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PLÙCKER COORDINATES FOR REGULAR CHAIN 
GROUPS 

T. KAMBAYASHI 

The theory of Plùcker coordinates and Grassmann varieties is well-
developed and well-known among the algebraic geometers. It gives a one-to-
one correspondence between the set of all subspaces of a given dimension in 
the ambient projective space and the set of points on a certain projective 
algebraic variety called a Grassmann variety. The unacquainted can find the 
theory discussed in detail in Hodge-Pedoe [1, Chapters VII and XIV]. 

The purpose of the present paper is to show that the techniques of the 
Grassmann theory can be applied with almost equal force to the study of 
regular chain groups introduced by Tutte [3]. (See also Minty [2] for connec
tions with graph theory.) It will be shown that the set of all regular chain 
groups of a given rank on a fixed set of vertices are in precise one-to-two 
correspondence with a certain set of ordered tuples of O's and ± l ' s (their 
Plùcker coordinates) subject to defining conditions similar to those for a 
Grassman variety. This is done in § 2. Thus, the number of such regular chain 
groups is precisely one-half the number of such tuples admissible as Plùcker 
coordinates (see (2.3)). In practice, however, the actual enumeration of regular 
chain groups is still a difficult problem, and in § 3 we offer what is hoped to be 
a first step in the direction of a complete solution. 

The first section (§ 1) is mainly a quick review and a degree of reformulation 
of Tutte's theory, but it also contains a technical result (1.4) essential in § 2. 

Throughout, Z denotes the additive group of all rational integers. 

1. Regular chain groups according to Tutte (cf. [3]). For a natural 
number n, fixed throughout the present paper, denote by [1 n] the set 
{1, . . . , n\ of integers between 1 and n, and define a chain on n vertices or, 
simply, a chain to be any mapping from [1 n] to the additive group Z of integers. 
If/ and g are chains, their s u m / + g is defined by the formula: ( / + g) (i) = 

f(i) + g(i) for every i £ [lw]. A set of chains forming a group under this 
addition is called a chain group. We may, and shall, identify a chain f with the 
element ( / ( l ) , . . . ,f{n)) of the direct sum Zn = Z © . . . © Z of n copies 
of Z. Let C be a chain group and take / € C. The support of f is by definition 
the set {i £ [1 n] :f(i) 7e- 0} and is denoted by | / |. Then, | / | is empty if 
and only if/ is the zero-chain, o r / = Ô = (0, . . . , 0). The chain/ Ç C is said 
to be elementary (in C) if / is non-zero and no non-zero g £ C exists whose 
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support |g| is a proper subset of \f\. If in addition f(i) = 0 or =1=1 for each 
i G [In], we s a y / is primitive (in C). Finally, a chain group C is said to be 
regular if for each elementary / G C there exists a primitive g G C such that 
|g| — | j |. When that is so, clearly f = ag for some a G Z. The definition 
implies that the zero chain group {0} is to be regarded as regular. 

(1.1) Every chain f belonging to a regular chain group C can be expressed as an 
integral linear combination, f = ]C*a*gi (a< G Z), of primitive chains gt G C 
such that \gi\ C | / | for all i. 

Proof. Call k the size (cardinality) of the set | / | and use induction: There 
exists a primitive chain g G C with \g\ C | / |. For a suitable integer a we have 
then \f — ag\ C | / | (proper inclusion), and the cardinality of \f — ag\ is 
therefore less than k. Since/ — ag is a linear combination of the desired type 
by the induction hypothesis, so is / . 

(1.2) A non-zero regular chain group is freely generated by a set of primitive 
elements. 

