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Abstract

We compare dependence in stochastically monotone Markov processes with partially
ordered Polish state spaces using the concordance and supermodular orders. We show
necessary and sufficient conditions for the concordance order to hold both in terms
of the one-step transition probabilities for discrete-time processes and in terms of the
corresponding infinitesimal generators for continuous-time processes. We give examples
showing that a stochastic monotonicity assumption is not necessary for such orderings.
We indicate relations between dependence orderings and, variously, the asymptotic
variance-reduction effect in Monte Carlo Markov chains, Cheeger constants, and positive
dependence for Markov processes.
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1. Introduction

The aim of this paper is to study dependence ordering for Markov processes with general
partially ordered state spaces. This study is a step in extending the dependence ordering
theory of finite random vectors to that of infinite random vectors. Functionals of the form∫
ψ dF , considered for those ψ in a specified cone of functions, lead in a natural way to

stochastic (pre)orderings; e.g. we say that two distributions on R
d , F andG, are supermodular

stochastically ordered if
∫
ψ dF ≤ ∫

ψ dG for all supermodular functions ψ for which the
integrals exist. If F and G are thus ordered then their one-dimensional marginal distributions
are necessarily equal and the covariances between their respective coordinates are ordered.
Therefore, this ordering is called a dependence ordering. For infinite stationary sequences,
i.e. where all one-dimensional marginal distributions are equal, it is natural to study random
vectors which are finite segments of the sequence. A special interest in the comparison of
dependence in two stationary (ergodic) sequences is motivated by examples where a stationary
sequence represents an input to a complex system (e.g. a queueing or reliability system) in which
the replacement of an input by one which has the same one-dimensional stationary distribution
but is more dependent implies a dramatic change in the basic performance measures of the
system (see, e.g. Szekli et al. (1994) for such an example in a queueing system). A special
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case – that of a stationary Markov chain with the state space being a subset of the real
line – was studied by Hu and Pan (2000). There, stochastic monotonicity of the processes
makes it possible to obtain necessary and sufficient conditions for supermodular ordering
and concordance ordering for finite-dimensional distributions of stationary Markov chains in
discrete and continuous time. Dependence orderings of some derived stationary sequences
were studied by Kulik and Szekli (2004).

Application of the above-described ideas to Markov chains technically leads to stochastically
monotone Markov chains, introduced by Daley (1968). The property of stochastic monotonicity
is very often the explanation underlying the successful application of comparison techniques
in specific problems, e.g. in random walks, epidemic processes, genetics processes, and queue-
ing processes. Keilson and Kester (1977) gave necessary and sufficient conditions for the
stochastic monotonicity of Markov chains with finite state spaces, Massey (1987) provided
them for countable partially ordered spaces, and the most general solution was given by Chen
(2004, pp. 211–216) for Markov jump processes (and classes of diffusions as well). Classical
examples of stochastically monotone processes are, among others, attractive particle systems
(see Griffeath (1979)), Jackson queueing networks (see Daduna and Szekli (1995)), birth–death
processes (see van Doorn (1981)), population processes, and diffusions (see Chen and Wang
(1993)).

In this paper we show necessary and sufficient conditions for the concordance ordering of two
stationary Markov processes under stochastic monotonicity assumptions. These conditions are
given in terms of transition kernels (for discrete time) or generators (for continuous time).
We elaborate on the problem of the necessity of stochastic monotonicity assumptions for
dependence ordering of Markov processes. We indicate connections of this study to comparison
results on asymptotic variances from the theory of Monte Carlo Markov chains, and we relate
our criteria to the definition of Cheeger constants. Finally, we discuss positive dependence for
Markov processes.

For a review of dependence orderings, we refer the reader to Müller and Stoyan (2002,
pp. 107–121), Joe (1997, pp. 55–57), and Shaked and Shanthikumar (1994, Chapter 4.G). For
applications in the modelling of multivariate portfolios and financial risks, see, e.g. Rüschendorf
(2004), and for Kolmogorov-type Hajek–Renyi inequalities for negatively associated random
variables and Rosenthal-type inequalities, see, e.g. Christofides and Vaggelatou (2004).

2. Definitions and preliminary results

Before introducing general definitions of dependence orderings, we recall some classical
results which give a proper perspective on our extensions. Consider the class H(F1, . . . , Fd)

of probability measures on R
d with fixed one-dimensional marginal distribution functions

F1, . . . , Fd (the so-called Frechet class). A natural problem studied in the literature is to
evaluate and compare values of

∫
ψ dF for F ∈ H(F1, . . . , Fd), with ψ possessing specific

properties. In particular, upper and lower bounds in this class are of interest. For example, fix
an n ∈ N, let d = 2, let F = (1/n)∑n

i=1 δ(ai ,bi ) for arbitrary ai, bi ∈ R+, i = 1, . . . , n, and
let ψ(x1, x2) = x1x2. (Here δx is the (distribution function) of the one-point distribution in
x ∈ R

d .) Denote by (a(i), i = 1, . . . , n) and (b(i), i = 1, . . . , n) increasing rearrangements
of (ai) and (bi), respectively. Then, for G = (1/n)∑n

i=1 δ(a(i),b(i)), the inequality
∫
ψ dF ≤∫

ψ dG is equivalent to the inequality

n∑
i=1

aibi ≤
n∑
i=1

a(i)b(i),
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which is exactly the Hardy et al. (1952, Chapter 10) rearrangement theorem. Of course, F and
G have the same one-dimensional distributions,

F1 = G1 = 1

n

n∑
i=1

δai and F2 = G2 = 1

n

n∑
i=1

δbi ,

butG is maximally concordant in H(F1, F2) (note that the corresponding distribution function
is G(x1, x2) = mini=1,2Gi(xi); see Müller and Stoyan (2002, p. 109)).

Intuitively, for measures on R
d which concentrate their mass on finitely many atoms,

a distribution with distribution function F is more concordant than the distribution with
distribution function G if F can be obtained from G by making a finite number of mass
transpositions which add a fixed amount of mass at min(x, y) and max(x, y) while subtracting
it at x and y, x, y ∈ R

d , so that large and small values of selected coordinates are more
often associated with large and, respectively, small values of other coordinates. Hoeffding
(1940) studied related inequalities for d = 2 with ψ(x1, x2) = f (x1 − x2) and f convex.
Lorentz (1953) showed that in R

d (for arbitrary d) rearrangement inequalities hold for a much
larger class of functions ψ , namely all supermodular functions. Taking, e.g. ψ(x1, . . . , xd) =
− log(x1 + · · · + xd), he obtained Ruderman’s inequality,

n∏
i=1

d∑
j=1

aij ≥
n∏
i=1

d∑
j=1

a∗ij ,

where aij ≥ 0 and a∗ij , i = 1, . . . , n, is the decreasing rearrangement of aij , i = 1, . . . , n.
Research done by Hoeffding and Lorentz was unified by Whitt (1976) and developed by Tchen
(1980) and Rüschendorf (1980), who studied the case of arbitrary d with ψ �-monotone. The
class of supermodular functions is rich enough to allow for comparison of maxima, minima,
spans, covariances and other dependency measures for two ordered random vectors with the
same one-dimensional marginal distributions.

For each given pair of concordantly ordered distributions on R
d , comparing integrals of

supermodular functions leads to a number of interesting inequalities. Therefore, it is natural to
introduce the corresponding definitions of dependence orderings on general partially ordered
spaces.

We shall consider probability measures on a partially ordered Polish space E endowed
with a closed partial order ‘≺’ and the Borel σ -algebra E , along with random elements
X : (�,F ,P) → (E, E ,≺). We denote by � ∗(E) the set of all real-valued, increasing,
measurable, bounded functions on E (that f is increasing means that, for all x and y, x ≺ y
implies that f (x) ≤ f (y)), by � ∗+(E) the set of such functions that are nonnegative, and by
� (E) the set of all increasing sets (i.e. sets whose indicator functions are increasing). The
decreasing analogues are denoted by D∗(E), D∗+(E), and D(E), respectively. For A ⊆ E,
we defineA↑ := {y ∈ E : y 	 x for some x ∈ A} andA↓ := {y ∈ E : y ≺ x for some x ∈ A}.
We further define �p(E) = {{x}↑ : x ∈ E} and Dp(E) = {{x}↓ : x ∈ E}, the classes of one-
point-generated increasing and, respectively, decreasing sets.

