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The construction of groups

in models of set theory that
fail the Axiom of Choice

J.L. Hickman

The purpose of this paper is to show that a well-known method for

constructing "queer" sets in models of ZF set theory is also

applicable to certain algebraic structures. An infinite set is

called "quasi-minimal" if every subset of it is either finite or

cofinite. In Section 1 I set out the two systems of set theory

to be used in this paper, and illustrate the technique in its

most fundamental form by constructing a model of set theory

containing a quasi-minimal set. In Section 2 I show that by

choosing the parameters appropriately, one can use this technique

to obtain models of set theory containing groups whose carriers

are quasi-minimal. In the third section various independence

results are deduced from the existence of such models: in

particular, it is shown that it is possible in ZF set theory to

have an infinite group that satisfies both the ascending and

descending chain conditions. The quasi-minimal groups constructed

in Section 2 were all elementary abelian; in Section 4 it is

shown that this was not just chance, but that in fact all quasi-

minimal groups must be of this type. Finally in Section 5

permutations and permutation groups on quasi-minimal sets are

examined.
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200 J . L. Hi ckman

1 .

An infinite set X is called "quasi-minimal" if for every subset Y

of X , either Y or X - Y is finite. In "ordinary" set theory in which

the Axiom of Choice is assumed, quasi-minimal sets clearly do not exist;

the situation changes, however, once Choice is jettisoned.

Perhaps the most familiar system of axiomatic set theory is that of

Zermelo-Fraenkel (ZF). If the Axiom of Choice (AC) is adjoined, then the

resulting theory is denoted by "ZFC" and constitutes - in the present

author's opinion - an adequate foundation for classical analysis, algebra,

and various other well-known branches of mathematics. Without AC, however,

things become "sticky"; certain elementary theorems are no longer

elementary, and in some cases are no longer true. By constructing quasi-

minimal groups - groups whose carriers are quasi-minimal - we will show

that various well-known results in elementary group theory are among those

that must be dropped.

The construction of ZF models that fail Choice is a fairly complex

process; hence we choose an indirect route and proceed via models of a

system of set theory usually known as Fraenkel-Mostowski (or Fraenkel-

Mostowski-Specker) set theory. We denote this by "FM", and by "FMC" when

Choice is added. Because FM set theory is probably not as well-known as

ZF, we shall set forth both systems in order that a comparison may be made.

Firstly, however, we require some notational conventions.

Sets (and urelemente; see later) will in general be denoted by lower

case Latin letters; there will, however, be occasions when it will seem

more natural to use upper case letters. An algebraic structure will be

denoted by an upper case script letter, and its carrier by the

corresponding upper case Latin letter.

For any set x , the powerset {y; y c x) is denoted by "P(x)" , and

the union {z; 3y(y € x & z € y)} by "Lte" . The difference

{z; z € x & z j: y) between two sets a; and y is denoted by "x - y" ,

and the empty set is denoted by "0" .

If there exists an injection f : x -*• y from the set x to the set

y , then we say that the cardinality of x is less than or equal to that

of y , and write "|x| £ \y\" . It is provable in ZF that for any x, y ,

if |x| 2 \y\ and \y\ 5 jx| , then there is a bijection f : x -*• y .
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This last is naturally written "\x\ = |j/|" . It is not provable in ZF

that for any x, y , either |x| 2 \y\ or \y\ £ |x| . If neither of

these hold, then we say that the cardinalities are incomparable and write

" 1 * 1 II \y\" •

Since we do not wish to delve into the nature of cardinality in ZF and

FM set theories, we shall not make formal use of the symbol "| |" outside

those situations mentioned above. In practice, however, this will not

deter us from using the notation "|x|" when the context renders our

meaning clear.

A set x is said to be 6-well-ordered when the membership relation

€ induces a well-ordering upon x , and to be transitive when Ifcci ,

An ordinal is defined to be an €-well-ordered, transitive set all of

whose elements are sets. This last condition is superfluous in ZF but

required in FM. Thus the first few ordinals are 0 = 0 , 1 = {0} ,

2 = {0, l}, u = {0, 1, 2, ...} . We always denote the first

transfinite ordinal by "u" : ordinals in general are usually denoted by

lower case Greek letters, although occasionally we find it convenient to

denote finite ordinals (natural numbers) by "k", "m", "n", "p", "q" .

Let the set x be given. For each ordinal a we define the set

P (x) by transfinite induction on a as follows:

(1.1) P°(x) = x ;

(1.2) Pe+1(x) = Pg(x) u P(P6(x)) ;

(1.3) PY(x) = U{Pa(x); a < y} for y a nonzero limit ordinal.

We can now define the class P (x) by

(l.U) P°°(x) = U{Pa(x); a is an ordinal} .

As we are taking the union of a proper class in (1.4), the above definition

of P (x) must be regarded as a purely informal one. Nevertheless, the
OO

intuitive meaning of P (x) is clear, and is sufficient for our purposes.

In the two set theories that we are to present - and in most other set

theories - the underlying logic is that of the normal predicate calculus

enriched by the addition of the equality symbol and the appropriate
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equality axioms and axiom schemes.

ZF set theory is a first order axiomatic system with one nonlogical

constant. This constant is a binary predicate, which we shall denote by

"€" ; of course from an intuitive point of view this is the membership

relation. There are six axioms and one axiom scheme, which are set out

tielow. In the scheme A7. , A is assumed to be a well-formed formula of

the ZF language containing x, y as free variables but neither t nor z

as free variables.

Al (Extensionality). For all x, y 3 we have x = y if and

only if

Vz(z € x *=* z € y) .

A2 (Hullset). There exists x such that Vy(y £ a;) ; (x = 0) .

A3 (Union). For every x , there exists y such that

y = {z; 3t(t € x & z € t)} ; (y = Ux) .

A4 (Powerset). For every x , there exists y suoh that

y = {z; Vt(t € z =» t € x)} ; [y = P(x)) .

A5 (Infinity). There exists x suoh that

0 € x & Vy(y € x =* y u {y} € x) .

A6 (Foundation). For every x ? 0 , there exists y such that

y € x & y n x = 0 .

A7 (Replacement). Assume that for every x there is at most

one y such that A(x, y) •

Then for every z , there exists t such that

t = {u; 3v{v € z & A(u, M ) } .

--The Axiom of Choice may be formulated as follows.

AC. For every x ^ 0 such that 0 {: x , there exists a function

/ : x -• Ux with the property that f{y) € y for every y € x .

As an immediate consequence of Al and A2 we have the ZF-theorem

Vx(x * 0 =» 3y(y € x)) . It is this result that lies at the heart of the

difference between ZF and FM set theories. In FM we wish to allow the
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existence of "sets" that axe distinct from the empty set - and from one

another - and yet have no elements. FM set theory can be described in a

variety of ways; we shall follow fairly closely the presentation given by

Jech in Chapter h of [3].

The language of FM is obtained from that of ZF by adjoining one extra

nonlogical constant; this constant, which we shall denote by "U" , is a

unary predicate. The variables in ZF are supposed to range over sets; in

FM, a variable x represents a "set" only if V{x) does not hold;

otherwise, x represents an "urelement". Intuitively, we think of

urelemente as being sets having the property mentioned.above.

