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Abstract

We obtain a characterisation of the monomial ideals I ⊆ C[x1, . . . , xn] of finite colength that satisfy
the condition e(I) = L

(1)
0 (I) · · · L(n)

0 (I), where L(1)
0 (I), . . . ,L(n)

0 (I) is the sequence of mixed Łojasiewicz
exponents of I and e(I) is the Samuel multiplicity of I. These are the monomial ideals whose integral
closure admits a reduction generated by homogeneous polynomials.
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1. Introduction

Let (R,m) denote a local ring of dimension n. Let I be an m-primary ideal of R.
There are two important numbers attached to I: the multiplicity of I, denoted by e(I)
(see for instance [9, 14] or [24]), and the Łojasiewicz exponent of I, that is usually
denoted by L0(I) (see [15, 22, 23]). We shall also refer to m-primary ideals as ideals
of finite colength. We recall that L0(I) was originally defined for ideals of the ring
On of analytic function germs (Cn, 0)→ C around the origin. That is, if I is generated
by g1, . . . , gr ∈ On, then L0(I) is defined as the infimum of all positive real numbers α
such that

‖x‖α ≤ C sup
i
|gi(x)|

for some constant C > 0 and all x that belong to some open neighbourhood of the
origin in Cn. Lejeune and Teissier showed in [15] a relation between L0(I) and the
asymptotic Samuel function of I and, consequently, with the integral closure of I. This
relation is the motivation of the definition of L0(I) for an arbitrary ideal I of finite
colength in a local ring (R,m). We shall now explain this more precisely.

Fix a local ring (R,m). Let I be an ideal of R and let h ∈ R. Then the order of h with
respect to I is defined as ordI(h) = sup{r ≥ 1 : h ∈ Ir}. By convention, ordI(0) = +∞.
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192 C. Bivià-Ausina [2]

It is proven in [15, Section 0.2] and [17] that the sequence {r−1 ordI(hr)}r≥1 has a
limit in R≥0 ∪ {+∞}. The asymptotic Samuel function of I is defined as the function
νI : R→ R≥0 ∪ {+∞} given by

νI(h) = lim
r→∞

ordI(hr)
r

for all h ∈ R, where we set νI(0) = +∞. We remark that νI(h) = 0 for all h <
√

I. The
number νI(h) is also known as the reduced order of h with respect to I. It is known that
the range of νI is Q≥0 ∪ {+∞} (see for instance [14, Section 10]).

If I is an ideal of On such that I is a monomial ideal (that is, I is generated by
monomials), then νI can be expressed in terms of the Newton polyhedron of I (see [2]).
If I and J are ideals of R, then we define

νI(J) = min{νI(h) : h ∈ J}.

The result of Lejeune–Teissier to which we referred before states: if I is an ideal of On

of finite colength and mn denotes the maximal ideal of On, then

L0(I) =
1

νI(mn)
. (1.1)

The above equality is used as the definition of the Łojasiewicz exponent of an arbitrary
ideal I of finite colength in a local ring (R,m). We also remark that the equality (1.1)
is equivalent to L0(I) = inf{r/s : r, s ∈ Z≥1,mr

n ⊆ I s} (see [15, Section 7]).
The notion of multiplicity of an ideal was extended by Risler and Teissier [22]

to sequences of m-primary ideals, thus leading to the notion of mixed multiplicity
e(I1, . . . , In) of n m-primary ideals in R (see [14, Section 17.4]). The motivation for this
generalisation has its origin in the study developed by Teissier of the Milnor number of
the restriction of a given function germ f ∈ On to generic subspaces of Cn of different
dimensions [22]. The study of mixed multiplicities of ideals was further developed by
Rees [18]. Let (R,m) be a local ring and let I1, . . . , In be ideals of R. Then we define

σ(I1, . . . , In) = sup
r∈Z≥1

e(I1 + mr, . . . , In + mr). (1.2)

In general, σ(I1, . . . , In) can be infinite. In [3, page 393], we characterised the finiteness
of σ(I1, . . . , In). From (1.2), it is clear that if each ideal has finite colength, then
σ(I1, . . . , In) exists and it is equal to the usual mixed multiplicity e(I1, . . . , In). We
remark that σ(I1, . . . , In) coincides with the mixed multiplicity defined by Rees [19,
page 181] and we also refer to σ(I1, . . . , In) as the Rees mixed multiplicity of I1, . . . , In.