For a (E, E ,≺) which is a lattice (i.e. such that for any x, y ∈ E there exist a largest lower
bound, x ∧ y ∈ E, and a smallest upper bound, x ∨ y ∈ E, both uniquely determined), we
denote by Lsm(E) the set of all real-valued, bounded, measurable supermodular functions on
E, i.e. functions which satisfy

f (x ∧ y)+ f (x ∨ y) ≥ f (x)+ f (y) for all x, y ∈ E.
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For product spaces we shall use the notation E
(n) = E1×· · ·×En, where Ei , i = 1, . . . , n,

are partially ordered Polish spaces. If Ei ≡ E for all i then we write E
n instead of E

(n).
Analogously, we write E

(∞) and E
∞ for infinite products. Product spaces will be considered

with the product topology. Elements of E
(n) will be denoted by x(n) = (x1, . . . , xn) and

elements of E
(∞) by x(∞). For random elements we use capital letters in this notation. We

denote the coordinatewise ordering on E
(n) by ‘≺n’.

Definition 2.1. We say that two random elements X and Y of (E, E ,≺) are stochastically
ordered (and write X ≺st Y or Y 	st X) if E[f (X)] ≤ E[f (Y )] for all f ∈ � ∗(E) for which
the expectations exist.

We say that two random elements X and Y of (E, E ,≺) are supermodular stochastically
ordered (and write X ≺sm Y or Y 	sm X) if E[f (X)] ≤ E[f (Y )] for all f ∈ Lsm(E) for
which the expectations exist.

A simple sufficient criterion for ‘≺sm’ ordering for an E which is a discrete (countable)
lattice is as follows.

Lemma 2.1. Let P1 be a probability measure on a discrete-lattice ordered space (E, E ,≺) and
assume that, for incomparable points x �= y ∈ E, we have P1(x) ≥ α and P1(y) ≥ α for some
α > 0. Define a new probability measure, P2, on (E, E ,≺) by

P2(x) = P1(x)− α, P2(x ∨ y) = P1(x ∨ y)+ α,
P2(y) = P1(y)− α, P2(x ∧ y) = P1(x ∧ y)+ α,

P2(z) = P1(z), z �= x, y, x ∨ y, x ∧ y.
(2.1)

Then P1 ≺sm P2.
If some probability measure P2 on (E, E ,≺) can be obtained from P1 by a finite sequence

of transformations of the form (2.1), then P1 ≺sm P2.

Proof. For any f ∈ Lsm(E), the supermodularity of f yields
∫

E

P2( dz)f (z)−
∫

E

P1( dz)f (z) = α(f (x ∧ y)+ f (x ∨ y)− f (x)− f (y)) ≥ 0.

The second statement follows because ‘≺sm’ is transitive.

Remark 2.1. If, in Lemma 2.1, the state space E is the set of all subsets of a finite set (which
is a lattice under set inclusion) then the transformation described in (2.1) is what Li and Xu
(2000) called a pairwise g+ transform and our Lemma 2.1 specializes to Proposition 5.5 of Li
and Xu (2000). For similar transforms see Mira (2001).

We shall use the following dependence orderings.

Definition 2.2. For arbitrary random elements X and Y of (E, E ,≺), we say that X and Y are
concordant weakly stochastically ordered, and write X ≺cc−wk Y , if

P(X ∈ A) ≤ P(Y ∈ A)
for all A ∈ �p(E) and all A ∈ Dp(E).

Note that X ≺cc−wk Y is equivalent to the requirement that X ≤Jwk Y and X ≥Jwk∗ Y both
hold, in the notation used by Massey (1987).
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Another ordering weaker than ‘≺sm’ can be defined on product spaces.

Definition 2.3. Let X(n) and Y (n) be random elements of E
(n). We say that X(n) and Y (n) are

concordant stochastically ordered (written as X(n) ≺ncc Y
(n) or Y (n) 	ncc X

(n)) if

E

[ n∏
i=1

fi(Xi)

]
≤ E

[ n∏
i=1

fi(Yi)

]
(2.2)

for all fi ∈ � ∗+(Ei ) and all fi ∈ D∗+(Ei ), i = 1, . . . , n, such that the expectations exist.

For E
(n) = R

n, X(n) ≺ncc Y
(n) is equivalent to the requirement that X ≤uo Y and X ≥lo Y

both hold, in the notation used by Müller and Stoyan (2002). Note that concordant ordering
is defined only for product spaces, while concordant weak ordering is defined on arbitrary
partially ordered spaces. Definitions of concordant orderings do not require a lattice structure
on the space, but this is required for supermodular ordering.

On product lattices, Lemma 2.1 reduces to the concept of concordance order investigated by
Joe and can be illustrated as follows (see Joe (1990, Example 2.2)). Let (E, E ,≺) be a finite
lattice and let P1 and P2 be probability measures on E

2. Let x, y ∈ E
2 be two points which

are not comparable under coordinatewise ordering. If P1 is obtained from P2 by adding the
probability mass α > 0 at points x∧y and x∨y and by subtracting the probability mass α > 0
at points x and y, then P1 ≺2

cc P2. We can drop the assumption that E is a lattice, and obtain
the following.

Corollary 2.1. Let P1 be a probability measure on E
2, where (E, E ,≺) is a discrete, partially

ordered space. Assume that, for a, b, c, d ∈ E, we have a ≺ c and b ≺ d such that (a, d) ∈ E
2

and (c, b) ∈ E
2 are not comparable in the coordinatewise ordering on E

2. Assume that
P1(a, d) ≥ α and P1(c, b) ≥ α for some α > 0. (Throughout, we abbreviate Pi({(x, y)}) to
Pi(x, y).)

Define a new probability measure, P2, on E
2 by

P2(a, d) = P1(a, d)− α, P2(a, b) = P1(a, b)+ α,
P2(c, b) = P1(c, b)− α, P2(c, d) = P1(c, d)+ α,

P2(x, y) = P1(x, y), x �= a, c, y �= b, d.
(2.3)

Then P1 ≺2
cc P2.

If some probability measure P2 on E
2 can be obtained from P1 by a finite sequence of

transformations of the form (2.3), then P1 ≺2
cc P2.

In the special case of product spaces (E(n),≺n), concordant weak ordering is characterized
in the following way: X(n) ≺ncc−wk Y

(n) if and only if

P(X1 ∈ A1, . . . , Xn ∈ An) ≤ P(Y1 ∈ A1, . . . , Yn ∈ An)
for all Ai ∈ �p(Ei ) and all Ai ∈ Dp(Ei ), i = 1, . . . , n. Since �p(Ei ) ⊂ � (Ei ) and Dp(Ei ) ⊂
D(Ei ), i = 1, . . . , n, it is clear that ‘≺ncc’ implies ‘≺ncc−wk’. For products of linearly ordered
sets, the above inclusion relations can be replaced by equalities and ‘≺ncc’ and ‘≺ncc−wk’ are
therefore equivalent.

In the next example we show that ‘≺ncc−wk’ does not imply ‘≺ncc’ in general.
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Example 2.1. If we consider E = {(0, 0), (0, 1), (1, 0), (1, 1)}with the usual partial ordering,
(0, 0) ≺ (0, 1) ≺ (1, 1) and (0, 0) ≺ (1, 0) ≺ (1, 1), and let P1((1, 1)) = P1((0, 0)) = 1

2 and
P2((0, 1)) = P2((1, 0)) = 1

2 , then, directly from the definition, for product measures on E
2 we

obtain P1 × P1 ≺2
cc−wk P2 × P2 but not P1 × P1 ≺2

cc P2 × P2.

