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Abstract
Let q be a nontrivial odd prime power, and let 𝑛 ≥ 2 be a natural number with (𝑛, 𝑞) ≠ (2, 3). We characterize the
groups 𝑃𝑆𝐿𝑛 (𝑞) and 𝑃𝑆𝑈𝑛 (𝑞) by their 2-fusion systems. This contributes to a programme of Aschbacher aiming
at a simplified proof of the classification of finite simple groups.
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1. Introduction

The classification of finite simple groups (CFSG) is one of the greatest achievements in the history
of mathematics. Its proof required around 15,000 pages and spreads out over many hundred articles
in various journals. Many mathematicians from all over the world were involved in the proof, whose
final steps were published in 2004 by Aschbacher and Smith, after it was prematurely announced as
finished already in 1983. Because of its extreme length, a simplified and shortened proof of the CFSG
would be very valuable. There are three programmes working towards this goal: the Gorenstein–Lyons–
Solomon programme (see [26]), the Meierfrankenfeld–Stellmacher–Stroth programme (see [43]) and
Aschbacher’s programme.

The goal of Aschbacher’s programme is to obtain a new proof of the CFSG by using fusion systems.
The standard examples of fusion systems are the fusion categories of finite groups over p-subgroups (p
a prime). If G is a finite group and S is a p-subgroup of G for some prime p, then the fusion category of
G over S is defined to be the category F𝑆 (𝐺) given as follows: The objects of F𝑆 (𝐺) are precisely the
subgroups of S, the morphisms in F𝑆 (𝐺) are precisely the group homomorphisms between subgroups
of S induced by conjugation in G and the composition of morphisms in F𝑆 (𝐺) is the usual composition
of group homomorphisms. Abstract fusion systems are a generalization of this concept. A fusion system
over a finite p-group S, where p is a prime, is a category whose objects are the subgroups of S and
whose morphisms behave as if they are induced by conjugation inside a finite group containing S as a
p-subgroup. For the precise definition, we refer to [10, Part I, Definition 2.1]. A fusion system is called
saturated if it satisfies certain axioms motivated by properties of fusion categories of finite groups
over Sylow subgroups (see [10, Part I, Definition 2.2]). If G is a finite group and 𝑆1, 𝑆2 ∈ Syl𝑝 (𝐺) for
some prime p, then F𝑆1 (𝐺) and F𝑆2 (𝐺) are easily seen to be isomorphic (in the sense of [11, p. 560]).
Given a finite group G, a prime p and a Sylow p-subgroup S of G, we refer to F𝑆 (𝐺) as the p-fusion
system of G.

Originally considered by the representation theorist Puig, fusion systems have become an object of
active research in finite group theory, representation theory and algebraic topology. It has always been
a problem of great interest in the theory of fusion systems to translate group-theoretic concepts into
suitable concepts for fusion systems. For example, there is a notion of normalizers and centralizers of p-
subgroups in fusion systems, a notion of the center of a fusion system, a notion of factor systems, a notion
of normal subsystems of saturated fusion systems and a notion of simple saturated fusion systems (see
[10, Parts I and II]). Roughly speaking, Aschbacher’s programme consists of the following two steps.

1. Classify the simple saturated fusion systems on finite 2-groups. Use the original proof of the CFSG
as a ‘template’.

2. Use the first step to give a new and simplified proof of the CFSG.

There is the hope that several steps of the original proof of the CFSG become easier when working
with fusion systems. For example, in the original proof of the CFSG, the study of centralizers of
involutions plays an important role. The 2′-cores of the involution centralizers, i.e., their largest normal
odd order subgroups, cause serious difficulties and are obstructions to many arguments. Such difficulties
are not present in fusion systems since cores do not exist in fusion systems. This is suggested by the
well-known fact that the 2-fusion system of a finite group G is isomorphic to the 2-fusion system of
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𝐺/𝑂 (𝐺), where 𝑂 (𝐺) denotes the 2′-core of G. For an outline of and recent progress on Aschbacher’s
programme, we refer to [7].

So far, Aschbacher’s programme has focused mainly on Step 1, while not much has been done on
Step 2. An important part of Step 2 is to identify finite simple groups from their 2-fusion systems.
The present paper contributes to Step 2 of Aschbacher’s programme by characterizing the finite simple
groups 𝑃𝑆𝐿𝑛 (𝑞) and 𝑃𝑆𝑈𝑛 (𝑞) in terms of their 2-fusion systems, where 𝑛 ≥ 2 and where q is a
nontrivial odd prime power with (𝑛, 𝑞) ≠ (2, 3).

In order to state our results, we introduce some notation and recall some definitions. Let G be a
finite group. A component of G is a quasisimple subnormal subgroup of G, and a 2-component of G
is a perfect subnormal subgroup L of G such that 𝐿/𝑂 (𝐿) is quasisimple. The natural homomorphism
𝐺 → 𝐺/𝑂 (𝐺) induces a one-to-one correspondence between the set of 2-components of G and the set
of components of 𝐺/𝑂 (𝐺) (see [27, Proposition 4.7]). We use 𝑍∗(𝐺) to denote the full preimage of the
center 𝑍 (𝐺/𝑂 (𝐺)) in G. In Step 2 of Aschbacher’s programme, one may assume that a finite group G
is a minimal counterexample to the CFSG. Such a group G has the following property.

Whenever 𝑥 ∈ 𝐺 is an involution and 𝐽is a 2-component of 𝐶𝐺 (𝑥), (CK)
then 𝐽/𝑍∗(𝐽) is a known finite simple group.

By a known finite simple group, we mean a finite simple group appearing in the statement of the
CFSG.

For each integer 𝑛 ≠ 0, we use 𝑛2 to denote the 2-part of n, i.e., the largest power of 2 dividing
n. Given odd integers 𝑎, 𝑏 with |𝑎 |, |𝑏 | > 1, we write 𝑎 ∼ 𝑏 provided that (𝑎 − 1)2 = (𝑏 − 1)2 and
(𝑎 + 1)2 = (𝑏 + 1)2. If q is a nontrivial prime power and if n is a positive integer, then we write 𝑃𝑆𝐿+𝑛 (𝑞)
for 𝑃𝑆𝐿𝑛 (𝑞) and 𝑃𝑆𝐿−𝑛 (𝑞) for 𝑃𝑆𝑈𝑛 (𝑞). With this notation, we can now state our main results.

Theorem A. Let q be a nontrivial odd prime power, and let 𝑛 ≥ 2 be a natural number. Let G be a finite
simple group. Suppose that G satisfies (CK) if 𝑛 ≥ 6. Then the 2-fusion system of G is isomorphic to the
2-fusion system of 𝑃𝑆𝐿𝑛 (𝑞) if and only if one of the following holds:

(i) 𝐺 � 𝑃𝑆𝐿𝜀𝑛 (𝑞∗) for some nontrivial odd prime power 𝑞∗ and some 𝜀 ∈ {+,−} with 𝜀𝑞∗ ∼ 𝑞;
(ii) 𝑛 = 2, |𝑃𝑆𝐿2 (𝑞) |2 = 8, and 𝐺 � 𝐴7;

(iii) 𝑛 = 3, (𝑞 + 1)2 = 4, and 𝐺 � 𝑀11.

Our second main result is an extension of Theorem A. In order to state it, we briefly mention some
concepts from the local theory of fusion systems. Let F be a saturated fusion system on a finite p-
group S for some prime p, and let E be a normal subsystem of F . In [6, Chapter 6], Aschbacher
introduced a subgroup 𝐶𝑆 (E) of S, which plays the role of the centralizer of E in S. In [6, Chapter 9],
he defined a normal subsystem 𝐹∗(F) of F , called the generalized Fitting subsystem of F , and proved
that 𝐶𝑆 (𝐹∗(F)) = 𝑍 (𝐹∗(F)), where the latter denotes the center of 𝐹∗(F).

Theorem B. Let q be a nontrivial odd prime power, and let 𝑛 ≥ 2 be a natural number. If 𝑛 = 2,
suppose that 𝑞 ≡ 1 or 7 mod 8. Let G be a finite simple group, and let S be a Sylow 2-subgroup of G.
Suppose that F𝑆 (𝐺) has a normal subsystem E on a subgroup T of S such that E is isomorphic to the 2-
fusion system of 𝑃𝑆𝐿𝑛 (𝑞) and such that𝐶𝑆 (E) = 1. Then F𝑆 (𝐺) is isomorphic to the 2-fusion system of
𝑃𝑆𝐿𝑛 (𝑞). In particular, if 𝑛 ≤ 5 or if G satisfies (CK), then one of the properties (i)–(iii) from Theorem A
holds.

Corollary C. Let q be a nontrivial odd prime power, and let 𝑛 ≥ 2 be a natural number. If 𝑛 = 2,
suppose that 𝑞 ≡ 1 or 7 mod 8. Let G be a finite simple group, and let S be a Sylow 2-subgroup of G.
Suppose that 𝐹∗(F𝑆 (𝐺)) is isomorphic to the 2-fusion system of 𝑃𝑆𝐿𝑛 (𝑞). Then F𝑆 (𝐺) is isomorphic

https://doi.org/10.1017/fms.2022.53 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.53


4 Julian Kaspczyk

to the 2-fusion system of 𝑃𝑆𝐿𝑛 (𝑞). In particular, if 𝑛 ≤ 5 or if G satisfies (CK), then one of the properties
(i)–(iii) from Theorem A holds.

Plan of the Paper

In Sections 2 and 3, we collect several results needed for the proofs of our main results. Preliminary
results on abstract finite groups and abstract fusion systems are proved in Section 2. Section 3 presents
some results on linear and unitary groups over finite fields, mainly focusing on 2-local properties and
on the automorphisms of these groups.

In Section 4, we will verify Theorem A for the case 𝑛 ≤ 5. Our proofs strongly depend on work of
Gorenstein and Walter [30] (for 𝑛 = 2), on work of Alperin, Brauer and Gorenstein [1], [2] (for 𝑛 = 3)
and on work of Mason [40], [41], [42] (for 𝑛 = 4 and 𝑛 = 5).

For 𝑛 ≥ 6, we will prove Theorem A by induction over n. In order to do so, we will consider a finite
group G realizing the 2-fusion system of 𝑃𝑆𝐿𝑛 (𝑞), where q is a nontrivial odd prime power and where
𝑛 ≥ 6 is a natural number such that Theorem A is true with m instead of n for any natural number m with
6 ≤ 𝑚 < 𝑛. We will also assume that 𝑂 (𝐺) = 1 and that G satisfies (CK). To prove that Theorem A is
satisfied for the natural number n, we will prove the existence of a normal subgroup 𝐺0 of G such that
𝐺0 is isomorphic to a nontrivial quotient of 𝑆𝐿𝜀𝑛 (𝑞∗) for some nontrivial odd prime power 𝑞∗ and some
𝜀 ∈ {+,−} with 𝜀𝑞∗ ∼ 𝑞. This will happen in Sections 5-8.

In Section 5, we will introduce some notation and prove some preliminary lemmas. Section 6
describes the 2-components of the centralizers of involutions of G. In Section 7, we will use signalizer
functor methods to describe the components of the centralizers of certain involutions of G. This will be
used in Section 8 to construct the subgroup 𝐺0 of G. One of the main tools here will be a version of the
Curtis–Tits theorem [29, Chapter 13, Theorem 1.4] and a related theorem of Phan reproved by Bennett
and Shpectorov in [13].

Finally, in Section 9, we will give a full proof of Theorem A (basically summarizing Sections 4–8),
and we will prove Theorem B and Corollary C.

Notation and Terminology

Our notation and terminology are fairly standard. The reader is referred to [23], [27], [37] for unfamiliar
definitions on groups and to [10], [18] for unfamiliar definitions on fusion systems.

However, we shall now explain some particularly important notation and definitions (before stating
our main results, we already introduced some other important definitions).

Given a map 𝛼 : 𝐴→ 𝐵 and an element or a subset X of A, we write 𝑋𝛼 for the image of X under 𝛼.
Also, if 𝐶 ⊆ 𝐴 and 𝐷 ⊆ 𝐵 such that 𝐶𝛼 ⊆ 𝐷, we use 𝛼 |𝐶,𝐷 to denote the map 𝐶 → 𝐷, 𝑐 ↦→ 𝑐𝛼. Given
two maps 𝛼 : 𝐴→ 𝐵 and 𝛽 : 𝐵 → 𝐶, we write 𝛼𝛽 for the map 𝐴→ 𝐶, 𝑎 ↦→ (𝑎𝛼)𝛽 .

Sometimes, we will interpret the symbols + and − as the integers 1 and −1, respectively. For example,
if n is an integer and if 𝜀 is assumed to be an element of {+,−}, then 𝑛 ≡ 𝜀 mod 4 shall express that
𝑛 ≡ 1 mod 4 if 𝜀 = + and that 𝑛 ≡ −1 mod 4 if 𝜀 = −.

Let G be a finite group. We write𝐺# for the set of nonidentity elements of G. Given an element g of G
and an element or a subset X of G, we write 𝑋𝑔 for 𝑔−1𝑋𝑔. The inner automorphism 𝐺 → 𝐺, 𝑥 ↦→ 𝑥𝑔 is
denoted by 𝑐𝑔. For subgroups Q and H of G, we write Aut𝐻 (𝑄) for the subgroup of Aut(𝑄) consisting
of all automorphisms of Q of the form 𝑐ℎ |𝑄,𝑄, where ℎ ∈ 𝑁𝐻 (𝑄).

We write 𝐸 (𝐺) for the subgroup of G generated by the components of G and 𝐿2′ (𝐺) for the subgroup
of G generated by the 2-components of G. We say that G is core-free if 𝑂 (𝐺) = 1. If G is core-free and
if L is a subnormal subgroup of G, then L is said to be a solvable 2-component of G if 𝐿 � 𝑆𝐿2 (3) or
𝑃𝑆𝐿2 (3).

Let n be a natural number. Then we use 𝐸2𝑛 to denote an elementary abelian 2-group of order 2𝑛,
and we say that n is the rank of 𝐸2𝑛 . The maximal rank of an elementary abelian 2-subgroup of a finite
2-group S is said to be the rank of S. It is denoted by 𝑚(𝑆).
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Now let p be a prime, and let F be a fusion system on a finite p-group S. Then S is said to be the
Sylow group of F , and F is said to be nilpotent if F = F𝑆 (𝑆). Given a fusion system F1 on a finite
p-group 𝑆1, we say that F and F1 are isomorphic if there is a group isomorphism 𝜑 : 𝑆 → 𝑆1 such that

HomF1 (𝑄
𝜑 , 𝑅𝜑) = {(𝜑−1 |𝑄𝜑 ,𝑄)𝜓(𝜑|𝑅,𝑅𝜑 ) | 𝜓 ∈ HomF (𝑄, 𝑅)}

for all 𝑄, 𝑅 ≤ 𝑆. In this case, we say that 𝜑 induces an isomorphism from F to F1. Let T be a
strongly F-closed subgroup of S, i.e., for any subgroup P of T and any 𝛼 ∈ HomF (𝑃, 𝑆), we have
𝑃𝛼 ≤ 𝑇 . If Q and R are subgroups of S containing T and if 𝛼 : 𝑄 → 𝑅 is a morphism in F , we write
𝛼/𝑇 for the group homomorphism 𝑄/𝑇 → 𝑅/𝑇 induced by 𝛼. The fusion system F/𝑇 on 𝑆/𝑇 with
HomF/𝑇 (𝑄/𝑇, 𝑅/𝑇) = {𝛼/𝑇 | 𝛼 ∈ HomF (𝑄, 𝑅)} for all 𝑄, 𝑅 ≤ 𝑆 containing T is said to be the factor
system of F modulo T.

Suppose now that F is saturated. We write 𝔣𝔬𝔠(F) for the focal subgroup of F and 𝔥𝔫𝔭(F) for
the hyperfocal subgroup of F . We say that F is quasisimple if F/𝑍 (F) is simple and 𝔣𝔬𝔠(F) = 𝑆.
A component of F is a subnormal quasisimple subsystem of F . Given a normal subsystem E of S and
a subgroup R of S, we write E𝑅 for the product of E and R, as defined in [6, Chapter 8].

2. Preliminaries on finite groups and fusion systems

In this section, we present some general results on finite groups and fusion systems.

2.1. Preliminaries on finite groups

Lemma 2.1 [37, 3.2.8]. Let G be a finite group, and let N be a normal 𝑝′-subgroup of G for some prime
p. Set 𝐺 := 𝐺/𝑁 . If R is a p-subgroup of G, then we have 𝑁𝐺 (𝑅) = 𝑁𝐺 (𝑅) and 𝐶𝐺 (𝑅) = 𝐶𝐺 (𝑅).

Corollary 2.2. Let G be a finite group, and let N be a normal 𝑝′-subgroup of G for some prime p. Set
𝐺 := 𝐺/𝑁 . If 𝑥 ∈ 𝐺 has order p, then we have 𝐶𝐺 (𝑥) = 𝐶𝐺 (𝑥).

Lemma 2.3. Let G be a finite group, and let Z be a cyclic central subgroup of G. Then each 𝐸8-subgroup
of 𝐺/𝑍 has an involution which is the image of an involution of G.