Analogous to the generalisation of the notion of multiplicity leading to mixed
multiplicities, we introduced in [4] the notion of Łojasiewicz exponent of n ideals
I1, . . . , In in a local ring (R,m) of dimension n (see Section 2 and [5] for details).
We denote this number by L0(I1, . . . , In). In order to define L0(I1, . . . , In), the ideals
I1, . . . , In are not assumed to have finite colength but the condition σ(I1, . . . , In) <∞ is
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needed. Therefore, if I denotes an ideal of R of finite colength and i ∈ {1, . . . , n}, then
we define the ith relative Łojasiewicz exponent of I as

L
(i)
0 (I) = L0(I, . . . , I,m, . . . ,m),

where I is repeated i times and m is repeated n − i times. In particular, we have
L

(n)
0 (I) = L0(I) and L(1)

0 (I) = ord(I).
Let (R,m) denote an equicharacteristic regular local ring of dimension n ≥ 2 with

residue field k, char(k) = 0. Let I be an ideal of R of finite colength and let us fix an
index i ∈ {1, . . . , n}. Hickel proved in [12, Théorème 1.1] that there exists a Zariski
open set U(i) of the Grassmannian Gk(i, n) of subspaces of dimension i of kn such that
νIRH (mH) does not depend on H for all H ∈ U(i). Here we assume that H is the zero
set of the collection of k-linear forms h1, . . . , hn−i, the quotient ring R/〈h1, . . . , hn−i〉

is denoted by RH and mH is the maximal ideal of RH . By [6, Lemma 4.9], we have
L

(i)
0 (I) = (νIRH (mH))−1 for all i = 1, . . . , n. We remark that (νIRH (mH))−1 is denoted by

ν(i)
I in [12] for all i = 1, . . . , n.

Moreover, Hickel proved in [12] that

e(I) ≤ L(1)
0 (I) · · · L(n)

0 (I). (1.3)

We remark that this inequality was generalised in [6, Theorem 4.7]. There now arises
the problem of characterising when equality holds in (1.3) and understanding the
structure of the ideals satisfying that equality. This was already done by Hickel in
dimension n = 2 [12, Proposition 5.1].

In this article, we consider this problem in the case that I is a monomial ideal of
On or C[[x1, . . . , xn]] (see Theorem 3.5). We prove that the only monomial ideals that
satisfy the equality e(I) = L

(1)
0 (I) · · · L(n)

0 (I) are those such that I admits a reduction
generated by homogeneous polynomials. This condition reduces considerably the
possibilities for the shape of the Newton polyhedron of the ideal. As is seen in
Section 3, we translate this problem into a combinatorial problem that, at first sight,
is independent from Łojasiewicz exponents and captures a special class of monomial
ideals.

2. Mixed Łojasiewicz exponents
In this section we recall briefly the notion of mixed Łojasiewicz exponent and some

basic facts about this concept.
Let (R,m) denote a Noetherian local ring of dimension n ≥ 1 and let I1, . . . , In be

ideals of R such that σ(I1, . . . , In) <∞. Let J be a proper ideal of R. Define

rJ(I1, . . . , In) = min{r ∈ Z≥0 : σ(I1, . . . , In) = σ(I1 + Jr, . . . , In + Jr)}.

We recall that σ(I1, . . . , In) denotes the Rees mixed multiplicity of I1, . . . , In, defined
in (1.2).

If we suppose that I1 = · · · = In = I for some ideal I of R of finite colength and
we assume that R is formally equidimensional, then we can apply Rees’s multiplicity
theorem (see [11, page 147] or [14, page 222]) to deduce that

rJ(I, . . . , I) = min{r ∈ Z≥0 : Jr ⊆ I}.
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Definition 2.1 [5]. Under the above conditions, we define the Łojasiewicz exponent of
I1, . . . , In with respect to J, denoted by LJ(I1, . . . , In), as

LJ(I1, . . . , In) = inf
s≥1

rJ(I s
1, . . . , I

s
n)

s
.