The proof of the following lemma can be given using arguments similar to those proving
Lindqvist (1988, Theorem 3.1).

Lemma 2.2. The following statements are equivalent for random elements X(n) and Y (n) of
E
(n).

1. X(n) ≺ncc Y
(n).

2. P(X1 ∈ A1, . . . , Xn ∈ An) ≤ P(Y1 ∈ A1, . . . , Yn ∈ An) for all Ai ∈ � (Ei ) and all
Ai ∈ D(Ei ), i = 1, . . . , n.

3. P(X1 ∈ A1, . . . , Xn ∈ An) ≤ P(Y1 ∈ A1, . . . , Yn ∈ An) for all closed sets Ai ∈ � (Ei )
and all closed sets Ai ∈ D(Ei ), i = 1, . . . , n.

4. P(X1 ∈ A1, . . . , Xn ∈ An) ≤ P(Y1 ∈ A1, . . . , Yn ∈ An) for all compact generated
sets Ai ∈ � (Ei ) (for a definition, see Lindqvist (1988)) and all compact generated sets
Ai ∈ D(Ei ), i = 1, . . . , n.

If, in addition, the Ei are normally ordered (see Lindqvist (1988)), then X(n) ≺ncc Y
(n) if and

only if (2.2) holds for fi which are continuous (in addition to the other properties required of
the fi).

The following example shows how product structures can be related to lattice nonproduct
structures for concordance orderings.

Example 2.2. Suppose that the state space E is the set of all subsets of a finite set {e1, . . . , en}.
Then E is a lattice under ordinary set inclusion. Let P1 and P2 be probability measures on E

such that P1 ≺cc−wk P2. On E it is natural to define the variable δ(A) = (1A(e1), . . . , 1A(en)),
A ∈ E. This is a random vector with n zero/one-valued coordinates indicating elements
belonging to A (and 1A denotes the indicator function). Denote by P δ1 = P1δ

−1 and P δ2 =
P2δ
−1 the distributions of δ on {0, 1}n with respect to P1 and P2, respectively. On {0, 1}n we

consider the usual coordinatewise ordering ‘≤’. It then follows, by definition, that P1 ≺cc−wk
P2 if and only if P δ1 ≤ncc P

δ
2 . The ordering P1 ≺cc−wk P2 for two probability measures on

E can be defined by two orderings defined in Li and Xu (2000, Definition 5.1), that is, by
majorization of P1 by P2 from the roots and by majorization of P1 by P2 from the leaves.

We shall now proceed to state, without proof (the usual arguments can be used), the standard
properties of dependence orderings for ‘≺ncc’ (for the case of real-valued random vectors, see
Müller and Stoyan (2002, Theorem 3.8.7)). We omit the ‘n’ in the notation ‘≺ncc’ in this
statement.

Proposition 2.1. LetX(n) and Y (n) be random elements of E
(n). Then the following properties

hold.

(P1) (Bivariate concordance.) X(n) ≺cc Y
(n) implies that, for any pair of indices (i, j), 1 ≤

i < j ≤ n, the bivariate marginal vectors satisfy (Xi,Xj ) ≺2
cc (Yi, Yj ) and, therefore,

that cov(f (Xi), g(Xj )) ≤ cov(f (Yi), g(Yj )) for each f ∈ � ∗+(Ei ) and g ∈ � ∗+(Ej ).

(P2) (Transitivity.) X(n) ≺cc Y
(n) and Y (n) ≺cc Z

(n) imply that X(n) ≺cc Z
(n).
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(P3) (Reflexivity.) X(n) ≺cc X
(n).

(P4) (Antisymmetry.) X(n) ≺cc Y
(n) and Y (n) ≺cc X

(n) imply that the distributions of X(n)

and Y (n) are equal.

(P5) (Weak convergence.) Let (X(n)k , Y
(n)
k , k ∈ N) be a sequence of random elements of E

(n).
If E

(n) is normally ordered then X(n)k
w−→k→∞ X(n) and Y (n)k

w−→k→∞ Y (n) imply that
X(n) ≺cc Y

(n) if X(n)k ≺cc Y
(n)
k for all k ∈ N, where ‘

w−→’ denotes weak convergence.

(P6) (Invariance with respect to permutation of indices.) X(n) ≺cc Y
(n) implies that

Xπ(n) = (Xπ(1), . . . , Xπ(n)) ≺cc (Yπ(1), . . . , Yπ(n)) = Yπ(n)

for all permutations π of {1, 2, . . . , n}.
(P7) (Invariance with respect to monotone transforms.) X(n) ≺cc Y

(n) implies that

(f1(X1), . . . , fn(Xn)) ≺cc (f1(Y1), . . . , fn(Yn))

for all increasing and for all decreasing functions fi : Ei → Ei , i = 1, . . . , n.

(P8) (Closure under marginalization.) If X(n) ≺cc Y
(n) then, for any marginal vectors XM =

(Xi : i ∈ M) and YM = (Yi : i ∈ M) withM ⊆ {1, . . . , n}, it follows thatXM ≺|M|cc YM.

(P9) (Equality of one-dimensional marginals.) X(n) ≺cc Y (n) implies that, for all i =
1, . . . , n, the distributions of the respective coordinates Xi and Yi are equal.

(P10) (Closure under identical concatenation.) X(n) ≺cc Y
(n) implies that, for all K,L ⊆

{1, . . . , n}, (XK,XL) ≺|K|+|L|cc (YK, YL). Here K ∩ L �= ∅ is allowed.

(P11) (Closure under independent concatenation.) Let X(n)j ≺cc Y
(n)
j for j = 1, 2 and assume

both that X(n)1 is independent of X(n)2 and that Y (n)1 is independent of Y (n)2 . Then
(X

(n)
1 , X

(n)
2 ) ≺cc (Y

(n)
1 , Y

(n)
2 ) .

3. Main results

We shall use the following definition for stochastic processes.

Definition 3.1. Let T ⊆ R be an index set for stochastic processes X = (Xt : t ∈ T ) and Y =
(Yt : t ∈ T ) withXt, Yt : (�,F ,P)→ (E, E ,≺), t ∈ T . We say that X and Y are concordant
stochastically ordered (and write X ≺cc Y ) if, for all n ≥ 2 and all t1 < t2 < · · · < tn, we have

(Xt1 , . . . , Xtn) ≺ncc (Yt1 , . . . , Ytn)

on E
n. If, in addition, E is a lattice, we say that X and Y are supermodular stochastically

ordered (and write X ≺sm Y ) if, for all n ≥ 2 and all t1 < t2 < · · · < tn, we have

(Xt1 , . . . , Xtn) ≺nsm (Yt1 , . . . , Ytn)

on E
n.
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3.1. Discrete-time Markov processes

We say that a stochastic kernel K : E× E → [0, 1] is stochastically monotone if

∫
f (x)K(s, dx)

is increasing in s for each f ∈ � ∗(E). It is known (see, e.g. Müller and Stoyan (2002,
Section 5.2)) that a stochastic kernel K is stochastically monotone if and only if K(x, ·) ≺st
K(y, ·) for all x ≺ y. An equivalent condition is that µK ≺st νK for all µ and ν such that
µ ≺st ν, where µK denotes the measure defined by µK(A) = ∫

K(s,A)µ(ds), A ∈ E . It
is worth mentioning that, for E = N, using the traditional notation PX = [pX(i, j)]i,j∈N for
the transition matrix of X (that is, pX(i, j) := KX(i, {j})), stochastic monotonicity can be
expressed in a very simple form: we say that PX is stochastically monotone if (see Keilson and
Kester (1977))

T −1PXT (i, j) ≥ 0, i, j ∈ N, (3.1)

where T is the lower-triangular matrix with 0s above the main diagonal and 1s elsewhere.
Let X = (Xt : t ∈ Z) and Y = (Yt : t ∈ Z), Xt, Yt : (�,F ,P)→ (E, E ,≺), be discrete-

time, stationary, homogeneous Markov processes. Assume that π is an invariant (stationary)
one-dimensional marginal distribution common to both X and Y , and denote the one-step
transition kernels for X and Y byKX : E×E → [0, 1] andKY : E×E → [0, 1], respectively.
Denote the respective transition kernels for the time reversed processes,

←
X and

←
Y by

←
KX and←

KY . Note that
←
KX and

←
KY can be seen as adjoint operators of KX and KY on the space

of square integrable functions L2(E, π), respectively. Indeed, for f, g ∈ L2(E, π), KXf is
defined by

KXf (x) =
∫
f (y)KX(x, dy)

and (f, g)π =
∫
f (x)g(x)π(dx). Then (

←
KXf, g)π = (f,KXg)π for all f, g ∈ L2(E, π) and,

thus,
←
KX = (KX)

∗
, where A∗ denotes the adjoint of the operator A. Similarly,

←
KY = (KY )

∗
.

