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Abstract. This paper is inspired by a counter example of J. Kurzweil published
in [5], whose intention was to demonstrate that a certain property of linear operators
on finite-dimensional spaces need not be preserved in infinite dimension. We obtain
a stronger result, which says that no infinite-dimensional Banach space can have the
given property. Along the way, we will also derive an interesting proposition related to
Dvoretzky’s theorem.
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1. Introduction. Let X be a real Banach space and L(X) the space of all bounded
linear operators on X . Let I denote the identity operator. We say that X has the
property (JK), if the following statement is true:

For every ε > 0, there exists δ > 0 such that if n ∈ � and Z1, . . . , Zn ∈ L(X) are
operators satisfying

‖(I + Zjp )(I + Zjp−1 ) · · · (I + Zj1 ) − I‖ ≤ δ

for every p ∈ {1, . . . , n} and every p-tuple 1 ≤ j1 < j2 < · · · < jp ≤ n, then

n∑
j=1

‖Zj‖ ≤ ε.

In short, the property (JK) guarantees that the sum
∑n

j=1 ‖Zj‖ is small whenever all
the ‘products’ (I + Zjp )(I + Zjp−1 ) · · · (I + Zj1 ) are close to the identity operator.

The property (JK) plays an important role in product-integration theory (see [3,
5, 6]). Its first appearance seems to be in a paper by J. Jarnı́k and J. Kurzweil (see
[3]), who have investigated the case X = �n and L(X) = �n×n. They showed that this
space possesses the property (JK); since all norms on a finite-dimensional space are
equivalent, their result implies that every finite-dimensional space has the property
(JK).

On the other hand, the paper of Š. Schwabik (see [5]) contains an example of
J. Kurzweil, which shows that the space c0 does not have the property (JK). Our main
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goal is to investigate other infinite-dimensional Banach spaces and see whether they
have the property (JK).

2. Main results. The argument that lies at the core of J. Kurzweil’s example can
be stated as follows:

LEMMA 1. Let X be a Banach space and {cn}∞n=1 a sequence of positive numbers such
that limn→∞(cn/n) = 0. Assume that for every n ∈ �, there exists operators E1, . . . , En ∈
L(X) satisfying the following conditions:

(i) ‖Ei‖ ≥ 1 for every i ∈ {1, . . . , n},
(ii)

∥∥∑p
k=1 Ejk

∥∥ ≤ cn for every p ∈ {1, . . . , n} and every p-tuple 1 ≤ j1 < j2 < · · · <

jp ≤ n,
(iii) EiEj = 0 whenever i > j.

Then, the space X does not have the property (JK).

Proof. Assume for contradiction that X has the property (JK). Choose an arbitrary
ε > 0 and let δ > 0 be the corresponding constant from the definition of the property
(JK). Put Zi = δ/cn · Ei for i ∈ {1, . . . , n}. It follows from the assumptions that for
every p ∈ {1, . . . , n} and every p-tuple 1 ≤ j1 < j2 < · · · < jp ≤ n, we have

‖(I + Zjp )(I + Zjp−1 ) · · · (I + Zj1 ) − I‖ =
∥∥∥∥∥

p∑
k=1

Zjk

∥∥∥∥∥ = δ/cn ·
∥∥∥∥∥

p∑
k=1

Ejk

∥∥∥∥∥ ≤ δ.

Thus, by taking n such that cn/n < δ/ε (remember that limn→∞(cn/n) = 0), we have
found n operators Z1, . . . , Zn such that

‖(I + Zjp )(I + Zjp−1 ) · · · (I + Zj1 ) − I‖ ≤ δ

for every p-tuple 1 ≤ j1 < j2 < · · · < jp ≤ n, but

n∑
k=1

‖Zj‖ ≥ nδ/cn > ε,

a contradiction. Therefore, X does not have the property (JK). �
In the following example, we use the previous Lemma to prove that the space c0

does not have the property (JK); this is the example of J. Kurzweil (see [5]).

EXAMPLE 2. Let X = c0, i.e. the space of all real sequences {an}∞n=1 such that
limn→∞ an = 0. The space is equipped with the norm

‖{ai}∞i=1‖ = sup
i∈�

|ai|.