We also refer to the number LJ(I1, . . . , In) as the mixed Łojasiewicz exponent of
I1, . . . , In with respect to J. When J = m, we denote this number by L0(I1, . . . , In).

Let us observe that in order to define LJ(I1, . . . , In), we only need the ring R to
be local and Noetherian and no additional condition on R is assumed. As mentioned
in the Introduction, if I is an ideal of finite colength of R, then we can associate to I
the vector L∗0(I) = (L(n)

0 (I), . . . ,L(1)
0 (I)), where L(i)

0 (I) = L0(I, . . . , I,m, . . . ,m), with I
repeated i times and m repeated n − i times, i = 1, . . . , n. The number L(i)

J (I) is defined
analogously, for all i = 1, . . . , n, and any ideal J of R of finite colength.

The following result is proven in [6, Corollary 4.11].

Theorem 2.2. Let (R,m) be a quasi-unmixed Noetherian local ring and let I, J be
ideals of R of finite colength. Let us suppose that the residue field k = R/m is infinite.
Then L(1)

J (I) ≤ · · · ≤ L(n)
J (I).

Let us fix coordinates x1, . . . , xn in Cn. If k ∈ Zn
≥0, then we write xk to denote the

monomial xk1
1 · · · x

kn
n . If h ∈ On and the Taylor expansion of h around the origin is given

by h =
∑

k ak xk, then the support of h, denoted by supp(h), is defined as the set of those
k ∈ Zn

≥0 such that ak , 0. If h , 0, then we define the Newton polyhedron of h, denoted
by Γ+(h), as the convex hull in Rn

≥0 of {k + v : k ∈ supp(h), v ∈ Rn
≥0}. If h = 0, then we

set Γ+(h) = ∅. If I is an ideal of On, then the Newton polyhedron of I, denoted by Γ+(I),
is defined as the convex hull of Γ+(g1) ∪ · · · ∪ Γ+(gs), where we assume that g1, . . . , gs

is a generating system of I. We see immediately that the definition of Γ+(I) does not
depend on the chosen generating system of I.

Let us fix a subset L ⊆ {1, . . . ,n}, L , ∅. Then we denote byRn
L the set of those k ∈ Rn

such that k j = 0 for all j < L. If A denotes any subset of Rn, then we set AL = A ∩ Rn
L.

The cardinal of L will be denoted by |L|.
If I is a monomial ideal of On, then we denote by IL the ideal of On generated by

the monomials xk ∈ I such that k ∈ Rn
L. If supp(I) ∩ Rn

L = ∅, then we set IL = 0. If I is
a monomial ideal of On of finite colength, then we have IL , 0 for all L ⊆ {1, . . . , n},
L , ∅.

The next result gives a description of the sequence L∗0(I) in terms of Γ+(I) when I
is a monomial ideal of finite colength of On.

Theorem 2.3 [6]. Let I be a monomial ideal of On of finite colength. Let i ∈ {1, . . . , n}.
Then

L
(i)
0 (I) = max{ord(IL) : L ⊆ {1, . . . , n}, |L| = n − i + 1}.
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The following result is motivated by [12, Théorème 1.1] and, in turn, the case J = m
is the motivation of the problem considered in this article. This result can be seen as
a particular case of [6, Theorem 4.7] (see [6, Corollary 4.8]). We also refer to [12,
Remarque 4.3(3)] for the deduction of inequality (2.1) using different techniques in a
slightly different context.

Proposition 2.4 [6]. Let (R,m) be a quasi-unmixed Noetherian local ring and let I and
J be ideals of R of finite colength. Then

e(I)
e(J)

≤ L
(1)
J (I) · · · L(n)

J (I). (2.1)

In the main result, Theorem 3.5, we characterise when equality holds in (2.1) in the
case when I is a monomial ideal of On and J is the maximal ideal of On. As we will
see, Theorem 3.5 can be considered as a purely combinatorial result.

3. Main result

In this section we expose the concepts and results from [21] that we need in the
proof of the main result.

If A is a subset of Rn, then we denote by Conv(A) the convex hull of A in Rn. If
P ⊆ Rn, then we say that P is a polytope when there exists a finite subset A ⊆ Rn such
that P = Conv(A). If A is contained in Zn, then Conv(A) is said to be a lattice polytope.