Proof. Let C be a regular chain group ^{0} , and for each k G [In] let 
Ck = {/ € C'.fii) = 0 for all i > &}. We have then a sequence 
G ÇI C2 £ . . . Q Cn = C of regular chain groups. Clearly, G is either {0} 
or freely generated by a primitive chain. Suppose that for every j < k the 
group Cj either is {0} or satisfies our proposition. Let irk be the restriction on 
Ck of the &th projection Zn —> Z which maps (xi, . . . , xk, . . . , xn) onto x*. 
If 7Tfc : G —-> Z is a zero map, then Ck = Ck-i and there is nothing to prove. 
Ifirk(Ck) 7^ 10}, then by (1.1) there is a primitive chain/^ G Ck with irk{h) = 1. 
Then, for any chain g G C* we have g — Trk(g)h G Cjt-i, whence Cfc = CA_i + Z^. 
This last sum is evidently direct. This proves (1.2). 

Let us introduce an ad hoc definition: a primitive chain will be called 
k-primitive if it is of the type ( * , . . . , * , 1, 0, . . . , 0) with the 1 at the &th 
spot and each asterisk representing 0 or ± 1 . Then, the above proof of (1.2) 
shows that a regular chain group of rank r possesses a free base {gi, . . . , gT\ 
where gt is ^-primitive for each 1 ^ i ^ r and 1 ^ ki < . . . < kr ^ n holds. 
Moreover, for each pair i < j , one can suppose that the kith coordinate spot 
of gj has 0 as its entry. For, if not already so, gi may be replaced by gj zL gt 

and then by a primitive chain having 1 as its kjïh coordinate entry and whose 
support is contained in \gj =1= gt\. That this replacement is possible is due to 
(1.1), and it is evident that the resulting base is again free. We have thus 
established the following: 

(1.3) A regular chain group C of rank r determines a set of r integers 
ki < . . . < kr belonging to [1 n] and an r X n matrix 
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kl k2 kT 

* . . * 1 0 . . 0 0 0 . . , 0 
* . . * 0 * . . . * 1 0 . . 0 
* . . * 0 * . . . * 0 * . , 0 

. 0 

* 0 * . . . * 0 * . 1 0 . . . 0 

whose rows form a free base of primitive chains in C. 

It is the next corollary of (1.3) that we actually need in § 2: 

(1.4) If C is a regular chain group, then the factor group Zn/C is torsion-free. 

Proof. Suppose that a chain / G Zn satisfies af 6 C for some non-zero 
a Ç Z. Then, af = Y,l=ifiigi with pt Ç Z, where gi, . . . , gr are the rows of 
the matrix in (1.3). Then, af(kt) = J^LiPtgiikt) = Pigi(kt) = 0« for all 
1 ^ i ^ r, whence a divides every fii a n d / = S*=i/(&*)#* € C. 

Observe that the converse of (1.4) is false, as seen by simple counter
examples such as the non-regular chain group {(2d, 3d) : d £ Z} C Z2. This 
example also shows that the regularity of a chain group is tied to the particular 
base of the ambient group U1 and is not invariant under unimodular coordinate 
transformations on Xn. 

We conclude this section (§1) by citing the following theorem of Tutte 
[3, (4.5), p. 19] which plays a crucial role in § 2 below: 

(1.5) Let M be an r X n matrix of rank r with integer entries. Then, the rows 
of M span a regular chain group of rank r if and only if every r X r minor of M 
has determinant 0 or ± 1 and at least one such determinant is non-zero. 

See Tutte, loc. cit. for the proof. 

2. Plucker coordinates of regular chain groups. Let C Ç Z K b e a regular 
chain group of rank r, and let / i , . . . ,fr be a Z-free base of C. For every 
ordered r-tuple I = (ii, . . . , ir) of integers between 1 and n, define 

P(l) = P ( i l f . . . , i f ) = det 

7i(*i) / i f e ) . . . fi(iT) 

L/VO'l) frfa) • •• fr(ir)j 

By (1.5), we know P(i) = — 1 , 0, or + 1 for each %, and not all P( t ) ' s are 
zero. It is clear that if I and j = (j\, . . . , jr) differ from each other only by a 
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permutation then P(ï) equals P(j) multiplied by the sign of that permutation. 
Let us fix, once and for all, one (arbitrary) ordering on the set of all those 
ordered r-tuples I = (ii, . . . , iT) satisfying i\ < i2 < . . . < iT, and arrange 

the corresponding P( ï ) ' s in that order; we thus obtain an ordered I I-tuple 

(. . . , P ( ï ) , . . .) of integers 0, ± 1 , not all of which are zero. We shall call the 

I I-tuple the Plilcker coordinates of the regular chain group C, and write 

P(C) = ± (. . . , P ( ï ) , . . .) . The appellation and the notation will presently 
be justified. 