FM set theory is now obtained from ZF by altering the ZF axioms in

such a way that any contradiction that could be produced from the altered

axioms in conjunction with the additional axiom 3xl/{x) could have been

produced from the original ZF system; in somewhat more technical parlance,

we wish FM to be relatively consistent with ZF. Since we want ZF and FM to

be allied theories, we do as little tampering with the ZF axioms as

possible. This results in the following modifications being made to axioms

Al, A2, and A6.

Al*. For all sets x, y , we have x = y if and only if

V z U <E x *=* z € y) .

A2*. There exists a set x suoh that Vj/(j/ £ x) .

A6*. For every set x / f> , there exists y suoh that

ytxbynx=0.

It is clear that if (intuitively) we take U to be the empty set,

then ZF and FM are logically equivalent systems.

Let M be a set or class, and let E be a binary relation on M .

The structure M = {M, E) is said to be a ZF-model if all the ZF axioms

hold in M when € is interpreted by E . In a similar manner we can say

what it means for a triple M° = (M°, E°, U°) to be an FM-model. We adopt

the slovenly but highly convenient procedure of writing "€" for "E" (or

"E°" ), and of distinguishing different membership relations by subscripts

in cases of ambiguity. A similar remark applies to the FM symbol "U" .
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Our aim, as avowed by the title of this paper, is to present a method

for constructing groups in ZF-models that fail AC. We intend to obtain

these ZF-models by first constructing special kinds of FM-models, called

"permutation models", and then applying a result known as the Jech-Sochor

Embedding Theorem, which enables one to transfer certain properties of a

permutation model to a ZF-model. In particular, we shall be able to infer

from the existence of a group with specified properties in a permutation

model the existence of a group with similar properties in a ZF-model.

This of course still leaves us with the problem of constructing the

required permutation models. How permutation models are constructed as

submodels of FM-models that satisfy AC. Hence, logically, our first task

should be to construct an FMC-model that contains a specified group.

However, we defer this particular duty until the next section, and

assume for the time being that we have an FMC-model M containing an

infinite set U of urelemente. We wish to describe the method for

obtaining permutation models as submodels of M , and throughout this

description we assume that we are working entirely within M - to revert

to set-theoretical jargon again, we are relativizing everything to M (see

for example, [/], p. 98). This means, for instance, that for any set x

(in M) we are taking the powerset P(x) to be {y € M; y c a;} , which

when expanded is the set {y £ M; Vz{z d M °* {z (. y °* z € x)) } . Other

set-theoretical operations receive similar treatment.

Let G be a group of permutations of U . We can extend each g € G

to a permutation (which we again denote by "g" ) of the class P (U) in

the following manner:-

(1.5) g(9>) = 0 ;

(1.6) g(x) = ig(y); y € x} , for x € P°(U) - (U u {0}) .

This is a valid definition by transfinite induction on the rank rk(x) of

x , where rk{x) = min{a; x € Pa{U)} .

We note two invariance properties:

(1.7) g(x) € g(y) *=* x e y , for a l l x, y € P°{U) and g Z G ;

(1.8) g(x) = x for every x e P°°(0) and g € G .

Both these properties are easily proved by induction on rank; with regard
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to (1.8), it is clear that P°°(0) c_P°{U) . In particular, (1.8) tells us

that g(a) = a for every ordinal a and every g € G . Other invariance

properties are given on p. h6 of [3],

Thus we may regard G as a group of permutations of the class

P°{U) . Let T be a filter of subgroups of 6 . We call V "normal" if

(1.9) gfg~ € V for every F f r and every g (. G ;

(1.10) {g € G; g(u) = u} £ T for every u (. U .

For each x € P (U) , we define a subgroup G of G by

G = {g € G; g{x) = x} , and with respect to a group G and a normal

filter F we say that x is symmetric if G € V .

Finally, given G and T , we define the subclass V = V(G, T) of

P°(J/) by

(1.11) V = {x € P°°({/); G € r & x c V} .

*c ^

Once again this is a valid definition by induction on rk(x) .

The fundamental theorem on permutation models is the following.

I.I. Let G, T and V = V{G, T) be as above, and put V = (V, €) .

(i) V is a transitive class and P (0) c v .

(ii) V € V .

(Hi) V is an FU-model with U as the set of ucelemente.

The FM-model V in I.I is called a "permutation model", and its

description was given in complete generality. For our purposes, however -

and indeed for most practical purposes - this degree of generality is

unnecessary, and we can narrow our range somewhat by placing some

restrictions on the normal filter T .

Let I be an ideal on the powerset P(U) of V . We say that I is

normal if the following conditions are fulfilled:-

(1.12) g"X (= {g(x)i x € X}) € I for every X € I and g € G ;

(1.13) {«} € I for every u € U .

For each x € P (£/) , we define the subgroup S (= S-, ) of G by
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s
x = id € Gi Vy e x[g(y) = y)} • Now let r be the filter of subgroups of

G generated by the set [S ; X (. 1} . It is not difficult to see that if

I is a normal ideal, then T is a normal filter. In this manner we

obtain an FM-model V = I/(G, I) from a group 6 of permutations of U

and a normal ideal I on P(U) .

The following result, whose proof essentially consists of just looking

at the appropriate definitions, is of considerable importance to us.

1.2. Let 1/ = l/(G, I) be the FM^model described above, and take

x € P°( V) . Then x € V if and only if x c V & 3X (. I (S^ c G J .

Proof. The result will follow once we show that

r = {H 5 G; 3X € 1(5^ c H) } . Now T is the smallest filter of subgroups

of G such that S^. € T for every X € I . Now if T° is any filter of

subgroups of G containing each such S~ and H is any subgroup of G

such that Sv c H for some X 6 I , then clearly H e To . It follows at
A —

once that F 3 {H £ G; 3Z € I (S« c ff) } ., and so all that we have to do is

to show that the right hand side is indeed a filter.

Put A = {H £ G; 3X € I (5^ c H) } . Clearly if we have H < H° 5 G

and H £ A , then we must also have H° € A . Thus take HQ, H € A , and

let H be their intersection. There exist Jf., X € I such that

S y c_H. , i = 0, 1 ; put X = X u X . Since I is an ideal, we have
%

X € I , and we claim that Sv <= H .
A —

For take g € £„ . Then <?(a:) = x for all x € X , and so certainly

g € £„ , i = 0, 1 . Thus g £ H. , i = 0, 1 , and so g (. H = H n H .

Hence 5 c ff , whence H € A .

This shows that A is a filter.

Before we proceed any further, we must clarify our notations of

finiteness and infinite. A set X is said to -be finite if there is some

natural number n for which we have an injection / : X •*• n ; X is

otherwise said to be infinite. It is easily proved in ZF that X is
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infinite if and only if for each natural number n there is an injection

f : n •* X .

We define X to be Dedekind-finite if there is no proper subset Y

of X for which we have an injection / : X •*• Y ; otherwise X is called

"Dedekind-infinite". In ZF we can show that every finite set is Dedekind-

finite: in ZFC the converse is also provable. A very useful result

(provable in ZF) is the following: a set X is Dedekind-finite if and

only if there is no injection / : ui •*• X .

An infinite Dedekind-finite set is called "medial". Medial sets can

be divided into two categories:

(i) medial sets X for which P(X) is Dedekind-finite (and

thus medial), and

(ii) medial sets X for which P(X) is Dedekind-infinite.

It is readily provable in ZF that for any set X , we have X finite if

and only if P[P(X)) is Dedekind-finite.

