J. Austral. Math. Soc. (Series A) 33 (1982), 143-151

GENERALIZED PRODUCTS OF WEAKLY m - n COMPACT SPACES, I

U. N. B. DISSANAYAKE

(Received 19 November 1980; revised 15 April 1981)

Communicated by J. H. Rubinstein

Abstract

A topological space X is said to be weakly-Lindelöf if and only if every open cover of X has a countable sub-family with dense union. We know that products of two Lindelöf spaces need not be weakly-Lindelöf. In this paper we obtain non-trivial sufficient conditions on small sub-products to ensure the productivity of the property weakly-Lindelöf with respect to arbitrary products.

1980 Mathematics subject classification (Amer. Math. Soc.): 54 D 30.

Keywords and phrases: weakly-Lindelöf spaces, K = 2, $3\frac{1}{2}$, weakly m - n compact spaces, weakly $\infty - n$ compact spaces, k-box topology, γ -weak topological sums, regular cardinals, singular cardinals, strongly γ -inaccessible cardinals, density number.

Introduction

Let *n* be an infinite cardinal. A topological space X is said to be *weakly* $\infty - n$ compact if and only if every open cover of X has a sub-family of cardinality strictly less than *n* with dense union. Weakly $\infty - \aleph_1$ compact spaces are called weakly-Lindelöf spaces.

Let $X = \prod\{X_i: i \in I\}$ and let $X_{I'} = \prod\{X_i: i \in I'\}$ where each X_i is a topological space and $I' \subset I$. The topology generated by the sets of the form $W = \prod\{W_i: i \in I\}$ where each W_i is open in X_i and |R(W)| < k where $R(W) = \{i \in I: W_i \neq X_i\}$ is called the *k*-box topology on the product X and we denote it by $(\prod X_i)_k$ where $\aleph_0 \le k \le |I|^+$ (= cardinal successor of |I|). If $k = \aleph_0$, we get the usual product-topology and if $k = |I|^+$, we get the box topology (see [2]).

[©] Copyright Australian Mathematical Society 1982

[2]

If $(\prod X_i)_k$ is weakly-Lindelöf, then every sub-product $(X_{I'})_k$ of X is weakly-Lindelöf and the question of interest is to what extent the converse is true. In this direction we prove the following:

(i) Let $X = \prod \{X_i: i \in I\}$ and let $n \ge \gamma \ge k \ge \aleph_0$. Suppose *n* is regular and strongly γ -inaccessible, then $(\prod X_i)_k$ is weakly $\infty - n$ compact if and only if $(X_{X'})_k$ is weakly $\infty - n$ compact for all $I' \in P_{\gamma}(I)$ where $P_{\gamma}(I) = \{I' \subset I: |I|' < \gamma\}$.

(ii) Let d(X) denote the *density number* of a space X (see [8]). Let $X = \prod\{X_i: i \in I\}$ and let $n \ge \gamma \ge k \ge \aleph_0$ and let n be regular and strongly γ -inaccessible. Suppose $d(X_i) < n$ for all $i \in I$, then $(\prod X_i)_k$ is weakly $\infty - n$ compact.

In particular if we take $\gamma = k = \aleph_0$ in (i) we obtain the following:

Let $X = \prod \{X_i: i \in I\}$ with usual product topology and let *n* be a regular cardinal. Then X is weakly $\infty - n$ compact if and only if every finite sub-product of X is weakly $\infty - n$ compact (see [10]).

1. Basic terminology

In this section we shall define weakly m - n compact spaces and generalized product topologies on the product $\prod \{X_i : i \in I\}$.

A. DEFINITION. An *m*-fold open cover of a topological space X is a collection of open subsets $\{U_i: i \in I\}$ of X such that $X = \bigcup \{U_i: i \in I\}$ and |I| = m.