(2.1) The Plilcker coordinates are uniquely determined by the regular chain 
group C, up to a constant multiplicative factor of ± 1 . 

Proof, If {gi, . . . , gr} is another Z-free base of C, then there is a uni» 
modular r X r matrix U with integer coefficients such that 

fgl~ 

= u 
7 i " 

Lër_ Jr. 

Consequently, for any ordered r-tuple I = (ii, 

'gitti) • . . gi(irï 

LZr(il) • • • gr{ir) J 

= U 

'Mil) 

,iT), we have 

J Si) . . . fSr)j 

Since det(£7) = + 1 or —1 independent of %, the last matrix equality proves 
our assertion. 

(2.2) The correspondence C —>P(C) = ± (. . . , P ( ï ) , . . .) is one-to-one 

( = infective) into the set of I \-tuples of integers, up to the factor of d=l. 

Proof. Let u G C. Then the matrix 

u(l) u{2) . . . u(n) 
/ i ( l ) / i ( 2 ) . . . / i ( n ) 

L/r(l) . Mn)J 
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has rank r, whence all (r + 1) X (r + 1) minors have vanishing determinents: 
For all io < i\ < . . . < iT, we have 

(*) u(i0)P(ii, . . . , iT) - u(ii)P(i0t i2t . . . , ir) + • • • 

+ (-iyu(ir)P(i0, * ! , . . . , ir-l) = 0. 

Conversely, suppose that a chain u £ Zn satisfies I I linear equations (*). 

Then, the (r + 1) X n matrix above, viewed as a matrix with rational 
coefficients, has rank ^ r (and in fact = r), and hence u = qif\ + . . . + qTfr 

with rational coefficients g*. After clearing all the denominators, one gets 
au = 61/1 + . . . + brfr with a Ç Z, a ^ 0, and all 6* G Z. By virtue of (1.4), 
it follows, then, that u itself is an integral linear combination of / / s . Therefore 
u £ C. We have thus established that the homogeneous simultaneous equa
tions (*) is a defining set of equations for C, and, therefore, that the Plûcker 
coordinates ± (. . . , P(^), . . .) up to the d=l factor determine C completely. 
This proves (2.2). 

Next we shall determine the condition for an ordered I I-tuple 

(. . . , 11(1), . . .) of integers 0, ± 1 to be the Plûcker coordinates of a regular 
chain group: 

(2.3) THEOREM. Let U be a function defined on the set of all ordered r-tuples 
I = (ii, . . . , ir) of integers in [1 n] taking its values in {— 1, 0, 1}. Then, in 
order that there exist a regular chain group C of rank r such that P(C) = 
± (. . . , U(ï), . . .), it is necessary and sufficient that 

(A) The U(ï)'s are not all zero and skew-symmetric on the indices (viz., 
a transposition of ip and iq results in the change of sign of U(l) only); and 

(B) For every combination of I = (ii, . . . , i r) , / = (Zi, . . . , lr) and 
s Ç [1 r], the relation 

U(ii,...,iT)U(h,...,lr) = 
T 

z2 U(ii, . . . , is-h hi is+h • • • * ir)U(h, . . . , Ip-ij isi ZP+i, . . . , lT) 

holds. 

For the proof of (2.3) we shall need the following lemma, which is also of 
an independent interest: 

(2.4) LEMMA. Let C be a regular chain group of rank r and let P(C) = 
db (. . . , P($), • • •) be its Plûcker coordinates. For each (r + 1)-tuple (ï,j) = 
(ii, • • • i irij) taken from [1 n], set 

F(ïJ\X) = X(ii)P(i2, . . . , i r , i ) - Xfa)P(ii,i3, . . .,ir,j) + . • . 