Proof. Let 𝑍 ≤ 𝐸 ≤ 𝐺 such that 𝐸/𝑍 � 𝐸8. Let R be a Sylow 2-subgroup of E. Then 𝐸 = 𝑅𝑍 . It
suffices to show that R has an involution not lying in 𝑅∩𝑍 . Assume that any involution of R is an element
of 𝑅 ∩ 𝑍 . Then R has a unique involution since Z is cyclic. We have 𝑅/(𝑅 ∩ 𝑍) � 𝑅𝑍/𝑍 = 𝐸/𝑍 � 𝐸8,
and so R is not cyclic. Applying [37, 5.3.7], we conclude that R is generalized quaternion. In particular,
𝑍 (𝑅) has order 2, and so we have 𝑅 ∩ 𝑍 = 𝑍 (𝑅). Since R is a generalized quaternion group, 𝑅/𝑍 (𝑅)
is dihedral. In particular, 𝐸/𝑍 � 𝑅/(𝑅 ∩ 𝑍) = 𝑅/𝑍 (𝑅) � 𝐸8. This contradiction shows that R has an
involution not lying in 𝑅 ∩ 𝑍 , as required. �

The following proposition is well-known. We include a proof since we could not find a reference in
which it appears in the form given here.

Proposition 2.4. Let G be a finite group, and let N be a normal subgroup of G with odd order. If L is a
2-component of G, then 𝐿𝑁/𝑁 is a 2-component of 𝐺/𝑁 . The map from the set of 2-components of G
to the set of 2-components of 𝐺/𝑁 sending each 2-component L of G to 𝐿𝑁/𝑁 is a bijection. Moreover,
if 𝑁 ≤ 𝐾 ≤ 𝐺 and 𝐾/𝑁 is a 2-component of 𝐺/𝑁 , then 𝑂2′ (𝐾) is the associated 2-component of G.

Proof. Let L be a 2-component of G. Hence, L is a perfect subnormal subgroup of G such that 𝐿/𝑂 (𝐿)
is quasisimple. Clearly, 𝐿𝑁/𝑁 is perfect and subnormal in 𝐺/𝑁 . Also, we have (𝐿𝑁/𝑁)/𝑂 (𝐿𝑁/𝑁) �
𝐿/𝑂 (𝐿), and so (𝐿𝑁/𝑁)/𝑂 (𝐿𝑁/𝑁) is quasisimple. It follows that 𝐿𝑁/𝑁 is a 2-component of 𝐺/𝑁 .

Let 𝑁 ≤ 𝐾 ≤ 𝐺 such that 𝐾/𝑁 is a 2-component of 𝐺/𝑁 . In order to prove the second statement
of the proposition, it is enough to show that there is precisely one 2-component L of G such that
𝐿𝑁/𝑁 = 𝐾/𝑁 .
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Since 𝐾/𝑁 is subnormal in 𝐺/𝑁 , we have that K is subnormal in G. Therefore, 𝐿 := 𝑂2′ (𝐾) is
subnormal in G. Since 𝑂2′ (𝐾/𝑁) = 𝐾/𝑁 , we have that 𝐾/𝑁 = 𝐿𝑁/𝑁 . Clearly, 𝑂2′ (𝐿) = 𝐿. We have
𝐿/𝑂 (𝐿) � (𝐿𝑁/𝑁)/𝑂 (𝐿𝑁/𝑁) = (𝐾/𝑁)/𝑂 (𝐾/𝑁), and so 𝐿/𝑂 (𝐿) is quasisimple. Applying [27,
Lemma 4.8], we conclude that L is a 2-component of G.

Now let 𝐿0 be a 2-component of G such that 𝐾/𝑁 = 𝐿0𝑁/𝑁 . Then 𝐾 = 𝐿0𝑁 . In particular, 𝐿0 is
a subgroup of K with odd index in K. Since 𝐿0 is subnormal in G, we have that 𝐿0 is subnormal in
K. Applying [12, Lemma 1.1.11], we conclude that 𝐿0 = 𝑂2′ (𝐿0) = 𝑂2′ (𝐾) = 𝐿. The proof of the
second statement of the proposition is now complete. The third statement also follows from the above
arguments. �

Lemma 2.5. Let G be a finite group, and let n be a positive integer. Assume that 𝐿1, . . . , 𝐿𝑛 are the
distinct 2-components of G, and assume that 𝐿𝑖 � 𝐺 for all 1 ≤ 𝑖 ≤ 𝑛. Let x be a 2-element of G, and
let L be a 2-component of 𝐶𝐺 (𝑥). Then L is a 2-component of 𝐶𝐿𝑖 (𝑥) for some 1 ≤ 𝑖 ≤ 𝑛.

Proof. For each 1 ≤ 𝑖 ≤ 𝑛, let 𝔏𝑖 denote the set of 2-components of 𝐶𝐿𝑖 (𝑥), and let 𝔏 := 𝔏1 ∪ . . .𝔏𝑛. It
suffices to show that 𝐿 ∈ 𝔏.

By [31, Corollary 3.2], we have 𝐿2′ (𝐶𝐺 (𝑥)) = 𝐿2′ (𝐶𝐿2′ (𝐺) (𝑥)), and by [31, Lemma 2.18 (iii)], we
have 𝐿2′ (𝐶𝐿2′ (𝐺) (𝑥)) =

∏𝑛
𝑖=1 𝐿2′ (𝐶𝐿𝑖 (𝑥)). Thus 𝐿2′ (𝐶𝐺 (𝑥)) = 〈𝔏〉. Set 𝐶𝐺 (𝑥) := 𝐶𝐺 (𝑥)/𝑂 (𝐶𝐺 (𝑥)).

Assume that 𝐿 ∉ 𝔏. Let J be an element of 𝔏. Since 𝐿 ≠ 𝐽 and since L and J are 2-components
of 𝐶𝐺 (𝑥), we have 𝐿 ≠ 𝐽 by Proposition 2.4. Also, since 𝐿 and 𝐽 are components of 𝐶𝐺 (𝑥), we have
[𝐿, 𝐽] = 1 by [37, 6.5.3]. Since 𝐿 ∈ 𝐸 (𝐶𝐺 (𝑥)) = 𝐿2′ (𝐶𝐺 (𝑥)) = 〈𝔏〉 = 〈𝐽 | 𝐽 ∈ 𝔏〉, it follows that 𝐿 lies
in the center of 𝐸 (𝐶𝐺 (𝑥)). This is impossible since 𝐿 is nontrivial and perfect. So we have 𝐿 ∈ 𝔏. �

The concepts introduced by the following two definitions will play a crucial role in the proof of
Theorem A (see [31] for a detailed study of these concepts).

Definition 2.6. Let G be a finite group, k be a positive integer and A be an elementary abelian 2-subgroup
of G.

(i) For each nontrivial elementary abelian 2-subgroup E of G, we define

Δ𝐺 (𝐸) :=
⋂
𝑎∈𝐸#

𝑂 (𝐶𝐺 (𝑎)).

(ii) We say that G is k-balanced with respect to A if, whenever E is a subgroup of A of rank k and a is
a nontrivial element of A, we have

Δ𝐺 (𝐸) ∩ 𝐶𝐺 (𝑎) ≤ 𝑂 (𝐶𝐺 (𝑎)).

(iii) We say that G is k-balanced if, whenever E is an elementary abelian 2-subgroup of G of rank k and
a is an involution of G centralizing E, we have

Δ𝐺 (𝐸) ∩ 𝐶𝐺 (𝑎) ≤ 𝑂 (𝐶𝐺 (𝑎)).

(iv) By saying that G is balanced (respectively, balanced with respect to A), we mean that G is 1-
balanced (respectively, 1-balanced with respect to A).

Definition 2.7. Let G be a finite quasisimple group, and let k be a positive integer. Then G is said to be
locally k-balanced if whenever H is a subgroup of Aut(𝐺) containing Inn(𝐺), we have

Δ𝐻 (𝐸) = 1

for any elementary abelian 2-subgroup E of H of rank k. We say that G is locally balanced if G is locally
1-balanced.
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We need the following proposition for the proof of Theorem A. It includes [31, Theorem 6.10] and
some additional statements, which should be also known. We include a proof for the convenience of the
reader.

Proposition 2.8. Let k be a positive integer, and let G be a finite group. For each elementary abelian
2-subgroup A of G of rank at least 𝑘 + 1, let

𝑊𝐴 := 〈Δ𝐺 (𝐸) | 𝐸 ≤ 𝐴, 𝑚(𝐸) = 𝑘〉.

Then, for any elementary abelian 2-subgroup A of G of rank at least 𝑘 + 1, the following hold:

(i) (𝑊𝐴)
𝑔 = 𝑊𝐴𝑔 for all 𝑔 ∈ 𝐺.

(ii) Suppose that A has rank at least 𝑘 + 2 and that G is k-balanced with respect to A. Then 𝑊𝐴 has
odd order. Moreover, if 𝐴0 is a subgroup of A of rank at least 𝑘 + 1, then we have 𝑊𝐴 = 𝑊𝐴0 and
𝑁𝐺 (𝐴0) ≤ 𝑁𝐺 (𝑊𝐴).

In order to prove Proposition 2.8, we need the following theorem.

Theorem 2.9 [31, Theorem 6.9]. Let k be a positive integer, G be a finite group and A be an elementary
abelian 2-subgroup of G of rank at least 𝑘 + 2. Suppose that G is k-balanced with respect to A. Then we
obtain an A-signalizer functor on G (in the sense of [24, Definition 4.37]) by defining

𝜃 (𝐶𝐺 (𝑎)) := 〈Δ𝐺 (𝐸) ∩ 𝐶𝐺 (𝑎) : 𝐸 ≤ 𝐴, 𝑚(𝐸) = 𝑘〉

for each 𝑎 ∈ 𝐴#.

We also need the following lemma.

Lemma 2.10. Let the hypothesis and notation be as in Theorem 2.9. Suppose that 𝐴0 is subgroup of A
of rank 𝑘 + 1. Then we have

𝜃 (𝐺, 𝐴) := 〈𝜃 (𝐶𝐺 (𝑎)) | 𝑎 ∈ 𝐴#〉 = 〈Δ𝐺 (𝐸) | 𝐸 ≤ 𝐴0, 𝑚(𝐸) = 𝑘〉 =: 𝑊𝐴0 .

Proof. To prove this, we follow arguments found on pp. 40–41 of [40].
Since 𝜃 is an A-signalizer functor on G, 𝜃 (𝐶𝐺 (𝑎)) is A-invariant and in particular 𝐴0-invariant for

each 𝑎 ∈ 𝐴#. Consequently, 𝜃 (𝐺, 𝐴) is 𝐴0-invariant. By the solvable signalizer functor theorem [37,
11.3.2], 𝜃 is complete (in the sense of [24, Definition 4.37]). In particular, 𝜃 (𝐺, 𝐴) has odd order.
Applying [27, Proposition 11.23], we conclude that

𝜃 (𝐺, 𝐴) = 〈𝐶𝜃 (𝐺,𝐴) (𝐸) | 𝐸 ≤ 𝐴0, 𝑚(𝐸) = 𝑘〉.

Since 𝜃 is complete, we have 𝐶𝜃 (𝐺,𝐴) (𝑎) = 𝜃 (𝐶𝐺 (𝑎)) for each 𝑎 ∈ 𝐴#. By definition of 𝜃 and since G
is k-balanced with respect to A, we have 𝜃 (𝐶𝐺 (𝑎)) ≤ 𝑂 (𝐶𝐺 (𝑎)) for each 𝑎 ∈ 𝐴#. So, if E is a subgroup
of 𝐴0 of rank k, then

𝐶𝜃 (𝐺,𝐴) (𝐸) =
⋂
𝑎∈𝐸#

𝐶𝜃 (𝐺,𝐴) (𝑎) =
⋂
𝑎∈𝐸#

𝜃 (𝐶𝐺 (𝑎)) ≤
⋂
𝑎∈𝐸#

𝑂 (𝐶𝐺 (𝑎)) = Δ𝐺 (𝐸).

It follows that 𝜃 (𝐺, 𝐴) ≤ 𝑊𝐴0 .
Let 𝐸 ≤ 𝐴0 with 𝑚(𝐸) = 𝑘 . Clearly, Δ𝐺 (𝐸) is A-invariant. As a consequence of [27, Proposition

11.23], we have

Δ𝐺 (𝐸) = 〈Δ𝐺 (𝐸) ∩ 𝐶𝐺 (𝑎) | 𝑎 ∈ 𝐴#〉.

By definition of 𝜃, we have Δ𝐺 (𝐸) ∩ 𝐶𝐺 (𝑎) ≤ 𝜃 (𝐶𝐺 (𝑎)) for each 𝑎 ∈ 𝐴#. It follows that Δ𝐺 (𝐸) ≤

𝜃 (𝐺, 𝐴). Consequently,𝑊𝐴0 ≤ 𝜃 (𝐺, 𝐴). �
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Proof of Proposition 2.8. It is straightforward to verify (i).
To verify (ii), let A be an elementary abelian 2-subgroup of G of rank at least 𝑘 + 2 such that G is

k-balanced with respect to A. Let 𝜃 be the A-signalizer functor on G given by Theorem 2.9, and let
𝜃 (𝐺, 𝐴) := 〈𝜃 (𝐶𝐺 (𝑎)) | 𝑎 ∈ 𝐴#〉. As a consequence of Lemma 2.10, we have 𝜃 (𝐺, 𝐴) = 𝑊𝐴. By the
proof of Lemma 2.10,𝑊𝐴 = 𝜃 (𝐺, 𝐴) has odd order.

Now let 𝐴0 be a subgroup of A of rank at least 𝑘 + 1. By Lemma 2.10,𝑊𝐴 = 𝜃 (𝐺, 𝐴) ≤ 𝑊𝐴0 ≤ 𝑊𝐴,
and so 𝑊𝐴 = 𝑊𝐴0 . Finally, if 𝑔 ∈ 𝑁𝐺 (𝐴0), then (𝑊𝐴)

𝑔 = (𝑊𝐴0)
𝑔 = 𝑊(𝐴0)𝑔 = 𝑊𝐴0 = 𝑊𝐴, and hence,

𝑁𝐺 (𝐴0) ≤ 𝑁𝐺 (𝑊𝐴). �

2.2. Preliminaries on fusion systems

Lemma 2.11. Let p be a prime, G be a finite group, N be a normal subgroup of G and 𝑆 ∈ Syl𝑝 (𝐺). Then
the canonical group isomorphism 𝑆/(𝑆 ∩ 𝑁) → 𝑆𝑁/𝑁 induces an isomorphism from F𝑆 (𝐺)/(𝑆 ∩ 𝑁)
to F𝑆𝑁 /𝑁 (𝐺/𝑁).

Proof. Let 𝜑 denote the canonical group isomorphism 𝑆/(𝑆 ∩ 𝑁) → 𝑆𝑁/𝑁 . Let P and Q be two
subgroups of S such that 𝑆 ∩ 𝑁 is contained in both P and Q. Set 𝑃 := 𝑃/(𝑆 ∩ 𝑁), 𝑄 := 𝑄/(𝑆 ∩ 𝑁),
𝑃 := 𝑃𝑁/𝑁 and 𝑄 := 𝑄𝑁/𝑁 . For any 𝑔 ∈ 𝐺, let 𝑔 := 𝑔𝑁 . Moreover, define F̃ := F𝑆 (𝐺)/(𝑆 ∩ 𝑁) and
F := F𝑆𝑁 /𝑁 (𝐺/𝑁). It is enough to show that

HomF (𝑃,𝑄) = {(𝜑−1 |𝑃,𝑃)𝛼(𝜑|𝑄,𝑄) | 𝛼 ∈ HomF̃ (𝑃,𝑄)}.

Let 𝛼 ∈ HomF̃ (𝑃,𝑄). Then there exists 𝑔 ∈ 𝐺 with 𝑃𝑔 ≤ 𝑄 and 𝛼 = (𝑐𝑔 |𝑃,𝑄)/(𝑆 ∩ 𝑁). By a direct
calculation, (𝜑−1 |𝑃,𝑃)𝛼(𝜑|𝑄,𝑄) = 𝑐𝑔 |𝑃,𝑄 ∈ HomF (𝑃,𝑄).

Now let 𝛼 ∈ HomF (𝑃,𝑄). Then there exists 𝑔 ∈ 𝐺 with 𝑃𝑔 ≤ 𝑄 and 𝛼 = 𝑐𝑔 |𝑃,𝑄. Clearly, 𝑃𝑔 ≤ 𝑄𝑁 .
Since 𝑆 ∩ 𝑁 ≤ 𝑄, we have that Q is a Sylow p-subgroup of 𝑄𝑁 . Since 𝑃𝑔 is a p-subgroup of 𝑄𝑁 , it
follows that there exists an element 𝑛 ∈ 𝑁 with 𝑃𝑔𝑛 ≤ 𝑄. Set 𝛼 := (𝑐𝑔𝑛 |𝑃,𝑄)/(𝑆 ∩ 𝑁). Then a direct
calculation shows that 𝛼 = (𝜑−1 |𝑃,𝑃)𝛼(𝜑|𝑄,𝑄). �

Corollary 2.12 [10, Part II, Exercise 2.1]. Let p be a prime, G be a finite group and 𝑆 ∈ Syl𝑝 (𝐺). Then
the canonical group isomorphism 𝑆 → 𝑆 := 𝑆𝑂 𝑝′ (𝐺)/𝑂 𝑝′ (𝐺) induces an isomorphism from F𝑆 (𝐺)
to F𝑆 (𝐺/𝑂 𝑝′ (𝐺)).
Lemma 2.13. Let G be a finite group and 𝑆 ∈ Syl2(𝐺). Then 𝑍 (F𝑆 (𝐺)) = 𝑆 ∩ 𝑍∗(𝐺). In particular, if
𝑍∗(𝐺) is 2-closed, then 𝑍 (F𝑆 (𝐺)) = 𝑆 ∩ 𝑍 (𝐺).
Proof. By Glauberman’s 𝑍∗-Theorem, more precisely by [22, Corollary 1], we have 𝑍 (F𝑆 (𝐺)) =
𝑆 ∩ 𝑍∗(𝐺). Assume now that 𝑍∗(𝐺) is 2-closed, and let 𝑆0 := 𝑆 ∩ 𝑍∗(𝐺). Then 𝑆0 � 𝐺 and hence
[𝑆0, 𝐺] ≤ 𝑆0 ∩ [𝑍∗(𝐺), 𝐺] ≤ 𝑆0 ∩𝑂 (𝐺) = 1. Thus, 𝑍 (F𝑆 (𝐺)) = 𝑆0 = 𝑆 ∩ 𝑍 (𝐺). �

Lemma 2.14. Let 𝐾1 and 𝐾2 be two quasisimple finite groups. If the 2-fusion systems of 𝐾1 and 𝐾2 are
isomorphic, then the 2-fusion systems of 𝐾1/𝑍 (𝐾1) and 𝐾2/𝑍 (𝐾2) are isomorphic.