A topological space X is said to be weakly m - n compact if and only if every *m*-fold open cover of X has a sub-family of cardinality strictly less than *n* with dense union where *m* and *n* are infinite cardinals.

A topological space X is said to be weakly $\infty - n$ compact if and only if X is weakly m - n compact for each $m \ge n$.

B. SPECIAL CASES.

(i) Weakly $\infty - \aleph_0$ compact spaces \equiv weakly-compact spaces.

(ii) Weakly $\infty - \aleph_1$ compact spaces \equiv weakly-Lindelöf spaces.

(iii) Weakly $m - \aleph_0$ compact spaces \equiv initially weakly *m*-compact spaces.

C. DEFINITION. A subset E of X is said to be weakly m - n compact relative to X if and only if every *m*-fold open cover \mathfrak{A} of E by open subsets of X has a sub-family \mathfrak{A}' of cardinality strictly less than n with $E \subseteq \bigcup \mathfrak{A}'$.

D. REMARK. (i) Let $E \subset X$. Suppose E is weakly m - n compact with respect to its subspace topology, then E is weakly m - n compact relative to X.

(ii) The converse of (i) is not necessarily true except for open subsets.

E. EXAMPLE. Let E be a discrete subspace of $\beta D - D$ with D discrete $|D| = \aleph_0$ and $|E| = \aleph_1$. Let $X = D \cup E$. Then E is weakly $\aleph_1 - \aleph_1$ compact relative to X but not weakly $\aleph_1 - \aleph_1$ compact in its own right. Here E is a closed subset of X.

F. DEFINITION. Let $X = \prod \{X_i : i \in I\}$ and let $W = \prod \{W_i : i \in I\}$ where W_i is a subset of X_i . Then $\Re(W) = \{i \in I : W_i \neq X_i\}$ is called the *range* of W.

Let W be a basis open set in the usual product topology on $\prod\{X_i: i \in I\}$. Then $|\Re(W)| < \aleph_0$. This leads to the following generalization of the product topology which we called the k-box topology on the product $\prod\{X_i: i \in I\}$.

G. DEFINITION. The topology generated by the basic sets of the form $W = \prod\{W_i: i \in I\}$ where each W_i is open in X_i and $|\Re(W)| < k$ is called the k-box topology on the product $\prod\{X_i: i \in I\}$ and we denote it by $(\prod X_i)_k$ where $\aleph_0 \le k \le |I|^+$ (= cardinal successor of |I|).

If $k = \aleph_0$, we get the usual product topology on the product $\prod\{X_i: i \in I\}$ and if $k = |I|^+$, we get the box topology on the product $\prod\{X_i: i \in I\}$.

2. Weak-topological sums

In this section we shall study some properties of generalized weak-topological sums (see [3]).

A. DEFINITION. Let $a = (a_i)$ be a fixed point in $X = \prod\{X_i: i \in I\}$. Then the γ -weak topological sum of $\{X_i: i \in I\}$ is the subspace $\{x \in X: |\{i \in I: x_i \neq a_i\}| < \gamma\}$ and we denote this by $\gamma(\prod X_i)$ where γ is an infinite cardinal.

B. NOTATION. For each non-empty set I' of I, we define $X_{I'} = \prod \{X_i: i \in I'\}$ and $\prod_{I}: X \to X_{I'}$ is called the projection map onto $X_{I'}$. In particular if $I' = \{i\}$ we get the usual projection map $\prod_{i}: X \to X_i$ where $X = \prod \{X_i: i \in I\}$.

C. REMARK. Let $W = \prod \{W_i: i \in I\}$ where each W_i is a subset of X_i . Then we have the following:

(i) $|\Re(\prod_{I'}(W))| \leq |\Re(W)|$.

- (ii) $| \Re(\prod_{I'}^{-1}(W_{I'})) | = | \Re(W_{I'}) |$.
- (iii) If $V \supset W$, then $\prod_i (V) = X_i$ for all $i \in I \Re(W)$.

