+- w- ; -1- . . . - wr |_r) 

lor everv w e= L. ihen x i s a character of (/. Since o is tempered, it is 
non-uegenerjie tci. ifc« ). 1 on>tquenti.y i^ô, P) possesses a non-zero 
X-Wh;uukLr ;ui:ai"iidi A, SUIM; Ï*> unique up to a complex multiple. More 
precisely. À. jv, a Junctional on the space Via. P) of /(<r, P) satis!vmn 
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Xx(/(a, P)(u)f) = x(u)\(f) 

for all u e £/ a n d / e K(a, P). It is then, by restriction, a functional on 
/ (T , P ) . 

Choose 77] c / (T , P) SO that \x |K] ^ 0, where V\ is the space of <n\. It 
follows from Lemma 3.6 below that m\ is unique. We normalize the 
measure dn, defining A(T, W), SO that the measures defining the cor
responding rank one operators in a decomposition of A(r, w) (according 
to a reduced decomposition of w~\ cf. [15]) are all normalized as in 
Theorem 5.1 of [16]. Fix o c r. Let C^°(G) be the space of all the locally 
constant functions of compact support on G, and f o r / e CC (G), let 

I(o, P,f) = jGf(g)I(a, P)(g)dg 

be its Fourier transform. Finally, for TT C / (T , P), let XTT be the character of 
77. Fix w e G as in Section 2 such that wo = a. Then 

THEOREM 3.1. Le/ 77] c / (T , P) Z>e (uniquely) so that \X\TTI =£ 0, and let 
Aa c A be as before the set of all a G A such that a7T\ c I(o, P). Then there 
exists <Ï>:T = WT .ywc/z //Î<2/ 

a)Fixfe C™(G). Then 

trace (P (a, w ) / ( a , P , / ) ) = 2 coH,(3)X^(/)-

W'e re/er /6> Lemma 1.2 for the definition of cow. 
b) Suppose 771 w changed to ir\ c 7(r, P). M//z 771 c 7(az, P) tf«<i 77̂  c 

/(ay, P). Choose aj e 4̂, uniquely, such that TT'I = aj • 77i. Le/ ^ Z>e ^ weM; 

se/ of indices which sends TT\ to the constituents of /(a, P). TTzefl 

trace (P(cx, w) / (a , /> , / ) ) - <ow,a.(2,-) 2 ww(3)x,rfl(/). 

Consequently, the coefficients appearing in the above linear combination of 
characters Xira remain proportional, when the base representation TT\ is 
changed. 

c) Suppose o = o\ is changed to o2 c T. Then there exists a one-one 
correspondence pfrom AG] onto Aai such that the coefficients ofxirj a G Aax, 
in the expansion of 

trace ( P ( a 1 , w ) / ( a 1 , P , / ) ) 

are proportional to the coefficients of x<n a)>
 a e ^ C T l » *w tne expansion of 

trace (P(a2, w)I(o2, P,f)). 
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d) Suppose that the L-packet of o is a singleton (in particular when P is 
minimal). Then for every w e S(<j>), there exists a character cow of k*, such 
that 

trace ( t f (a ,w) / (a , i> , / ) ) = 2 cow(a)Xfffl(/) ( / e C7(G) ) 

In this case $ is unique. 

Proof. We first observe that applying Lemmas 1.10, 1.11, and 1.2 to part 
a) of Theorem 3.1 implies, respectively, parts b), c), and d) of the theorem. 
To prove part a) we need some preparation. 

Write 

m 

a = g> a,,, 

and for each 7, let V\j denote the space of o\j. Since a is tempered, so is 
every o\j and therefore they are all non-degenerate. For each 7, let Ay be a 
X-Whittaker functional for F l y . More precisely, it satisfies 

\ O i j O ) v ) = x(u)Xj(v) 

for all u e GLp(k) n U and^ all v e V\j. Here x a l s o denotes its 
restriction to GLp(k) n U. F o r / G F(a, P), the following principal value 
integral is convergent (cf. [4] ) 

(3.1.1) Xx(/) = j N </(*&*), \x ® A2 ® . . . . ® \m)W)dn, 

and defines a non-zero x-Whittaker functional for V(o, P). Here ( , ) 
denotes the pairing between ®1f= x Vj and its dual. 

Next for w e W(M), le1^4 (a, w) be the intertwining operator between 
/(a, P) and /(îva, P). F o r / G K(a, P), define 

(3.1.2) \'x(f) = j N ( (A(o, w)f)(w'0n), Xx ® . . . . ® \m)ffî)dn. 