Given n ∈ �, we define operators E1, . . . , En ∈ L(X) in the following way:

Ek
({ai}∞i=1

) = {bi}∞i=1,

where bi = 0 for i 
= 2k − 1 and b2k−1 = a2k, i.e. the operator Ek sets all components
of the given sequence except the 2k-th one to zero, and then shifts the result to the
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left. It is easy to see that EiEj = 0 when i 
= j, ‖Ei‖ = 1 for every i ∈ {1, . . . , n}, and
‖∑p

k=1 Ejk‖ = 1 for every p ∈ {1, . . . , n} and every p-tuple 1 ≤ j1 < j2 < · · · < jp ≤ n.
Thus, by Lemma 1, the space c0 does not have the property (JK).

A close inspection of the previous example reveals that a similar argument works
in a more general setting. As a prerequisite, we need the following projection theorem
of Kadets and Snobar. Recall that a projection of a space X onto a subspace V is a
linear mapping P : X → V such that P2 = P and the range of P is V .

THEOREM 3 (Kadets–Snobar theorem). Let X be a Banach space and V a finite-
dimensional subspace of X. Then, there exists a projection P of X onto V such that
‖P‖ ≤ √

dim V.

Proof. See the original paper [4] or the monograph [1]. �
Note the following obvious fact: Since the range of P is V , every v ∈ V can be

written as v = P(w) for some w ∈ X . It follows that P(v) = P2(w) = P(w) = v, i.e. the
restriction of P to V is the identity operator.

LEMMA 4. Let X be a Banach space and c > 0, d > 0 two constants such that for
every m ∈ �, there exist vectors x1, . . . , xm ∈ X such that

(i) {x1, . . . , xm} is a linearly independent set,
(ii) ‖xi‖ = 1 for every i ∈ {1, . . . , m},

(iii) ‖∑
i∈I

αixi‖ ≤ c‖∑m
i=1 αixi‖ for every I ⊂ {1, . . . , m} and α1, . . . , αm ∈ �,

(iv) ‖∑m−1
i=1 αi+1xi‖ ≤ d‖∑m

i=1 αixi‖ for every m-tuple α1, . . . , αm ∈ �.
Then, the space X does not have the property (JK).

Proof. Let n ∈ � be a given number. In order to prove the statement, we are going
to construct operators E1, . . . , En satisfying the assumptions of Lemma 1.

Taking m = 2n, let x1, . . . , x2n ∈ X be some vectors having the properties (i)–(iv).
Let V be the 2n-dimensional subspace of X spanned by x1, . . . , x2n. For k ∈ {1, . . . , n},
we define the operator E′

k : V → V by

E′
k

(
2n∑

i=1

αixi

)
= α2kx2k−1.

It is clear that ‖E′
k‖ ≥ ‖E′

k(x2k)‖ = ‖x2k−1‖ = 1. On the other hand, the assumption (iii)
implies

‖α2kx2k−1‖ = |α2k| = ‖α2kx2k‖ ≤ c

∥∥∥∥∥
2n∑

i=1

αixi

∥∥∥∥∥ ,

i.e. ‖E′
k‖ ≤ c for every k ∈ {1, . . . , n}. Now, consider a p ∈ {1, . . . , n} and a p-tuple

1 ≤ j1 < j2 < · · · < jp ≤ n. Take an arbitrary x ∈ V with ‖x‖ = 1, and write it as x =∑2n
i=1 αixi. Then,

∥∥∥∥∥
( p∑

k=1

E′
jk

)(
2n∑

i=1

αixi

)∥∥∥∥∥ =
∥∥∥∥∥

p∑
k=1

α2jk x2jk−1

∥∥∥∥∥ ≤ cd.
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(We have used assumptions (iii) and (iv).) Therefore,∥∥∥∥∥
p∑

k=1

E′
jk

∥∥∥∥∥ ≤ cd.

Finally, it is clear that E′
iE

′
j = 0, whenever i 
= j.

Now, let P be a projection of X onto V such that ‖P‖ ≤ √
2n. We define operators

E1, . . . , En : X → X by

Ek(x) = E′
k(P(x)), x ∈ X, k ∈ {1, . . . , n}.

These operators are linear and bounded, because

‖Ek‖ ≤ ‖E′
k‖ · ‖P‖ ≤ c

√
2n, k ∈ {1, . . . , n}.