If P is a polytope in Rn, then the dimension of P is defined as the minimum
dimension of an affine subspace containing P.

If P is any subset of Rn, then we denote by C[P] the family of polynomial maps
h ∈ C[x1, . . . , xn] such that supp(h) ⊆ P. Let P = (P1, . . . ,Pn) be an n-tuple of subsets of
Rn. We denote by Cn[P] the set of polynomial maps F = (F1, . . . , Fn) : Cn → Cn such
that supp(Fi) ⊆ Pi for all i = 1, . . . , n. We can identify Cn[P] with a finite-dimensional
vector space CN , for a sufficiently large positive integer N, by associating to each map
F ∈ Cn[P] the vector formed by the coefficients of F. Under this identification, we
say that a property holds for a generic F ∈ Cn[P] when the property holds in a dense
Zariski open subset of CN .

Given a lattice polytope P ⊆ Rn, then we say that P is cornered when, for all
j = 1, . . . , n, there exists some k ∈ P such that k j = 0 (see [21, page 119]). If
P ⊆ Rn

≥0 and fP denotes the polynomial obtained as the sum of all terms xk such that
k ∈ P ∩ Zn

≥0, then we observe that P is cornered if and only if fP is not divisible by x j

for all j = 1, . . . , n.
Let P = (P1, . . . , Pn) be an n-tuple of lattice polytopes in Rn; then P is said to be

cornered when Pi is cornered for all i = 1, . . . , n. We say that P is nice when F−1(0) is
finite for a generic map F ∈ Cn[P].

If F : Cn → Cn is a polynomial map such that F−1(0) is finite, then we denote by
m(F) the number of roots of F counted with multiplicities. That is, if I(F) denotes
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the ideal of C[x1, . . . , xn] generated by the component functions of F, then, applying
[7, Ch. 4, Corollary 2.5],

m(F) = dimC
C[x1, . . . , xn]

I(F)
.

If K ⊆ Rn, then we denote by Voln(K) the n-dimensional volume of K. Let
C1, . . . ,Cn be n polytopes of Rn and let λ1, . . . , λn ∈ R≥0. Let λ1C1 + · · · + λnCn =

{λ1k1 + · · · + λnkn : ki ∈ Ci, i = 1, . . . , n}. It is a classical result from convex geometry
that Voln(λ1C1 + · · · + λnCn) is a homogeneous polynomial of degree n in the variables
λ1, . . . , λn (see for instance [7, page 337]). The n-dimensional mixed volume of
C1, . . . ,Cn is defined as the coefficient of λ1 · · ·λn in the polynomial Voln(λ1C1 + · · · +

λnCn). We denote this number by M(C1, . . . ,Cn). Let us recall some elementary
properties of this number (taken from [20, page 112]; see also [7, Ch. 7, Section 4]):

(1) M(C1, . . . ,Cn) is symmetric and linear in each variable;
(2) M(C1, . . . ,Cn) ≥ 0 and M(C1, . . . ,Cn) = 0 if and only if dim(

∑
i∈I Ci) < |I| for

some nonempty subset I ⊆ {1, . . . , n}, where |I| denotes the cardinal of I;
(3) M(C1, . . . ,Cn) ∈ Z≥0, if Ci is a lattice polytope, for all i = 1, . . . , n;
(4) M(C, . . . ,C) = n! Voln(C) for any polytope C ⊆ Rn.

We refer to [7, 10, 20] for more information about M(C1, . . . ,Cn).
If P is a polytope in Rn, then we denote Conv(P ∪ {0}) by P0. If P = (P1, . . . , Pn)

is an n-tuple of polytopes of Rn, then we define P0 = (P0
1, . . . , P

0
n). In particular, it

makes sense to speak about the mixed volumes M(P) and M(P0). Let us remark that
P0 is always cornered. By [16, Theorem 2.4], if F ∈ Cn[P], P is a lattice polytope and
F−1(0) is finite, then m(F) ≤ M(P0). As remarked in [21, page 119], the conditions
‘nice’ and ‘cornered’ on P are independent conditions. The following result tells us
that both properties together in P imply m(F) = M(P0) for a generic F ∈ Cn[P].