Then as is well explained in [14], it follows from the uniqueness of 
Whittaker models for /(a, P), that there exists a non-zero complex number 
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Cx(o, w) such that 

(3.1.3) Cx(d, w)X'x(f) = Xx(7) 

for a l l / e V(o,P). 
Now, l e t / = f\G be in V(T, P). Define 

(3.1.4) \ x ( / ) = JN </(w0«), X,, ® \ 2 0 . . . . 0 Xm)x(n)dn. 

Since WT = r, then using again f to denote its image under V(T, P) = 
F(WT, P), we have 

(3.1.5) r0(S9 tyrtf, w)Cx(o, W)\X(A(T, w)f) = Xx(/) 

for a l l / e K(T, P), where 

/(w) 

ri(a,îv) = n < 2 ( - l ) . 
/ = l 

The two factors r0(a, w) and rj((j, w) are introduced to compensate the 
effect of changing W'Q and w to vv0 and w in (3.1.3), respectively. 

Now, let 

r'(a, w) = Cx(o, w) I I L(l , af-! X az-2)/L(l, a,-, X az-2). 
/ = l 

Then from Theorem 5.1 of [16], it follows that 

l(w) 

(3.1.6) r'(a, îv) = r,(a, w) • I I c(0, aiA X a a , ^)L(1, a,-,, X a a ) 
/ = i 

/L(0, a,-! X a,-2). 

Furthermore, if we let 

P'(a, w) = r ( ^ w)A(o, w), 

then, using the results in [15], it follows that for every two permutation 
matrices w\ and w2 in W{M) 

(3.1.7) R'(o, H>JW2) = R'(w2<J, w\)R'(o, w2). 

Also observe that 

(3.1.8) R'(d, w) |7(r, P) = r0(5, w)P(r, w). 

To prove part a) of the theorem, one only needs to compute the effect of 
R(T, W) on every irreducible constituent of 7(T, P). 

https://doi.org/10.4153/CJM-1983-060-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-060-9


1100 FREYDOON SHAHIDI 

Fix vv e W(M) for which w is a representative in G. Let C be the 
conjugacy class of w. Choose w\ such that 

Suppose wr = T. Then W C (WIT) = WJT, and 

P O ^ , w r 1 ) : / ^ ^ , P ) -> 7(r, P ) 

establishes a one-one correspondence between irreducible constituents of 
/(wjT, P ) and / ( T , P ) . Furthermore, for each oh it sends irreducible 
constituents of I(W\T, P ) and / ( T , P ) . Furthermore, for each ai9 it sends 
irreducible constituents of I(w\oh P ) to those of I{oh P ) . Under this 
correspondence, for each /, we identify the irreducible constituents of 
I(w\oh P) with their images in I(on P ) . In particular, we shall identify our 
base representation 77] c I(oly P ) with its preimage in I(W\T, P ) . 

Bearing in mind the above discussion, the following proposition reduces 
the proof of Theorem 3.1 to the case when w = wc. 

P R O P O S I T I O N 3.2. Let w, w', and w\ represent elements of W(M) in G as 

before, and let w, w', and w\ be the corresponding permutation matrices. 
Suppose w = W] w'w\. Let r = o\M, and suppose wr = r. Then W'(W\T) 
= W\T, and 

a) the following diagram is commutative 

R(W\T, W\ ) 

/(H'lT, P ) - + /(r , P) 

R(W\T, W') 

/ ( H > , T , / > ) • 

P(r, W), 

- > / ( T > ) 

R(W\T, W\ ) 

and 

b) for all m e M and o c r 

^ v v ' . n , a ( H ' l ^ H ' l ) = W M . , a (w) . 

In particular 

<jûuia) = un-(a) 

J or all a e a. 

We need the following lemma. 
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LEMMA. 3.3. Let w, w\ and wx be so that w = vt>i wfw\. Then the fol
lowing diagram is commutative. 

R\wo,w^ ) 
I(w{d, P)-

R'(wo, w') 

I(w'w\d, P) 

->/(5, P) 

R'(o, w) 

-•/(vva, P) 
R'(w'w\d, wf ) 

Proof. This is an immediate consequence of relation (3.1.7). 

Proof of Proposition 3.2. a) From Lemma 3.3 and relation (3.1.8), it 
follows that to prove part a) we only need to show 

(3.2.1) ro(a, w)r0(w\d, W\ ) = ro(w'w\d, W\ )r0(w\d, w'). 