Of those medial sets belonging to the first of the two categories

above, the quasi-minimal sets are for our purposes the most important. As

stated previously, a set X is said to be quasi-minimal if for every

subset Y of X exactly one of Y and X - Y is infinite. A proof of

the fact that if X is quasi-minimal then P{X) is medial may be found in

C2] as a special case of a slight stronger result.

Quasi-minimal sets are called "amorphous" by Jech in [3].

A structure is said to be medial (quasi-minimal) if its carrier is

medial (quasi-minimal).

The above results still hold when ZF and ZFC are replaced by FM and

FMC respectively.

We conclude this section by constructing a permutation model that

contains a quasi-minimal set. Our reasons for presenting this result,

which is fairly well-known in set theory, are two-fold. Firstly, the

construction that we shall set forth is perhaps the clearest possible

demonstration of the method of permutation models; it illustrates the

skeleton of the process, unadorned with any complicating algebraic

structure. Hence it will assist in delineating the respective roles played
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by set theory and algebra in later sections. Our second reason is more

prosaic, and is simply that later on in the paper we shall return to this

model in order to demonstrate a rather interesting result about symmetric

groups on quasi-minimal sets.

The construction of any model of set theory always presumes a

"universal" set theory; in other words, we can only construct a model of

set theory if we assume that everything is taking place within a larger

model (not necessarily of the same type). Thus to save tedious •

repetitions, we make a blanket assumption for the remainder of this paper

that we are working within a ZFC universe; in succeeding sections we shall

be making assumptions concerning "subuniverses", and these will be made

explicit at the relevant stages.

Since it is well-known that a ZFC-model can always be constructed from

a ZF-model, our blanket assumption reduces to the one that ZF set theory,

is consistent.

Let T be some theory, R be some model of T , and A be a well-

formed formula in the language of T . We use "T \- A" and "R (= A"

respectively to mean that A is provable in T and that A holds in R .

1.3. There is an FM-model containing a quasi-minimal set.

Proof. Let M be an FMC-model containing an infinite set U of

urelemente. (The existence of such a model will be proved in the next

section.) Within M , let G be the symmetric group on U , and let I

be the ideal on P(U) consisting of all finite subsets of U . Clearly I

is normal. Thus by I.I we obtain an FM-model V = l/(G, I) with U as its

set of urelemente.

We claim that 1/ (= "U is quasi-minimal". Firstly, we show that

1/ =̂ "U is infinite". Suppose that this is not the case. Then there must

exist / € V such that for some natural number n , we have

V f= "f : V •* n is an injection", (it follows from I.I that m € V for

every natural number m .) Now V c: M , and thus f (. M . Moreover, from

the construction of V it follows that M f= "/ : V -*• n is an injection".

(We recall that from a set-theoretical point of view, / is a subset of

U x n .) Thus we have M f= "£/ is finite", which contradicts our initial

assumption. Therefore we must have V (= "U is infinite".
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Now suppose that there i s U° € V such that V (= U° c JJ and

V (= "U° and V - U° are both in f in i te" . By the same argument as above we

obtain U° € M , M (= U° c U and M f= "U° and U - U° are both inf ini te" .

By 1.2 there i s E € M such that M f= "ff.c y & E i s f in i t e & Sg c ff^".

Then we can choose (in M ) elements u € J/° and M € V-V° such that

M0, W-L M » whence M (= B ^ ^ € SE & g[uQ) = u± & g[u±) = uQ) . Let 3 0

be one such g . Then g° € G o , and hence by (1.7) we have M (= IU (.if .

But we chose u. such that M f= u. € £/ - tf° .

This contradiction shows that there i s no such 11° (. V . Thus we have

V \= "U is quasi-minimal" .

2 .

It is now necessary to justify our assertions in the preceding section

concerning the existence of FMC-models. Since, however, we wish to

construct models containing specific groups, we have to say first of all

what we mean by the statement "A model M contains a group G ".

Let G be a group. Then there exists a subset X of G x G x G

defined by X = { [gQ, g±, g2) € G x G x G; g(p1 = g2) . We shall call X

the "structure" of 6 . If now M is a model of set theory, we say that

M contains the group G if G £ M and X £ M .

I I.I. Let G be an infinite group. Then there is an isomorphic copy

U of G and an FMC-model M containing U and such that V is the set

of urelemente in M .

REMARK. The isomorphism between G and U exists of course in the

universe, and not necessarily in the model M .

Proof. Let a. be the smallest ordinal a. for which there exists an

injection G •*• a (such ordinals exist by AC). We recall that

aQ = {3; 3 < aQ} , and put S = ( i £ aQ; |x| = | otQ |} . Let b € B be

specified; b is going to play the role of the empty set in our FMC-model.

Clearly |a.| £ |B-{£>}| , and so there exists an injection G •*• B - {b} .

We let t be such an injection, and put U = t"G (= {t(g); g € G}) . If
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we now define X c V x u x u by * = { [t[gQ) , t{g^ , t[g^); g^x = g2) ,

it is obvious that X is a group structure for U and that the resulting

group U is isomorphic- to 6 .

For each ordinal a we define the set M by the following scheme:

(2.1) MQ = U u {b} ;

(2.2) W e + 1 = Mg u (P(Me)

(2.3) M = U{Af..; 6 < y} for each nonzero limit ordinal y .

Put M = U{M ; a is an ordinal} , and denote the restriction €| (AM/) of

the membership relation € to the class M again by "€" . We claim that

M = (M, €) is the desired model.

Obviously U € M ; we wish to show that x n Af = 0 for each

x € Af . Suppose that this is not the case; then we must have some

x £ M such that t € M for some £ € x . But x c a . Thus & £ M

for some 3 < a ; we may assume that 3 is minimal in this respect.

Since 3 € M , we have P E M for some a ; let 6 be the smallest such

a . Now if 6 > 0 , then an easy induction argument on (2.1)-(2.3) shows

that 3 n Af' ? 0 for some y < 6 ; since this implies that ij> € M for

some i(j < 3 , we have shown that 3 € M . However, a_ was the smallest

ordinal a for which there was an injection G -*• a , and thus we must have

|B| < \an\ • Since this implies 3 £ M , we have the desired

contradiction.

We have shown in particular that b has (with respect to M ) the

property required of the empty set, and we decree that henceforth b is

the empty set of M ; we denote it by "0^" .

Now for each x € M-M we have y € x for some y € M ; this again

is proved very easily by induction. But this fact, combined with the

preceding results, tells us that U can be taken as the set of urelemente

in M .

Consider Extensionality, and take x, y € M-U . If x = y , then of
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course ve have V2 € M{z € x <=* 2 € y) . Thus assume that

V2 (. M{Z € X <=> z € y) . From th is we conclude (by an argument similar to

the one above) that x = 0,. <=> w = 0,. , and so we may assume that
M M

x, y € M-Mo • L e t 6 b e tlle smallest ordinal a for which x £ M :

then 6 = y + 1 for some Y , and x c M c M . Similarly we can show

Y

that y c M . But as we are assuming Vs £ M(z € x ^^ s € 1/) , this gives

x = y . Hence M (= Al .

The verification of the other ZF axioms requires arguments no more

complex than the one above, and so we shall consider only Replacement. Let

A be a formula such that for each x £ M there is at most one y € M for

which A(x, y) , and take a € M .