D. PROPOSITION. Let $\prod_{I'} (X)_k \to (X_{I'})_k$. Then $\prod_{I'}$ is open, continuous and onto. Furthermore the subspace $X(I') = \{x \in X: x_i = a_i \text{ for } i \in I - I'\}$ of $(X)_k$ is homeomorphic to $(X_{I'})_k$ under the map $\prod_{I'}$.

PROOF. Follows from Remark C.

E. PROPOSITION. The subspace $\gamma(\prod X_i)$ is dense in $(\prod X_i)_k$ provided $k \leq \gamma$.

PROOF. Let $W = \prod \{W_i : i \in I\}$ be a basic open set in $(\prod X_i)_k$ consider the point $p = (p_i)$ where

$$p_i = a_i \text{ for } i \in I - \Re(W),$$

= $w_i \in W_i \text{ for } i \in \Re(W).$

Then $|\{i \in I: p_i \neq a_i\}| \leq |\Re(W)| < k \leq \gamma$. Hence $p \in W \cap \gamma(\prod X_i)$ and we are done.

F. EXAMPLE. If X_i is a discrete space for i = 1, 2, ... and $d_i \neq a_i$ for i = 1, 2, ..., then $d = (d_i) \notin \aleph_0(\prod X_i)$ and hence $\aleph_0(\prod X_i)$ is not dense in $(\prod X_i)_{\aleph_1}$.

G. DEFINITION. A property 'p' is said to be densely defined in a topological space X if whenever one of its dense subsets has the property 'P', then X has the property 'P'.

H. EXAMPLE. (i) Weak m - n compactness is a densely defined property.

(ii) Let E be the Sorgenfrey line. Then $E \times E$ is weakly-Lindelöf but not Lindelöf.

3. Machinery

In this section we shall establish two special cases of the main theorem.

A. PROPOSITION. Let $U = \prod\{U_i: i \in I\}$ and $V = \prod\{V_i: i \in I\}$ where U_i , V_i are subsets of X_i for $i \in I$. Then the following are equivalent: (i) $U \cap V = \emptyset$. (ii) $U_i \cap V_i = \emptyset$ for some $i \in \Re(U) \cap \Re(V)$. (iii) $\Re(U) \cap \Re(V) \neq \emptyset$ and $\prod_{I'}(U) \cap \prod_{I'}(V) = \emptyset$ where $I \supseteq I' \supseteq \Re(U) \cap \Re(V)$. **PROOF.** (i) \Rightarrow (ii). Trivial.

(ii) \Rightarrow (iii). Trivial.

(iii) \Rightarrow (i). Let $I' = \Re(U) \cap \Re(V)$, then $U_i \cap V_i = \emptyset$ for some $i \in \Re(U) \cap \Re(V)$ and hence $U \cap V = \emptyset$.

B. DEFINITION. Let β be a base for a topological space X. Then X is said to be β -weakly m - n compact if and only if for every cover $\mathfrak{A} \in \mathfrak{P}(\beta)$ of X with $|\mathfrak{A}| = m$ there exists a $\mathfrak{V} \in \mathfrak{P}(\mathfrak{A})$ such that $|\mathfrak{V}| < n$ and $X = \bigcup \mathfrak{V}$.

We note the following facts about β -weakly m - n spaces:

(i) If X is weakly m - n compact then X is β -weakly m - n compact.

(ii). X is β -weakly $\infty - n$ compact if and only if X is weakly $\infty - n$ compact.

C. PROPOSITION. Let n and γ be infinite cardinals such that $n \ge \gamma$. Let $\overline{\gamma} = \gamma$ if γ is regular and let $\overline{\gamma} = \gamma^+$ if γ is singular. Suppose n is regular and strongly γ -inaccessible, then $\overline{\gamma} \le n$.

PROOF. (i) If γ is regular, then $\overline{\gamma} = \gamma$ and hence $\overline{\gamma} \leq n$.