Since Ek(x) = E′
k(x) for x ∈ V , we have a lower bound

‖Ek‖ ≥ 1, k ∈ {1, . . . , n}.

For i 
= j and x ∈ X , we have

EiEj(x) = E′
i(P(E′

j(P(x))) = E′
i(E

′
j(P(x))) = 0.

Finally, if x ∈ X and ‖x‖ = 1, then ‖P(x)‖ ≤ √
2n, and thus,∥∥∥∥∥

p∑
k=1

Ejk (x)

∥∥∥∥∥ =
∥∥∥∥∥
( p∑

k=1

E′
jk

)
(P(x))

∥∥∥∥∥ ≤
√

2n ·
∥∥∥∥∥

p∑
k=1

E′
jk

∥∥∥∥∥ ≤ cd
√

2n

for every p ∈ {1, . . . , n} and every p-tuple 1 ≤ j1 < j2 < · · · < jp ≤ n, which means that∥∥∥∥∥
p∑

k=1

Ejk

∥∥∥∥∥ ≤ cd
√

2n.

�
The following examples show that certain familiar infinite-dimensional Banach

spaces do not have the property (JK). In each case, we suggest a choice of vectors
x1, . . . , xm (where m ∈ � is arbitrary) and leave it up to the reader to check that these
vectors satisfy the assumptions of Lemma 4.

EXAMPLE 5. For X = �p, p ∈ [1,∞), there is a natural choice: Let

xk = {δkn}∞n=1, k ∈ {1, . . . , m},

where δkn denotes the Kronecker symbol. This choice also works when X = �∞, X = c
or X = c0.

EXAMPLE 6. Let X = Lp([a, b]), where p ∈ [1,∞). Then, we can choose

xk = m
b − a

· fk, k ∈ {1, . . . , m},
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where fk : [a, b] → � is the characteristic function of interval (a + (k − 1)(b −
a)/m, a + k(b − a)/m).

EXAMPLE 7. When X = C([a, b]), we can take

xk = fk, k ∈ {1, . . . , m},

where fk : [a, b] → � is a function, which is zero outside I = (a + (k − 1)(b − a)/m, a +
k(b − a)/m), it equals 1 at the midpoint of I and is linear on both halves of I . This
choice also works when X = L∞([a, b]).

It should be clear that whenever an infinite-dimensional Banach space X contains
an isometric copy of one of the spaces mentioned in the previous examples, then X
does not have the propery (JK). Unfortunately, not every Banach space contains an
isometric copy of �p or c0. To overcome this difficulty, we use the following Dvoretzky’s
theorem, which says that an infinite-dimensional Banach space contains an ‘almost-
isometric’ copy of �2

m for every m ∈ � (where �2
m denotes the space �m equipped with

the Euclidean norm).

THEOREM 8 (Dvoretzky’s theorem). Let X be an infinite-dimensional Banach space.
Then, for every ε > 0 and every m ∈ �, there is an m-dimensional subspace Y ⊂ X and
an isomorphism T : Y → �2

m such that ‖T‖ · ‖T−1‖ ≤ 1 + ε.

Proof. See the original paper [2] or the monograph [1]. �

The following proposition will be used to obtain our main result, but it is also
interesting in its own right. It implies that, given one of the finite-dimensional subspaces
whose existence is guaranteed by Dvoretzky’s theorem (which says that c = ‖T‖ ·
‖T−1‖ ≤ 1 + ε), we can find a basis whose properties are very similar to the properties
of the canonical basis of �2

m (where the statements (ii)–(iii) below are true with c = 1).

THEOREM 9. Let Y be an m-dimensional Banach space, T : Y → �2
m an isomorphism

and c = ‖T‖ · ‖T−1‖. Then Y has a basis {x1, . . . , xm} with the following properties:

(i) ‖xi‖ = 1 for every i ∈ {1, . . . , m},
(ii) ‖∑

i∈I αixi‖≤c‖∑m
i=1 αixi‖ for every I ⊂{1, . . . , m} and α1, . . . , αm ∈ �,

(iii) ‖∑m−1
i=1 αi+1xi‖ ≤ c2‖∑m

i=1 αixi‖ for every m-tuple α1, . . . , αm ∈ �.