It will be convenient to state the following stochastic monotonicity assumption.

Assumption 3.1. (STM1.) Either KY and
←
KX are stochastically monotone or KX and

←
KY

are stochastically monotone.

Theorem 3.1. For the above-defined stationary Markov processes X and Y with common
invariant distribution π , under STM1 the following relations are equivalent.

(i) X ≺cc Y .

(ii) (X0, X1) ≺2
cc (Y0, Y1).

(iii) (f,KXg)π ≤ (f,KY g)π for all f, g ∈ � ∗+(E) and all f, g ∈ D∗+(E).

(iv) (f,
←
KXg)π ≤ (f,

←
KYg)π for all f, g ∈ � ∗+(E) and all f, g ∈ D∗+(E).

Proof. We consider the case in which KX and
←
KY are monotone. To prove that (ii) implies

(i) we proceed by induction on n. For n = 1, (ii) is the required relation. Suppose that,
for n − 1 > 0, we have (X0, . . . , Xn−1) ≺ncc (Y0, . . . , Yn−1). Then, for fi ∈ � ∗+(E) and
fi ∈ D∗+(E), i = 0, . . . , n, denoting the joint distribution of (X0, . . . , Xn) by PX0,...,Xn (and
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using similar notation for conditional distributions), we have

Eπ

[ n∏
i=0

fi(Xi)

]

=
∫

En

PX0,...,Xn−1(d(x0, . . . , xn−1))

n−1∏
i=0

fi(xi)

∫
E

PXn |Xn−1=xn−1(dxn)fn(xn)

=
∫

En

PX0,...,Xn−1(d(x0, . . . , xn−1))

n−1∏
i=0

fi(xi)

[∫
E

KX(xn−1, dxn)fn(xn)

]

≤
∫

En

PY0,...,Yn−1(d(x0, . . . , xn−1))

n−1∏
i=0

fi(xi)

∫
E

KX(xn−1, dxn)fn(xn)

=
∫

E

PYn−1(dxn−1)

∫
En−1

PY0,...,Yn−2 |Yn−1=xn−1(d(x0, . . . , xn−2))

×
n−1∏
i=0

fi(xi)

∫
E

KX(xn−1, dxn)fn(xn)

=
∫

E

π(dxn−1)

∫
E

KX(xn−1, dxn)︸ ︷︷ ︸∫
E2 PXn−1,Xn(d(xn−1, xn))

n∏
i=n−1

fi(xi)

×
[∫

En−1
PY0,...,Yn−2 |Yn−1=xn−1(d(x0, . . . , xn−2))

n−2∏
i=0

fi(xi)

]

≤
∫

E2
PYn−1,Yn(d(xn−1, xn))

n∏
i=n−1

fi(xi)

×
∫

En−1
PY0,...,Yn−2 |Yn−1=xn−1(d(x0, . . . , xn−2))

n−2∏
i=0

fi(xi)

= Eπ

[ n∏
i=0

fi(Yi)

]
.

Here the first inequality follows from the induction hypotheses and the second inequality follows
from stationarity and (ii). Note that, because KX is monotone, the term in square brackets on
the third line is increasing in xn−1 for fi ∈ � ∗+(E) and decreasing in xn−1 for fi ∈ D∗+(E).
Because

←
KY is monotone, the same is true of the term in square brackets on the eighth line.

Theorem 3.2. Assume that the state space E is linearly ordered. For the above-defined
stationary Markov processes X and Y with common invariant distribution, under STM1 we
have X ≺sm Y if and only if (X0, X1) ≺2

sm (Y0, Y1).

Proof. The proof follows by analogy to the case E = R; see Theorem 3.2 of Hu and Pan
(2000).

Now consider two homogeneous Markov chains, X and Y , on a countable state space E,
with common invariant distribution π . Denote by PX = [pX(i, j)] and PY = [pY (i, j)] the

https://doi.org/10.1239/jap/1158784947 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1158784947


802 H. DADUNA AND R. SZEKLI

respective transition matrices of X and Y . By standard approximation arguments, we obtain
the following corollary to Theorem 3.1.

Corollary 3.1. For the above-defined stationary Markov processes X and Y with common
invariant distributionπ and countable state space E, under STM1 the conditions of Theorem 3.1
are equivalent to ∑

i∈F, j∈G
π(i)pX(i, j) ≤

∑
i∈F, j∈G

π(i)pY (i, j),

for all F,G ∈ � (E) and all F,G ∈ D(E).

3.2. Continuous-time Markov processes

Let X = (Xt : t ∈ R) and Y = (Yt : t ∈ R), Xt, Yt : (�,F ,P)→ (E, E ,≺), be stationary,
homogeneous Markov processes. Denote their respective families of transition kernels by

K
X = (KX

t : E× E → [0, 1], t ≥ 0) and K
Y = (KY

t : E× E → [0, 1], t ≥ 0),

and the respective families of transition kernels for the stationary time-reversed processes
←
X

and
←
Y by
←
K
X = (←KX

t : E× E → [0, 1], t ≥ 0) and
←
K
Y = (←KY

t : E× E → [0, 1], t ≥ 0).

Assume that π is an invariant distribution common to both K
X and K

Y ; that is,∫
KX
t (x, dy)π(dx) =

∫
KY
t (x, dy)π(dx) = π(dy) for all t > 0.

We say that K
X and K

Y are stochastically monotone if, for each t > 0, KX
t and, respectively,

KY
t are stochastically monotone as defined in the previous section. If E is countable andQX =
[QX(x, y)] and QY = [QY (x, y)] denote the intensity matrices (infinitesimal generators) of
the corresponding chains X and Y , then the following condition, due to Massey (1987), is
useful: if QX is bounded and conservative, then K

X is stochastically monotone if and only if∑
y∈F

QX(x1, y) ≤
∑
y∈F

QX(x2, y)

for all F ∈ � (E) and all x1 and x2 such that x1 ≺ x2 with x1 ∈ F or x2 /∈ F . An analogous
condition for arbitrary continuous-time Markov jump processes (also for unbounded generators)
was given by Chen (2004, Theorem 5.47). For diffusions on E = R

n, necessary and sufficient
conditions for stochastic monotonicity were given by Chen and Wang (1993). It is worth
mentioning that, for E = N, we say that QX = [QX(i, j)]i,j∈N is stochastically monotone if
T −1QXT (i, j) ≥ 0 for all i �= j (cf. (3.1)).

It is convenient to state the following assumption.

Assumption 3.2. (STM2.) Either K
Y and

←
K
X are stochastically monotone or K

X and
←
K
Y are

stochastically monotone.

Utilizing arguments similar to those in the proof of Theorem 3.1, we obtain the following
corollary.