(ii) If γ is singular, then since *n* is regular and strongly γ -inaccessible, we have $\gamma < n$, $cf(\gamma) < \gamma$ and $\gamma^{cf(\gamma)} < n$. Hence $\overline{\gamma} = \gamma^+ \leq \gamma^{cf(\gamma)} < n$.

D. REMARK. $\bar{\gamma}$ in Proposition C is regular cardinal.

E. PROPOSITION. (i) Let k < cf(n). Then the k-fold union of weakly m - n compact subsets of a given topological space X is weakly m - n compact relative to X.

(ii) Let $f: X \to Y$ be a continuous onto map. If X is weakly m - n compact, then Y is weakly m - n compact.

PROOF. Straightforward.

F. NOTATIONS. (i) $|I|^{\gamma} = \sum \{|I|^k : k < \gamma \}$. (ii) $P_{\gamma}(I) = \{I' \subset I : |I'| < \gamma \}$.

G. LEMMA. Let $X = \prod \{X_i : i \in I\}$ and let $m \ge n \ge cf(n) \ge |I|_{-}^{\gamma} \ge \gamma \ge k \ge \aleph_0$. If $(X_{I'})_k$ is weakly m - n compact for all $I' \in P_{\gamma}(I)$, then $\gamma(\prod X_i)$ is weakly m - n compact relative to $(\prod X_i)_k$.

PROOF. We note that $\gamma(\prod X_i) = \bigcup \{X(I'): I' \in P_{\gamma}(I)\}$ and since X(I') is homeomorphic to $(X_{I'})_k$, $\gamma(\prod X_i)$ is the $|I|_{-1}^{\gamma}$ -fold union of weakly m - n compact subspaces of $(\prod X_i)_k$. Hence we have the lemma by E - (i).

The sets $W = \prod\{W_i: i \in I\}$ where each W_i is open in X_i and $|\Re(W)| < k$ form the canonical basis for $(\prod X_i)_k$. Let $A \subset \prod\{X_i: i \in I\}$, then the canonical basis for 'A' consists of all sets of the form $A \cap W$ with W as above. In this terminology we rephrase Lemma G as follows:

H. LEMMA. Let $X = \prod \{X_i : i \in I\}$ and let $m \ge n \ge cf(n) > |I|_{-}^{\gamma} \ge \gamma \ge k \ge \aleph_0$. If $(X_{I'})_k$ is weakly m - n compact with respect to its canonical basis for all $I' \in P_{\gamma}(I)$, then $\gamma(\prod X_i)$ is weakly m - n compact with respect to its canonical basis.

I. THEOREM. Let $X = \prod \{X_i: i \in I\}$ and let $m \ge n > |I| \ge \gamma \ge k \ge \aleph_0$. If n is regular and strongly γ -inaccessible and if $(X_{I'})_k$ is weakly m - n compact for all $I' \in P_{\gamma}(I)$, then $\gamma(\prod X_i)$ is weakly m - n compact relative to $(\prod X_i)_k$.

PROOF. Consider $|I|_{-}^{\gamma} = \sum \{|I|^k: k < \gamma\} \ge |I| \ge \gamma$. Since *n* is regular and strongly γ -inaccessible we have n = cf(n) and $|I|_{-}^{\gamma} < n$. Hence $m \ge n = cf(n) > |I|^{\gamma} \ge \gamma \ge k \ge \aleph_0$ and therefore we can apply Lemma G to obtain the theorem.

In the above theorem there is a restriction on the cardinality of the index set I and we wish to relax this condition in the next section.

4. Weakly m - n compact spaces

In this section we shall study the productivity of weak m - n compactness in a general setting. Our argument here closely parallels one from [3].