Proof. Note that by replacing T by a suitable multiple, we may assume that ‖T‖ = 1
and ‖T−1‖ = c. Let e1, . . . , em be the canonical basis of �2

m and put

xi = T−1(ei)
‖T−1(ei)‖ , i ∈ {1, . . . , m}.

It is clear that ‖xi‖ = 1 for every i ∈ {1, . . . , m} and that {x1, . . . , xm} is a basis. Note
that

ei = ‖T−1(ei)‖T(xi), i ∈ {1, . . . , m}.
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Given an arbitrary I ⊂ {1, . . . , m} and α1, . . . , αm ∈ �, we have∥∥∥∥∥
∑
i∈I

αixi

∥∥∥∥∥ =
∥∥∥∥∥
∑
i∈I

αiT−1(ei)
‖T−1(ei)‖

∥∥∥∥∥ =
∥∥∥∥∥T−1

(∑
i∈I

αiei

‖T−1(ei)‖

)∥∥∥∥∥
≤ c

∥∥∥∥∥
∑
i∈I

αiei

‖T−1(ei)‖

∥∥∥∥∥ = c

√∑
i∈I

α2
i

‖T−1(ei)‖2
≤ c

√√√√ m∑
i=1

α2
i

‖T−1(ei)‖2

= c

∥∥∥∥∥
m∑

i=1

αiei

‖T−1(ei)‖

∥∥∥∥∥ = c

∥∥∥∥∥
m∑

i=1

αiT(xi)

∥∥∥∥∥ = c

∥∥∥∥∥T

(
m∑

i=1

αixi

)∥∥∥∥∥
≤ c

∥∥∥∥∥
m∑

i=1

αixi

∥∥∥∥∥ .

To verify the third condition, note that for every i ∈ {1, . . . , m} we have

1 = ‖ei‖ = ‖T(T−1(ei))‖ ≤ ‖T‖ · ‖T−1(ei)‖ = ‖T−1(ei)‖,

i.e. 1/‖T−1(ei)‖ ≤ 1. Now, for any choice of α1, . . . , αm ∈ �, we obtain

∥∥∥∥∥
m−1∑
i=1

αi+1xi

∥∥∥∥∥ =
∥∥∥∥∥

m−1∑
i=1

αi+1T−1(ei)
‖T−1(ei)‖

∥∥∥∥∥ =
∥∥∥∥∥T−1

(
m−1∑
i=1

αi+1ei

‖T−1(ei)‖

)∥∥∥∥∥
≤ c

∥∥∥∥∥
m−1∑
i=1

αi+1ei

‖T−1(ei)‖

∥∥∥∥∥ = c

√√√√m−1∑
i=1

α2
i+1

‖T−1(ei)‖2
≤ c

√√√√m−1∑
i=1

α2
i+1

≤ c

√√√√ m∑
i=1

α2
i ≤ c max

i∈{1,...,m}
‖T−1(ei)‖

√√√√ m∑
i=1

α2
i

‖T−1(ei)‖2

≤ c2

√√√√ m∑
i=1

α2
i

‖T−1(ei)‖2
= c2

∥∥∥∥∥
m∑

i=1

αiei

‖T−1(ei)‖

∥∥∥∥∥ = c2

∥∥∥∥∥
m∑

i=1

αiT(xi)

∥∥∥∥∥
= c2

∥∥∥∥∥T

(
m∑

i=1

αixi

)∥∥∥∥∥ ≤ c2

∥∥∥∥∥
m∑

i=1

αixi

∥∥∥∥∥ .

�

Choose an arbitrary ε > 0. Given an infinite-dimensional space X , we can combine
the previous theorem with Dvoretzky’s theorem to see that the assumptions of Lemma 4
are satisfied (note that ε might be arbitrarily large; we are using Dvoretzky’s theorem
only to ensure that the values c = 1 + ε and d = (1 + ε)2 in Lemma 4 do not depend
on m). Thus, we have proved the following corollary.

COROLLARY 10. Let X be an arbitrary infinite-dimensional Banach space. Then X
does not have the property (JK).

Since we know that every finite-dimensional space has the property (JK), we arrive
at the following conclusion.
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COROLLARY 11. A Banach space has the property (JK) if and only if it is finite-
dimensional.
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