Corollary 3.2. For the above-defined stationary Markov processes X and Y with common
invariant distribution, under STM2 we have X ≺cc Y if and only if (X0, Xt ) ≺2

cc (Y0, Yt ) for
all t > 0.

https://doi.org/10.1239/jap/1158784947 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1158784947


Dependence ordering for Markov processes 803

In order to relate the above conditions to generators, we need additional regularity assump-
tions. Assume that X and Y are Feller processes on a normally ordered space (E, E ,≺) and
have corresponding semigroups

T X = (T Xt : Cb(E)→ Cb(E), t ≥ 0) and T Y = (T Yt : Cb(E)→ Cb(E), t ≥ 0)

on Cb(E) (the space of real-valued, bounded, continuous functions) possessing strong genera-
tors AX, with domain DAX ⊆ Cb(E), and, respectively, AY , with domain DAY ⊆ Cb(E). We
assume that T X0 = T Y0 = I (the identity operator). The corresponding families of transition
kernels of X and Y are respectively

K
X = (KX

t : E× E → [0, 1], t ≥ 0) and K
Y = (KY

t : E× E → [0, 1], t ≥ 0)

(such that (T Xt f )(x) =
∫

E
KX
t (x, dy)f (y)).

Lemma 3.1. Suppose that STM2 holds and thatDAX ∩DAY is dense in Cb(E). Then X ≺cc Y

implies that ∫
E

f (x)AXg(x)π(dx) ≤
∫

E

f (x)AY g(x)π(dx) (3.2)

for all f, g ∈ � ∗+(E) and all f, g ∈ D∗+(E) such that f ∈ Cb(E) and g ∈ DAX ∩DAY .

Proof. The relation X ≺cc Y implies that (X0, Xt ) ≺2
cc (Y0, Yt ) for all t > 0. Therefore,

for all f, g ∈ � ∗+(E) and all f, g ∈ D∗+(E) such that f ∈ Cb(E) and g ∈ DAX ∩DAY , we have

∫
E

π(dx)f (x)
∫

E

KX
t (x, dy)g(y)

︸ ︷︷ ︸
(T Xt g)(x)

≤
∫

E

π(dx)f (x)
∫

E

KY
t (x, dy)g(y)

︸ ︷︷ ︸
(T Yt g)(x)

.

Hence, for all h > 0,

∫
E

π(dx)f (x)
1

h
[T Xh − I ]g(x) ≤

∫
E

π(dx)f (x)
1

h
[T Yh − I ]g(x). (3.3)

For any ε > 0, there exists some sufficiently small h(ε) such that, for all h < h(ε),

∥∥∥∥ 1

h
[T Xh − I ]g − AXg

∥∥∥∥ ≤ ε
(with the uniform norm). It follows that

∣∣∣∣
∫

E

π(dx)f (x)
1

h
[T Xh − I ]g(x)−

∫
E

π(dx)f (x)(AXg)(x)

∣∣∣∣
≤

∫
E

π(dx)‖f ‖
∥∥∥∥ 1

h
[T Xh − I ]g − AXg

∥∥∥∥
≤ ‖f ‖ε.

Therefore, we can let h→ 0 in (3.3) and remove it from each integral, to obtain (3.2).
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We will now show that (3.2) is essentially necessary and sufficient for concordance ordering.
For simplicity, we restrict our considerations to countable state spaces and bounded generators

QX = [QX(x, y)] and QY = [QY (x, y)].
The argument can be applied with obvious modifications to arbitrary state spaces and bounded
generators. For the time-reversed processes we use the corresponding notation

←
QX and

←
QY .

We assume that E = 2E.

Theorem 3.3. Suppose that (E, E ,≺) is countable and that the above-defined stationary chains
X and Y have bounded intensity matrices QX and QY , respectively. Then, under STM2, the
following properties are equivalent.

(i) X ≺cc Y .

(ii) (X0, Xt ) ≺2
cc (Y0, Yt ) for all t > 0.

(iii) (f, T Xt g)π ≤ (f, T Yt g)π for all f, g ∈ � ∗+(E) and all f, g ∈ D∗+(E), for all t > 0.

(iv) (f,QXg)π ≤ (f,QY g)π for all f, g ∈ � ∗+(E) and all f, g ∈ D∗+(E).

(v) (f,
←
QXg)π ≤ (f,

←
QYg)π for all f, g ∈ � ∗+(E) and all f, g ∈ D∗+(E).

(vi) For all F,G ∈ � (E) and all F,G ∈ D(E),

∑
x∈F, y∈G

π(x)QX(x, y) ≤
∑

i∈F, j∈G
π(x)QY (x, y).

Proof. That (i) and (ii) are equivalent follows from the statement of Corollary 3.2. That (iii)
implies (iv) follows from the statement of Lemma 3.1. The equivalence of (v) and (iv) follows
from the fact that we can interchange the roles of the processes and their time reversals. The
equivalence of (vi) and (iv) follows by standard approximation arguments.

In order to finish the proof we need to show that (iv) implies (iii). We consider the case
in which f, g ∈ I∗+(E) and K

X and
←
K
Y are stochastically monotone, and shall utilize the

following representation (which follows from assuming bounded intensity matrices):

KX
t (x, {y}) = lim

n→∞

(
I + t

n
QX

)n
(x, y), x, y ∈ E.

We first show, by induction, that for sufficiently small η > 0 we have

∑
x∈E

π(x)f (x)
∑
y∈E

(I + ηQX)n(x, y)g(y)

≤
∑
x∈E

π(x)f (x)
∑
y∈E

(I + ηQY )n(x, y)g(y). (3.4)

For n = 1, this is immediate from (iv), so assume that we have proved (3.4) for all m ≤ n.
Then, into (3.4), substitute

g(x) :=
∑
y∈E

(I + ηQX)(x, y)g(y) = (I + ηQX)g(x),
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which is an increasing function of x because I + ηQX is a monotone operator as defined in
Massey (1987) (by induction (I + ηQX)n(g) is then also an increasing function). We obtain

∑
x∈E

π(x)f (x)
∑
y∈E

(I + ηQX)n+1(x, y)g(y)

=
∑
x∈E

π(x)f (x)
∑
y∈E

(I + ηQX)n(x, y)

[∑
z∈E
(I + ηQX)(y, z)g(z)

]

≤
∑
x∈E

π(x)f (x)
∑
y∈E

(1+ ηQY )n(x, y)

[∑
z∈E
(I + ηQX)(y, z)g(z)

]

=
∑
y∈E

π(y)

[∑
z∈E
(I + ηQX)(y, z)g(z)

] ∑
x∈E

π(x)

π(y)
f (x)(I + ηQY )n(x, y)

=
∑
y∈E

π(y)
∑
x∈E

(I + η←QY )n(y, x)f (x)

[∑
z∈E
(I + ηQX)(y, z)g(z)

]

≤
∑
y∈E

π(y)
∑
x∈E

(I + η←QY )n(y, x)f (x)

[∑
z∈E
(I + ηQY )(y, z)g(z)

]

=
∑
y∈E

π(y)
∑
x∈E

π(x)

π(y)
(I + ηQY )n(x, y)f (x)

[∑
z∈E
(I + ηQY )(y, z)g(z)

]

=
∑
x∈E

π(x)f (x)
∑
z∈E

∑
y∈E

(I + ηQY )n(x, y)(I + ηQY )(y, z)g(z)

=
∑
x∈E

π(x)f (x)
∑
y∈E

(I + ηQY )n+1(x, y)g(y).

Here the first inequality follows from the induction hypothesis (3.4) and the monotonicity of
(I + ηQX)g(x). The second inequality is obtained by applying (iv) with the substitution
f (x)→∑

y∈E(I + η
←
QY )n(x, y)f (y), which function is increasing and nonnegative for suf-

ficiently small η. The third equality follows, by direct computation, from

π(x)(I + ηQY )n(x, y) =
n∑
k=0

(
n

k

)
ηkπ(x)(QY )k(x, y),

π(x)(QY )n(x, y) =
∑
z∈E

←
QY (z, x)π(z)(QY )n−1(z, y).