Let 

jR"(a, w) = Cx(a, vv)^(a, w). 

Then again (cf. Proposition 3.1.4 of [14] ) 

(3.2.2) R"(o, W1ÎV2) = R"(w20, w\)R"(o, wj)-

By relation (3.1.5) 

(3.2.3) Xx(/T(w,a, wiv! ) / ) = r0(wia, ww, )XX(/) 

f o r / G K(W,T, P). 

Next by relation (3.2.2), we have the following two decompositions of 
R"(w\d, ww\ ). 

R"(w\d9 ww\ ) = R"(o, w)R"(w\d, Wj ) 

= /^"(w'vvia, w 1 )/£"(w]a, w'). 

Using the first decomposition, the left hand side of (3.2.3) is equal to 

r0(a, w)r0(w,a, iv, )XX(/) 

which implies 

(3.2.4) r0(a, w)r0(wia, w\ ) = ro(vvia, W | ). 

Similarly the second decomposition implies 

(3.2.5) ro(w'H>ia, vP 1 )ro(W}a, vv') = A*O(WIO\ ww j ). 
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Now, (3.2.1) follows from comparing (3.2.4) with (3.2.5). 
b) Fix a c T, and let Va be the space of a. Then 

<*w\Wlo(™)K = wid(m~])w'w{o(m)Va. 

Changing m to w\mw\ , we then get 

uw>,W]0(w\mw\ ) = <*V0(m), 

completing the proposition. 

We now prove the theorem for w = wc. 
For a e k*, we let 50 be the matrix 

3 0 = ( ; • • • . i ) 

in GLp(k). As before fix TTI C I(T, P) such that \\V\ ^ 0. Let « 6 ^ , and 
choose v G Fa, the space of 7ra. Then, realizing a • 7T\ on V\ SLS TTU on Va, we 
have 

\(*a(u» = Ax(^i(5_1w«)v) 

= x(û_ 1"2)^x(v) 

where Xa(w) = x C ^ ^ X Xi = X? *s another character of £/. Therefore 7Ta 

has a non-zero x^-Whittaker functional. 
Fix an isomorphism <£:T = WT and let X = X] 0 . . . 0 Xm. By the 

uniqueness of Whittaker models for a, there exists a non-zero complex 
number b$ such that 

b^(<Kv), X> - (v, X> for every v e ® Vj. 

Now, let $ = b$- 4>. Then 

<*(v), A) = (v, X>. 

For each y, 1 ^ j ^ m, let arj y denote the dual of oXj. More precisely 

(v, o{j(m)\) = (o^](m)v, X), 

where v <E FJ y and X is in the full dual of VXj. 

LEMMA 3.4. Given f e. I(o, P), /<?// e / (T , P) be its restriction to G. Let I 
— wc (m). Then 
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(3.1.9) XXa(7) = fNmf(w0n) ), X, 0 . . . 0 X,__, 

® al/(ab)X/ 0 X/+1- . . 0 \m)îÂn)dn 

is a xa-Whittaker functional for /(a, P). 

Proof. Take u ^ U. Write w = w0«0 with «0
 G N and u0 e £/ n M. 

Then 

$(/(H>O>HO ) = O(T(W0W0W0 )f(w0nn0) ) 

- WCT(W0WOWO )$( / (W 0 / Ï«O) ) 

= u^aOoWoWo )0(/(w0««o) )• 

Then 

XxfM P)(u)f) = fN (*(f(wonu) ), X, 0 . . . . 0 a'u(£o)A/ 

0 . . . 0 \m)ffî)dn 

proving the lemma. 

Again 

(3.1.10) %JJ) = j N ( (A(S, wc)J)(won\ A, ® . . . 

® <J'I,XÀO)A/ ® . . . ® \m)^)dn 

is related to AXo by 

(3.1.11) \'Xa(r0(o, ffc) C^ (a, wc)f) = X j / ) , 

where C^Cff, wc) exists, as before, by the uniqueness of x^-Whittaker 
functionals for /(a, P). We have multiplied C^JJa, wc) by r0(a, wc) to 
compensate the effect of changing w'0 to w0. Observe that 

CXl(a, wc) = Cx(a9 wc) 

(by the definition of $). 
Now, if f = f\G, then using 

^4(a, wc) | / (T, P) = ri(a, w^)yl(T, wc), 

relation (3.1.11) changes to 

(3.1.12) r0(o, wc>"i(°s ™c)CXa(o, wc)\xfA(T, wc)f) = \a(f). 
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Here XXa(f) is defined by (3.1.9) for every/ e K(T, P). 
Let 

^ ( T , WC) = ^ ( ^ " ^ ( a , wc)Cxa(°> ™c\ 

and set 

Observe that since the operators are normalized, the product formula, 
Corollary 2.3 of the present paper, and Theorem 5.1 of [16] (cf. relation 
(3.1.6) of the present paper) now imply 

R\(T, WC) = R(T, WC). 