If a € Mn , then clearly 0,. satisfies Replacement in M . Thus we
U M

may assume that a {i M , whence it follows (as above) that a c M .

Define a formula A° as follows:-

A°(x, y) ij/ = 0 v ( x € a & A(x, y)) .

Then A0 satisfies Replacement in the universe, and so there is a set o

given by o = {v; 3u € a(A°(u, v))} . Clearly ocjif , and as a is a set

in the universe, we must have a c M for some a .

Now if a = 0 , then once again 0,. satisfies A7« in M . On the
M ii

other hand, if a # 0 , then a (. M and is itself the required set.

We now show that M j= AC , and we do this by showing that every x € M

has a well-ordering in M . Obviously we may assume x infinite in M ,

whence x {: M . How AC holds in the universe, and so there exists

w c x x x such that W well-orders x . But x x x c u , and so u c M .

Since W is a set, we have w € M .

Finally we must show that M contains U . Since U € M , it

suffices to show that X = t"G € M . Now since we have just shown that M

i s an FMC-model, i t follows from U £ M-MQ that i / x f f x f f f M-M . Thus

X CM . But X i s a set and X # 0 ; hence X e A/ .

This proves our theorem.
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Just as in the proof of 1.3, we can show that U is infinite in M ;

and so our assumption of the existence of an FM-model with an infinite set

of urelemente that was made in the proof of 1.3 has been justified.

For the benefit of those readers - if any - whose knowledge of group

theory is not much superior to the author's, we recall that a group is

called a "p-group" (where p is some prime) if the order of each nontrivial

element is pn for some n . In the special case in which n is always 1 and

the group is moreover abelian, the group is called 'elementary abelian".

II.2. Let p be a prime. There exists an FMr-model containing a

quasi-minimal, elementary abelian p-group.

Proof. By II. 1 there exists an FMC-model M containing an infinite,

elementary abelian p-group. Let this group be U , with U as the set

of urelemente in M . Let G be the automorphism group aut(U) of U ,

and let I be the ideal on P(v) consisting of all finite subsets of V ;

we define both U and I within M .

We see easily that I is normal, and so we obtain an FM-model

1/ = 1/(6, I) containing U as the set of urelemente in 1/ . Let X be

the structure of U in M ; since each g (. G is an automorphism of U ,

it follows from (1.7) that g(X) = X . Thus £„, c Gv , and so by 1.2 we

have X € V . Thus 1/ contains U .

Since the group ti has the same structure X in V as in M , we

see that V j= "U is an elementary abelian p-group"; the proof that

V (= "U is infinite" is exactly as in the proof of 1.3.

Suppose that there exists U° i V such that we have

1/ f= "U° c U & U° is infinite & V - U° is infinite".

Then, as in 1.3, we have U° € M and

M (= "U° c V & U° is infinite & U - U° is infinite".

We now work entirely within M .

By 1.2 there exists a finite subset E of U with Sp c G^ . Since

U is locally finite, the subgroup [E] of U generated by E is

finite. By AC we can express U as the direct sum - we adopt the usual

convention of writing abelian groups additively - of an infinite family
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(C.] . of cyclic groups of order p . Let J° be the f in i t e subset of
3 3 ***

J such that [E] i s the direct sum of the family [Cj)i$jo • L e t t h e

carr ier of [E] be E° . [See note added in proof.]

We abuse the language s l ight ly and regard each C. as a subset of
3

U . How since E° is finite whilst U° and U - U° are both infinite,

there exist j , j € J-J° with C. c U° - E° and C. <=_ (U-U°) - E° .
U ± 3Q 3±

Let e. be the identity of C. , i = 0, 1 , and choose

o.iC. - {e.) . Then there exists g € G such that 9{a0) = e-i a114

g(u) = u for every w € E° .

It follows that g i SE , and so g(U°) = U° . However, a was

chosen so that o € tf° , and so by (1.7) we must have

°1 = g{°<) € ^(yO) = U° ' contradicting the fact that a± € y-J/° .

We must therefore conclude that no such U° exists in V , whence we

have 1/ |= "U is quasi-minimal".

We have shown thus far that it is relatively consistent with FM to

assume the existence of a quasi-minimal group. Ill order to obtain the same

consistency result relative to ZF, we apply the Jech-Sochor Embedding

Theorem, which says - roughly speaking - that if we are given a bounded

initial segment of a permutation model, then there is a ZF-model containing

a set that is €-isomorphic to this segment. The Embedding Theorem, its

proof, and its variants, ire set forth in Chapter 6 of [3].

Before stating the Embedding Theorem, we require some preliminary

notation.

Within the universe, let W be a model of set theory, and let S be

a set in N . Then by "P(S) " we mean the set ( f c S ; T ( I ) . It can

be shown - though we do not show it here - that P(S) = P(S) n N . Of

course Pa(S) is defined similarly.

With this notation we may state the appropriate form of the Embedding

Theorem as follows.

https://doi.org/10.1017/S0004972700025041 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700025041


214 J . L . H i c k m a n

11.3. Let M be an FUC-model with V as its set of urelemente, and

let a be an ordinal in M . Then for every permutation model 1/

obtained from M in 1>he usual manner, there is a ZF-model W and a set

U in W such that

(i) N is a transitive class;

(ii) P{

(Hi) Pa{U)V is i-isomorphic to Pa(I7)W .

The ^-isomorphism mentioned in (iii) is of course defined in the

universe. From this Embedding Theorem we can deduce our desired result.

11.4. For any prime p , it is relatively consistent with ZF to

assume the existence of a quasi-minimal, elementary, abelian p-group.

Proof. We have seen that i t is possible to construct an FMC-model M

from which we can obtain a permutation model V containing a quasi-

minimal, elementary, abelian p-group ti , such that U is the set of

urelemente in V . Let X be the structure of U in I/ .

Apply the Embedding Theorem with a = a> , and let / : Pu)(i/)l/ -»• Pa)(i7)N

be the €-isomorphism. I t is clear that X (. I^(U) and that f(x)

defines a group structure for U in W , with the resulting group U

being an elementary, abelian p-group.

Now finiteness is an absolute property; that i s , the property of

being finite is preserved between models. Thus for any U° € N such that

N (= i7° c U , we have W )= "J7° is finite" if and only if

1/ (= "/~1(tf°) i s f inite".

It follows at once that N \= "U is quasi-minimal", and so our theorem

is proved.

3.

The result II.h allows us to demonstrate that certain elementary

theorems of group theory, provable in ZFC, are not provable in ZF alone.

Firstly, however, we give a simple but useful result on quasi-minimal

groups; the structure of quasi-minimal groups will be investigated more
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fully in the next section.

111.1. Let G be a quasi-minimal group. Then:-

(i) G is locally finite;

(ii) every proper subgroup of G is finite;

(iii) G has no independent set of generators.

Proof, (i) Let S = {gQ, g , , g } be a finite subset of G ,

and suppose that the subgroup [S] of G generated by S is infinite.

Then [S] of course is quasi-minimal; let the carrier of [S] be 5° .

Consider the set T of all finite sequences whose terms belong to

5 u S'1 ; formally, T = U{ [s u S" 1)"; n < w} . Since S and hence

S u S~ is finite, T can be well-ordered; let < be a specified well-

ordering of T .