Theorem 3.1 [21, page 119]. Let P = (P1, . . . , Pn) be an n-tuple of lattice polytopes
of Rn

≥0. Let us suppose that P is nice and cornered. Then a generic polynomial map
F ∈ Cn[P] has exactly M(P0) roots in Cn, counting multiplicities.

The previous theorem is proven in [21] in a more general context (for polynomial
maps with coefficients in a given algebraically closed field of any characteristic).

Let P = (P1, . . . ,Pn) and Q = (Q1, . . . ,Qn) be n-tuples of polytopes in Rn
≥0. We write

P ⊆ Q to denote that Pi ⊆ Qi for all i = 1, . . . , n. We also define the n-tuples of subsets
P ∩ Q = (P1 ∩ Q1, . . . , Pn ∩ Qn) and QrP = (Q1rP1, . . . ,QnrPn). If L ⊆ {1, . . . , n},
L , ∅, then we set PL = (P1 ∩ R

n
L, . . . , Pn ∩ R

n
L).

Next we recall a particular case of a definition introduced in [21, page 120].

Definition 3.2. Let P and Q be n-tuples of polytopes in Rn
≥0 such that Q is nice and

cornered. We say that P counts Q when:

(1) P ⊆ Q;
(2) P is nice;
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(3) for any F ∈ Cn[QrP], the map F + F′ has a finite zero set and m(F + F′) =

M(Q0) for a generic F′ ∈ Cn[P].

In particular, if P counts Q, then m(F) = M(Q0) for a generic F ∈ Cn[P] and
therefore M(P0) = M(Q0) provided that P is also cornered, by Theorem 3.1.

Definition 3.3 [21, page 124]. Let P = (P1, . . . , Pn) be an n-tuple of polytopes in Rn.
The support of P is defined as the set of indices i ∈ {1, . . . , n} such that Pi , ∅. We
denote this set by supp(P). Let J ⊆ {1, . . . , n}. Then J is said to be essential for P when
the following conditions hold:

(1) J ⊆ supp(P);
(2) dim(

∑
j∈J P j) = |J| − 1;

(3) for all nonempty proper subsets J′ ⊂ J, we have dim(
∑

j∈J′ P j) ≥ |J′|.

Given a closed subset P ⊆ Rn
≥0 and a vector w ∈ Rn, we define `(w,P) = min{〈w, k〉 :

k ∈ P}, where 〈 , 〉 stands for the standard inner product in Rn. If `(w, P) > −∞, then
we denote by Pw, or by ∆(w, P), the subset of P formed by those k ∈ P such that
〈w, k〉 = `(w, P). The sets of the form ∆(w, P), for some w ∈ Rn, are called faces of P.
If P = (P1, . . . , Pn) is an n-tuple of lattice polytopes contained in Rn

≥0, then we denote
the n-tuple (Pw

1 , . . . , P
w
n ) by Pw.

Next we state a particular case of [21, Theorem 7] that we need for our purposes (we
remark that this theorem is stated for polynomials with coefficients in any algebraically
closed field). Given two n-tuples of polytopes P and Q of Rn such that P ⊆ Q, this
result gives a purely combinatorial characterisation of when P counts Q.

Theorem 3.4 [21, page 127]. Let P and Q be n-tuples of lattice polytopes contained
in Rn

≥0 such that P ⊆ Q. Let us suppose that Q is nice and cornered and M(Q0) > 0.
Then P counts Q if and only if supp(P ∩Qw) contains an essential subset for Qw for
all w ∈ RnrR≥0.

If I is a monomial ideal of On of finite colength, then we define

ai(I) = max{ord(IL) : L ⊆ {1, . . . , n}, |L| = n − i + 1}

for any i ∈ {1, . . . , n}. Observe that a1(I) ≤ · · · ≤ an(I) and that the definition of ai(I)
depends only on Γ+(I). Therefore, ai(I) = ai(I) for all i = 1, . . . , n. We also define
the vector a(I) = (a1(I), . . . , an(I)). For example, if I = 〈xyz, xa, yb, zc〉 ⊆ O3, where
3 < a ≤ b ≤ c, then a(I) = (3, b, c).

We recall that ai(I) = L
(i)
0 (I) for all i = 1, . . . , n, by Theorem 2.3; however, this

equality is not used in the main result.
If k ∈ Rn, then we denote by |k| the sum of the coordinates of k.