Proof. Suppose that the 2-fusion systems of 𝐾1 and 𝐾2 are isomorphic. Let 𝑆𝑖 be a Sylow 2-subgroup
of 𝐾𝑖 and F𝑖 := F𝑆𝑖 (𝐾𝑖) for 𝑖 ∈ {1, 2}. Since 𝐾1 and 𝐾2 are quasisimple, we have 𝑍∗(𝐾𝑖) = 𝑍 (𝐾𝑖) for
𝑖 ∈ {1, 2}. So, by Lemma 2.13, we have 𝑍 (F𝑖) = 𝑆𝑖∩𝑍 (𝐾𝑖) for 𝑖 ∈ {1, 2}. Since F1 � F2, it follows that

F1/(𝑆1 ∩ 𝑍 (𝐾1)) = F1/𝑍 (F1) � F2/𝑍 (F2) = F2/(𝑆2 ∩ 𝑍 (𝐾2)).

Applying Lemma 2.11, we may conclude that the 2-fusion system of 𝐾1/𝑍 (𝐾1) is isomorphic to the
2-fusion system of 𝐾2/𝑍 (𝐾2). �

Lemma 2.15. Let S be a finite 2-group, and let A and B be normal subgroups of S such that S is the
internal direct product of A and B. Suppose that 𝐴 � 𝑄8. Let F be a (not necessarily saturated) fusion
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system on S. Assume that A and B are strongly F-closed and that there is an automorphism 𝛼 ∈ AutF (𝑆)
such that 𝛼 |𝐴,𝐴 has order 3, while 𝛼 |𝐵,𝐵 = id𝐵. Then each strongly F-closed subgroup of S contains or
centralizes A.
Proof. Let C be a strongly F-closed subgroup of S not containing A. Our task is to show that C
centralizes A.

Since A and C are strongly F-closed, we have that 𝐴 ∩ 𝐶 is strongly F-closed. In particular, 𝛼
normalizes 𝐴 ∩ 𝐶. An automorphism of 𝐴 � 𝑄8 of order 3 is irreducible on 𝐴/Φ(𝐴). So, as 𝛼 |𝐴,𝐴 has
order 3 and normalizes 𝐴 ∩ 𝐶, we have that 𝐴 ∩ 𝐶 has order 1 or 2.

By [37, 8.2.7], we have

[𝐶, 〈𝛼〉] = [[𝐶, 〈𝛼〉], 〈𝛼〉] .

By hypothesis [𝑆, 𝛼] = 𝐴, so [𝐶, 𝛼] ≤ [𝑆, 𝛼] ∩ 𝐶 = 𝐴 ∩ 𝐶. As |𝐴 ∩ 𝐶 | ≤ 2, [𝐴 ∩ 𝐶, 𝛼] = 1, so
[𝐶, 𝛼] = [𝐶, 𝛼, 𝛼] = [𝐴 ∩ 𝐶, 𝛼] = 1. Hence, 𝐶 ≤ 𝐶𝑆 (𝛼) = 𝑍 (𝐴)𝐵 = 𝐶𝑆 (𝐴). �

We need the following definition in order to state the next proposition.
Definition 2.16. A nonabelian finite simple group G is said to be a Goldschmidt group provided that
one of the following holds:
(1) G has an abelian Sylow 2-subgroup.
(2) G is isomorphic to a finite simple group of Lie type in characteristic 2 of Lie rank 1.
Proposition 2.17. Let G be a finite group, and let S be a Sylow 2-subgroup of G. Assume that, for each
2-component L of G, the factor group 𝐿/𝑍∗ (𝐿) is a known finite simple group. Let 𝔏2′ denote the set of
2-components L of G such that 𝐿/𝑍∗ (𝐿) is not a Goldschmidt group. Then the following hold:
(i) Let L be a 2-component of G. Then F𝑆∩𝐿 (𝐿) is a component of F𝑆 (𝐺) if and only if 𝐿 ∈ 𝔏2′ .

(ii) The map from 𝔏2′ to the set of components of F𝑆 (𝐺) sending each element L of 𝔏2′ to F𝑆∩𝐿 (𝐿) is
a bijection.

Proof. Let L be a 2-component of G. Set G := F𝑆∩𝐿 (𝐿). Since L is subnormal in G, we have that G is
subnormal in F𝑆 (𝐺) (see [10, Part I, Proposition 6.2]). Therefore, G is a component of F𝑆 (𝐺) if and
only if G is quasisimple. We have 𝔣𝔬𝔠(G) = 𝑆 ∩ 𝐿 ′ = 𝑆 ∩ 𝐿 by the focal subgroup theorem [23, Chapter
7, Theorem 3.4], and so G is quasisimple if and only if G/𝑍 (G) is simple. By Lemma 2.13, we have
𝑍 (G) = 𝑆∩ 𝑍∗(𝐿). Lemma 2.11 implies that G/𝑍 (G) is isomorphic to the 2-fusion system of 𝐿/𝑍∗(𝐿).
By [9, Theorem 5.6.18], the 2-fusion system of 𝐿/𝑍∗ (𝐿) is simple if and only if 𝐿 ∈ 𝔏2′ . So G is a
component of F𝑆 (𝐺) if and only if 𝐿 ∈ 𝔏2′ , and (i) holds.

(ii) follows from [8, (1.8)]. �

Lemma 2.18. Let G be a finite group with 𝑂 (𝐺) = 1, and let S be a Sylow 2-subgroup of G. Let 𝑛 ≥ 1
be a natural number, and let 𝐿1, . . . , 𝐿𝑛 be pairwise distinct subgroups of G such that 𝐿𝑖 is either a
component or a solvable 2-component of G for each 1 ≤ 𝑖 ≤ 𝑛. Set 𝑄 := (𝑆 ∩ 𝐿1) · · · (𝑆 ∩ 𝐿𝑛). Assume
that Q is strongly closed in S with respect to F𝑆 (𝐺) and that F𝑆 (𝐺)/𝑄 is nilpotent. Then, if 𝐿0 is a
component or a solvable 2-component of G, we have 𝐿0 = 𝐿𝑖 for some 1 ≤ 𝑖 ≤ 𝑛.
Proof. Let 𝐿𝑠 (𝐺) denote the subgroup of G generated by the components and the solvable 2-components
of G. By [37, 6.5.2] and [27, Proposition 13.5], 𝐿𝑠 (𝐺) is the central product of the subgroups of G
which are components or solvable 2-components. Set 𝐿 := 𝐿1 · · · 𝐿𝑛 � 𝐿𝑠 (𝐺).

Let G := F𝑆∩𝐿𝑠 (𝐺) (𝐿
𝑠 (𝐺)). Clearly, 𝑆∩𝐿 = (𝑆∩𝐿1) · · · (𝑆∩𝐿𝑛) = 𝑄. Lemma 2.11 implies that the

2-fusion system of 𝐿𝑠 (𝐺)/𝐿 is isomorphic to G/𝑄. By hypothesis, F𝑆 (𝐺)/𝑄 is nilpotent, and so G/𝑄
is nilpotent. So the 2-fusion system of 𝐿𝑠 (𝐺)/𝐿 is nilpotent. Applying [39, Theorem 1.4], we conclude
that 𝐿𝑠 (𝐺)/𝐿 is 2-nilpotent.

Suppose 𝐿0 ≠ 𝐿𝑖 for any 1 ≤ 𝑖 ≤ 𝑛. Then from paragraph one, 𝐿0 centralizes L, so 𝐿 ∩ 𝐿0 ≤ 𝑍 (𝐿0),
and hence, 𝐿0𝐿/𝐿 � 𝐿0/(𝐿∩𝐿0) is quasisimple, 𝐴4, or 𝑆𝐿2 (3). In particular, 𝐿0𝐿/𝐿 is not 2-nilpotent,
a contradiction. �
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Corollary 2.19. Let G be a finite group, and let S be a Sylow 2-subgroup of G. Let 𝑛 ≥ 1 be a natural
number, and let 𝐿1, . . . , 𝐿𝑛 be pairwise distinct 2-components of G. Assume that𝑄 := (𝑆 ∩ 𝐿1) · · · (𝑆 ∩
𝐿𝑛) is strongly closed in S with respect to F𝑆 (𝐺) and that F𝑆 (𝐺)/𝑄 is nilpotent. Then, if 𝐿0 is a
2-component of G, we have 𝐿0 = 𝐿𝑖 for some 1 ≤ 𝑖 ≤ 𝑛.

Proposition 2.20. Let p be a prime, and let E be a simple saturated fusion system on a finite p-group T.
Suppose that E is tamely realized (in the sense of [3, Section 2.2]) by a nonabelian known finite simple
group K such that Out(𝐾) is p-nilpotent. Assume moreover that G is a nonabelian finite simple group
containing a Sylow p-subgroup S of G with 𝑇 ≤ 𝑆 such that E � F𝑆 (𝐺) and 𝐶𝑆 (E) = 1. Then F𝑆 (𝐺)
is tamely realized by a subgroup L of Aut(𝐾) containing Inn(𝐾) such that the index of Inn(𝐾) in L is
coprime to p.

Proof. Set F := F𝑆 (𝐺). By a result of Bob Oliver, namely by [44, Corollary 2.4], F is tamely realized
by a subgroup L of Aut(𝐾) containing Inn(𝐾). We are going to show that the index of Inn(𝐾) in L is
coprime to p.

Let 𝑆0 be a Sylow p-subgroup of L. Then F � F𝑆0 (𝐿). We have 𝑂 𝑝 (𝐺) = 𝐺 since G is nonabelian
simple, and so 𝔥𝔫𝔭(F) = 𝑆 by the hyperfocal subgroup theorem [18, Theorem 1.33]. It follows that
𝔥𝔫𝔭(F𝑆0 (𝐿)) = 𝑆0.

By the hyperfocal subgroup theorem [18, Theorem 1.33], 𝑆0 = 𝔥𝔫𝔭(F𝑆0 (𝐿)) = 𝑂 𝑝 (𝐿) ∩ 𝑆0.
Consequently, 𝑂 𝑝 (𝐿) has 𝑝′-index in L, whence 𝑂 𝑝 (𝐿) = 𝐿. So we have 𝑂 𝑝 (𝐿/Inn(𝐾)) = 𝐿/Inn(𝐾).
On the other hand, 𝐿/Inn(𝐾) is p-nilpotent since Out(𝐾) is p-nilpotent. It follows that 𝐿/Inn(𝐾) is a
𝑝′-group, as claimed. �

3. Auxiliary results on linear and unitary groups

In this section, we collect several results on linear and unitary groups needed for the proofs of our main
results. Some of the results stated here are known, while others seem to be new. For the convenience of
the reader, we also include proofs of known results when we could not find a reference in which they
appear in the form stated here.

3.1. Basic definitions

We begin with some basic definitions. Let q be a nontrivial prime power, and let n be a positive integer.
The general linear group 𝐺𝐿𝑛 (𝑞) is the group of all invertible 𝑛 × 𝑛 matrices over F𝑞 under matrix
multiplication. The special linear group 𝑆𝐿𝑛 (𝑞) is the subgroup of 𝐺𝐿𝑛 (𝑞) consisting of all 𝑛 × 𝑛
matrices over F𝑞 with determinant 1. The center of 𝐺𝐿𝑛 (𝑞) consists of all scalar matrices 𝜆𝐼𝑛 with
𝜆 ∈ (F𝑞)

∗. We have 𝑍 (𝑆𝐿𝑛 (𝑞)) = 𝑆𝐿𝑛 (𝑞) ∩ 𝑍 (𝐺𝐿𝑛 (𝑞)). Set 𝑃𝐺𝐿𝑛 (𝑞) := 𝐺𝐿𝑛 (𝑞)/𝑍 (𝐺𝐿𝑛 (𝑞)) and
𝑃𝑆𝐿𝑛 (𝑞) := 𝑆𝐿𝑛 (𝑞)/𝑍 (𝑆𝐿𝑛 (𝑞)). By [35, Kapitel II, Satz 6.10] and [35, Kapitel II, Hauptsatz 6.13],
𝑆𝐿𝑛 (𝑞) is quasisimple if 𝑛 ≥ 2 and (𝑛, 𝑞) ≠ (2, 2), (2, 3).

As in [35, Kapitel II, Bemerkung 10.5 (b)], we consider the general unitary group 𝐺𝑈𝑛 (𝑞) as the
subgroup of 𝐺𝐿𝑛 (𝑞2) consisting of all (𝑎𝑖 𝑗 ) ∈ 𝐺𝐿𝑛 (𝑞2) satisfying the condition ((𝑎𝑖 𝑗 )

𝑞) (𝑎𝑖 𝑗 )
𝑡 = 𝐼𝑛.

The special unitary group 𝑆𝑈𝑛 (𝑞) is the subgroup of 𝐺𝑈𝑛 (𝑞) consisting of all elements of 𝐺𝑈𝑛 (𝑞)
with determinant 1. By [35, Kapitel II, Hilfssatz 8.8], we have 𝑆𝐿2 (𝑞) � 𝑆𝑈2 (𝑞). The center of
𝐺𝑈𝑛 (𝑞) consists of all scalar matrices 𝜆𝐼𝑛, where 𝜆 ∈ (F𝑞2 )∗ and 𝜆𝑞+1 = 1. We have 𝑍 (𝑆𝑈𝑛 (𝑞)) =
𝑆𝑈𝑛 (𝑞) ∩ 𝑍 (𝐺𝑈𝑛 (𝑞)). Set 𝑃𝐺𝑈𝑛 (𝑞) := 𝐺𝑈𝑛 (𝑞)/𝑍 (𝐺𝑈𝑛 (𝑞)) and 𝑃𝑆𝑈𝑛 (𝑞) := 𝑆𝑈𝑛 (𝑞)/𝑍 (𝑆𝑈𝑛 (𝑞)).
By [32, Theorems 11.22 and 11.26], 𝑆𝑈𝑛 (𝑞) is quasisimple if 𝑛 ≥ 2 and (𝑛, 𝑞) ≠ (2, 2), (2, 3), (3, 2).

We write (𝑃)𝐺𝐿+𝑛 (𝑞) and (𝑃)𝑆𝐿+𝑛 (𝑞) for (𝑃)𝐺𝐿𝑛 (𝑞) and (𝑃)𝑆𝐿𝑛 (𝑞), respectively. Also, we write
(𝑃)𝐺𝐿−𝑛 (𝑞) for (𝑃)𝐺𝑈𝑛 (𝑞) and (𝑃)𝑆𝐿−𝑛 (𝑞) for 𝑃𝑆𝑈𝑛 (𝑞).

3.2. Central extensions of 𝑃𝑆𝐿𝑛 (𝑞) and 𝑃𝑆𝑈𝑛 (𝑞)

In the proofs of the following two lemmas, we use the terminology of [5, Section 33].
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Lemma 3.1. Let 𝑛 ≥ 3 be a natural number, and let q be a nontrivial odd prime power. Let H be a perfect
central extension of 𝑃𝑆𝐿𝑛 (𝑞). Then there is a subgroup 𝑍 ≤ 𝑍 (𝑆𝐿𝑛 (𝑞)) such that 𝐻 � 𝑆𝐿𝑛 (𝑞)/𝑍 .

Proof. By [28, pp. 312-313], the Schur multiplier of 𝑃𝑆𝐿𝑛 (𝑞) is isomorphic to 𝐶(𝑛,𝑞−1) � 𝑍 (𝑆𝐿𝑛 (𝑞)).
From [5, 33.6], we see that this is just another way to say that 𝑆𝐿𝑛 (𝑞) is the universal covering group of
𝑃𝑆𝐿𝑛 (𝑞). Applying [5, 33.6] again, we conclude that 𝐻 � 𝑆𝐿𝑛 (𝑞)/𝑍 for some 𝑍 ≤ 𝑍 (𝑆𝐿𝑛 (𝑞)). �

Lemma 3.2. Let 𝑛 ≥ 3 be a natural number, and let q be a nontrivial odd prime power. Let H be a
perfect central extension of 𝑃𝑆𝑈𝑛 (𝑞). Assume that (𝑛, 𝑞) ≠ (4, 3) or that 𝑍 (𝐻) is a 2-group. Then there
is a subgroup 𝑍 ≤ 𝑍 (𝑆𝑈𝑛 (𝑞)) such that 𝐻 � 𝑆𝑈𝑛 (𝑞)/𝑍 .