Now, relation (3.1.12) can be written as 

XXa(Ra(r, wc)f - / ) = 0. 

Since ira appears with multiplicity one in / (T , P), from Schur's Lemma it 
follows that Ra(r, wc) acts as a scalar on Va. In Lemma 3.6 below, we shall 
prove that XXJ Va =£ 0. These two observations then imply that for every a 
e A, and every/ in the space Va of ma 

Ra(T,WC)f = f. 

LEMMA 3.5. For every a £ A, choose f in the space of fna. Then 

R(T, wc)f = yaf 

where 

y a = Cx(a, wc)/CXa(o, wc). 

To complete the theorem it remains to calculate ya. To do this we 
prove: 

LEMMA 3.6. Fix a e A. Let Va be the space of tna = ^air\. Then 
a) There exists a function f e Va such that XXa(f) ¥= 0. 
b) ya = ww,c(2). 
c) Va is the unique subspace of 7(r, P) which has a Xa~Whittaker 

functional. 

Proof. We first assume/? = 2. Suppose TT\ C I(oh P) for some unique a, 
c r. Let o = a - a,. Then ma c /(a, P). T a k e / e Fa. Now, using 0 : T = 
WCT, (3.1.9) can be written as (for simplicity we use / to denote /(a, P) ) 
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(3.5.1) XXa(f) = J (*(f(won) ), X, ® . . . ® o\j (50)X/ ® . . . ® \m) 

X(n)dn 

(wcd(w0a~~]WQl)$(f(w0n) ), Xj ® . . . ® \m) / 

">Wc,„{a ') J (d(w0aw0 )f(w0n), A, ® 

X(n)dn 

X(n)dn 

= Uwç.àofi ') J (o(woa 'w0 ')/(w0«), 

A, ® . . . ® \m)W)dn 

= \a\r-P^4a)KXxa(à-v)f) 

= \a\r-P U;,c\à)KXl(T(à-])f), 

using Corollary 1.3. H e r e / is defined by f\G = f. Now, observe that 
7 ( 3 - 1 ) / e K| and therefore 

XXl(T(5~l)f) * 0 for s o m e / G Va, 

proving the first assertion. 
Next, consider relation (3.1.10) and write 

(3.5.2) ÀJJ / ) = J (wcS(wQà~xWQX)(A(à,wc)f)(wQn), 

A, ® . . . ® Xm)X(n)dn 

= \a\r~P / {(ACS, wc)T(a-x)f)(wvn\ 

A, ® .. . ® \m)W)dn 

= 1^-^,(7(2- ' ) / ) . 

We recall that 

\/\'x= r0(a, w)AXl/X^. 

Now the lemma in this case follows immediately if we compare (3.5.1) 
with (3.5.2), and use (3.1.3) and (3.1.11). Finally part c) can be proved 
using an argument similar to the one given in Corollary 2.7 of [11]. 

We remark that the isomorphism 0 : T = wcr is crucial in obtaining this 
result. 

Now suppose/? = 1. Then m = r and the induced representations are in 
the principal series. P and P are now the corresponding subgroups of 
upper triangulars. Finally, the subgroups M and M are the corresponding 
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subgroups of diagonals. We only prove the theorem in this case when wc 

= wc, the full Coxeter element. The proof for a general wc is similar. 
By part a) of Lemma 2.2, there exist characters ir and <o of k* with <om = 

1 such that 

m 
J O = 09 1TG)J. 

7 = 1 

Furthermore, for a ^ k* 

) = «(a) 

which uniquely determines co. 
An easy calculation now shows that wWc = œ • det. Again for each a e 

^4, the corresponding Whittaker functional is given by the principal value 
integral 

\ J / ) = JN f(won)x(à~xna)dn. 

We then have 

= kr-'x^/cà-1)/). 
Similarly 

HY)/(HVZ)XO "tf)<^ 

I yl (a, w — ] A(o, wc)f(wQd na • a" )x(# na)dn 

= |flr
iXiI(/(3-l)7). 

Again the lemma follows from definitions. 