A. THEOREM. Let $m \ge n \ge \gamma \ge k \ge \aleph_0$ and let *n* be regular and strongly γ -inaccessible. Let $X = \prod\{X_i: i \in I\}$ and let $\mathfrak{A} = \{U = \prod\{U_i: i \in I\}: each U_i \text{ is open in } X_i \text{ and } | \mathfrak{R}(U) | \le k\}$ where $|\mathfrak{A}| = m$. If $(X_{I'})_k$ is weakly m - n compact for all $I' \in P_{\gamma}(I)$ and $\underline{\gamma}(\prod X_i) \subset \bigcup \mathfrak{A}$, then there exists a $\mathfrak{A}' \subset \mathfrak{A}$ such that $|\mathfrak{A}'| \le n$ and $\gamma(\prod X_i) \subseteq \bigcup \mathfrak{A}'$.

PROOF. Let $\bar{\gamma} = \gamma$, $\gamma = \text{regular and } \bar{\gamma} = \gamma^+$, $\gamma = \text{singular. Then } \bar{\gamma} \text{ is regular and } \bar{\gamma} \leq n$. By Theorem 3-I, $\gamma(X_{I'})$ is weakly m - n compact relative to $(X_{I'})_k$ for all $I' \in P_{\gamma}(I)$. We note that $\prod_{I'}(\gamma(\prod X_i)) = \gamma(X_{I'})$ and hence $\{\prod_{I'}(U): U \in \hat{\mathcal{N}}\}$ is an *m*-fold open cover of $\gamma(X_{I'})$ where $I' \subset I$. Let $I' \in P_{\gamma}(I)$. Then there exists a $\mathfrak{A}_{I'} \subset \mathfrak{A}$ such that $|\mathfrak{A}_{I'}| < n$ and

(4.1)
$$\gamma(X_{I'}) \subseteq \operatorname{cl}_{(X_{I'})_{\ell}} (\cup \{ \prod_{I'} (U) \colon U \in \mathfrak{A}_{I'} \}).$$

148

Let $I_1 \subset I$ with $|I_1| < n$ and let $\mathfrak{F}_1 = \{\mathfrak{A}_{I'}: I' \in P_{\overline{\gamma}}(I_1) \text{ where } \mathfrak{A}_{I'} \text{ has the property (4.1)}\}$. Let $I_2 = I_1 \cup \mathfrak{R}(\mathfrak{F}_1)$ where $\mathfrak{R}(\mathfrak{F}_1) = \bigcup \{\mathfrak{R}(U): U \in \mathfrak{A}_{I'} \text{ and } \mathfrak{A}_{I'} \in \mathfrak{F}_1\}$. Trivially $\mathfrak{R}(\mathfrak{F}_1) \subset I$ and therefore $I_2 \subset I$.

We note the following:

- (i) $|\Re(U)| \le k \le n$.
- (ii) $\mathfrak{A}_{I'} \subset \mathfrak{A}, |\mathfrak{A}_{I'}| < n \text{ for all } I' \in P_{\vec{y}}(I_1).$

(iii) $|P_{\overline{\gamma}}(I_1)| \leq |I_1|^{\gamma}$, $\gamma = \text{regular and } |P_{\overline{\gamma}}(I_1)| \leq |I_1|^{\gamma^+}$, $\gamma = \text{singular}$.

Since *n* is strongly γ -inaccessible $|P_{\overline{\gamma}}(I_1)| < n$ for all $\gamma \leq n$. Hence we have the following:

(4.2)
$$(i) | \mathfrak{R}(\mathfrak{F}_1)| < n$$
$$(ii) | I_2| < n.$$

Inductively we define $\mathfrak{F}_{\alpha} = \bigcup \{\mathfrak{A}_{I'}: I' \in P_{\overline{\gamma}}(I_{\alpha})\}$ and $I_{\alpha+1} = I_{\alpha} \cup \mathfrak{R}(\mathfrak{F}_{\alpha})$ for $\alpha < \overline{\gamma}$. Let $I^* = \bigcup \{I_{\alpha}: \alpha < \overline{\gamma}\}$ and $\mathfrak{A}' = \bigcup \{\mathfrak{F}_{\alpha}: \alpha < \overline{\gamma}\}$. Since *n* is regular and $|I_{\alpha}| < n$ for all $\alpha < \overline{\gamma}$ we have

$$(4.3) | I^* | < n \quad \text{and} \quad | \mathfrak{A}' | < n.$$

Each $\mathfrak{A}_{I'} \subset \mathfrak{A}$ and therefore each $\mathfrak{F}_{\alpha} \subset \mathfrak{A}$ and hence $\mathfrak{A}' \subset \mathfrak{A}$. We shall prove that

 $\gamma(\Pi X_i) \subseteq \overline{\cup \mathfrak{A}'}$.

Let $x \in \gamma(\prod X_i)$ and let $V = \prod\{V_i: i \in I\}$ be a basic open neighborhood of x in $(\prod X_i)_k$. Then we have $|\Re(V)| < k \le \gamma \le \overline{\gamma}$ and hence there exists a $\alpha < \overline{\gamma}$ such that

(4.4)
$$\Re(V) \cap I^* = R(V) \cap I_{\alpha}.$$

Let $H = \Re(V) \cap I_{\alpha}$, then $H \subset I_{\alpha} \subset I$ and $|H| < k < \overline{\gamma}$. By (4.1), there exists a $U \in \mathfrak{A}_{H} \subset \mathfrak{F}_{\alpha}$ such that

(4.5)
$$\Pi_{H}(U) \cap \Pi_{H}(V) \neq \emptyset.$$

Since $U \in \mathcal{F}_{\alpha}$, $\mathfrak{R}(U) \subset I_{\alpha+1}$ and by (4),

(4.6)

$$\Re(U) \cap \Re(V) = (\Re(U) \cap I_{\alpha+1}) \cap \Re(V)$$

$$= \Re(U) \cap (I_{\alpha+1} \cap I^*) \cap \Re(V)$$

$$= \Re(U) \cap (\Re(V) \cap I^*) \cap I_{\alpha+1}$$

$$= \Re(U) \cap \Re(V) \cap I_{\alpha}$$

$$\subseteq H.$$

Hence by 3-A, $U \cap V \neq \emptyset$ and therefore $V \cap (\bigcup \mathfrak{A}') \neq \emptyset$. This is true for every neighborhood V of x and therefore we have $\gamma(\prod X_i) \subseteq \bigcup \mathfrak{A}'$.

For $k \leq \gamma$, $\gamma(\prod X_i)$ is a dense subspace of $(\prod X_i)_k$ and we are ready to give the main theorem.

B. THEOREM. Let $m \ge n \ge \gamma \ge k \ge \aleph_0$ and let n be regular and strongly γ -inaccessible. Let $X = \prod \{X_i : i \in I\}$ and suppose $(X_{I'})_k$ is weakly m - n compact for all $I' \in P_{\gamma}(I)$. If β is the canonical base for the product space $(\prod X_i)_k$, then $(\prod X_i)_k$ is β -weakly m - n compact.

5. Weakly $\infty - n$ compact spaces

We recall that the concept of β -weak $\infty - n$ compactness is equivalent to the weak $\infty - n$ compactness and hence we obtain product theorems for weakly $\infty - n$ compact spaces as special cases of Theorem 4B.

A. THEOREM. Let $X = \prod \{X_i: i \in I\}$ and let $n \ge \gamma \ge k \ge \aleph_0$. Suppose *n* is regular and strongly γ -inaccessible, then $(\prod X_i)_k$ is weakly $\infty - n$ compact if and only if $(X_{I'})_k$ is weakly $\infty - n$ compact for all $I' \in P_{\gamma}(I)$.