Let t = [x , ..., x_) and t = [y , ..., y ) be two elements of

T . We put t ~ t if x x = y ... y in G . Obviously the

binary relation ~ thus defined on T induces a partition

0 = {T.; j € J) of T , and we can well-order 0 by setting T. < T. if
0 1* 3

min T. < min 2". . But the function / : 0 •+ S° defined by f[T.) = min T.
* 0 3 3

is clearly bijective, and so we can well-order 5° , which is absurd.

Thus 5° must be finite.

(ii) Suppose that H is an infinite proper subgroup of G , and take

g € G-B . Then gH = {gh; h € H} c G - H , and since H and gH are both

infinite, this is a contradiction.

(iii) Let S be a set of generators for G ; by (i), we must have

S infinite. Take s € S ; by (ii) we have [S-{s}] = G ; thus S is

not independent.

If a group G has a subgroup H , then what do we mean when we say

that the order of G "divides" the order of H ? Expressed in terms of

cardinals, we mean that |c| = |#|K for some cardinal < . And this, upon

elimination of the concept of cardinal, means that there is a set X and a

bijection H x X •*• G .

111.2. Let G be a quasi-minimal group, and let H be a nontrivial,
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proper subgroup of G .

Then the order of H does not divide the order of G .

Proof. Assume that there is some set X and some bijection

/ : B x X •*• G . Since H is proper, we must have H finite by I I I . l , and

so X must be infini te . Furthermore, as H is nontrivial there must be

hQ, hx € H with hQ + h1 . But then f" {{hQ} x x) and f [{h^ x x) are

disjoint infinite subsets of G , contradicting the fact that G is quasi-

minimal•

111.3. If ZF is consistent, then it is not provable within ZF that
tne order of any group is divisible by the orders of all its subgroups.

111.4. Let 6 be a quasi-minimal, elementary abelian p-group, for

some prime p . Then G is not iihe direct sum of cyclic groups.

P r o o f . S u p p o s e t h a t G i s t h e d i r e c t s u m o f t h e f a m i l y [C .) .fT o f
3 3 ^

cyclic groups. Clearly each C. has order p , whence i t follows that J
3

i s i n f i n i t e .

Now by assumption 7 c o n s i s t s of a l l funct ions / : < / - > - L){C; 3 € j)
3

such tha t

(3.1) fU) € C. ; for each j U ;

(3.2) {j € J; fU) tO.} i s f i n i t e , 0. being the iden t i ty of C. .
3 3 3

Take a specific 3° € J , and any cQ, a, E C.o with e # e. .

Define G., O, c G by G. = {/ i G; f{j°) = c.\ , i = 0, 1 . Then

G-, G.. are disjoint, infinite subsets of G , a contradiction.

111.5. If ZF is consistent, then it is not provable within ZF that

every elementary abelian group is the direct sum of cyclic groups.

111.6. Assume that ZF is consistent. Then

(i) it is not provable within ZF that a group satisfies the

ascending chain aondition if and only if every subgroup of

it is finitely generated;

(ii) it is not provable within ZF that a group is finite if and
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only if it satisfies both the ascending and descending

chain conditions.

Proof. (i) Let G be a quasi-minimal group. Then G is infinite

and by I I I . l not finitely generated. On the other hand, P(G) is medial,

and so G satisfies both chain conditions.

This proves both (i) and (ii).

It is a well-known ZFC theorem that a group satisfies the ascending

chain condition if and only if every subgroup of i t is finitely generated.

It is only conjectured within ZFC, however, that a group is finite if and

only if i t satisfies both chain conditions.

We conclude this section with a result on coset representatives and

factor groups of quasi-minimal groups.

111.7. Let A be a disjointed set of finite sets such that

(1) \X\ > 1 for each X (. A ;

(2) S = U4 is quasi-minimal.

Then A is quasi-minimal and \S\ \\ \A\ .

Proof. Since S is infinite and each X € A is finite, we must have

A infinite. However, if AQ and A, are infinite disjoint subsets of

A , then as A is disjointed 0AQ and UA, are infinite disjoint subsets

of 5 , a contradiction. Thus A is quasi-minimal.

We must show that there is no injection A •*• S , nor any injection

S -*• A . Suppose firstly that f : A -*• S is an injection, and define

g : A •+ A by taking for each X € A the value g{X) to be the unique

1 € A such that f(x) € I .

Since A is quasi-minimal, there is no injection OJ •+• A , and so for

each X € A there is a smallest natural number n = n(X) > 0 such that

gn{x) = gm(x) for some m < n ; we call the set

m+1,„* n-1,{gm(x), gm+1(x) gn~\x))

the "cycle" of X and denote it by "C " . Our first task is to show that
A

for each X € A the set {Y € A; C v = C^} is finite. Let X € A be
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given.

For each p < u> , define the set B c_ A by

(3.3) Bp = [Y € A; /+1(Y) € C^ /

Then the sets B are pairwise disjoint, and so as P(/l) is medial we

must have B = 0 for all m > q , for some number q .

Take Y € B ; then by definition we have g(Y) (. CY , that is,

f(Y) € UC . But C v is finite; each Z i. Cv is finite; and / is an

injection. It follows that B is finite.

Now assume that B is finite, and take Y € B . Then

<7(y) € B , that is, f(Y) € UB , and we can conclude exactly as above

that B is finite. Thus B is finite for every p .

But clearly {Y € A; C = C } = C u U{B ; p < u} . Since B = 0
X Ji A jp Til

for every m > q , we see that {l (.A; C = C } is finite.
J. A

For each cycle C , put Z)-, = \X € 4; C^ = C\ ; we have just seen

that each Dn is finite. But A is infinite and

A = U{z?_; C is a cycle} ; therefore the set {C; C is a cycle} must be

infinite.

Let C , C be two distinct cycles, and suppose that there exists

X € C n C . It is easy to see that we must have

C Q = {g
m(X); m < a)} = C1 ,

which is a contradiction. Thus C , C are d is jo int ; as A i s a

disjointed set i t follows tha t UC-, U<7 are dis joint .

For each cycle C , put 2"c = if{X); # € C} . Now for any X i C , we

have /(AT) £ gU) € C ; thus f . c U C and of course T * 0 . Moreover,

we have by assumption |<7(X)| > 1 for each X € C , and so i f we put
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T° = UC - Tc , then we have T° # 0 .

Finally, put T = Ujr^,; C is a cycle} , and

To _ u{T°; C is a cycle} : it follows from the above results that T and

T° are disjoint, infinite subsets of 5 .

Since this contradicts the fact that S is quasi-minimal, we must

conclude that no such injection f : A -*• S can exist.

Suppose now that we have an injection h : S -*• A . We define a non-

increasing sequence (A ) of subsets of A by A = A and

A = A n h" [UA ) . It is an easy proof by induction to show that each

A is quasi-minimal.

We have seen that A is quasi-minimal, whence P(A) is medial, and

thus there is no injection u) * P(A) . It follows that for some p we

must have A = A , that is, h"(UA ) ̂  A .

Letting / be the function A ->• UA induced by the restriction

h~ \A , we see that we have obtained a disjointed set B of finite sets

such that

(i) |*| > 1 for every X i B ;

(ii) US is quasi-minimal; and

(iii) there is an injection B •* UB .

We can now repeat the argument contained in the first part of this

proof to obtain a contradiction. We therefore conclude that no such

injection h : 5 •+• A can exist.