+ (-iyX(j)P(iu...,iT). 
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Suppose that P(ï) 9e 0 for a particular l = (ii, . . . , iT). Then, the set of n — r 
equations F(ï,j; X) = 0, j V ipfor any p Ç [1 r], is a defining set of equations 
for C; furthermore, every linear form with integral coefficients which vanish 
on C is an integral linear combination of the n — r forms F(ï,j; X), j 9e iv for 

Proof of (2.4). That a chain x = (x(l) , . . . ,x(n)) Ç C satisfies 
F(^,j\x) = 0 is already shown in (2.2). Conversely, let C be the set of 
solution vectors ( = chains) of the n — r equations. C C Xn is a chain group) 
of rank r as is evident from the shape of the forms, and contains C. But the 
rank of C is also r, and Zn/C is torsion-free by (1.4). Thus, C = C follows, 
proving the first half of our assertion. Next, let G(X) = G(X(1), . . . , X(n)) 
be a linear form vanishing on C. Then, it is a linear combination of the 
F(ï,j;X)'s with rational coefficients; whence bG(X) = J^j a,jF(ï,j\ X) with 
integers b and a / s . But b must divide all a/s because the coefficient of X(j) on 
the right hand side of the equality is ± aj for each j 9e iv. The lemma is now 
proven. 

Proof of (2.3). We first assume the existence of a regular chain group C with 
P(C) = ± (. . . , U(ï), . . .) and prove (B). (Notice that (A) requires no 
proof.) We fix an I = (ii, . . . , ir) such that U(ï) 9e 0, and take an arbitrary 
(r + l)-tuple (/o, lu . . . , lr) inside [1 n\. Now let 

(1) $ = Z (-1)^(^*1, • • • , in lp\X)U(lo, ...,lp,...,lr) 
p=0 

where lv designates the absence of that index, and F(ï, lp; X) is the same as 
in (2.4) except now f/'s are substituted for P 's . Then, $ clearly vanishes on C. 
Moreover, a calculation shows that (1) leads to 

r "1 

Z (— l)VU(iu . . . , îq, . . . , ir, lp)U(lo, . . . , lp, . . . , lr) \ 
p=0 J 

XX(iQ) + (—l)rZ7(ii, . . .,iT)F(!o, • • . , / , ; * ) . 

Thus, $ can be written as E i - » i ^ ^ ( 0 + (-l)rU(l)F(l; X) with Aq G Z, 
and the entire sum as well as its last term vanish on C. Consequently, 
£a=i AaX(iq) vanishes on C. It follows from (2.4) then that this last is a zero 
form: Aq = 0 for all g G [1 r]. Thus, from (2), we get 

(3) É ( - 1 W i , • • • , ̂ r-i, WE/(/o, . . . , /„ . . . , / , ) = 0 

which holds valid for every (r — l)-tuple (i'i, . . . , ir-\) for which there is a j 
such that [7(ii, . . . , iT-uj) ^ 0. But, if U(ii, . . . , iT-uj) = 0 for all j , the 
equality (3) is trivially true. All in all, we have (3) for all i\, . . . , ir_i and all 
Zo, . . . , /r, taken from [1 w]. We can now deduce (B) from (3) as follows. 

(2) 
^ = 1 

• i ) 
s+i 
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Firstly, write ir in lieu of lv in (3) to get 

U(ii,...,ir)U(h,...,lr) = 

r 

22 U(ii, . . . , ir-i, lp)U(Ju . . . , Zp_i, i r, lP+1, . . . , lr). 

Secondly, pick any s Ç [ l r ] and perform the permutation 

(ii . . . is-iis is+i . . . iT-\iT\ 
\i\ . . . is-iis+ïis+2. . . ir isJ 

on the last equality to get 

U(i\, . . . , is-i, is+i, . . . , ir, is)U(h, - . . ,lT) = 

r 

/ ^ £^'i> • • • > ^s-i> 5̂+i> • • • > in lp)U(h, . . . , Zp_i, i s , lp+u . . . , lr). 
P=i 

By moving i, on the left hand side and lp on the right, one obtains (B) as 
desired. 