(Note that any operator raised to the power 0 is equal to the identity operator.)
Now let η := t/n in (3.4); then

lim
n→∞

∑
x∈E

π(x)f (x)
∑
y∈E

(
I + t

n
QX

)n
(x, y)g(y)

≤ lim
n→∞

∑
x∈E

π(x)f (x)
∑
y∈E

(
I + t

n
QY

)n
(x, y)g(y).
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Since π(x)f (x), x ∈ E, is a counting density of a finite measure on E and the sequences of
functions∑

y∈E

(
I + t

n
QX

)n
(x, y)g(y), n ∈ N,

∑
y∈E

(
I + t

n
QY

)n
(x, y)g(y), n ∈ N,

are bounded and respectively uniformly convergent to the bounded functions∑
y∈E

KX
t (x, {y})g(y), n ∈ N,

∑
y∈E

KY
t (x, {y})g(y), n ∈ N,

by interchanging limit and integration in (iv) we obtain (iii) in the form∫
E2

PX0,Xt (d(u, v))f (u)g(v) ≤
∫

E2
PY0,Yt (d(u, v))f (u)g(v),

for all f, g ∈ � ∗+(E). For decreasing functions we repeat the above argument.

3.3. Monotonicity assumptions

A natural question is whether the monotonicity assumptions on the kernels arising in the
above theorems are necessary. The following example indicates that they are not necessary in
order to obtain concordance ordering for finite sequences.

Example 3.1. Consider two homogeneous Markov chains, X and Y , on a finite state
space E, with common invariant distribution π . Denote by PX = [pX(i, j)]i,j∈E and
PY = [pY (i, j)]i,j∈E the transition matrices of X and Y , respectively. Assume that, for
a, b, c, d ∈ E, we have a ≺ c and b ≺ d (that is, (a, d) ∈ E

2 and (c, b) ∈ E
2 are not

comparable) and that, for PX0,X1((i, j)) := π(i)pX(i, j) and PY0,Y1((i, j)) := π(i)pY (i, j),
defined for all (i, j) ∈ E

2, we have PX0,X1((a, d)) ≥ α and PX0,X1((c, b)) ≥ α, for some
α > 0.

Moreover, assume that PY0,Y1 and PX0,X1 are related by

PY0,Y1((a, b)) = PX0,X1((a, b))+ α, PY0,Y1((c, d)) = PX0,X1((c, d))+ α,
PY0,Y1((a, d)) = PX0,X1((a, d))− α, PY0,Y1((c, b)) = PX0,X1((c, b))− α,

PY0,Y1((u, v)) = PX0,X1((u, v)) for all other (u, v) ∈ E
2

(see Corollary 2.1). Then the one-dimensional marginal distribution of both (X0, X1) and
(Y0, Y1) is π , and the transition matrix PY = [pY (i, j)]i,j∈E is related to PX = [pX(i, j)]i,j∈E
as follows:

pY (a, d) = pX(a, d)− α

π(a)
, pY (c, b) = pX(c, b)− α

π(c)
,

pY (a, b) = pX(a, b)+ α

π(a)
, pY (c, d) = pX(c, d)+ α

π(c)
,

pY (u, v) = pX(u, v) for all other (u, v) ∈ E
2.

If E = {1, 2, 3, 4}, ‘≺’ is ‘≤’ (natural ordering), (a, d) = (2, 4), (c, b) = (4, 2), and α = 1
12 ,

then the rows PX(i, ·), i = 1, 2, 3, 4, of the transition matrix

PX = 1

36

⎛
⎜⎜⎝

18 0 18 0
6 12 6 12
7 11 7 11
5 13 5 13

⎞
⎟⎟⎠ ,
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treated as distributions on E, satisfy

PX(1, ·) ≤st PX(3, ·) ≤st PX(2, ·) ≤st PX(4, ·);
in particular, PX(2, ·) is not equal to PX(3, ·), so PX is not stochastically monotone.

Because PX is doubly stochastic, its unique invariant vector is π = ( 1
4 ,

1
4 ,

1
4 ,

1
4 ) and the time

reversal,
←
X, of X has transition matrix

←
PX = [←pX(i, j)]i,j∈E of the form

←
PX = (PX)� = 1

36

⎛
⎜⎜⎝

18 6 7 5
0 12 11 13
18 6 7 5
0 12 11 13

⎞
⎟⎟⎠ ,

where ‘�’ denotes transpose. The rows
←
PX(i, ·), i = 1, 2, 3, 4, of this matrix, treated as

distributions on E, satisfy
←
PX(1, ·) = ←PX(3, ·) ≤st

←
PX(2, ·) = ←PX(4, ·);

in particular,
←
PX(2, ·) is not equal to

←
PX(3, ·), so

←
PX is not stochastically monotone. The

stationary two-dimensional distribution of (X0, X1) is given by

[PX0,X1((i, j))]i,j=1,...,4 = 1

144

⎛
⎜⎜⎝

18 0 18 0
6 12 6 12
7 11 7 11
5 13 5 13

⎞
⎟⎟⎠ .

The distribution of (Y0, Y1) is given by

[PY0,Y1((i, j))]i,j=1,...,4 = 1

144

⎛
⎜⎜⎝

18 0 18 0
6 24 6 0
7 11 7 11
5 1 5 25

⎞
⎟⎟⎠ ,

with transition matrix

PY = 1

36

⎛
⎜⎜⎝

18 0 18 0
6 24 6 0
7 11 7 11
5 1 5 25

⎞
⎟⎟⎠ ,

which is not stochastically monotone, but doubly stochastic. It can be checked that the time
reversal,

←
PY , of PY is also not monotone. By direct computation we see that, for any triple of

functions fi, i = 0, 1, 2,

R := Eπ

[ 2∏
i=0

fi(Yi)

]
− Eπ

[ 2∏
i=0

fi(Xi)

]

= α(f2(d)− f2(b))

(
f1(c)

[∑
x∈E

←
pX(c, x)f0(x)

]
− f1(a)

[∑
x∈E

←
pX(a, x)f0(x)

])

+ α(f0(c)− f0(a))

(
f1(d)

[∑
x∈E

pX(d, x)f2(x)

]
− f1(b)

[∑
x∈E

pX(b, x)f2(x)

])
.
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For (a, d) = (2, 4) and (c, b) = (4, 2), we obtain

R = α(f2(4)− f2(2))

(
f1(4)

[∑
x∈E

←
pX(4, x)f0(x)

]
− f1(2)

[∑
x∈E

←
pX(2, x)f0(x)

])

+ α(f0(4)− f0(2))

(
f1(4)

[ ∑
x∈E

pX(4, x)f2(x)

]
− f1(2)

[∑
x∈E

pX(2, x)f2(x)

])
.

Recalling that ←
PX(2, ·) = ←PX(4, ·), PX(2, ·) ≤st PX(4, ·),

we conclude that, for functions fi, i = 0, 1, 2, which are monotone in the same direction, we
have R ≥ 0 and, therefore, (X0, X1, X2) ≤3

cc (Y0, Y1, Y2).
Proceeding in a similar way and applying Corollary 2.1 to the pair of states ((a, d) =

(2, 3), (c, b) = (3, 2)), we find that in this case R ≥ 0 does not hold for general functions
fi, i = 0, 1, 2,which are monotone in the same direction. Thus, (X0, X1, X2) ≤3

cc (Y0, Y1, Y2)

does not hold, although for two-dimensional marginal distributions we have (X0, X1) ≤cc
(Y0, Y1) and (X1, X2) ≤cc (Y1, Y2). A closer look reveals that the essential properties are

←
PX(2, ·) ≤st

←
PX(4, ·), PX(2, ·) ≤st PX(4, ·)

in the first case and
←
PX(3, ·) ≤st

←
PX(2, ·), PX(3, ·) ≤st PX(2, ·)

in the second case, and while in the first case we shift the probability mass α in a direction
which is comonotone with the inherent stochastic monotonicity of PX and

←
PX, in the second

case we shift the probability mass α in a direction which is converse to the inherent stochastic
monotonicity of PX and

←
PX.

The next example indicates that monotonicity assumptions for all states are not necessary in
order to obtain supermodular ordering for finite Markov sequences.