This result enables us to deduce that the orders of various factor

groups of quasi-minimal groups are incomparable, and perhaps it might not

be inappropriate at this stage to remember that we must use some care in

handling factor groups in this setting, since without AC we are no longer

assured of the existence of a complete set of coset representatives.

Indeed, we shall show below that a complete set of coset representatives

never exists for a nontrivial proper subgroup of a quasi-minimal, group.
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Thus if G is a group with a normal subgroup H , then we can still

set up the factor group G/H as consisting of cosets Hg , g € G ; and

we can still prove the "ordinary" things about G/H ; but we are not

permitted to use any infinite set of coset representatives of H , unless

such a set can be defined explicitly or shown to exist by some other means

acceptable in ZF set theory.

111.8. Let G be a quasi-minimal group, and let H be a nontrivial,
proper subgroup of G . Then there is no subset K of G such that

{Hg; g € K} is a partition of G .

Proof. Suppose that such a set K exists. Now H is a proper

subgroup of G , and so H is finite by III.l. On the other hand, H is

nontrivial, and thus |fl| > 1 . Thus by III.7 we see that K is quasi-

minimal and that there is no injection K •*• G . But as K c G this is

absurd.

111.9. Let G be a quasi-minimal group with nontrivial, proper,

normal subgroups HQ, H± such that HQ < H . Then G, G/HQ, G/H± have

pairwise incomparable cardinals.

Proof. We have G = U[G/HQ) = U(c/ff ) ; since the hypotheses of

III.7 are satisfied, we conclude that \G\ || \G/HQ\ and |G| || \G/H±\ .

Take K € G/H , whence K c G , and define K* c G/H by

K* = {j € G/HQ; J c i ) . Then of course K* is finite, and since H < H

it follows by elementary group theory that \K*\ > 1 . Furthermore, if we

have KQ, K± € G/H^ with KQ * K± , then K* n Z* = 0 . Finally, it is

easily seen that G/H = U[K*; K (. G/H } , and so by III.7 we have

\G/HQ\ || \G/H±\ .

4.

In §2 we saw how to construct quasi-minimal groups from certain given

groups. But in order to ensure the success of our method, we had to

require the given groups to be infinite and elementary abelian; and owing

to an inherent property of this method, the quasi-minimal groups that

emerged were also elementary abelian.
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In this section we show that all quasi=minimal groups are elementary

abelian. Our first step towards this goal is an immediate consequence of

III .7, and was in fact used in the proof of III .9. Since in this section,

however, i t plays a role of greater importance, we state i t explicitly.

IV.I. If G is a quasi-minimal group and H is a proper normal

subgroup of G 3 then the factor group G/H is quasi-minimal.

Proof. If H i s the t r i v i a l subgroup, then of course 6 and G/H

are isomorphic, and so G/H i s quasi-minimal. Thus we may assume H to

be nontr iv ia l , whence the resul t follows from I I I . l and I I I . 7 -

IV.2. No quasi-minimal group is simple.

Proof. Suppose that G i s a simple, quasi-minimal group. Let e be

the identi ty of G , and take g € G~{e) . Let C be the conjugacy class

[hgh~X; h (. G] of g in G , and le t [C ] be the subgroup of G

generated by C . Then [f ~\ i s a nontr ivial normal subgroup of G , and

as G i s simple i t follows that [f ] = G . But G i s locally f i n i t e , by
y

III.l, whence we see that C is infinite.
y

We claim that in fact C = G - {e} . For suppose not, and take
y

gr € G-C with g1 ? e . Then as g' {: C we must have C n C , = 0 .

However, the same argument that showed C to be infinite also proves that
y

C i is infinite. As this contradicts the quasi-minimality of G , we must
y

have C = G - {e} .
y

How of course all elements of any conjugacy class have the same order,

and since there is no injection co -*• G , the order o(g) of g must be

finite. We have therefore shown that all nontrivial elements of G must

have the same finite order, and it follows very easily that this order is a

prime p .

Let H be any proper subgroup of G ; we claim that NQ(H) > H ,

where NQ(H) is the normalizer {g € G; gttg~ = H] of H in G . For

since H is proper, III.l tells us that H is finite; take g € G-H and

put H° = [H u {g}] . We have shown that G is a p-group; thus H° is
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a p-group containing H as a proper subgroup. Therefore H i s not a

Sylow p-subgroup of H° , and so ( [ 6 ] , Theorem 6, p . 137) NUO(H) > H .
n

But clearly Ng(H) 2: iy,,o(H) ; hence our claim is proved.

Take any specific g 6 G-{e] , and define a sequence (G ) of

subgroups of G by G = [g] , G = #g(H ) . From what has just been

shown, (G ) is a strictly increasing infinite sequence of subgroups of

G , whence (G ) is a strictly increasing infinite sequence of subsets of

G .

However, G is quasi-minimal, and so P{G) is medial.

This contradiction shows that G cannot be simple.

IV.3. Let G be a quasi-minimal group with aentve I . Then G/l

is simple.

Proof. Let H be any proper normal subgroup of G , and let

C = CQ{H) be the centralizer {g € G; Vh € H[ghg~X = h)} of G in H .

We will show that C = G , and to this end we define a map

/ : G/C ->• aut(H) , where aut(H) is the automorphism group of the group

H - this clearly makes sense, since C is normal in G .

Take K € G/C ; then K = gC for some g £ G , and we put

f(K) = a e aut(H) , where a (h) = ghg'1 for each h € E . To show that
9 9

f is well-defined and that its definition does not depend upon AC, we take

any g' € G s-uch that K •= g'C , and consider a. , . Since g'C = K = gC ,
y

there is a £ C such that g' -go ; and of course e is unique. Now

take any h d H ; by definition of C we have dhc = h , and it follows

that

-1 = ajh) .

We have thus shown that / is well-defined, and we claim that in fact

/ is injective. For take K, K' i G/C with K / K' ; then K = gC ,

K' = g'C for some g, g' f C with g~^g' £ C . But then there is h € H

such that g g'h + hg g' , that is, g'hg'~ ± ghg , and so ,
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a f a. , .
9 9

Now H is a proper subgroup of G and so by III.l is finite. Thus

aut(ff) is finite, and therefore, since we have just shown

/ : G/C •*• aut(H) to be injective, we see that G/C is finite. But by

IV.1 we have that G/C is quasi-minimal if C is a proper subgroup of

G . Hence we conclude that C = G .

We have shown thus far that for every proper normal subgroup H of

G , we have C~(H) = G , whence it follows at once that H 5 Z . Therefore

there is no normal subgroup H of G such that Z < H < G .

Consider the factor group G/Z . Without using AC we can define the

usual homomorphi sm / : G -*• G/Z , and show that if K is a normal subgroup

of G/Z , then {g € G; f(g) € K) is (the carrier of) a normal subgroup H

of G such that Z £ H .

Since we have just shown that for such a subgroup H we must have

either H = Z or H = G , it follows that G/Z is simple.

From IV.1, IV.2, and IV.3 we conclude very easily that every quasi-

minimal group is abelian, and it remains to show that all nontrivial

elements of such a group have order p , where p is some fixed prime. We

shall show that all but a finite number of elements of a quasi-minimal

group have the same (finite) order. It has been proved (in [5]) that if K

is any infinite group in which all but a finite number of elements have the

same order m , where m is some natural number, then all nontrivial

elements of K have order m , and consequently m is prime. The proof

uses a result of Mi Iler's, given in [4], concerning the number of elements

of prime order in a finite abelian group.