We shall now prove the sufficiency of (A), (B). Thus, let £/(Î-)'S be given 
satisfying (A) and (B). Without loss of generality, we may assume 
£7(1, 2, . . . , r) 9e 0, and in fact £7(1, 2, . . . , r) = 1. This done, we define 

(4) fp(q) = Z7(l, 2, . . . , p - 1, q, p + 1, . . . , r) 

for all p G [lr],q Ç [1 «]. Let 

(5) 

7i 

L/J 

7 i ( l ) . . - / i ( 0 / i ( r + l ) . . . / i ( n ) " 

L / r ( l ) . . . / r ( 0 / r ( f + l ) . . . / r ( n ) . 

whose first r X r submatrix is actually the identity matrix. 
Let 

(6) P(iu . . . , iT) = det 

7i0'i) • • -fitir) 

Lfr(il) • • -fr(ir)m 

for each r-tuple I = (ii, . . . , if) from [1 w]. We shall prove that P(ï) = U(l) 
for all I. (This will tell us that the rows fi, . . . ,fT of (5) generate a regular 
chain group of rank r and the Plucker coordinates of that group are precisely 
the U(i)'s.) Toward that end, suppose that {ii, . . . , iT) contain as its subset 
precisely 5 integers ki, . . . , ks which are strictly larger than r, and write out 
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{ii, . . . ,ir] = {!, . . . ,ji - 1, ki,ji + 1, . . . ,j8 - l,ks,js + 1, . . . , rJ .Then 

(7) P(i i , . . . , ir) = det 

7 a i ; * i ) . . . / 0 ' i 

./0'.;*i).../0'.;*.)J 

ksy 

is clear, where for typographical reasons we have written f(p; q) in place of 
fp(q) if p has a suffix. If now 5 = 0 or 5 = 1, the desired result P(ï) = U(ï) is 
immediate. Therefore, let us assume P(ï) = U(ï) for all ï for which s < t, 
and consider the case s = t: 

By (B) with (h, . . . , lT) = (1, . . . , r) we have 

r 

(8) U{1) = 2 ] E7@i,... ,i s_i, P, is+u • • • ,ir)U(l,... ,p - l,i8,p + 1,... ,r) 
v=i 

and we may let is = kt = the last i not in [1 r]. Note that 

[7(ii, . . . , is_i, £, i,+i, . . . , ir) = 0 

unless p Ç [1 r] is one of j i , . . . , j t - Now, by the hypothesis of our induction, 
we have 

(9) U(iu . . . , is-u P, i*+i, • • • , ir) = P( i i , • • • , i s-i , £, i«+i, • • • , ir) 

70"i;W .../0"i;*«-i) /Cn;£) 

det 

. /0Y,*i) . . . / C 7 I ; * I - I ) /0" i ;^) . 

fUuki) . . .f(ji'>kt-i) 

( - l ) ^ d e t I / ( jx-r ,*i) . . ./(jx-r,&*-i) 
/Ox+r» *i) • • -/Ox+i; *«-i) 

L / 0 V i ; * i ) . . . /0 '«- i ;*«-i) . 

where £ = jx and the last equality is the outcome of the expansion by the last 
column. Finally, then, by (8) 

Ufa, . . .,ir) = Z ( - l ) f + X d e t ( . ) / O \ ; ^ 0 
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where • is the matrix on the right hand side of (9), and consequently 
U(ï) = d e t [ / ( j « ; ^ ) ] = P ( ï ) . 

3. Toward enumeration of regular chain groups. The results in the 
foregoing section (§2) showed that there exists a fundamental parallel between 
the regular chain groups in a given Zn and the linear subspaces in a given finite 
dimensional vector space. Possessing the main results (2.1), (2.2), and (2.3), 
one can now freely talk of Plûcker coordinates for regular chain groups, and 
can pursue their analogy with the classical Plûcker coordinates further. We 
shall briefly discuss a few more results parallel to known theorems in the 
classical Grassmann theory. These may one day prove useful in enumerating 
the regular chain groups of a given rank in a given Zn. Because our results in 
this direction are incomplete (and also because it should be by now clear how 
readily classical Grassmann theorems are translated in our situation), we shall 
not go into details of the proofs. 