Proof. Suppose that (𝑛, 𝑞) ≠ (4, 3). By [28, pp. 312-313], the Schur multiplier of 𝑃𝑆𝑈𝑛 (𝑞) is isomor-
phic to 𝐶(𝑛,𝑞+1) � 𝑍 (𝑆𝑈𝑛 (𝑞)). As in the proof of Lemma 3.1, we conclude that 𝐻 � 𝑆𝑈𝑛 (𝑞)/𝑍 for
some 𝑍 ≤ 𝑍 (𝑆𝑈𝑛 (𝑞)).

Suppose now that (𝑛, 𝑞) = (4, 3) and that 𝑍 (𝐻) is a 2-group. Let 𝐺 := 𝑃𝑆𝑈4 (3), and let 𝐺 be the
universal covering group of G. Then the Schur multiplier of G is isomorphic to 𝑍 (𝐺). By [28, pp. 312-
313], the Schur multiplier of G is isomorphic to 𝐶4 ×𝐶3 ×𝐶3. Thus, 𝑍 (𝐺) � 𝐶4 ×𝐶3 ×𝐶3. Since 𝐺 is
quasisimple, we have 𝑍 (𝐺/𝑍) = 𝑍 (𝐺)/𝑍 whenever 𝑍 ≤ 𝑍 (𝐺). Let Q be the unique Sylow 3-subgroup
of 𝑍 (𝐺). By [5, 33.6], 𝐺 is a central extension of 𝑆𝑈4 (3) and of H. Since 𝑆𝑈4 (3) has a center of order
4, we have 𝑆𝑈4 (3) � 𝐺/𝑄. Let 𝑍 ≤ 𝑍 (𝐺) with 𝐻 � 𝐺/𝑍 . As 𝑍 (𝐻) is a 2-group, we have 𝑄 ≤ 𝑍 ,
whence 𝐻 � 𝐺/𝑍 � (𝐺/𝑄)/(𝑍/𝑄) is isomorphic to a quotient of 𝑆𝑈4 (3) by a central subgroup. �

3.3. Involutions

In this subsection, we collect several results on the involutions of the groups (𝑃)𝐺𝐿𝜀𝑛 (𝑞) and (𝑃)𝑆𝐿𝜀𝑛 (𝑞),
where q is a nontrivial odd prime power, 𝑛 ≥ 2 and 𝜀 ∈ {+,−}.

Lemma 3.3. Let q be a nontrivial odd prime power, and let 𝑛 ≥ 2. Let T be an element of 𝐺𝐿𝑛 (𝑞) such
that 𝑇2 = 𝜆𝐼𝑛 for some 𝜆 ∈ F∗𝑞 . Then one of the following holds:

(i) There is some 𝜇 ∈ F∗𝑞 such that 𝜆 = 𝜇2, and T is 𝐺𝐿𝑛 (𝑞)-conjugate to a diagonal matrix with
diagonal entries in {𝜇,−𝜇}.

(ii) n is even, 𝜆 is a nonsquare element of F∗𝑞 , and T is 𝐺𝐿𝑛 (𝑞)-conjugate to the matrix(
𝐼𝑛/2

𝜆𝐼𝑛/2

)
.

Moreover, we have 𝐶𝐺𝐿𝑛 (𝑞) (𝑇) � 𝐺𝐿 𝑛
2
(𝑞2).

Proof. We identify the field F𝑞 with the subfield of F𝑞2 consisting of all 𝑥 ∈ F𝑞2 satisfying 𝑥𝑞 = 𝑥. As
𝑞 + 1 = (𝑞2 − 1)/(𝑞 − 1) is even, any element of F∗𝑞 is the square of an element of F∗

𝑞2 . Let 𝜇 ∈ F∗
𝑞2 with

𝜆 = 𝜇2.
If 𝜇 ∈ F𝑞 , then the minimal polynomial of T divides (𝑥 − 𝜇) (𝑥 + 𝜇), so T is diagonalizable over F𝑞 ,

and it follows that (i) holds.
Assume now that 𝜇 ∉ F𝑞 . Then 𝜆 is a nonsquare element of F∗𝑞 . Let V be an n-dimensional vector

space over F𝑞 , and let B be an ordered basis of V. Let 𝜑 be the element of 𝐺𝐿(𝑉) such that 𝜑 is
represented by T with respect to B. Since 𝜇 ∉ F𝑞 , we have that 1 and 𝜇 are linearly independent; so
(1, 𝜇) is an F𝑞-basis of F𝑞2 . Using that 𝜑2 = 𝜆id𝑉 , one can check that V becomes a vector space over
F𝑞2 by defining

(𝑥 + 𝑦𝜇)𝑣 := 𝑥𝑣 + 𝑦𝑣𝜑

for all 𝑥, 𝑦 ∈ F𝑞 and 𝑣 ∈ 𝑉 . Let m be the dimension of V over F𝑞2 , and let (𝑣1, . . . , 𝑣𝑚) be an F𝑞2 -basis
of V. Then 𝐵0 := (𝑣1, . . . , 𝑣𝑚, 𝜇𝑣1, . . . , 𝜇𝑣𝑚) is an F𝑞-basis of V. In particular, 𝑛 = 2𝑚 is even. For
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1 ≤ 𝑖 ≤ 𝑚, we have 𝑣𝜑𝑖 = 𝜇𝑣𝑖 and (𝜇𝑣𝑖)
𝜑 = (𝑣𝑖)

𝜑2
= 𝜆𝑣𝑖 . So, with respect to 𝐵0, 𝜑 is represented by

the matrix

𝑀 :=
(

𝐼𝑛/2
𝜆𝐼𝑛/2

)
.

It follows that T and M are 𝐺𝐿𝑛 (𝑞)-conjugate.
Let𝜓 be an automorphism of V as an F𝑞-vector space centralizing 𝜑. For 𝑥, 𝑦 ∈ F𝑞 and 𝑣 ∈ 𝑉 , we have

((𝑥 + 𝑦𝜇)𝑣)𝜓 = (𝑥𝑣 + 𝑦𝑣𝜑)𝜓 = 𝑥𝑣𝜓 + 𝑦𝑣𝜓𝜑 = (𝑥 + 𝑦𝜇)𝑣𝜓,

whence 𝜓 is F𝑞2 -linear. Conversely, if 𝜓 is F𝑞2 -linear, then

𝑣
𝜓𝜑
𝑖 = 𝜇𝑣𝜓𝑖 = (𝜇𝑣𝑖)

𝜓 = 𝑣𝜑𝜓𝑖

and hence 𝜓𝜑 = 𝜑𝜓. It follows that the centralizer of 𝜑 in the general linear group of V as an F𝑞-vector
space is equal to the general linear group of V as an F𝑞2 -vector space. Thus, 𝐶𝐺𝐿𝑛 (𝑞) (𝑇) � 𝐺𝐿 𝑛

2
(𝑞2).

So (ii) holds. �

Lemma 3.4. Let q be a nontrivial odd prime power, and let 𝑛 ≥ 2 be a natural number. Let𝑇 ∈ 𝐺𝑈𝑛 (𝑞).

(i) If 𝑇2 = 𝜆𝐼𝑛 for some 𝜆 ∈ F∗
𝑞2 , then 𝜆 is a square in F∗

𝑞2 .
(ii) If 𝑇2 = 𝜌2𝐼𝑛 for some 𝜌 ∈ F∗

𝑞2 with 𝜌𝑞+1 = 1, then T is 𝐺𝑈𝑛 (𝑞)-conjugate to a diagonal matrix
with diagonal entries in {𝜌,−𝜌}.

(iii) If 𝑇2 = 𝜌2𝐼𝑛 for some 𝜌 ∈ F∗
𝑞2 with 𝜌𝑞+1 ≠ 1, then n is even, and we have𝐶𝐺𝑈𝑛 (𝑞) (𝑇) � 𝐺𝐿 𝑛

2
(𝑞2).

Proof. Suppose that 𝑇2 = 𝜆𝐼𝑛 for some 𝜆 ∈ F∗
𝑞2 . Since 𝑇2 ∈ 𝐺𝑈𝑛 (𝑞), we have that 𝜆𝑞+1 = 1, so 𝜆 is a

square in F∗
𝑞2 .

A proof of (ii) and (iii) can be extracted from [47, pp. 314-315]. �

Proposition 3.5. Let q be a nontrivial odd prime power, and let 𝑛 ≥ 2 be a natural number. Let 𝜌 be an
element of F∗𝑞 of order (𝑛, 𝑞 − 1). For each even natural number i with 2 ≤ 𝑖 < 𝑛, let

�̃�𝑖 :=
(
𝐼𝑛−𝑖

−𝐼𝑖

)
∈ 𝑆𝐿𝑛 (𝑞)

and let 𝑡𝑖 be the image of �̃�𝑖 in 𝑃𝑆𝐿𝑛 (𝑞).

(i) Assume that n is odd. Then each involution of 𝑃𝑆𝐿𝑛 (𝑞) is 𝑃𝑆𝐿𝑛 (𝑞)-conjugate to 𝑡𝑖 for some even
2 ≤ 𝑖 < 𝑛.

(ii) Assume that n is even and that there is some 𝜇 ∈ F∗𝑞 with 𝜌 = 𝜇2. For each odd natural number i
with 1 ≤ 𝑖 < 𝑛, the matrix

�̃�𝑖 :=
(
𝜇𝐼𝑛−𝑖

−𝜇𝐼𝑖

)
lies in 𝑆𝐿𝑛 (𝑞). Let 𝑡𝑖 denote the image of �̃�𝑖 in 𝑃𝑆𝐿𝑛 (𝑞) for each odd 1 ≤ 𝑖 < 𝑛. Then each
involution of 𝑃𝑆𝐿𝑛 (𝑞) is 𝑃𝑆𝐿𝑛 (𝑞)-conjugate to 𝑡𝑖 for some (even or odd) 1 ≤ 𝑖 ≤ 𝑛

2 .
(iii) Assume that n is even and that 𝜌 is a nonsquare element of F𝑞 . Let

𝑤 :=
(

𝐼𝑛/2
𝜌𝐼𝑛/2

)
.
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If 𝑤 ∈ 𝑆𝐿𝑛 (𝑞), then each involution of 𝑃𝑆𝐿𝑛 (𝑞) is 𝑃𝑆𝐿𝑛 (𝑞)-conjugate to 𝑡𝑖 for some even
2 ≤ 𝑖 ≤ 𝑛

2 or to 𝑤 := 𝑤𝑍 (𝑆𝐿𝑛 (𝑞)) ∈ 𝑃𝑆𝐿𝑛 (𝑞). If 𝑤 ∉ 𝑆𝐿𝑛 (𝑞), then each involution of 𝑃𝑆𝐿𝑛 (𝑞)
is 𝑃𝑆𝐿𝑛 (𝑞)-conjugate to 𝑡𝑖 for some even 2 ≤ 𝑖 ≤ 𝑛

2 .

Proof. We follow arguments found in the proof of [46, Lemma 1.1].
Assume that n is odd. Then 𝑍 (𝑆𝐿𝑛 (𝑞)) has odd order, and therefore, any involution of 𝑃𝑆𝐿𝑛 (𝑞) is

the image of an involution of 𝑆𝐿𝑛 (𝑞). As a consequence of Lemma 3.3, each involution of 𝑆𝐿𝑛 (𝑞) is
𝑆𝐿𝑛 (𝑞)-conjugate to �̃�𝑖 for some even 2 ≤ 𝑖 < 𝑛. So (i) follows.

Assume now that n is even and that 𝜌 = 𝜇2 for some 𝜇 ∈ F∗𝑞 . Note that 𝑍 (𝑆𝐿𝑛 (𝑞)) equals 〈𝜌𝐼𝑛〉.
We claim that 𝜇𝑛 = −1. Since 𝜇2𝑛 = 𝜌𝑛 = 1, we have that 𝜇𝑛 = 1 or −1. If 𝜇𝑛 = 1, then 𝜇 ∈ 〈𝜌〉, and
so 𝜌 is a square in 〈𝜌〉, which is impossible. So we have 𝜇𝑛 = −1. It follows that �̃�𝑖 ∈ 𝑆𝐿𝑛 (𝑞) for each
odd 1 ≤ 𝑖 < 𝑛. Now let 𝑇 ∈ 𝑆𝐿𝑛 (𝑞) such that 𝑇𝑍 (𝑆𝐿𝑛 (𝑞)) ∈ 𝑃𝑆𝐿𝑛 (𝑞) is an involution. Then we have
𝑇2 = 𝜌ℓ 𝐼𝑛 = 𝜇2ℓ 𝐼𝑛 for some 1 ≤ ℓ ≤ (𝑛, 𝑞 − 1). Using Lemma 3.3, we conclude that T is 𝑆𝐿𝑛 (𝑞)-
conjugate to a diagonal matrix 𝐷 ∈ 𝑆𝐿𝑛 (𝑞) with diagonal entries in {𝜇ℓ ,−𝜇ℓ }. Let 1 ≤ 𝑖 < 𝑛 such
that −𝜇ℓ occurs precisely i times as a diagonal entry of D. If i is odd, we may assume that 𝐷 = 𝜇ℓ−1 �̃�𝑖 ,
and if i is even, we may assume that 𝐷 = 𝜇ℓ �̃�𝑖 . In either case, the image of D in 𝑃𝑆𝐿𝑛 (𝑞) is 𝑡𝑖 . Hence,
𝑇𝑍 (𝑆𝐿𝑛 (𝑞)) is 𝑃𝑆𝐿𝑛 (𝑞)-conjugate to 𝑡𝑖 . Noticing that 𝑡𝑖 is 𝑃𝑆𝐿𝑛 (𝑞)-conjugate to 𝑡𝑛−𝑖 , we conclude
that (ii) holds.

Now assume that n is even and that 𝜌 is a nonsquare element of F𝑞 . Again, let T be an element of
𝑆𝐿𝑛 (𝑞) such that 𝑇𝑍 (𝑆𝐿𝑛 (𝑞)) ∈ 𝑃𝑆𝐿𝑛 (𝑞) is an involution. We have 𝑇2 = 𝜌ℓ 𝐼𝑛 for some 1 ≤ ℓ ≤

(𝑛, 𝑞−1). Assume that ℓ is even. Then Lemma 3.3 implies that T or −𝑇 is 𝑆𝐿𝑛 (𝑞)-conjugate to 𝜌 ℓ
2 �̃�𝑖 for

some even 2 ≤ 𝑖 ≤ 𝑛
2 . It follows that 𝑇𝑍 (𝑆𝐿𝑛 (𝑞)) is 𝑃𝑆𝐿𝑛 (𝑞)-conjugate to 𝑡𝑖 for some even 2 ≤ 𝑖 ≤ 𝑛

2 .
Assume now that ℓ is odd. As 𝜌 is not a square in F𝑞 , but 𝜌ℓ−1 is a square in F𝑞 , 𝜌ℓ cannot be a square
in F𝑞 . Using Lemma 3.3, we may conclude that T is 𝐺𝐿𝑛 (𝑞)-conjugate to the matrix

𝑀 :=

�������	

0 𝜌ℓ

1 0
. . .

0 𝜌ℓ

1 0


�������
∈ 𝑆𝐿𝑛 (𝑞).

It is rather easy to see that T and M are even conjugate in 𝑆𝐿𝑛 (𝑞). Let 𝑘 := ℓ−1
2 . It is not hard to show

that the matrices (
0 𝜌ℓ

1 0

)
and

(
0 𝜌𝑘+1

𝜌𝑘 0

)
are 𝑆𝐿2 (𝑞)-conjugate. So it follows that M, and hence, T is 𝑆𝐿𝑛 (𝑞)-conjugate to 𝜌𝑘𝑀2, where

𝑀2 :=

�������	

0 𝜌
1 0

. . .

0 𝜌
1 0


�������
∈ 𝑆𝐿𝑛 (𝑞).

Consequently, the images of T and 𝑀2 in 𝑃𝑆𝐿𝑛 (𝑞) are conjugate. Furthermore, as det(𝑀2) = det(𝑤),
we see that 𝑤 ∈ 𝑆𝐿𝑛 (𝑞). Also, 𝑤 is 𝑆𝐿𝑛 (𝑞)-conjugate to 𝑀2, and so𝑇𝑍 (𝑆𝐿𝑛 (𝑞)) is 𝑃𝑆𝐿𝑛 (𝑞)-conjugate
to w. �
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Lemma 3.6. Let q be a nontrivial odd prime power, and let 𝑛 ≥ 4 be an even natural number. Let 𝜌 be
an element of F∗𝑞 of order (𝑛, 𝑞 − 1). Suppose that 𝜌 is a nonsquare element of F𝑞 and that

𝑤 :=
(

𝐼𝑛/2
𝜌𝐼𝑛/2

)
lies in 𝑆𝐿𝑛 (𝑞). Denote the image of 𝑤 in 𝑃𝑆𝐿𝑛 (𝑞) by w. Set 𝐶 := 𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑤). Let P be a Sylow
2-subgroup of C. Then the following hold:

(i) C has a unique 2-component J, and J is isomorphic to a nontrivial quotient of 𝑆𝐿 𝑛
2
(𝑞2).

(ii) 𝑃 ∩ 𝐽 is strongly closed in P with respect to F𝑃 (𝐶), and the factor system F𝑃 (𝐶)/(𝑃 ∩ 𝐽) is
nilpotent.