In this particular case we shall make use of the facts already proved

about quasi-minimal groups to simplify the argument given in [5].

IV.4. Every quasi-minimal group is an elementary abelian p-group for

some prime p .

Proof. Let G be a quasi-minimal group, and let the centre of G be

Z . If Z t G , then by IV. 1 and IV. 3., we see that G/Z is a simple

quasi—minimal group. Since this contradicts IV.2, we must have Z = G ;

that is, G is abelian.
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For each g € G , let o{g) be the order of g ; we know that o(g)

is finite. For each n i l , define the subset X of G by

X = {g € G; o(g') = n) . These sets X are pairwise disjoint, and since

P(G) is medial, there must be a natural number n° such that X = 0 for

every n i «° . Since G is infinite, we must have X infinite for at
n

least one n < n° ; since G is quasi -minimal, we must have X infinite

for at most one n < n° . We conclude that there is a natural number

n i 2 and an infinite subset Y of G such that o(g) = n for every

g € Y . We now show that n = p for some prime p and some m i l .

Put T = G - Y ; since J is infinite and G is quasi-minimal, we

must have T , and hence [T] , finite. Let T° be the carrier of [T] .

Suppose that p, q both divide n , where p and q are distinct primes,

and take g € Y-T° . Then o(pg), o{qg) < n , and so we must have

pg, qg (. T c f . But gcd(p, q) = 1 , and so there exist integers a, b

such that ap + bq = 1 . But then we have ^ = (ap+bq)g € T° , which is a

contradiction.

This shows that n - p for some prime p and some m i l ; we now

show that in fact m = 1 . Put fe = |T| , and let S be any subset of

X such that |s| = p ; let S° be the carrier of [S] . We know that

[S] is a finite abelian p-group, and hence can be expressed as the direct

sum of a family (C.) . of cyclic groups. Since each C. has order at
3 0^ 3

most p , we see that \j\ > k . It follows from this that 5° contains

at least k elements of order p . However, k = |j"| and 0 € T , where

0 is the identity element of G . Hence o{g) = p for some g € Y , and

so we must have m = 1 .

We have shown that o(g) = p for every g € Y . But G is abelian;

hence Y u {o} is the carrier of a subgroup V of G . Since Y is

infinite, III.l tells us that V = G .

This proves our result.

We now use the fact that every quasi-minimal group is elementary

abelian to prove a purely group-theoretic result. We make no claim

regarding the usefulness or even interest of this result from the point of
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view of group theory: in our eyes its interest resides in the manner of

its proof, which indicates that the method described in the first two

sections may have a certain potential for obtaining results in classical

group theory.

Let us for the moment return to the proofs of 1.3 and II.2. If we

compare these, we see that the only group-theoretic property of the

infinite group U that was used in the proof of II.2, was the following:-

(l+.l) for every subset U' of U with U, U - U' both infinite,

and for every finite subset E of V , there exists

a € aut(U) such that a(w) = u for every u € E and

a(u') £ U' for some u' € U' .

IV.5. Let LI be an infinite group. Then within ZFC it is -provable

that U has property (U.I) if and only if U is elementary abelian.

Proof. If U is elementary abelian, then it is a routine problem in

group theory to show that U has property (U.l). Conversely, suppose that

U has property (h. 1). Then there is an FM-model \l containing S such

that V \= "U is quasi-minimal". Since III.l and IV.1-1* can all be proved

in FM set theory, we have 1/ j= "U is elementary abelian". But U has the

same structure in V as in the universe. Thus U must be elementary

abelian.

5.

In this concluding section we wish to look at permutations on quasi-

minimal sets and some of the properties of the corresponding groups. In

particular we shall obtain some results on the factor groups T' /T, ,
A J, A

where I is a quasi-minimal set, 7V, is the symmetric group on X , and

T, is the flnitary symmetric group on X , that is, the subgroup of T
0,A A

consisting of all permutations / : X •*• X such that the set

{x € X; f{x) + x) is finite. We shall show that by choosing X suitably,

the factor group Tv/T, v can be trivial, cyclic of order 2 , or
A 0,A

infinite. Whether these three possibilities are exhaustive is, as far as

we know, still an open question.

If X is a quasi-minimal set, then clearly T is infinite but not
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quasi-minimal; for one th ing, T i s not abelian. We remain, however, in
A

the realm of medial groups; this is an immediate consequence of the

following purely set-theoretic result.

V.I. Let X, Y be medial sets. Then x is medial if and only if

P(Y) is medial.

Proof. In one direct ion th is i s obvious, for we have

\P(Y)\ = \2Y\ 5 Ir^l , and so if X* i s medial, then P(Y) i s also

medial.

Therefore we suppose that P(Y) i s medial whilst A i s not. Since

X i s cer ta inly i n f i n i t e , there must be an inf in i te sequence [f ) of

pairwise d i s t inc t functions Y -*• X . For each y € Y , we define the

subset if of X by if = {/ iy); n < to} . We define an enumeration

£(#) = Q/n» Hi > ••••>V-ii \) °f R without repeti t ions in the following
u i t-\y) y

manner:

(5.1) ( i ) yQ = fQ(y) i

(ii) if y , ..., y. are defined and for some n we have

/ (y) £ {j/_, ...» y,} , then we let n° be the smallest

such n and put yp.-i ~ f o(y) '• otherwise J/̂.-, is

undefined.

Since B c X and X is medial, it is clear that E(z/) is finite.

For each n , put Q = {y (. Y; l(y) = n} . These sets Q are pairwise

disjoint, and so, since P(Y) is medial, there must exist m such that

Q = 0 for every n > m ; let p be the smallest such m . Thus we have

l{y) < p for every y d Y .

y

We now define a function g : u -»• p in the following manner (we

recall that according to our conventions we have p = {0, 1, ..., p-l} ) : -

(5-2) take n < a) . Then the function g[n) : Y •*• p is defined as

follows.
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Given y € Y , l e t y, be the unique term of T.(y) such that

P > and w e P u t gM{y) = k .

We see that g is validly defined, since for each y € Y , £(j/)

enumerates R without repetitions. Moreover, g is injective. To see
*J

this, take m, n < u , and suppose that g(m) = g{n) . Then

gM(y) = gM(y) for every y (. Y , from which it follows that

fm(y) = fn(y) for evsry y Z Y . Hence fm = fn , and so m = n .

Let fe he any natural number such that p 5 2 . Since there is a

bijection P(y) •+ 2Y , it is clear that there is an injection pY -*• P(Y)k .

Hence there is an injection oi •*• P(Y) , and so P(Y) is not medial.

But medial sets are closed under finite cartesian products. This is

well-known, and so we just sketch the proof. Let A, B be medial sets,

and assume that A x B is not medial. Then there must be an infinite

sequence ((a , b )) of pairwise distinct elements of A x B . But then

A° = {a ; n < 0)} and B° = {b ; n < U)} are countable subsets of A, B

respectively, and hence must both be finite. This gives a contradiction.

Since P(Y) is medial, it follows that P(Y) is also medial. This

contradiction proves our result.

V.2. Let X be a quasi-minimal set. Then TY and T, are medial
A ft ,A

groups.

Proof. Since X is infinite, it is clear that T, v and hence T
fl ,A A

i s in f in i t e . On the other hand, since X i s quasi-minimal, P(X) i s

medial, and so JT i s medial by V.I. But of course 2". c T c JT .
j , A A —

V.3. Let f : X -*• X be a permutation on the quasi-minimal set X .