Example 3.2. Let E be a discrete-lattice ordered space with partial order ‘≺’ and assume that
b ≺ a for a, b ∈ E, a �= b. Let X = (Xn : n = 0, 1, 2) be a stationary, homogeneous Markov
chain with state space E, transition matrix PX, and one-dimensional stationary distribution π .
Let

←
PX be the transition matrix of the time reversal,

←
X, of X. With the rows of PX and

←
PX

treated as distributions on E, we assume that

PX(b, ·) ≺st PX(a, ·), ←
PX(b, ·) ≺st

←
PX(a, ·),

and that
PX0,X1(a, b) ≥ α, PX0,X1(b, a) ≥ α,

for someα > 0. We compare X with the stationary, homogeneous Markov chain Y = (Yn : n =
0, 1, 2) with transition matrix PY obtained from

pY (a, b) = pX(a, b)− α

π(a)
, pY (b, a) = pX(b, a)− α

π(b)
,

pY (a, a) = pX(a, a)+ α

π(a)
, pY (b, b) = pX(b, b)+ α

π(b)
,

pY (u, v) = pX(u, v) for all other (u, v) ∈ E
2.
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Note that Y also has invariant distributionπ . Let f : (E3,≺3)→ R be a bounded supermodular
function. Direct computation yields

Eπ [f (Y0, Y1, Y2)] − Eπ [f (X0, X1, X2)]
=

∑
x0∈E

←
pX(a, x0)[f (x0, a, a)− f (x0, a, b)] −

∑
x0∈E

←
pX(b, x0)[f (x0, b, a)− f (x0, b, b)]

(3.5)

+
∑
x2∈E

pX(a, x2)[f (a, a, x2)− f (b, a, x2)] −
∑
x2∈E

pX(b, x2)[f (a, b, x2)− f (b, b, x2)]

(3.6)

+ α

π(a)
[f (a, a, a)− f (a, a, b)− f (b, a, a)+ f (b, a, b)] (3.7)

+ α

π(b)
[f (b, b, b)− f (b, b, a)− f (a, b, a)+ f (a, b, a)]. (3.8)

If we assume now thatf ∈ Lsm(E), then, from supermodularity, (3.7) and (3.8) are nonnegative.
Utilizing the increasing differences property (which follows from supermodularity), we find that
f (x0, a, a)− f (x0, a, b) and f (x0, b, a)− f (x0, b, b) are increasing in x0. Furthermore, for
a fixed x0, f (x0, a, a)− f (x0, a, b) ≥ f (x0, b, a)− f (x0, b, b). Thus,

←
PX(b, ·) ≺st

←
PX(a, ·)

implies that (3.5) is nonnegative. By similar arguments and the fact that PX(b, ·) ≺st PX(a, ·),
we find that (3.6) is also nonnegative. Because this holds for any f ∈ Lsm(E), we conclude
that (X0, X1, X2) ≺sm (Y0, Y1, Y2).

4. Applications

4.1. Asymptotic variance

A nice idea for calculating expected values for random variables having distribution π , that
is, expressions of the form π(f ) = ∫

f (x)π(dx), where f is a real function on a state space
(E, E), is to construct a Harris recurrent Markov chain X = (Xt : t ∈ Z+) such that π is its
stationary (invariant) distribution, and then use µ̂n(f ) = (1/n)∑n

i=1 f (Xi) as the Monte Carlo
approximation of π(f ). The class of possible chains with π as their stationary distribution is
usually large, and a common performance criterion for the estimators obtained from using the
different transition kernels is to measure the asymptotic variance

v(f,KX) := lim
n→∞

1

n
varπ

( n∑
i=1

f (Xi)

)

for the version of the process stationary under π . This choice is well motivated since, under
some regularity conditions, the central limit theorem for X holds, i.e.

√
n(µ̂n(f )− π(f )) d−→ N(0, v(f,KX)) as n→∞,

where ‘
d−→’ denotes convergence in distribution and N(0, v(f,KX)) denotes the zero-mean,

normal random variable with variance v(f,KX). In order to compare asymptotic variances
under π it is worth recalling that it is possible to express v as

v(f,KX) = (f, f )π − π(f )2 + 2
∞∑
k=1

(f, (KX)kf )π , (4.1)
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where (KX)k denotes the k-fold composition of KX as an operator acting on f ∈ L2(E, π).
Moreover, for a time-reversible KX,

v(f,KX) =
∫ 1

−1

1+ λ
1− λEf,KX(dλ), (4.2)

where Ef,KX(dλ) = (f,EKX(dλ)f )π , EKX being the resolution of the identity in the spectral
decomposition theorem for self-adjoint operators KX acting on f ∈ L2

0(E, π) = {g ∈
L2(E, π) : π(g) = 0}. Peskun (1973) introduced a partial ordering on Markov kernels with
the same invariant distribution π as follows: KX � KY if KX(x, F \ {x}) ≤ KY (x, F \ {x})
for all F ∈ E and π -almost surely all x ∈ E. Using (4.2), Tierney (1998) generalized a
result of Peskun (1973) proving that if KX � KY then (f,KY f )π ≤ (f,KXf )π for all
f ∈ L2(E, π), which means that one-step autocorrelations are comparable and, moreover,
v(f,KY ) ≤ v(f,KX) for all f ∈ L2

0(E, π), under the additional assumption that KX and
KY are time reversible (i.e. self-adjoint as operators acting on L2

0(E, π)). Mira and Geyer
(1999) introduced another ordering, ‘�1’, in which KX �1 K

Y if (f,KY f )π ≤ (f,KXf )π
for all f ∈ L2

0(E, π), and proved that if KX and KY are time reversible and irreducible, then
KX �1 K

Y if and only if v(f,KY ) ≤ v(f,KX) for all f ∈ L2
0(E, π). Mira (2001) considered

a finite E and a monotone f (introducing some ordering on E which makes f monotone),
and introduced the south-west ordering, ‘�sw’, for arbitrary matrices, in which M1 �sw M2
if T �diag(π)M1T

�(i, j) ≤ T �diag(π)M2T
�(i, j) for all i, j ∈ E not indexing the first row

or the last column. Here T � denotes the transpose of the matrix T defined below (3.1), and
diag(π) denotes the diagonal matrix with π on the diagonal and 0s elsewhere. Mira (2001)
observed that if (I − PX + A)−1 �sw (I − PY + A)−1 then v(f,KY ) ≤ v(f,KX), where
PX = [KX(x, {y})]x,y∈E and A is the transition matrix for the corresponding independent,
identically distributed chain, that is, the matrix whose rows all equal π . Stationarity-preserving
transfers (which imply the south-west ordering for transition matrices) considered by Mira
coincide with the transformations described in Lemma 2.1 and Corollary 2.1, and the south-
west ordering for transition matrices is clearly related to the weak concordance ordering (see
Definition 2.2). We obtain a related result immediately from Theorem 3.1 and (4.1).

Corollary 4.1. For stationary Markov processes X = (Xt : t ∈ Z+) and Y = (Yt : t ∈ Z+)
on (E, E ,≺) with common invariant distribution π , under STM1 we have

X ≺cc Y �⇒ v(f,KX) ≤ v(f,KY ),

for all f ∈ � ∗+(E) and all f ∈ D∗+(E).

The rate of convergence to stationarity for a transient Markov process with transition kernel
KX is related to the spectral radius ofKX treated as an operator on L2(E, π), which for a finite
state space is the second-largest eigenvalue in absolute value. Fast convergence happens for
eigenvalues small in absolute value, while, as follows from (4.2), small asymptotic variance
occurs for small positive eigenvalues and large negative eigenvalues. For positive operators
(positive-definite matrices), these two goals are not in conflict; however, in many other cases
they are.