(iii) If 𝑛 ≥ 6, then P has rank at least 4.

Proof. Set 𝐶0 := 𝐶𝑆𝐿𝑛 (𝑞) (𝑤)/𝑍 (𝑆𝐿𝑛 (𝑞)) ≤ 𝐶.
Let 𝑦 ∈ 𝐶 \ 𝐶0, and let �̃� be a preimage of y in 𝑆𝐿𝑛 (𝑞). Then 𝑤 �̃� = 𝜆𝑤 for some 1 ≠ 𝜆 ∈ 〈𝜌〉. The

characteristic polynomial of 𝑤 is (𝑥2 − 𝜌)
𝑛
2 , and 𝜆𝑤 has the characteristic polynomial (𝑥2 − 𝜆2𝜌)

𝑛
2 .

Since 𝑤 �̃� = 𝜆𝑤, both polynomials are equal, and so we have 𝜆2 = 1. Thus, 𝜆 = −1 and hence 𝑤 �̃� = −𝑤.
If z is another element of 𝐶 \ 𝐶0 and if �̃� is a preimage of z in 𝑆𝐿𝑛 (𝑞), then we have 𝑤 �̃� = −𝑤 = 𝑤 �̃� ,
and so �̃� �̃�−1 centralizes 𝑤. This implies that 𝑦𝑧−1 ∈ 𝐶0. It follows that |𝐶 : 𝐶0 | ≤ 2 (and one can show
that in fact |𝐶 : 𝐶0 | = 2).

By the preceding paragraph, 𝐶/𝐶0 is abelian, and so the 2-components of C are precisely the
2-components of 𝐶0. One may deduce from Lemma 3.3 that 𝐶𝑆𝐿𝑛 (𝑞) (𝑤) has a normal subgroup 𝐽

isomorphic to 𝑆𝐿 𝑛
2
(𝑞2) such that the corresponding factor group is cyclic. Let J be the image of 𝐽 in

𝑃𝑆𝐿𝑛 (𝑞). Then J is isomorphic to a nontrivial quotient of 𝑆𝐿 𝑛
2
(𝑞2). Moreover, 𝐽 � 𝐶0 and 𝐶0/𝐽 is

cyclic. Therefore, J is the only 2-component of𝐶0 and hence the only 2-component of C. Thus, (i) holds.
Since 𝐽 � 𝐶, we have that 𝑃 ∩ 𝐽 is strongly closed in P with respect to F𝑃 (𝐶). By Lemma 2.11, the

factor system F𝑃 (𝐶)/(𝑃∩ 𝐽) is isomorphic to the 2-fusion system of 𝐶/𝐽. Since 𝐶0 has index ≤ 2 in C
and 𝐶0/𝐽 is abelian, we have that 𝐶/𝐽 is 2-nilpotent. So 𝐶/𝐽 has a nilpotent 2-fusion system, and (ii)
follows.

We now prove (iii). Assume that 𝑛 ≥ 6. Let u denote the image of

�������	

0 𝜌
1 0

. . .

0 𝜌
1 0


�������
∈ 𝑆𝐿𝑛 (𝑞)

in 𝑃𝑆𝐿𝑛 (𝑞).
We claim that there exist 𝑎, 𝑏 ∈ F𝑞 with 𝑎2𝜌 − 𝑏2𝜌2 = 1. The field F𝑞 has precisely 𝑞+1

2 square
elements. Therefore, each of the sets 𝑀1 := {𝑎2𝜌 | 𝑎 ∈ F𝑞} and 𝑀2 := {1 + 𝑏2𝜌2 | 𝑏 ∈ F𝑞} has
cardinality 𝑞+1

2 . It follows that 𝑀1 ∩ 𝑀2 ≠ ∅. So there exist 𝑎, 𝑏 ∈ F𝑞 with 𝑎2𝜌 = 1 + 𝑏2𝜌2, or in other
words 𝑎2𝜌 − 𝑏2𝜌2 = 1.

Let s be the image of

�������	

−𝑏𝜌 𝑎𝜌
−𝑎 𝑏𝜌

. . .

−𝑏𝜌 𝑎𝜌
−𝑎 𝑏𝜌


�������
∈ 𝑆𝐿𝑛 (𝑞)
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in 𝑃𝑆𝐿𝑛 (𝑞). By a direct calculation, 𝑠 ∈ 𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑢). Another direct calculation shows that s is an
involution. Let 𝑧1 denote the image of (

−𝐼2
𝐼𝑛−2

)
∈ 𝑆𝐿𝑛 (𝑞)

in 𝑃𝑆𝐿𝑛 (𝑞), and let 𝑧2 denote the image of

��	
𝐼2

−𝐼2
𝐼𝑛−4


�� ∈ 𝑆𝐿𝑛 (𝑞)
in 𝑃𝑆𝐿𝑛 (𝑞). Then one can easily verify that 〈𝑠, 𝑢, 𝑧1, 𝑧2〉 ≤ 𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑢) is isomorphic to 𝐸16. So a
Sylow 2-subgroup of 𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑢) has rank at least 4. This is also true for P as w and u are conjugate
(see Proposition 3.5). �

Lemma 3.7. Let 𝑛 ≥ 2 be a natural number, and let 𝜀 ∈ {+,−}. Also, let 𝑇 ∈ 𝐺𝐿𝜀𝑛 (3) \ 𝑍 (𝐺𝐿𝜀𝑛 (3))
such that 𝑇2 ∈ 𝑍 (𝐺𝐿𝜀𝑛 (3)). Then 𝐶𝐺𝐿𝜀

𝑛 (3) (𝑇) is core-free.

Proof. By Lemmas 3.3 and 3.4, we either have 𝐶𝐺𝐿𝜀
𝑛 (3) (𝑇) � 𝐺𝐿𝜀𝑖 (3) ×𝐺𝐿

𝜀
𝑛−𝑖 (3) for some 1 ≤ 𝑖 < 𝑛,

or n is even and 𝐶𝐺𝐿𝜀
𝑛 (3) (𝑇) � 𝐺𝐿𝑛/2 (9). So we have that 𝐶𝐺𝐿𝜀

𝑛 (3) (𝑇) is core-free. �

Noticing that 𝐺𝐿𝜀𝑛 (3)/𝑆𝐿𝜀𝑛 (3) and 𝑍 (𝐺𝐿𝜀𝑛 (3)) are 2-groups for any 𝑛 ≥ 2 and 𝜀 ∈ {+,−}, one can
deduce the following two corollaries from Lemma 3.7.

Corollary 3.8. Let 𝑛 ≥ 2 be a natural number, and let 𝜀 ∈ {+,−}. Then any involution centralizer in
𝑆𝐿𝜀𝑛 (3) is core-free.

Corollary 3.9. Let 𝑛 ≥ 2 be a natural number, and let 𝜀 ∈ {+,−}. Then any involution centralizer in
𝑃𝐺𝐿𝜀𝑛 (3) is core-free.

3.4. Sylow 2-subgroups and 2-fusion systems

In this subsection, we consider several properties of Sylow 2-subgroups and 2-fusion systems of linear
and unitary groups.

Lemma 3.10 [17, p. 142]. Let q be a nontrivial odd prime power. Let 𝑘, 𝑠 ∈ N such that 2𝑘 is the 2-part
of 𝑞 − 1 and that 2𝑠 is the 2-part of 𝑞 + 1. Then:

(i) Assume that 𝑞 ≡ 1 mod 4. Then{(
𝜆
𝜇

)
: 𝜆, 𝜇 are 2-elements of F∗𝑞

}
·

〈(
0 1
1 0

)〉
is a Sylow 2-subgroup of 𝐺𝐿2 (𝑞). In particular, the Sylow 2-subgroups of 𝐺𝐿2 (𝑞) are isomorphic
to the wreath product 𝐶2𝑘 � 𝐶2.

(ii) If 𝑞 ≡ 3 mod 4, then the Sylow 2-subgroups of 𝐺𝐿2 (𝑞) are semidihedral of order 2𝑠+2.

Lemma 3.11 [17, p. 143]. Let q be a nontrivial odd prime power. Let 𝑘, 𝑠 ∈ N such that 2𝑘 is the 2-part
of 𝑞 − 1 and that 2𝑠 is the 2-part of 𝑞 + 1. Then:

(i) If 𝑞 ≡ 1 mod 4, then the Sylow 2-subgroups of 𝐺𝑈2(𝑞) are semidihedral of order 2𝑘+2.
(ii) If 𝑞 ≡ 3 mod 4, then the Sylow 2-subgroups of 𝐺𝑈2 (𝑞) are isomorphic to the wreath product

𝐶2𝑠 � 𝐶2. If 𝜀 ∈ F∗
𝑞2 has order 2𝑠 , then a Sylow 2-subgroup of 𝐺𝑈2 (𝑞) is concretely given by

𝑊 :=
{(
𝜆
𝜇

)
: 𝜆, 𝜇 ∈ 〈𝜀〉

}
·

〈(
0 1
1 0

)〉
.
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Lemma 3.12 [35, Kapitel II, Satz 8.10 a)]. If q is a nontrivial odd prime power, then a Sylow 2-subgroup
of 𝑆𝐿2 (𝑞) is generalized quaternion of order (𝑞2 − 1)2.

Lemma 3.13 [35, Kapitel II, Satz 8.10 b)]. If q is a nontrivial odd prime power, then 𝑃𝑆𝐿2 (𝑞) has
dihedral Sylow 2-subgroups of order 1

2 (𝑞
2 − 1)2.

Lemma 3.14 [17, Lemma 1]. Let q be a nontrivial odd prime power, and let 𝜀 ∈ {+,−}. Let r be a
positive integer. Let 𝑊𝑟 be a Sylow 2-subgroup of 𝐺𝐿𝜀2𝑟 (𝑞). Then 𝑊𝑟 � 𝐶2 is isomorphic to a Sylow
2-subgroup of 𝐺𝐿𝜀2𝑟+1 (𝑞). A Sylow 2-subgroup of 𝐺𝐿𝜀2𝑟+1 (𝑞) is concretely given by{(

𝐴
𝐵

)
: 𝐴, 𝐵 ∈ 𝑊𝑟

}
·

〈(
𝐼2𝑟

𝐼2𝑟

)〉
.

Lemma 3.15 [17, Theorem 1]. Let q be a nontrivial odd prime power, and let n be a positive integer.
Let 𝜀 ∈ {+,−}. Let 0 ≤ 𝑟1 < · · · < 𝑟𝑡 such that 𝑛 = 2𝑟1 + · · · + 2𝑟𝑡 . Let 𝑊𝑖 ∈ Syl2(𝐺𝐿𝜀2𝑟𝑖 (𝑞)) for all
1 ≤ 𝑖 ≤ 𝑡. Then𝑊1 × · · · ×𝑊𝑡 is isomorphic to a Sylow 2-subgroup of 𝐺𝐿𝜀𝑛 (𝑞). A Sylow 2-subgroup of
𝐺𝐿𝜀𝑛 (𝑞) is concretely given by ⎧⎪⎪⎪⎨⎪⎪⎪⎩

���	
𝐴1

. . .

𝐴𝑡


��� : 𝐴𝑖 ∈ 𝑊𝑖

⎫⎪⎪⎪⎬⎪⎪⎪⎭.
Lemma 3.16. Let q be a prime power with 𝑞 ≡ 3 mod 4. Let W be a Sylow 2-subgroup of 𝐺𝐿2 (𝑞), and
let 𝑚 ∈ N such that |𝑊 | = 2𝑚. Then:

(i) W is semidihedral. In particular, there are elements 𝑎, 𝑏 ∈ 𝑊 with ord(𝑎) = 2𝑚−1 and ord(𝑏) = 2
such that 𝑎𝑏 = 𝑎2𝑚−2−1.

(ii) We have𝑊 ∩ 𝑆𝐿2 (𝑞) = 〈𝑎2〉〈𝑎𝑏〉.
(iii) Let 1 ≤ ℓ ≤ 2𝑚−1. If ℓ is odd, then 𝑎ℓ has determinant −1, and 𝑎ℓ𝑏 has determinant 1. If ℓ is even,

then 𝑎ℓ has determinant 1, and 𝑎ℓ𝑏 has determinant −1.
(iv) The involutions of W are precisely the elements 𝑎2𝑚−2 and 𝑎ℓ𝑏, where 2 ≤ ℓ ≤ 2𝑚−1 is even.

Proof. By Lemma 3.10 (ii), we have (i).
Let 𝑊0 := 𝑊 ∩ 𝑆𝐿2 (𝑞). By Lemma 3.12, 𝑊0 is generalized quaternion. Also, 𝑊0 is a maximal

subgroup of W since 𝑆𝐿2 (𝑞) has index 𝑞 − 1 in 𝐺𝐿2 (𝑞) and 𝑞 ≡ 3 mod 4. By [23, Chapter 5, Theorem
4.3 (ii) (b)], we have Φ(𝑊) = 〈𝑎2〉. So the maximal subgroups of W are precisely the groups 𝑀1 := 〈𝑎〉,
𝑀2 := 〈𝑎2〉〈𝑏〉 and 𝑀3 := 〈𝑎2〉〈𝑎𝑏〉. One can check that 𝑀1 � 𝐶2𝑛−1 , 𝑀2 � 𝐷2𝑛−1 and 𝑀3 � 𝑄2𝑛−1 .
Consequently,𝑊0 = 〈𝑎2〉〈𝑎𝑏〉, and (ii) holds.

(iii) follows from (ii) since any element of𝑊 \𝑊0 has determinant −1.
The proof of (iv) is an easy exercise. �

Lemma 3.17. Let q be a nontrivial odd prime power, n a positive integer and 𝜀 ∈ {+,−}. Let 0 ≤ 𝑟1 <
· · · < 𝑟𝑡 such that 𝑛 = 2𝑟1 + · · · +2𝑟𝑡 . Then there is a Sylow 2-subgroup W of𝐺 := 𝐺𝐿𝜀𝑛 (𝑞) containing all
diagonal matrices in G with 2-power order such that𝐶𝑊 (𝑊∩𝑆𝐿𝜀𝑛 (𝑞)) consists precisely of the matrices

���	
𝜆1𝐼2𝑟1

. . .

𝜆𝑡 𝐼2𝑟𝑡


���,
where 𝜆1, . . . , 𝜆𝑡 are 2-elements of F∗𝑞 if 𝐺 = 𝐺𝐿𝑛 (𝑞) and 2-elements of F∗

𝑞2 with 𝜆𝑞+1
𝑖 = 1 (for each

1 ≤ 𝑖 ≤ 𝑡) if 𝐺 = 𝐺𝑈𝑛 (𝑞).

Proof. Using Lemmas 3.10 and 3.11, one can check that the centralizer of a Sylow 2-subgroup of
𝑆𝐿𝜀2 (𝑞) inside a Sylow 2-subgroup of 𝐺𝐿𝜀2 (𝑞) is the Sylow 2-subgroup of 𝑍 (𝐺𝐿𝜀2 (𝑞)). Applying
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Lemma 3.14 and arguing by induction, one can see that a similar statement holds for the centralizer of a
Sylow 2-subgroup of 𝑆𝐿𝜀2𝑟 (𝑞) inside a Sylow 2-subgroup of 𝐺𝐿𝜀2𝑟 (𝑞) for all 𝑟 ≥ 0. Now we may apply
Lemma 3.15 to obtain a Sylow 2-subgroup of G with the desired properties. �

Lemma 3.18. Let q be a nontrivial odd prime power, n a positive integer and 𝜀 ∈ {+,−}. Let 𝐺 :=
𝑆𝐿𝜀𝑛 (𝑞), and let S be a Sylow 2-subgroup of G. Then we have 𝑍 (F𝑆 (𝐺)) = 𝑆 ∩ 𝑍 (𝐺).

Proof. This follows from Lemma 2.13. �

Proposition 3.19. Let n be a positive integer. Let 𝑞, 𝑞∗ be nontrivial odd prime powers, and let 𝜀, 𝜀∗ ∈
{+,−}. If 𝜀𝑞 ∼ 𝜀∗𝑞∗, then the 2-fusion systems of 𝑆𝐿𝜀𝑛 (𝑞) and 𝑆𝐿𝜀∗𝑛 (𝑞∗) are isomorphic.

Proof. Assume that 𝜀 ≠ 𝜀∗. From 𝜀𝑞 ∼ 𝜀∗𝑞∗, it is easy to deduce that 𝜀𝑞 ≡ 𝜀∗𝑞∗ mod 8 and
(𝑞2 − 1)2 = ((𝑞∗)2 − 1)2. So, in view of the remarks at the bottom of p. 11 of [14], we may apply [14,
Proposition 3.3 (a)] to conclude that the 2-fusion system of 𝑆𝐿𝜀𝑛 (𝑞) is isomorphic to the 2-fusion system
of 𝑆𝐿𝜀∗𝑛 (𝑞∗).

Assume now that 𝜀 = 𝜀∗. Using Dirichlet’s theorem [20, Theorem 3.3.1], one can easily see that
there is an odd prime 𝑞0 with 𝜀𝑞 ∼ 𝜀𝑞∗ ∼ −𝜀𝑞0. By the preceding paragraph, both the 2-fusion system
of 𝑆𝐿𝜀𝑛 (𝑞) and the 2-fusion system of 𝑆𝐿𝜀𝑛 (𝑞∗) are isomorphic to the 2-fusion system of 𝑆𝐿−𝜀𝑛 (𝑞0).
Consequently, the 2-fusion systems of 𝑆𝐿𝜀𝑛 (𝑞) and 𝑆𝐿𝜀∗𝑛 (𝑞∗) are isomorphic. �

Proposition 3.20. Let n be a positive integer. Let 𝑞, 𝑞∗ be nontrivial odd prime powers, and let 𝜀, 𝜀∗ ∈
{+,−}. If 𝜀𝑞 ∼ 𝜀∗𝑞∗, then the 2-fusion systems of 𝑃𝑆𝐿𝜀𝑛 (𝑞) and 𝑃𝑆𝐿𝜀∗𝑛 (𝑞∗) are isomorphic.