Then f can be expressed as the product of a family of finite pairwise

disjoint oyoles of bounded length.

Proof. Take any x € X . Since X i s quasi-minimal, the inf in i te

sequence {j (x)) can have only a f in i te number of pairwise d is t inc t
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terms, ans so we must have f {x) = X for some m .

This shows that if we now define a binary relation ~ on X by-

setting x ~ y if and only if y = f {x) for some n , then ~ is

equivalence relation and thus induces a partitioning [x .) .,7 of X .
3 3^

an

Furthermore, it is clear that for each j , the permutation / induces a

cycle X . -*• X . of finite length.
3 3

For each n , define J c J by J = {j € J; \X. | = n} . These sets

J are pairwise disjoint, and since it is clear that J is quasi-minimal,

there must exist m such that J = 0 for every n 2 m . Thus the cycles

occurring in the decomposition of / have bounded length.

We call an element of T, „ , where X is some infinite set, a

"finitary permutation". We come now to the results concerning Tv/T,
X o,A

that were mentioned at the start of this section.

V.4. It is relatively consistent with ZF to assume the existence of a

quasi-minimal set X such that the factor group T /T, is trivial.
A o,x

Proof. We take the FMC model M , the permutation model 1/ , and the

set U that were defined in the proof of 1.3. We know that

1/ (= "U is quasi-minimal"; we claim that V \= T = T,

U o ,U

For suppose that there is / € V with V )= f € Ty-T', . Then of

course we have M (= "/ is not finitary"; furthermore, by 1.2 there exists
a finite subset E of U such that S_ c <J Choose

a — j
[uQ, uA (. f c U x U with u # M, and u , w £ £ . Now taXe any
M_ € £/-# with M_ * M. , and let g1 be the transposition ("-."o) - Then

a € 5 but o(/) # / . This contradiction shows that no such / can
hi

exist, and hence that 1/ (= T. = T,
u 8,y

Now apply the Embedding Theorem.

V.5. It is relatively consistent with ZF to assume the existence of a

quasi-minimal set X such that T /T, y is cyclic of order 2 .
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Proof. Again let M be the FMC model defined in the proof of 1.3,

and let U be its set of urelemente. Since AC holds in M and U is

infinite in M , we can within M partition U into a family (̂ jOfreg o f

sets £/, such that \v, | = 2 for each b £ B . The index set B is of

course infinite.

As in 1.3 we let I be the ideal on P(U) consisting of all finite

subsets of U , but this time we let G. be the group of all permutations

g : U •*• U satisfying the following condition:-

(5-3) for each b € B , there exists b° € B such that V^o = g"V^ .

Clearly G is a group and I is normal with respect to G . Hence we

obtain a permutation model V = ^0(G0> l) containing U as its set of

urelemente.

In the usual manner we show that VQ \= "V is quasi-minimal". Suppose

that for some U° (. V we have

1/ H "U° S.u a^4 U°, U - U° are both infinite".

Then there exists in M a finite subset E of U such that S^ <=_ G y O .

Since U° and U - 11° are both infinite in M as well as in V , there

exist b, b' € B such that £/fc c U° - E and U^, <=_ \U-U°) - E . Choose

g € G such that g"U, = U-, , , <3"U.X = £/, , and g{u) = u for every

u ^ Ub U Ub' ' Then g ^'SE but gi'U°^ * U° "

This contradiction shows that V. (= "U is quasi-minimal".

Temporarily we work within M . For each b € B , let IU and lu

be the two elements of U, . Define the permutation f : U -*• U by putting

= ^ o for each fe € B •

We claim that / € V. For clearly / c ^Q , and so it suffices to

show that G » f T , where T is the appropriate normal filter obtained

from I . But from (5.3) we see that g(f) = / for every g € <?_ . Hence
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GQ,f = G 0 ' a n d t h u S f € V0 •

Clearly VQ H VM € £/(/(«) * u) , and so l/Q (= T y * 2^ y .

Now suppose that for some permutation h : U •*• U we have h € 7. and

V (= "h is not finitary". By 1.2 there is in M a finite subset E of

U such that £„ c G ; and of course we have M )= "7i is not finitary".

Choose any [u , u ) € ft with w * w and u , u \ E . We claim

that u , u € y, for some b £ B . For suppose that u € I/, and

u € yio for some b, b° € B with b t b° . Choose i>' ( S - {i, fc°}

with Ub, <=_U - E ; then there exists # € 5 g such that ff"yfco =
 yj, i »

^"£/, , = £/,o , and ff"!/ = U otherwise. Then g(h) ± h , and we have a

contradiction.

Thus h"Uj, = V, for every b (. B with U-,<=_U - E . Since we have

V f- "U is (luasi-minimal" and V \= "h is not finitary", it follows

easily that VQ (= " ( M € U; h(u) t f{u)} is finite".

From this we deduce at once that V. f= \Tj./T, | = 2 , and can now

just apply the Embedding Theorem.

It is interesting to note that the condition |U^\ = 2 is crucial;

if we try the same trick with It/jJ = ̂  » for some k # 2 , then we end up

with V. f= Tt. = T, We omit the proof of this.

0 U o,t/

V.6. It is relatively consistent with ZF to assume the existence of a

quasi-minimal set X such that the factor group T /T. is infinite.

Proof. Let G be a quasi-minimal group; we claim that there i s an

injection f : G -*• TJT, . To see t h i s , take any g € G with g t 0 ,
Cr f),Cr

where 0 is the identity of G , and define the map a : G -*• G by

a (h) = g + h . Clearly a is a nonfinitary permutation, and for any
& G

g' € G - {g, 0} we have a {h) # a ,(h) for every h € G . Thus if we
y y
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define / : G •* TQ/T^ Q toy f{0) = T^ Q and f{g) = aT^ for

g € G - {0} , we see that / is injective.

Hence TQ/TI Q is infinite.

We remark once again that we do not know whether V.U-V.6 exhaust the

possibilities. In particular, we do not know whether it is possible to

have a quasi-minimal set X such that T^/T, „ is medial.

Within ZFC we can show that every (nonempty) set is capable of

carrying a group structure. Since the proof of this relies heavily upon

AC, it is not surprising that this result does not hold in ZF.

V.7. It is relatively consistent with ZF to assume the existence of a

quasi-minimal set that is not the carrier of any group.

Proof. By V.h we may assume the existence of a quasi-minimal set X

such that Ty = T, . But by V.6 if X was the carrier of a group, then
A j ,X

we would have 1' t T. .
X J,A

Note added in proof, 5 March 1976. It has been pointed out to the

author by Dr B.H. Neumann that as it stands the proof of II.2 is not

correct, for we cannot guarantee the existence of j^, 3^ € J-J°

satisfying the conditions C. c_V° - E° and C. c (U-U°) - E° (see

p. 213 for notation).

In order to obtain the required automorphism, therefore, we must

proceed as follows. Since E° is finite whilst U° and U - IP are both

infinite, there exist un € U° and u € U-U° such that K , the subgroup

generated by M Q and u , has trivial intersection with [E] .

But we can express U as a direct sum K + L , where L contains

[E] . It is a well-known fact of group theory that there exists g € G

such that g[uQ) = u and g(u) = u for every element u of L . We now

proceed as in the text.
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