4.2. Cheeger-type constants

In this section, we assume for simplicity that E is finite. As before, consider two stationary,
ergodic Markov chains, X and Y , on a state space E, with common invariant distribution π .

https://doi.org/10.1239/jap/1158784947 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1158784947


Dependence ordering for Markov processes 811

Define Cheeger constants hX and h′X for X by

hX = min
S

PX0,X1(S × Sc)

π(S)π(Sc)
, h′X = min

S

PX0,X1(S × Sc)

π(S) ∧ π(Sc)
,

where the minima are taken over all subsets S of E with π(S) ∈ (0, 1), and Sc denotes the
complement of S.

It is well known that if X is reversible then hX ≤ 8λX1 and (h′X)2 ≤ 2λX1 , where λX1 < 1 is
the second-largest eigenvalue of PX. (These are Cheeger inequalities; see, e.g. Chen and Wang
(2000) or Chen (2005, pp. 67–88).)

The original Cheeger inequality, found by Cheeger, bounds the eigenvalues of the Laplacian
on a Riemannian manifold. A discrete version is due to Alon and Millman (1985) (see also
Diaconis and Stroock (1991)). From the following example it will be clear that, in some special
situations, PX0,X1 ≺2

cc PY0,Y1 implies that hX ≥ hY and h′X ≥ h′Y . It would be of interest to
find some general conditions which, together with ‘≺2

cc’, would imply inequalities for Cheeger
constants.

Example 4.1. Assume that, for a, b ∈ E, a �= b, we have a ≺ b. Note that (a, b) ∈ E
2 and

(b, a) ∈ E
2 are not comparable coordinatewise. Assume, moreover, that, for PX0,X1(i, j) :=

π(i)pX(i, j) and PY0,Y1(i, j) := π(i)pY (i, j), defined for all (i, j) ∈ E
2, we have

PX0,X1(a, b) ≥ α and PX0,X1(b, a) ≥ α, for some α > 0, and

PY0,Y1(a, a) = PX0,X1(a, a)+ α, PY0,Y1(b, b) = PX0,X1(b, b)+ α,
PY0,Y1(a, b) = PX0,X1(a, b)+ α, PY0,Y1(b, a) = PX0,X1(b, a)− α,

PY0,Y1(u, v) = PX0,X1(u, v) for all other (u, v) ∈ E
2.

Then, from Corollary 2.1, PX0,X1 ≺2
cc PY0,Y1 . The above equalities define a mass transformation

which guarantees that PX0,X1(S × Sc) ≥ PY0,Y1(S × Sc), since it moves mass into the main
diagonal. Because π is the same for both processes, for each S such that π(S) ∈ (0, 1)we have

PX0,X1(S × Sc)

π(S)π(Sc)
≥ PY0,Y1(S × Sc)

π(S)π(Sc)

and, therefore, hX ≥ hY and, similarly, h′X ≥ h′Y .
From Theorem 3.1, if we assume STM1 then in this case we have X ≺cc Y , and both the

corresponding inequalities for the Cheeger constants and the asymptotic variance reduction
from Section 4.1 hold.

Recall that Theorem 3.3 for stochastic, monotone, reversible processes can be rephrased
using bilinear forms: X ≺cc Y if and only if DX(f, g) ≥ DY (f, g) for all nonnegative,
comonotone functions f and g, where DX(f, g) = 〈f,−QXg〉, the scalar product being
defined in L2(E, π). It would be natural to define Cheeger-type constants using increasing sets
S, and study their role in mixing time and speed-of-convergence problems. This will be a topic
of a further study.

4.3. Positive dependence

A natural way to define positive dependence for a random vector (or, alternatively, for a
distribution on a state space) X = (X1, . . . , Xn) is to use a dependency ordering in order to
compare it with its independent, identically distributed version, i.e. with X⊥ = (X⊥1 , . . . , X⊥n ),
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where Xi
d= X⊥i , and X⊥1 , . . . , X⊥n are independent. For example, if E = R then X⊥ ≤cc X is

equivalent to the fact that X is positive orthant dependent (for definitions of this and other related
concepts, see, e.g. Szekli (1995)). Positive orthant dependence is weaker than the association
of X defined by the condition that cov(f (X), g(X)) ≥ 0 for all f, g ∈ � ∗(Rn), which is not
possible to express as X being greater than X⊥ for some ordering. However, Christofides and
Veggelatou (2004) showed that association implies that X⊥ ≤sm X (positive supermodular
dependence). In fact, they showed that the weak association (defined by

cov(f (Xi, i ∈ A), g(Xi, i ∈ Ac)) ≥ 0

for all real, increasing functions f and g of appropriate dimension and all A ⊂ {1, . . . , n})
implies positive supermodular dependence. Rüschendorf (2004) defined a positive dependence
weaker than weak association,which he called weak association in sequence, by

cov(1{Xi>t}, g(Xi+1, . . . , Xn)) ≥ 0

for all increasing functions g, all t ∈ R, and all i = 1, . . . , n − 1. He showed that weak
association in sequence implies positive supermodular dependence. Hu et al. (2004) gave
examples showing that the mentioned positive dependence concepts are, however, different.

For general state spaces E, the structure of the dependence can be much more complex,
because, roughly speaking, there appear ‘space’, ‘time’, and joint ‘space–time’ dependency
regions. By analogy, we can define X to be positive ‘orthant’ dependent if

P(X1 ∈ A1, . . . , Xn ∈ An) ≥ P(X1 ∈ A1) · · ·P(Xn ∈ An) (4.3)

for all Ai ∈ �p(Ei ), i = 1, . . . , n, and all Ai ∈ Dp(Ei ), i = 1, . . . , n. This condition is just
X⊥ ≺cc−wk X.

If (4.3) holds for all comonotone sets, we similarly have positive monotone set dependence
for X, that is, X⊥ ≺cc X. From Theorem 3.1 we immediately obtain a corollary.

Corollary 4.2. For a stationary Markov processX = (Xt : t ∈ Z+)on (E, E ,≺)with invariant
distribution π , under the condition that both KX and

←
KX are stochastically monotone, if

(X⊥0 , X⊥1 ) ≺2
cc (X0, X1) then X⊥ ≺cc X.

It is immediate that if KX is stochastically monotone then (X⊥0 , X⊥1 ) ≺2
cc (X0, X1) holds

if π is associated. Note that X⊥ ≺cc X expresses positive dependence in the time evolution
of X, which is explicit if we restate this condition as the positive upper-orthant dependence
of (f1(X1), . . . , fn(Xn)) for all fi ∈ � ∗+(E), i = 1, . . . , n, and the positive lower-orthant
dependence of (f1(X1), . . . , fn(Xn)) for all fi ∈ D∗+(E), i = 1, . . . , n. This corollary is in
the same spirit as Theorem C, Section 3.7, of Szekli (1995), which states that, for a stationary
process X = (Xt : t ∈ R) defined as in (our) Section 3.2, if K

X and
←
K
X are stochastically

monotone and π is associated on E, then

cov(f (Xti , i = 1, . . . , k), g(Xti , i = k + 1, . . . , n)) ≥ 0 (4.4)

for all f ∈ � ∗(Ek), g ∈ � ∗(En−k), k = 1, . . . , n − 1, and ti with t1 < · · · < tn. Note that
property (4.4) is a rather strong positive dependence in the time evolution of X; e.g. it implies
that (f1(Xt1), . . . , fn(Xtn)) is weakly associated in sequence for all fi ∈ � ∗+(E) and, therefore,
is also positive supermodular dependent, which allows us to compare maxima, minima, and
other supermodular functionals of the time evolution of X, (f1(Xt1), . . . , fn(Xtn)), with the
corresponding independent versions.
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It is worth mentioning that, in order to obtain a joint space and time positive dependence
for X, we require additional assumptions. For example, it is known (see, e.g. Liggett (1985,
pp. 80–82) and Szekli (1995, Theorem A, Section 3.7)) that if K

X is stochastically monotone,
π is associated on E, andAX(fg) ≥ fAXg+gAXf for all increasing functions f and g, then
X is space–time associated (i.e. cov(φ(Xti , i = 1, . . . , n), ψ(Xti , i = 1, . . . , n)) ≥ 0 for all
increasing functions φ and ψ).
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