Proof. Let S and 𝑆∗ be Sylow 2-subgroups of 𝐺 := 𝑆𝐿𝜀𝑛 (𝑞) and 𝐺∗ := 𝑆𝐿𝜀
∗

𝑛 (𝑞∗), respectively. By
Proposition 3.19, F := F𝑆 (𝐺) and F∗ := F𝑆∗ (𝐺∗) are isomorphic. Therefore, F/𝑍 (F) and F∗/𝑍 (F∗)

are isomorphic. Lemma 3.18 implies that F/(𝑆 ∩ 𝑍 (𝐺)) and F∗/(𝑆∗ ∩ 𝑍 (𝐺∗)) are isomorphic. Now
the proposition follows from Lemma 2.11. �

The following lemma shows together with [9, Theorem 5.6.18] that the 2-fusion system of 𝑃𝑆𝐿𝑛 (𝑞)
is simple whenever q is odd and 𝑛 ≥ 3.

Lemma 3.21. Let q be a nontrivial odd prime power and 𝑛 ≥ 2 a natural number such that (𝑛, 𝑞) ≠
(2, 3). Moreover, let 𝜀 be an element of {+,−}. Then 𝑃𝑆𝐿𝜀𝑛 (𝑞) is a Goldschmidt group if and only if
𝑛 = 2 and 𝑞 ≡ 3 or 5 mod 8.

Proof. Set 𝐺 := 𝑃𝑆𝐿𝜀𝑛 (𝑞).
Assume that 𝑛 = 2. Then 𝐺 � 𝑃𝑆𝐿2 (𝑞). By Lemma 3.13, G has dihedral Sylow 2-subgroups of

order 1
2 (𝑞 − 1)2(𝑞 + 1)2. So, if 𝑞 ≡ 3 or 5 mod 8, then G has abelian Sylow 2-subgroups and is thus

a Goldschmidt group. If 𝑞 ≡ 1 or 7 mod 8, then the Sylow 2-subgroups of G are dihedral of order at
least 8 and hence nonabelian. Moreover, if 𝑞 ≡ 1 or 7 mod 8, then [49, Theorem 37] shows that G
is not isomorphic to a finite simple group of Lie type in characteristic 2 of Lie rank 1. So G is not a
Goldschmidt group if 𝑞 ≡ 1 or 7 mod 8.

Assume now that 𝑛 ≥ 3. Again, we see from [49, Theorem 37] that there is no finite simple group of
Lie type in characteristic 2 of Lie rank 1 which is isomorphic to G. Also, G has a subgroup isomorphic
to 𝑆𝐿𝜀2 (𝑞) � 𝑆𝐿2 (𝑞), and therefore, the Sylow 2-subgroups of G are nonabelian. Consequently, G is
not a Goldschmidt group. �

Lemma 3.22. Let n be a positive integer, q a nontrivial odd prime power and 𝜀 ∈ {+,−}. Let E be the
subgroup of 𝑆𝐿𝜀𝑛 (𝑞) consisting of the diagonal matrices in 𝑆𝐿𝜀𝑛 (𝑞) with diagonal entries in {1,−1}.
Then |𝐸 | = 2𝑛−1. Moreover, any elementary abelian 2-subgroup of 𝑆𝐿𝜀𝑛 (𝑞) is conjugate to a subgroup
of E.

Proof. It is straightforward to check that |𝐸 | = 2𝑛−1.
Let 𝐸0 be an elementary abelian 2-subgroup of 𝑆𝐿𝜀𝑛 (𝑞). We show that 𝐸0 is conjugate to a subgroup

of E. Using Dirichlet’s theorem [20, Theorem 3.3.1], one can see that there is an odd prime number
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𝑞∗ with −𝑞 ∼ 𝑞∗, and Proposition 3.19 shows that the 2-fusion systems of 𝑆𝑈𝑛 (𝑞) and 𝑆𝐿𝑛 (𝑞∗) are
isomorphic. Therefore, it is enough to consider the case 𝜀 = +.

Since 𝐸0 is an elementary abelian 2-group, any two elements of 𝐸0 commute, and any element of 𝐸0
is diagonalizable (see Lemma 3.3). It follows that 𝐸0 is simultaneously diagonalizable, and this implies
that 𝐸0 is conjugate to a subgroup of E. �

Lemma 3.23. Let the notation be as in Lemma 3.22, and set 𝑌 := 𝑆𝐿𝜀𝑛 (𝑞). Moreover, for any 𝐴 ⊆

{1, . . . , 𝑛}, let 𝑡𝐴 be the matrix diag(𝑑1, . . . , 𝑑𝑛), where 𝑑𝑖 = −1 if 𝑖 ∈ 𝐴 and 𝑑𝑖 = 1 if 𝑖 ∈ {1, . . . , 𝑛} \ 𝐴.
Then the following hold:

(i) For each 𝜋 ∈ 𝑆𝑛, there is a unique 𝜑𝜋 ∈ Aut𝑌 (𝐸) such that

(𝑡𝐴)
𝜑𝜋 = 𝑡𝐴𝜋

for any 𝐴 ⊆ {1, . . . , 𝑛} of even order.
(ii) Aut𝑌 (𝐸) = {𝜑𝜋 | 𝜋 ∈ 𝑆𝑛}.

Proof. Let V be the defining module for Y. Let 𝐵 = (𝑣1, . . . , 𝑣𝑛) be a basis for V with B orthonormal if
V is unitary. For any 𝐴 ⊆ {1, . . . , 𝑛}, let 𝑒𝐴 be the linear map 𝑉 → 𝑉 represented by 𝑡𝐴 with respect to
B. Then 𝑒𝐴 ∈ 𝐺𝐿𝜀 (𝑉).

Let 𝜋 ∈ 𝑆𝑛. To prove (i), it suffices to find some 𝛼𝜋 ∈ 𝑆𝐿𝜀 (𝑉) such that (𝑒𝐴)𝛼𝜋 = 𝑒𝐴𝜋 for any
𝐴 ⊆ {1, . . . , 𝑛} of even order. Let �̃�𝜋 be the linear map 𝑉 → 𝑉 sending 𝑣𝑖 to 𝑣𝑖𝜋 for each 1 ≤ 𝑖 ≤ 𝑛.
Then det(�̃�𝜋) = sgn(𝜋) ∈ {−1, 1}. Set 𝛼𝜋 := �̃�𝜋 if det(�̃�𝜋) = 1 and 𝛼𝜋 := 𝑒 {1}�̃�𝜋 if det(�̃�𝜋) = −1.
Then 𝛼𝜋 ∈ 𝑆𝐿𝜀 (𝑉). Also, if 𝐴 ⊆ {1, . . . , 𝑛} and 1 ≤ 𝑖 ≤ 𝑛, then

(𝑣𝑖)
(𝛼𝜋 )

−1𝑒𝐴𝛼𝜋 = 𝑣 (𝛼𝜋 )
−1𝑒𝐴𝛼𝜋

𝑖 =

{
−𝑣𝑖 if 𝑖 ∈ 𝐴𝜋

𝑣𝑖 if 𝑖 ∉ 𝐴𝜋

and hence (𝑒𝐴)
𝛼𝜋 = 𝑒𝐴𝜋 . The proof of (i) is now complete.

We now prove (ii). If 𝑛 ∈ {1, 2}, then Aut𝑌 (𝐸) = {id𝐸 } = {𝜑𝜋 | 𝜋 ∈ 𝑆𝑛}. Assume now that
𝑛 ≥ 3. Let 𝜑 ∈ Aut𝑌 (𝐸), and let 𝑦 ∈ 𝑌 with 𝜑 = 𝑐𝑦 |𝐸,𝐸 . We are going to show that y is a generalized
permutation matrix, which implies the desired conclusion that 𝜑 = 𝜑𝜋 for some 𝜋 ∈ 𝑆𝑛. Let 𝑦1, . . . , 𝑦𝑛
denote the columns of y, and let 1 ≤ 𝑗 ≤ 𝑛. To prove that y is a generalized permutation matrix, it
suffices to show that 𝑦 𝑗 has precisely one nonzero entry. Let 1 ≤ 𝑘 ≠ ℓ ≤ 𝑛 with 𝑘 ≠ 𝑗 ≠ ℓ. Let
𝐴 := { 𝑗 , 𝑘} and 𝐶 := { 𝑗 , ℓ}. As y normalizes E, there exist distinct subsets 𝐴0, 𝐶0 ⊆ {1, . . . , 𝑛} with
|𝐴0 | = 2 = |𝐶0 | and (𝑡𝐴0)

𝑦 = 𝑡𝐴, (𝑡𝐶0)
𝑦 = 𝑡𝐶 . Hence, 𝑡𝐴0 · 𝑦 = 𝑦 · 𝑡𝐴 and 𝑡𝐶0 · 𝑦 = 𝑦 · 𝑡𝐶 , and so 𝑦 𝑗

is an eigenvector of 𝑡𝐴0 and of 𝑡𝐶0 with eigenvalue −1. Together with the fact that |𝐴0 | = 2 = |𝐶0 | and
𝐴0 ≠ 𝐶0, it follows that 𝑦 𝑗 has only one nonzero entry, as required. �

Lemma 3.24. Let q be a nontrivial odd prime power, 𝑛 ≥ 3 a natural number and S a Sylow 2-subgroup
of 𝑃𝑆𝐿𝑛 (𝑞). Then Aut𝑃𝑆𝐿𝑛 (𝑞) (𝑆) = Inn(𝑆).

Proof. Let 𝑅 ∈ Syl2(𝑆𝐿𝑛 (𝑞)) such that S is the image of R in 𝑃𝑆𝐿𝑛 (𝑞). Let T be a Sylow 2-subgroup
of 𝐺𝐿𝑛 (𝑞) with 𝑅 ≤ 𝑇 . By [36, Theorem 1], we have 𝑁𝐺𝐿𝑛 (𝑞) (𝑅) = 𝑇𝐶𝐺𝐿𝑛 (𝑞) (𝑇). So we have
that Aut𝑆𝐿𝑛 (𝑞) (𝑅) is a 2-group. Since the image of 𝑁𝑆𝐿𝑛 (𝑞) (𝑅) in 𝑃𝑆𝐿𝑛 (𝑞) equals 𝑁𝑃𝑆𝐿𝑛 (𝑞) (𝑆)
(see [35, Kapitel I, Hilfssatz 7.7 c)]), it follows that Aut𝑃𝑆𝐿𝑛 (𝑞) (𝑆) is a 2-group, and this implies
Aut𝑃𝑆𝐿𝑛 (𝑞) (𝑆) = Inn(𝑆). �

3.5. k-connectivity

In this subsection, we prove some connectivity properties of the Sylow 2-subgroups of 𝑆𝐿𝑛 (𝑞) and
𝑃𝑆𝐿𝑛 (𝑞), where q is a nontrivial odd prime power and 𝑛 ≥ 6. We will work with the following
definition (see [31, Section 8]):
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Definition 3.25. Let S be a finite 2-group, and let k be a positive integer. If A and B are elementary
abelian subgroups of S of rank at least k, then A and B are said to be k-connected if there is a sequence

𝐴 = 𝐴1, 𝐴2, . . . , 𝐴𝑛 = 𝐵 (𝑛 ≥ 1)

of elementary abelian subgroups 𝐴𝑖 , 1 ≤ 𝑖 ≤ 𝑛, of S with rank at least k such that

𝐴𝑖 ⊆ 𝐴𝑖+1 or 𝐴𝑖+1 ⊆ 𝐴𝑖

for all 1 ≤ 𝑖 ≤ 𝑛 − 1. The group S is said to be k-connected if any two elementary abelian subgroups of
S of rank at least k are k-connected.

Lemma 3.26 [31, Lemma 8.4]. Let S be a finite 2-group, and let k be a positive integer. If S has a normal
elementary abelian subgroup of rank at least 2𝑘−1 + 1, then S is k-connected.

Lemma 3.27. Let q be a nontrivial odd prime power with 𝑞 ≡ 1 mod 4, and let 𝑛 ≥ 6 be a natural
number. Then the Sylow 2-subgroups of 𝑃𝑆𝐿𝑛 (𝑞) and those of 𝑆𝐿𝑛 (𝑞) are 3-connected.

Proof. Let 𝑊0 be the unique Sylow 2-subgroup of 𝐺𝐿1 (𝑞), and let 𝑊1 be the Sylow 2-subgroup of
𝐺𝐿2 (𝑞) given in Lemma 3.10 (i). For each 𝑟 ≥ 2, let𝑊𝑟 be the Sylow 2-subgroup of 𝐺𝐿2𝑟 (𝑞) obtained
from 𝑊𝑟−1 by the construction given in the last statement of Lemma 3.14. Let 0 ≤ 𝑟1 < · · · < 𝑟𝑡 such
that 𝑛 = 2𝑟1 + · · · + 2𝑟𝑡 , and let W be the Sylow 2-subgroup of 𝐺𝐿𝑛 (𝑞) obtained from 𝑊𝑟1 , . . . ,𝑊𝑟𝑡 by
using the last statement of Lemma 3.15.

For any 𝑘 ≥ 1, let 𝑅𝑘 (𝑞) denote the subgroup of 𝐺𝐿𝑘 (𝑞) consisting of all diagonal matrices
𝐷 ∈ 𝐺𝐿𝑘 (𝑞), where 𝐷2 ∈ 𝑍 (𝐺𝐿𝑘 (𝑞)) and any diagonal element of D is a 2-element of F∗𝑞 . Also,
let 𝑅 := 𝑅6 (𝑞). By Lemma 3.14 and induction on r, 𝑅2𝑟 (𝑞) � 𝑊𝑟 , using Lemma 3.10 (i) to anchor
the induction. Then 𝑅 = 𝑅2𝑟1 (𝑞) × · · · × 𝑅2𝑟𝑡 (𝑞) � 𝑊 . Let 𝑅0 := 𝑅 ∩ 𝑆𝐿𝑛 (𝑞) and 𝐸 := Ω1(𝑅0).
By Lemma 3.22, 𝑚(𝐸) = 𝑛 − 1 ≥ 5, so by Lemma 3.26, 𝑊0 := 𝑊 ∩ 𝑆𝐿𝑛 (𝑞) is 3-connected. Set
𝑊∗ := 𝑊/(𝑊 ∩ 𝑍 (𝑆𝐿𝑛 (𝑞))); then 𝑚(𝐸∗) ≥ 𝑚(𝐸) − 1 = 𝑛 − 2, so by Lemma 3.26,𝑊∗

0 is 3-connected,
unless possibly 𝑛 = 6. But if 𝑛 = 6, then 𝐹∗ = 𝑅∗

0 is of rank 5, where 𝐹 = 〈𝐸, 𝑖𝐼6 · 𝑟〉 for some reflection
𝑟 ∈ 𝑅 and some 𝑖 ∈ F∗𝑞 of order 4. �

Lemma 3.26 and the proof of Lemma 3.27 show that we also have the following:

Lemma 3.28. Let q be a nontrivial odd prime power with 𝑞 ≡ 1 mod 4, and let 𝑛 ≥ 6 be a natural
number. Then the Sylow 2-subgroups of 𝑃𝑆𝐿𝑛 (𝑞) and those of 𝑆𝐿𝑛 (𝑞) are 2-connected.

We now study the case 𝑞 ≡ 3 mod 4.

Lemma 3.29. Let q be a nontrivial odd prime power with 𝑞 ≡ 3 mod 4, and let 𝑛 ≥ 6 be a natural
number. Then the Sylow 2-subgroups of 𝑃𝑆𝐿𝑛 (𝑞) and those of 𝑆𝐿𝑛 (𝑞) are 2-connected. If 𝑛 ≥ 10, then
we even have that the Sylow 2-subgroups of 𝑃𝑆𝐿𝑛 (𝑞) and those of 𝑆𝐿𝑛 (𝑞) are 3-connected.

Proof. Let 𝑊0 denote the unique Sylow 2-subgroup of 𝐺𝐿1 (𝑞), and let 𝑊1 be a Sylow 2-subgroup of
𝐺𝐿2 (𝑞). By Lemma 3.10 (ii),𝑊1 is semidihedral. Let 𝑚 ∈ N with |𝑊1 | = 2𝑚. Also, let ℎ, 𝑎 ∈ 𝑊1 such
that ord(ℎ) = 2𝑚−1, ord(𝑎) = 2 and ℎ𝑎 = ℎ2𝑚−2−1. Set 𝑧 := −𝐼2 = ℎ2𝑚−2 . For each 𝑟 ≥ 2, let 𝑊𝑟 be the
Sylow 2-subgroup of 𝐺𝐿2𝑟 (𝑞) obtained from 𝑊𝑟−1 by the construction given in the last statement of
Lemma 3.14. Let 0 ≤ 𝑟1 < · · · < 𝑟𝑡 such that 𝑛 = 2𝑟1 + · · · + 2𝑟𝑡 , and let W be the Sylow 2-subgroup of
𝐺𝐿𝑛 (𝑞) obtained from𝑊𝑟1 , . . . ,𝑊𝑟𝑡 by using the last statement of Lemma 3.15.

https://doi.org/10.1017/fms.2022.53 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.53


20 Julian Kaspczyk

Given a natural number ℓ ≥ 1 and elements 𝑥1, . . . , 𝑥ℓ ∈ 𝐺𝐿2(𝑞), we write diag(𝑥1, . . . , 𝑥ℓ) for the
block diagonal matrix

���	
𝑥1

. . .