COROLLARY 3.6. Suppose w e P^(T). 77ze«, g/ve« Û Gyl, //ze intertwining 
operator A(r, w) acts on the space of ma c / ( T , P), US z7ze scalar 

r(r, w)~] • ww(3). 
Now, given a c r, choose aa9 a\, . . . , aW] G 4̂ with a\, . . . , aWl 

representatives of N'd/Nd, where as before (Lemma 1.11) 
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such that iTa(ja. c /(a, P),j = 1, . . . , ri\. 
Next, suppose a is in the discrete series and let <f> be the homomorphism 

of Wk into LM, if any, which generates the L-packet of a (cf. Proposition 
1.9). It is easy to see (using Theorem 4.2 of [6] and Theorem 5.4.4.1 of [19], 
cf. Proposition 1.9) that the S-group S(<f>) is the set of all the extensions of 
the characters oy 0 = cow a |M0, a c T, from M 0 to M, V w <= JF(a). We 
observe that when a is only tempered we have 

R(o) c S(<»/SM(<f>). 

We now prove the following important corollary of Theorem 3.1. Again we 
fix A and 77! c I(oh P) with \x\ir\ ^ 0 (then aa. = 1). 

COROLLARY 3.7. a) Up to a constant multiple (which is uw(aa) ), the 
coefficients of the expansion of 

trace (R(a, w)I(o, P , / ) ) 

are equal to (^WQ(CLJ\ i.e., the pairing between co^o e S(<j>) and ira a c 
/(a, P). 

b) Le/ ^4' = {a\9 . . . , an } and for each a c T, to aa:yl' —» yla &e defined 
by oia(aj) = aaaj. Observe that A' = Aa.. Then there exists a unique inter
twining operator O0 :T = WT such that for every a c T aw J / e Cc. (G) 

trace (P(a, w)/(a, P , / ) ) = 2 <V0(û)x*a(fl)(/)-

c) Suppose a w z>2 z7ze discrete series and fyiW^ ~> LM generates the 
L-packet of a. Let 

p:R(a) S S(4>)/SM(4>). 
Given x e £($)> choose OIWQ £ P(a) swc/z zTza/ p(coH;o) = * SM(<£)- ^4/^O, 

given a c T a«J a G A'a, let ^ao(a) oe as in Part b)- Se/ 

Le? <Ï>0:T = w r k as m /?ar/ b). Then 

trace (*(a, w)/(a, ./>,/)) = 2 <*, ^ ( a ) ^ ^ / ) -

Proof. We only need to prove part b). Let 0 : T = WT be an isomorphism 
as in Theorem 3.1. If $':T = WT is another one, let co'w be the 
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corresponding function. For a c T, let V0 be the common space for o and 
wo. Then there exists a complex number ca ¥= 0 such that 

&\Va = caO|Fa. 

Moreover, if 77] c /(a/, P), then ca. = 1. In fact, since a, has a x-Whittaker 
functional, there exists a vector v G Va. such that (O(v), X) = (v, X) is 
non-zero. Consequently 

<ca/$(v), X> = <v, X> 

= <*(v), X> 

implies ca. = 1. Now it follows from the definition of œw that 

c/jfo) = d(a0
]W-lwd(a0W\V0i 

We now fix O' so that for each o c T 

and consequently w^ûa) = 1. Set <I>o = <£'. The uniqueness of <I>o *s n o w 

clear as well, proving the corollary. 

Again let az c T be the unique subrepresentation of r which has a 
X-Whittaker functional. Then every other o c r has a x-Whit taker 
functional (a = aa • az) and again by Corollary 2.7 of [11] o is the unique 
element in the L-packet which has such a functional. Fix a x-Whittaker 
functional X. Using dual representations, let 

Xa = o'(a0j\ and Xwa = (wd)'(aa)\ 

be the corresponding x—Whittaker functionals for o and wo, respectively. 
We now prove the following characterization of OQ-

LEMMA 3.8. The operator O0 is such that for every o c T 

<*o(v), XM;a> = (v, Xa> (v e V0). 

Proof. Let <f> be any isomorphism <J>:T = wr, and let ^ be a nonzero 
complex number such that 

^ < < K v ) , X> = <v , X>, 
where v is in the space of ot. We then have 

(wa(a~ )<f>(v), X> = œw,a(a~ )(<}>(d{a~ )v), X> 

= b^Uwëaofëô )< a(£a~ )v, X> 
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To complete the lemma one has now only to check that 

%\V0 = b^0i(a0)<}>\Va. 

But this is just the definition of <£0. 
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