Theorem 3.5. Let I be a monomial ideal of finite colength of On. Then

e(I) ≤ a1(I) · · · an(I) (3.1)

and equality holds if and only if there exist polynomials g1, . . . , gn ∈ C[x1, . . . , xn] such
that gi is homogeneous of degree ai(I), for all i = 1, . . . , n, and I = 〈g1, . . . , gn〉.
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Proof. Since e(I) = e(I) and ai(I) = ai(I), for all i = 1, . . . , n, we can assume that I is
integrally closed. Then I = 〈xk : k ∈ Γ+(I)〉 (see for instance [14, Proposition 1.4.6]).
Let ai = ai(I) for all i = 1, . . . , n. Let us denote by Di the convex hull in Rn of the set

{k ∈ supp(IL) : |k| = ai, L ⊆ {1, . . . , n}, |L| = n − i + 1}

for all i = 1, . . . , n. By the definition of ai, we have ai = ord(IL) for some L ⊆ {1, . . . , n}
such that |L| = n − i + 1 for all i = 1, . . . , n. In particular, Di , ∅ for all i = 1, . . . , n. Let
D denote the n-tuple of polytopes (D1, . . . ,Dn).

If α ∈ R≥0, let ∆(α) denote the convex hull in Rn of the set {k ∈ Zn
≥0 : |k| = α} and

let ∆ denote the n-tuple of polytopes (∆(a1), . . . ,∆(an)). It is clear that ∆ is nice and
cornered and M(∆0) = a1 · · ·an > 0. Clearly, we have D ⊆ ∆. We claim that D counts ∆.
To see this, we will apply Theorem 3.4.

Let us fix a vector w = (w1, . . . ,wn) ∈ RnrRn
≥0 and let w0 = min{w1, . . . ,wn}. Let

Lw denote the set of indices {i : wi = w0}. It is immediate that `(w,∆(a j)) = a jw0 and
∆(a j)w = ∆(a j) ∩ Rn

Lw
for all w ∈ RnrRn

≥0 and all j = 1, . . . , n. Then ∆w = ∆Lw for all
w ∈ RnrRn

≥0. In particular, we have the equality

{∆w : w ∈ RnrRn
≥0} = {∆

L : L ⊆ {1, . . . , n}, L , ∅}.

Fix a subset L ⊆ {1, . . . , n}, L , ∅. Let α = |L| and consider the set of indices
JL = {n + 1 − α, . . . , n}. Let us show that JL ⊆ supp(D ∩ ∆L) and JL is an essential
set for ∆L.

If i ∈ JL, then α ≥ n − i + 1 and thus ord(IL) ≤ ord(IL
′

) ≤ ai for all L′ ⊆ L such that
|L′| = n − i + 1. In particular, if L′ ⊆ L is any subset such that |L′| = n − i + 1, there
exists some k ∈ supp(IL

′

) ⊆ supp(IL) such that |k| = ai. Then Di ∩ ∆(ai)L , ∅ for all
i ∈ JL. That is, we have JL ⊆ supp(D ∩ ∆L). We observe that dim ∆(a)L = |L| − 1
for all a ∈ R≥0. Moreover,

∑
j∈JL ∆(a j)L = (∆(

∑
j∈JL a j))L. In particular, we have

dim
∑

j∈JL ∆(a j)L = |L| − 1. Then we observe that JL satisfies conditions (2) and (3)
of the definition of essential subset for ∆L (see Definition 3.3). Thus, we deduce that
D counts ∆, by Theorem 3.4.

In particular, there exist homogeneous polynomials gi ∈ C[Di], i = 1, . . . , n, such
that, for the map G = (g1, . . . , gn) : Cn → Cn, G−1(0) is finite and m(G) = M(∆0) =

a1 · · ·an. Since gi is homogeneous, for all i = 1, . . . ,n, and G−1(0) is finite, we conclude
that G−1(0) = {0}. Let I(G) be the ideal of On generated by g1, . . . , gn. Then I(G) has
finite colength and e(I(G)) = a1 · · · an. If we assume that I is monomial and integrally
closed, then I(G) ⊆ I. This implies that a1 · · · an = e(I(G)) ≥ e(I).