B. COROLLARY. Let $X = \prod \{X_i : i \in I\}$ with the usual product topology. Let n be a regular cardinal then X is weakly $\infty - n$ compact if and only if every finite sub-product of X is weakly compact (see [10]).

PROOF. ' \Rightarrow '. This follows from the fact that $\prod_{I'} X \to X_{I'}$ is continuous for every $I' \subset I$.

' ← '. We note that regular cardinals are infinite and every infinite cardinal is strongly \aleph_0 -inaccessible. Hence taking $\gamma = k = \aleph_0$ in Theorem A, we obtain the corollary.

C. DEFINITION. Let k be any cardinal. A space X is said to be k-separable if and only if X contains a dense subset of cardinality k.

The density of a space X, which we denoted by $d(X) = \min\{|D|: D \subset X, \overline{D} = X\} = \min\{k: X \text{ is } k \text{-separable}\}.$

D. REMARKS. (i) Let \mathbf{R} = reals, X = discrete space, Y = indiscrete space. Then $d(\mathbf{R}) = \aleph_0, d(X) = |X|, d(Y) = 1.$

(ii) If d(X) < n, then X is weakly $\infty - n$ compact.

(iii) Let $X = \prod \{X_i : i \in I\}$ and let $A = \prod \{A_i : i \in I\}$. Then

$$\operatorname{cl}_{(\Pi X_i)_k} A = \prod \{ \operatorname{cl}_{X_i} A_i \colon i \in I \}$$

where $|I|^+ \ge k \ge \aleph_0$.

If *n* is strongly γ -inaccessible and if $d(X_i) < n$ for each $i \in I$, then each X_i has a dense subset A_i with $|A_i| < n$ and hence $A_{I'}$ is a dense subset of $(X_{I'})_k$ and

 $|A_{I'}| < n$ for all $I' \in P_{\gamma}(I)$ where $\gamma \le n$ and $A = \prod \{A_i : i \in I\}$. Therefore $d(X_{I'}) < n$ and hence $(X_{I'})_k$ is weakly $\infty - n$ compact for all $I' \in P_{\gamma}(I)$. Thus we have the following theorem:

E. THEOREM. Let $X = \prod \{X_i: i \in I\}$ and let $n \ge \gamma \ge k \ge \aleph_0$. Suppose *n* is regular and strongly γ -inaccessible. If $d(X_i) < n$ for all $i \in I$, then $(\prod X_i)_k$ is weakly $\infty - n$ compact.

Author wishes to thank the referee for his helpful suggestions towards the improvement of the paper.

References

- [1] P. Alexandroff and H. Hopf, Topologie I (Springer-Verlag, Berlin, 1935).
- [2] W. W. Comfort and S. Negrepontis, *The theory of ultrafilters* (Springer-Verlag, Berlin and New York, 1974).
- W. W. Comfort, 'Compactness-like properties for generalized weak-topological sums', Pacific J. Math. 60 (1975), 31-37.
- [4] H. B. Enderton, *Elements of set theory* (Academic Press, New York and London, 1977).
- [5] I. S. Gal, 'On the theory of (m, n) compact topological spaces', Pacific J. Math. 58 (1958), 721-734.
- [6] L. Gillman and M. Jerison, Rings of continuous functions (D. Van Nostrand, Princeton, New Jersey, 1960).
- [7] D. W. Hajek and A. R. Todd, 'Lightly compact spaces and infra H-closed spaces', Proc. Amer. Math. Soc. 48 (1975), 479-482.
- [8] A. Hajnal and I. Juhasz, 'On the product of weakly-Lindelöf spaces', Proc. Amer. Math. Soc. 48 (1975), 454-456.
- [9] I. Jech, Set theory (Academic Press, London, 1978).
- [10] M. Ulmer, 'Products of weakly-N-compact spaces', Trans. Amer. Math. Soc. 170 (1972), 279-284.

Department of Mathematics University of Alberta Edmonton, Alberta Canada T6G 2G1

[9]