𝑥ℓ


���.
For each natural number 𝑟 ≥ 1, let 𝐴𝑟 denote the subgroup of 𝐺𝐿2𝑟 (𝑞) consisting of the matrices
diag(𝑥1, . . . , 𝑥2𝑟−1 ), where either 𝑥𝑖 ∈ 〈𝑧〉 for all 1 ≤ 𝑖 ≤ 2𝑟−1 or 𝑥𝑖 is an element of 〈ℎ〉 with order 4 for
all 1 ≤ 𝑖 ≤ 2𝑟−1. By induction over r, one can see that 𝐴𝑟 � 𝑊𝑟 for all 𝑟 ≥ 1. Also, let �̃�𝑟 := Ω1(𝐴𝑟 )
for all 𝑟 ≥ 1. Clearly, �̃�𝑟 � 𝑊𝑟 for all 𝑟 ≥ 1.

We now consider two cases.
Case 1: n is even.
Let E be the subgroup of 𝐺𝐿𝑛 (𝑞) consisting of the matrices diag(𝑥1, . . . , 𝑥 𝑛

2
), where either 𝑥𝑖 ∈ 〈𝑧〉

for all 1 ≤ 𝑖 ≤ 𝑛
2 or 𝑥𝑖 is an element of 〈ℎ〉 with order 4 for all 1 ≤ 𝑖 ≤ 𝑛

2 . Let 𝐸 := Ω1(𝐸). Since
𝐴𝑟𝑖 � 𝑊𝑟𝑖 for all 1 ≤ 𝑖 ≤ 𝑡, we have that E and 𝐸 are normal subgroups of W. Lemma 3.16 (iii) shows
that 𝐸 ≤ 𝑊 ∩ 𝑆𝐿𝑛 (𝑞).

As 𝐸 is elementary abelian of order 2 𝑛
2 , Lemma 3.26 implies that 𝑊 ∩ 𝑆𝐿𝑛 (𝑞) is 2-connected and

even 3-connected if 𝑛 ≥ 10. Since 𝐸𝑍 (𝑆𝐿𝑛 (𝑞))/𝑍 (𝑆𝐿𝑛 (𝑞)) is a normal elementary abelian subgroup of
(𝑊 ∩ 𝑆𝐿𝑛 (𝑞))𝑍 (𝑆𝐿𝑛 (𝑞))/𝑍 (𝑆𝐿𝑛 (𝑞)) with order 2 𝑛

2 , Lemma 3.26 also shows that a Sylow 2-subgroup
is 2-connected, and even 3-connected if 𝑛 ≥ 10.

Case 2: n is odd.
Now let E denote the subgroup of 𝐺𝐿𝑛 (𝑞) consisting of the matrices

�����	
1
𝑥1

. . .

𝑥 𝑛−1
2


�����
,

where 𝑥𝑖 ∈ 〈𝑧〉 for all 1 ≤ 𝑖 ≤ 𝑛−1
2 . Since 𝐴𝑟𝑖 � 𝑊𝑟𝑖 for all 2 ≤ 𝑖 ≤ 𝑡, we have that E is a normal

subgroup of 𝑊 ∩ 𝑆𝐿𝑛 (𝑞). Moreover, E is elementary abelian of order 2 𝑛−1
2 . Lemma 3.26 implies that

𝑊 ∩ 𝑆𝐿𝑛 (𝑞) is 2-connected and even 3-connected if 𝑛 ≥ 11. There is nothing else to show since the
Sylow 2-subgroups of 𝑃𝑆𝐿𝑛 (𝑞) are isomorphic to those of 𝑆𝐿𝑛 (𝑞) (as n is odd). �

We show next that the groups 𝑆𝐿𝑛 (𝑞), where 6 ≤ 𝑛 ≤ 9 and 𝑞 ≡ 3 mod 4, and the groups 𝑃𝑆𝐿𝑛 (𝑞),
where 7 ≤ 𝑛 ≤ 9 and 𝑞 ≡ 3 mod 4, also have 3-connected Sylow 2-subgroups.

Lemma 3.30. Let q be a nontrivial odd prime power with 𝑞 ≡ 3 mod 4. Then the Sylow 2-subgroups of
𝑆𝐿6 (𝑞) and those of 𝑆𝐿7 (𝑞) are 3-connected.

Proof. Let𝑊1 be a Sylow 2-subgroup of 𝐺𝐿2 (𝑞), let𝑊2 be the Sylow 2-subgroup of 𝐺𝐿4 (𝑞) obtained
from 𝑊1 by the construction given in the last statement of Lemma 3.14 and let W be the Sylow 2-
subgroup of 𝐺𝐿6 (𝑞) obtained from𝑊1 and𝑊2 by using the last statement of Lemma 3.15.

From Lemma 3.15, we see that the Sylow 2-subgroups of 𝑆𝐿7 (𝑞) are isomorphic to those of𝐺𝐿6 (𝑞).
So it is enough to show that W and 𝑊 ∩ 𝑆𝐿6 (𝑞) are 3-connected. Given elements 𝑥1, 𝑥2, 𝑥3 ∈ 𝐺𝐿2 (𝑞),
we write diag(𝑥1, 𝑥2, 𝑥3) for the block diagonal matrix

��	
𝑥1
𝑥2
𝑥3


��.
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Let A be the subgroup of 𝑊 ∩ 𝑆𝐿6 (𝑞) consisting of the matrices diag(𝑥1, 𝑥2, 𝑥3), where 𝑥𝑖 ∈ 〈−𝐼2〉 for
1 ≤ 𝑖 ≤ 3. Then 𝐴 � 𝐸8. We prove the following:

(1) If E is an elementary abelian subgroup of W of rank at least 3, then E is 3-connected to an elementary
abelian subgroup of𝑊 ∩ 𝑆𝐿6 (𝑞) of rank at least 3.

(2) If E is an elementary abelian subgroup of 𝑊 ∩ 𝑆𝐿6 (𝑞) of rank at least 3, then E is 3-connected to
A in𝑊 ∩ 𝑆𝐿6 (𝑞).

By (1) and (2), any elementary abelian subgroup of W of rank at least 3 is 3-connected to A, and so W
is 3-connected. Similarly, (2) implies that𝑊 ∩ 𝑆𝐿6 (𝑞) is 3-connected.

Let 𝑍 := 〈diag(−𝐼2, 𝐼2, 𝐼2), diag(𝐼2,−𝐼2,−𝐼2)〉. Since 𝑍 ≤ 𝑍 (𝑊), we have that any elementary
abelian subgroup of W of rank at least 3 is 3-connected to an 𝐸8-subgroup of W containing Z. Also, any
elementary abelian subgroup of 𝑊 ∩ 𝑆𝐿6 (𝑞) of rank at least 3 is 3-connected (in 𝑊 ∩ 𝑆𝐿6 (𝑞)) to an
𝐸8-subgroup of𝑊∩𝑆𝐿6(𝑞) containing Z. Therefore, we only need to consider 𝐸8-subgroups containing
Z in order to prove (1) and (2).

So let E be an 𝐸8-subgroup of W with 𝑍 ≤ 𝐸 , and let 𝑠 ∈ 𝐸 \ 𝑍 . Suppose that 𝑠 = diag(𝑠1, 𝑠2, 𝑠3),
where 𝑠1, 𝑠2, 𝑠3 ∈ 𝑊1. Then [𝐸, 𝐴] = 1, and it is easy to deduce that E is 3-connected to A so that E
satisfies (1). Also, if 𝐸 ≤ 𝑊 ∩ 𝑆𝐿6 (𝑞), it is easy to deduce that E satisfies (2).

Suppose now that

𝑠 =
��	
𝑠1

𝑠2
𝑠3


��
for some 𝑠1, 𝑠2, 𝑠3 ∈ 𝑊1. Since 𝑠2 = 𝐼6, we have 𝑠2 = 𝑠−1

3 . Let a be an involution of 𝑊1 with 𝑎 ≠ −𝐼2.
Set 𝑠∗ := diag(𝐼2, 𝑎, 𝑎𝑠2 ) and 𝐸∗ := 〈𝑍, 𝑠∗〉 � 𝐸8. Clearly, 𝐸∗ ≤ 𝑊 ∩ 𝑆𝐿6 (𝑞). It is easy to check that
[𝐸, 𝐸∗] = 1, which implies that E is 3-connected to 𝐸∗. So E satisfies (1). If 𝐸 ≤ 𝑊 ∩ 𝑆𝐿6 (𝑞), then
E is 3-connected to 𝐸∗ in 𝑊 ∩ 𝑆𝐿6 (𝑞), and 𝐸∗ is 3-connected to A in 𝑊 ∩ 𝑆𝐿6 (𝑞) since [𝐸∗, 𝐴] = 1.
Therefore, E satisfies (2) when 𝐸 ≤ 𝑊 ∩ 𝑆𝐿6 (𝑞). �

Let q be a nontrivial odd prime power with 𝑞 ≡ 3 mod 4. A Sylow 2-subgroup of 𝑃𝑆𝐿7 (𝑞) is
isomorphic to a Sylow 2-subgroup of 𝑆𝐿7 (𝑞). So, by Lemma 3.30, the Sylow 2-subgroups of 𝑃𝑆𝐿7 (𝑞)
are 3-connected.

We need the following lemma in order to prove that the Sylow 2-subgroups of 𝑆𝐿𝑛 (𝑞) and 𝑃𝑆𝐿𝑛 (𝑞)
are 3-connected when 𝑛 ∈ {8, 9}.

Lemma 3.31. Let q be a nontrivial odd prime power with 𝑞 ≡ 3 mod 4, and let V be a Sylow 2-subgroup
of 𝐺𝐿4 (𝑞). Let 𝑢 ∈ 𝑉 with 𝑢2 = 𝐼4 or 𝑢2 = −𝐼4. Then there is an involution 𝑣 ∈ 𝑉 \ 〈𝑢,−𝐼4〉 which
commutes with u.

Proof. Fix a Sylow 2-subgroup𝑊1 of𝐺𝐿2 (𝑞), and let𝑊2 be the Sylow 2-subgroup of𝐺𝐿4 (𝑞) obtained
from 𝑊1 by the construction given in the last statement of Lemma 3.14. By Sylow’s theorem, we may
assume that 𝑉 = 𝑊2. Let a be an involution of𝑊1 with 𝑎 ≠ −𝐼2.

First, we consider the case that

𝑢 =

(
𝑥
𝑦

)
with elements 𝑥, 𝑦 ∈ 𝑊1. If 𝑥 ∉ 〈−𝐼2〉 or 𝑦 ∉ 〈−𝐼2〉, then(

−𝐼2
𝐼2

)
∈ 𝑊2
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is an involution commuting with u and not lying in 〈𝑢,−𝐼4〉. If 𝑥, 𝑦 ∈ 〈−𝐼2〉, then we may choose

𝑣 :=
(
𝑎
𝑎

)
.

Assume now that

𝑢 =

(
𝑥

𝑦

)
with elements 𝑥, 𝑦 ∈ 𝑊1. Let

𝑣 :=
(
𝑎
𝑎𝑥

)
.

As a is an involution of 𝑊1, we have that v is an involution of 𝑊2. By a direct calculation (using that
𝑥𝑦 ∈ 〈−𝐼2〉), v has the desired properties. �

Lemma 3.32. Let q be a nontrivial odd prime power with 𝑞 ≡ 3 mod 4. Then the Sylow 2-subgroups of
𝑆𝐿8 (𝑞) and those of 𝑆𝐿9 (𝑞) are 3-connected.

Proof. Fix a Sylow 2-subgroup 𝑊1 of 𝐺𝐿2 (𝑞), let 𝑊2 be the Sylow 2-subgroup of 𝐺𝐿4 (𝑞) obtained
from 𝑊1 by the construction given in the last statement of Lemma 3.14 and let W be the Sylow 2-
subgroup of 𝐺𝐿8 (𝑞) obtained from 𝑊2 by the construction given in the last statement of Lemma 3.14.
Set 𝑆 := 𝑊 ∩ 𝑆𝐿8 (𝑞).

From Lemma 3.15, we see that the Sylow 2-subgroups of 𝑆𝐿9 (𝑞) are isomorphic to those of𝐺𝐿8 (𝑞).
So it is enough to show that W and S are 3-connected.

Given a natural number ℓ ≥ 1 and 𝑥1, . . . , 𝑥ℓ ∈ 𝐺𝐿2 (𝑞) ∪𝐺𝐿4 (𝑞), we write diag(𝑥1, . . . , 𝑥ℓ ) for the
block diagonal matrix

���	
𝑥1

. . .

𝑥ℓ


���.
Set

𝐴 := {diag(𝑥1, 𝑥2, 𝑥3, 𝑥4) | 𝑥𝑖 ∈ 〈−𝐼2〉 ∀ 1 ≤ 𝑖 ≤ 4} ≤ 𝑆

and

𝑍 := 〈−𝐼8〉 ≤ 𝑆.

Then 𝐴 � 𝐸16. Since 𝑍 ≤ 𝑍 (𝑊), we have that any elementary abelian subgroup of W of rank at least
3 is 3-connected to an 𝐸8-subgroup of W containing Z. Similarly, any elementary abelian subgroup of
S of rank at least 3 is 3-connected to an 𝐸8-subgroup of S containing Z. So it suffices to prove that any
𝐸8-subgroup E of W with 𝑍 ≤ 𝐸 is 3-connected to A, where E is even 3-connected in S to A if 𝐸 ≤ 𝑆.
Thus, let E be an 𝐸8-subgroup of W containing Z, and let 𝑥, 𝑦 ∈ 𝐸 with 𝐸 = 〈𝑍, 𝑥, 𝑦〉.

We consider a number of cases. Below, a will always denote an involution of𝑊1 with 𝑎 ≠ −𝐼2.
Case 1: 𝑥 = diag(−𝐼4, 𝐼4) and 𝑦 = diag(𝑏1, 𝑏2) for some 𝑏1, 𝑏2 ∈ 𝑊2.
We determine an involution 𝑦1 ∈ 𝐶𝑊 (𝐸) \ 〈𝑍, 𝑥〉 such that 〈𝑍, 𝑥, 𝑦1〉 � 𝐸8 is 3-connected to A. In

the case that 𝐸 ≤ 𝑆, we determine 𝑦1 such that 𝑦1 ∈ 𝑆 and such that 〈𝑍, 𝑥, 𝑦1〉 is 3-connected to A in S.
The existence of such an involution 𝑦1 easily implies that E is 3-connected to A and even 3-connected
to A in S if 𝐸 ≤ 𝑆. The involution 𝑦1 is given by the following table in dependence of y. In each row,
𝑟1, 𝑟2, 𝑟3, 𝑟4 are assumed to be elements of𝑊1 such that y is equal to the matrix given in the column “y”

https://doi.org/10.1017/fms.2022.53 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.53


Forum of Mathematics, Sigma 23

and such that the conditions in the column ‘Conditions’ (if any) are satisfied. The column ‘𝑦1’ gives the
involution 𝑦1 with the desired properties. For each row, one can verify the stated properties of 𝑦1 by a
direct calculation or by using the previous rows.

Case y Conditions 𝑦1

1.1
����	
𝑟1
𝑟2
𝑟3
𝑟4


���� y

1.2
����	
𝑟1
𝑟2

𝑟3
𝑟4


���� 〈𝑟1 , 𝑟2 〉 �≤ 〈−𝐼2 〉
��	
𝑟1
𝑟2
𝐼4


��
1.3

����	
𝑟1
𝑟2

𝑟3
𝑟4


���� 𝑟1 , 𝑟2 ≤ 〈−𝐼2 〉
��	
𝑎
𝑎
𝐼4


��
1.4

����	
𝑟1

𝑟2
𝑟3
𝑟4


���� 〈𝑟3 , 𝑟4 〉 �≤ 〈−𝐼2 〉
��	
𝐼4
𝑟3
𝑟4


��
1.5

����	
𝑟1

𝑟2
𝑟3
𝑟4


���� 𝑟3 , 𝑟4 ≤ 〈−𝐼2 〉
��	
𝐼4
𝑎
𝑎


��
1.6

����	
𝑟1

𝑟2
𝑟3

𝑟4


����
��	

𝑟1
𝑟2

𝐼4


��

Case 2: 𝑥 = diag(𝑎1, 𝑎2) and 𝑦 = diag(𝑏1, 𝑏2) for some 𝑎1, 𝑎2, 𝑏1, 𝑏2 ∈ 𝑊2.
Set 𝑥1 := diag(−𝐼4, 𝐼4). Since 𝐸 = 〈𝑍, 𝑥, 𝑦〉 � 𝐸8, the elements x and y cannot be both contained in

〈𝑍, 𝑥1〉. Without loss of generality, we may assume that 𝑦 ∉ 〈𝑍, 𝑥1〉. Then 𝐸1 := 〈𝑍, 𝑥1, 𝑦〉 � 𝐸8. The
group 𝐸1 is 3-connected to A by Case 1, and it is 3-connected to E since E and 𝐸1 commute. Hence, E
is 3-connected to A. Clearly, if 𝐸 ≤ 𝑆, then E is even 3-connected in S to A.