Then, by Rees’s multiplicity theorem (see for instance [11, page 147] or [14,
page 222]), the equality e(I(G)) = e(I) holds if and only if I = I = 〈g1, . . . , gn〉. �

Let G denote a homogeneous polynomial map Cn → Cn such that G−1(0) = {0}.
Denote by I(G) the ideal of On generated by the component functions of G. We remark
that the integral closure of I(G) is not always a monomial ideal, as is shown by the map
G : (C2, 0)→ (C2, 0) given by g(x, y) = (xy + x2, y3).

Let I be a monomial ideal of On of finite colength and let v = (1, . . . , 1) ∈ Rn. Then
we denote the face ∆(v, Γ+(I)) by ∆0(I). Let us observe that the elements k ∈ Γ+(I)
such that |k| = ord(I) are contained in ∆0(I).
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Remark 3.6. Let I be a monomial ideal ofOn of finite colength satisfying the condition
e(I) = a1 · · · an, where ai = ai(I), i = 1, . . . , n. Then, as we have seen in the proof of
Theorem 3.5, the ideal I admits a reduction 〈g1, . . . , gn〉, where gi is a homogeneous
polynomial of C[x1, . . . , xn] of degree ai for all i = 1, . . . , n. Let d = dim ∆0(I). Then,
as a consequence of [1, Theorem 2.10], where all the reductions of monomial ideals
are characterised, it follows that a1 = · · · = ad = ad+1. In particular, if a1 < a2, then
dim ∆0(I) = 0, that is, the face ∆(v,Γ+(I)) is a vertex.

Let us also observe that, by [1, Theorem 2.10], the condition e(I) = a1 · · · an forces
the face ∆0(I) to intersect all faces of Γ+(I) of dimension n. We conjecture that it is
possible to obtain a characterisation of the condition e(I) =

∏n
i=1 ai(I) in terms of some

property of the tree determined by the vertices and edges of Γ+(I).

Example 3.7. Let us consider the ideal of O3 given by I = 〈xa, yb, zc, xy, xz, yz〉, where
2 ≤ a ≤ b ≤ c. Then a(I) = (2, 2, c). Moreover, e(I) = 2 + a + b + c. Observe that
e(I) ≤ 4c and equality holds if and only if a = b = c = 2.

Here we illustrate Remark 3.6. Let us observe that the face ∆0(I) contains the
convex hull of the supports of the monomials xy, xz, yz. Hence, dim ∆0(I) = 2. Thus, I
does not satisfy the relation e(I) = a1(I)a2(I)a3(I) if c > 2, by Remark 3.6.

Example 3.8. Let I be the ideal of On generated by xk, xa1
1 , . . . , xan

n , where k ∈ Zn
≥0,

k , 0, and a1, . . . , an are integers such that |k| ≤ a1 ≤ · · · ≤ an. We recall that |k|
denotes the sum of the coordinates of k. Then we have a(I) = (k1 + · · · + kn, a2, . . . , an)
and e(I) = k1a2 · · · an + · · · + a1 · · · an−1kn. Therefore, e(I) =

∏n
i=1 ai(I) if and only if

a1 = · · · = an.

Let lct(I) denote the log canonical threshold of an ideal I of On and let µ(I) denote
the inverse 1/lct(I), which is also known as the Arnold index of I. By a result of
de Fernex et al. [8, Theorem 1.4], if I is an ideal of On of finite colength, then
e(I) ≥ (nµ(I))n and equality holds if and only if I = mord(I)

n . In particular, using (1.3),

(nµ(I))n ≤ e(I) ≤ L(1)
0 (I) · · · L(n)

0 (I).

We recall that, by a result of Howald [13], if I is a monomial ideal, then

µ(I) = min{α > 0 : αv ∈ Γ+(I)}, (3.2)

where v = (1, . . . , 1) ∈ Rn. Let us denote the number on the right-hand side of (3.2) by
α(I). Then, as a consequence of (3.1) and [8, Theorem 1.4], we obtain the following
conclusion, which is a combinatorial result.

Corollary 3.9. Let I be a monomial ideal of On of finite colength. Then

a1(I) · · · an(I) ≥ (nα(I))n

and equality holds if and only if I = mord(I)
n .
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