(3.1) Let P(C) = d= (. . . , P(l)j . . .) be the Plûcker coordinates of a regular 
chain group C of rank r, and suppose P ( l , . . . , r) = 1. Then, every P(ï) can 
be expressed as a polynomial with integer coefficients in the r(n — r) 'variables' 
P(j, 2, . . . , r) , . . . , P ( l , . . . , p - l,j,p + 1, . . . , r) , . . . , P ( l , . . . , r - 1, j ) 
for j G [r + 1, w]. 

Indeed, since the P(ï)'s satisfy (B) of (2.3), we apply the formula with 
(/i, . . . , lT) = (1, . . . , r) and any one is $ [1 r] to obtain 

T 

P(ï) = Z) P(*i» • • > ^ - i , P, is+i, • • • , V)P(1, • . . , P - 1, i„ P + 1, . • • , r). 

Now there is one less index $ [1, r] among ii, . . . , is_i, p, is+i, . . . , ir. 
Repeat the process until all indices larger than r are eliminated. 

(3.2) With the notations and the assumptions of (3.1), the r(n — r) quantities 
P ( l , . . . , p — l,j,p+ 1, . . . , r) for j 6 [r + 1 n], p G [1 r] can freely vary 
within { — 1, 0, 1}. 

Indeed, the relation (B) of (2.3) among this type of P(^)'s can only be 
trivial. 

These facts suggest that one should first count the Plûcker coordinates 
of a given rank r with P ( l , . . . , r) = 1. By (3.2), there are Zr{n~r) possible 
combinations of values for the free variables P ( l , . . . , p — 1,7, p + 1, . . . , r) 
to take. All other P( ï ) ' s are well determined by (3.1) for each combination. 
If values other than 0, ± 1 are obtained for any one of these other P(ï)'s, 
the particular combination must be discarded. After this count of the regular 
chain groups with P ( l , . . . , r ) = 1 is done, one must count those with 
P ( l , . . . , r) = 0. In this regard, we have 

(3.3) Let C C Zw be a regular chain group of rank r, and 

P(C) = ± ( . . . , P ( i ) , . . . ) . 
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Then, P(1,2, . . . ,r) = 0 if and only if C contains a non-zero chain of the 
form (0, . . . , 0, aT+1, . . . , an). 

Indeed, let h = ( /x(l) , . . . ,f1(n)), . . . ,fT = (fT(l), . . . , / , (*) ) be a 
Z-free base of C. Then, P(l, . . . , r) = 0 means the rank of [fi(j)] (i G [ I f ] , 
3 € [1 r]) is less than r, or aifi(j) + . . . + arfr(j) = 0 for all j G [1 r] by a 
suitable choice of constants a / s in Z, not all zero. The converse is clear. 

We conclude the paper by an example. 

Example. The set of all regular chain groups of rank 2 contained in Z4 is 
parametrized by the Plucker coordinates ± (. . . , P(ij), . . .) with 6 essential 
entries. The P(ij)'s are 0 or ± 1 but not all zero, P(ji) = —P(ij), and they 
satisfy the only nontrivial identity 

P(34)P(12) = P(14)P(32) - P(13)P(42). 

The number of those C's with P(12) = 1 are 34 less the number of possible 
combinations of x, y, z, w ranging over { — 1, 0, 1} such that xw — yz = ± 2 . 
This last number is clearly 8. Thus there are 34 — 8 = 73 regular chain 
groups of the given dimension with P(12) = 1. As for those with P(12) = 0, 
their number is, by (1.3) and (3.3), equal to 65, which could be derived from 
the above identity, too. Thus, the total number of regular chain group of 
rank 2 in Z4 is 138. 

Added in proof. The added items of references 4, 5 and 6 below deal with 
materials related to the subject matter discussed above. The author thanks 
Professors G. J. Minty and W. T. Tutte who brought the items to his 
attention (February 20, 1973). 
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