Case 3: There are 𝑎1, 𝑎2, 𝑏1, 𝑏2 ∈ 𝑊2 with

{𝑥, 𝑦} =

{(
𝑎1

𝑎2

)
,

(
𝑏1

𝑏2

)}
.

Without loss of generality, we assume that

𝑥 =

(
𝑎1

𝑎2

)
and 𝑦 =

(
𝑏1

𝑏2

)
.

Since x and y are commuting involutions, we have 𝑏1 = 𝑏−1
2 and 𝑎2 = 𝑎1

𝑏1 . By Lemma 3.31, there is an
involution 𝑎1 ∈ 𝑊2 \ 〈𝑎1,−𝐼4〉 which commutes with 𝑎1. Set

𝑦1 :=
(
𝑎1

𝑎1
𝑏1

)
.

It is easy to see that 𝑦1 ∈ 𝑆, and 𝑦1 is an involution since 𝑎1 is an involution of𝑊2. We have [𝑥, 𝑦1] = 1
since 𝑎1 commutes with 𝑎1 and 𝑎1

𝑏1 commutes with 𝑎1
𝑏1 = 𝑎2. A direct calculation using that 𝑏1 = 𝑏−1

2
shows that we also have [𝑦, 𝑦1] = 1. Thus, 𝐸 = 〈𝑍, 𝑥, 𝑦〉 commutes with 𝐸1 := 〈𝑍, 𝑥, 𝑦1〉. Since
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𝑎1 ∉ 〈𝑎1,−𝐼4〉, we have 𝑦1 ∉ 〈𝑍, 𝑥〉 and hence 𝐸1 � 𝐸8. Applying Case 2, it follows that E is 3-
connected to A (and even 3-connected in S to A when 𝐸 ≤ 𝑆).

Case 4: There are 𝑎1, 𝑎2, 𝑏1, 𝑏2 ∈ 𝑊2 with

𝑥 =

(
𝑎1

𝑎2

)
and 𝑦 =

(
𝑏1

𝑏2

)
.

This case can be reduced to Case 3 since 𝐸 = 〈𝑍, 𝑥, 𝑦〉 = 〈𝑍, 𝑥, 𝑥𝑦〉. �

Let q be a nontrivial odd prime power with 𝑞 ≡ 3 mod 4. A Sylow 2-subgroup of 𝑃𝑆𝐿9 (𝑞) is
isomorphic to a Sylow 2-subgroup of 𝑆𝐿9 (𝑞). So, by Lemma 3.32, the Sylow 2-subgroups of 𝑃𝑆𝐿9 (𝑞)
are 3-connected.

Lemma 3.33. Let q be a nontrivial odd prime power with 𝑞 ≡ 3 mod 4. Then the Sylow 2-subgroups of
𝑃𝑆𝐿8 (𝑞) are 3-connected.

Proof. Let𝑊1 be a Sylow 2-subgroup of𝐺𝐿2 (𝑞). Let𝑊2 be the Sylow 2-subgroup of𝐺𝐿4 (𝑞) obtained
from 𝑊1 by the construction given in the last statement of Lemma 3.14, and let 𝑊3 be the Sylow 2-
subgroup of 𝐺𝐿8 (𝑞) obtained from 𝑊2 by the construction given in the last statement of Lemma 3.14.
Set 𝑆 := 𝑊3 ∩ 𝑆𝐿8 (𝑞). For each subgroup or element X of 𝑆𝐿8 (𝑞), let 𝑋 denote the image of X in
𝑃𝑆𝐿8 (𝑞). We prove that 𝑆 is 3-connected.

Given a natural number ℓ ≥ 1 and 𝑥1, . . . , 𝑥ℓ ∈ 𝐺𝐿2 (𝑞) ∪𝐺𝐿4 (𝑞), we write diag(𝑥1, . . . , 𝑥ℓ ) for the
block diagonal matrix

���	
𝑥1

. . .

𝑥ℓ


���.
Set

𝐴 := {diag(𝑥1, 𝑥2, 𝑥3, 𝑥4) | 𝑥𝑖 ∈ 〈−𝐼2〉 ∀ 1 ≤ 𝑖 ≤ 4} ≤ 𝑆.

We have 𝐴 � 𝐸8.
Set

𝑍 := 〈diag(−𝐼4, 𝐼4)〉.

We have 𝑍 ≤ 𝑍 (𝑆). Using this, it is easy to note that any elementary abelian subgroup of 𝑆 of rank
at least 3 is 3-connected to an 𝐸8-subgroup of 𝑆 containing 𝑍 . Hence, it suffices to prove that any
𝐸8-subgroup of 𝑆 containing 𝑍 is 3-connected to 𝐴.

Let 𝑥, 𝑦 ∈ 𝑆 and 𝐵 := 〈𝑍, 𝑥, 𝑦〉. Suppose that 𝐵 � 𝐸8. Considering a number of cases, we will prove
that B is 3-connected to 𝐴. Below, a will always denote an involution of𝑊1 with 𝑎 ≠ −𝐼2.

Case 1: 𝑥 = diag(𝑟1, 𝑟2, 𝑟3, 𝑟4) and 𝑦 = diag(𝑚1, 𝑚2) for some 𝑟1, 𝑟2, 𝑟3, 𝑟4 ∈ 𝑊1 and 𝑚1, 𝑚2 ∈ 𝑊2.
We consider a number of subcases. These subcases are given by the rows of the table below. In each

row, we assume that 𝑠1, 𝑠2, 𝑠3, 𝑠4 are elements of 𝑊1 such that y is equal to the matrix given in the
column “y”. We also assume that the conditions in the column ‘Conditions’ (if any) are satisfied. The
column ‘𝑦1’ gives an element of S such that 𝑦1 is an involution in𝐶𝑆 (𝐸) \ 〈𝑍, 𝑥〉 and such that 〈𝑍, 𝑥, 𝑦1〉

is 3-connected to 𝐴. The existence of such an element 𝑦1 easily implies that B is 3-connected to 𝐴.
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Case y Conditions 𝑦1

1.1
����	
𝑠1
𝑠2
𝑠3
𝑠4


���� y

1.2
����	

𝑠1
𝑠2

𝑠3
𝑠4


���� 𝑥 ∉ 𝐴
��	
𝐼4

−𝐼2
𝐼2


��
1.3

����	
𝑠1

𝑠2
𝑠3
𝑠4


���� 𝑥 ∈ 𝐴
��	
𝑎

𝑎𝑠
−1
2

𝐼4


��
1.4

����	
𝑠1

𝑠2
𝑠3

𝑠4


���� 𝑥 ∉ 𝐴
����	
𝐼2

−𝐼2
𝐼2

−𝐼2


����
1.5

����	
𝑠1

𝑠2
𝑠3

𝑠4


���� 𝑥 ∈ 𝐴
����	
𝑎

𝑎𝑠
−1
2

𝑎

𝑎𝑠
−1
4


����

The subcase that y has the form

����	
𝑠1
𝑠2

𝑠3
𝑠4


����
can be easily reduced to Cases 1.2 and 1.3.

Case 2: There are 𝑟1, 𝑟2, 𝑟3, 𝑟4 ∈ 𝑊1 and 𝑚1, 𝑚2 ∈ 𝑊2 with

𝑥 =
����	

𝑟1
𝑟2

𝑟3
𝑟4


���� and 𝑦 =
(
𝑚1

𝑚2

)
.

Case 2.1: There are 𝑠1, 𝑠2, 𝑠3, 𝑠4 ∈ 𝑊1 with

𝑦 =
����	
𝑠1
𝑠2
𝑠3
𝑠4


���� or 𝑦 =
����	

𝑠1
𝑠2

𝑠3
𝑠4


����.
Noticing that 〈𝑍, 𝑥, 𝑦〉 = 〈𝑍, 𝑥, 𝑥𝑦〉, this case can be reduced to Case 1.

Case 2.2: There are 𝑠1, 𝑠2, 𝑠3, 𝑠4 ∈ 𝑊1 with

𝑦 =
����	
𝑠1
𝑠2

𝑠3
𝑠4


����.
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Since 𝐵 � 𝐸8, we have 𝜀𝑥𝑦 = 𝑥, where 𝜀 ∈ {+,−}. By a direct calculation, we have

𝑥𝑦 =
����	

𝑠−1
1 𝑟1𝑠2

𝑠−1
2 𝑟2𝑠1

𝑟𝑠44
𝑟𝑠33


����.
As 𝑥 = 𝜀𝑥𝑦 , we have 𝑟1 = 𝜀𝑠−1

1 𝑟1𝑠2, 𝑟2 = 𝜀𝑠−1
2 𝑟2𝑠1, 𝑟3 = 𝜀𝑟𝑠44 and 𝑟4 = 𝜀𝑟𝑠33 . Note that 𝜀𝑠𝑟11 = 𝑠2 and

𝜀𝑠𝑟22 = 𝑠1.
We now consider a number of subsubcases. These subsubcases are given by the rows of the table

below. The columns ‘Condition 1’ and ‘Condition 2’ describe the subsubcase under consideration. The
column ‘𝑦1’ gives an element 𝑦1 ∈ 𝑆 such that 𝑦1 is an involution in 𝐶𝑆 (𝐸) \ 〈𝑍, 𝑥〉 and such that
〈𝑍, 𝑥, 𝑦1〉 is 3-connected to 𝐴. In each subsubcase, one can see from the above calculations and from
the previous cases that 𝑦1 indeed has the stated properties. The existence of such an element 𝑦1 easily
implies that B is 3-connected to 𝐴 in all subsubcases.

Case Condition 1 Condition 2 𝑦1

2.2.1 𝑥2 = 𝐼8 = 𝑦2 〈𝑟3 , 𝑟4 〉 �≤ 〈−𝐼2 〉
����	
𝜀𝑠1

𝑠2
𝜀𝑟3

𝑟4


����
.2.2 𝑥2 = 𝐼8 = 𝑦2 〈𝑟3 , 𝑟4 〉 ≤ 〈−𝐼2 〉

����	
𝑟1

𝑟2
𝜀𝑎

𝑎𝑠3


����
2.2.3 𝑥2 = −𝐼8 = 𝑦2

����	
𝜀𝑠1

𝑠2
𝜀𝑟3

𝑟4


����
2.2.4 𝑥2 = 𝐼8 , 𝑦2 = −𝐼8 〈𝑟3 , 𝑟4 〉 �≤ 〈−𝐼2 〉

��	
𝐼4
𝜀𝑟3

𝑟4


��
2.2.5 𝑥2 = 𝐼8 , 𝑦2 = −𝐼8 〈𝑟3 , 𝑟4 〉 ≤ 〈−𝐼2 〉

��	
𝐼4
𝜀𝑎

𝜀𝑎𝑠3


��
The case that 𝑥2 = −𝐼8 and 𝑦2 = 𝐼8 can be easily reduced to Cases 2.2.4 and 2.2.5.
Case 2.3: There are 𝑠1, 𝑠2, 𝑠3, 𝑠4 ∈ 𝑊1 with

𝑦 =
����	

𝑠1
𝑠2

𝑠3
𝑠4


����.
Since 〈𝑍, 𝑥, 𝑦〉 = 〈𝑍, 𝑥, 𝑥𝑦〉, this case can be reduced to Case 2.2.

Case 3: There are 𝑟1, 𝑟2, 𝑟3, 𝑟4 ∈ 𝑊1 and 𝑚1, 𝑚2 ∈ 𝑊2 with

𝑥 =
����	
𝑟1
𝑟2

𝑟3
𝑟4


���� and 𝑦 =
(
𝑚1

𝑚2

)
.

This case can be reduced to Case 2.
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Case 4: There are 𝑟1, 𝑟2, 𝑟3, 𝑟4 ∈ 𝑊1 and 𝑚1, 𝑚2 ∈ 𝑊2 with

𝑥 =
����	

𝑟1
𝑟2

𝑟3
𝑟4


���� and 𝑦 =
(
𝑚1

𝑚2

)
.

In view of Cases 1–3, we may assume that

𝑦 =
����	

𝑠1
𝑠2

𝑠3
𝑠4


����
for some 𝑠1, 𝑠2, 𝑠3, 𝑠4 ∈ 𝑊1. Since 〈𝑍, 𝑥, 𝑦〉 = 〈𝑍, 𝑥, 𝑥𝑦〉, we can now reduce the given case to Case 1.

Case 5: There are 𝑎1, 𝑎2, 𝑏1, 𝑏2 ∈ 𝑊2 with

{𝑥, 𝑦} =

{(
𝑎1

𝑎2

)
,

(
𝑏1

𝑏2

)}
.

Without loss of generality, we assume that

𝑥 =

(
𝑎1

𝑎2

)
and 𝑦 =

(
𝑏1

𝑏2

)
.

We have 𝑥2 ∈ 〈−𝐼8〉 since 𝐵 = 〈𝑍, 𝑥, 𝑦〉 � 𝐸8, and hence, 𝑎1
2 ∈ 〈−𝐼4〉. So, by Lemma 3.31, there is an

involution 𝑎1 ∈ 𝑊2 \ 〈𝑎1,−𝐼4〉 which commutes with 𝑎1. Set

𝑦1 :=
(
𝑎1

𝑎1
𝑏1

)
.

Clearly, 𝑦1 is an involution of 𝑆. As [𝑥, 𝑦] ∈ 〈−𝐼8〉, we have 𝑎1
𝑏1 ∈ {𝑎2,−𝑎2}. Since 𝑎1 and 𝑎1 commute,

it follows that 𝑎1
𝑏1 and 𝑎2 commute. So we have [𝑥, 𝑦1] = 1 and hence [𝑥, 𝑦1] = 1. Using that 𝑦2 ∈ 〈−𝐼8〉,

one can easily verify that [𝑦, 𝑦1] = 1 and hence [𝑦, 𝑦1] = 1. As 𝑎1 ∉ 〈𝑎1,−𝐼4〉, we have 𝑦1 ∉ 〈𝑍, 𝑥〉.
Now 〈𝑍, 𝑥, 𝑦1〉 is an 𝐸8-subgroup of 𝑆 which commutes with B and which is 3-connected to 𝐴 by

Cases 1-4. Thus, B is 3-connected to 𝐴.
Case 6: There are 𝑎1, 𝑎2, 𝑏1, 𝑏2 ∈ 𝑊2 with

𝑥 =

(
𝑎1

𝑎2

)
and 𝑦 =

(
𝑏1

𝑏2

)
.

Noticing that 〈𝑍, 𝑥, 𝑦〉 = 〈𝑍, 𝑥, 𝑥𝑦〉, we can reduce this case to Case 5. �

We summarize the above lemmas in the following corollary.

Corollary 3.34. Let q be a nontrivial odd prime power and 𝑛 ≥ 6. Then the following hold:

(i) The Sylow 2-subgroups of 𝑆𝐿𝑛 (𝑞) and those of 𝑃𝑆𝐿𝑛 (𝑞) are 2-connected.
(ii) The Sylow 2-subgroups of 𝑆𝐿𝑛 (𝑞) are 3-connected.

(iii) If 𝑞 ≡ 1 mod 4 or 𝑛 ≥ 7, then the Sylow 2-subgroups of 𝑃𝑆𝐿𝑛 (𝑞) are 3-connected.

Unfortunately, the Sylow 2-subgroups of 𝑃𝑆𝐿6 (𝑞) are not 3-connected when 𝑞 ≡ 3 mod 4 (this is
not terribly difficult to observe).
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Corollary 3.35. Let q be a nontrivial odd prime power and 𝑛 ≥ 6. Let 𝐺 = 𝑆𝐿𝑛 (𝑞), or 𝐺 = 𝑃𝑆𝐿𝑛 (𝑞)
and 𝑛 ≥ 7 if 𝑞 ≡ 3 mod 4. For any Sylow 2-subgroup S of G and any elementary abelian subgroup A of
S with 𝑚(𝐴) ≤ 3, there is some elementary abelian subgroup B of S with 𝐴 < 𝐵 and 𝑚(𝐵) = 4.

Proof. By Corollary 3.34, S is 2-connected and 3-connected. Applying [31, Lemma 8.7], the claim
follows. �

3.6. Generation

Next, we discuss some generational properties of (𝑃)𝑆𝐿𝑛 (𝑞) and (𝑃)𝑆𝑈𝑛 (𝑞), where 𝑛 ≥ 3 and q is a
nontrivial odd prime power. We need the following definition (see [31, Section 8]).

Definition 3.36. Let G be a finite group, let S be a Sylow 2-subgroup of G and let k be a positive integer.
We say that G is k-generated if

𝐺 = Γ𝑆,𝑘 (𝐺) := 〈𝑁𝐺 (𝑇) | 𝑇 ≤ 𝑆, 𝑚(𝑇) ≥ 𝑘〉.

The following two lemmas will later prove to be useful.

Lemma 3.37 (see [4]). Let q be a nontrivial odd prime power. Then the groups 𝑆𝐿3 (𝑞), 𝑃𝑆𝐿3 (𝑞),
𝑆𝑈3 (𝑞) and 𝑃𝑆𝑈3 (𝑞) are 2-generated.

Lemma 3.38. Let q be a nontrivial odd prime power, and let 𝑛 ≥ 4 be a natural number. Moreover, let
𝜀 ∈ {+,−} and 𝑍 ≤ 𝑍 (𝑆𝐿𝜀𝑛 (𝑞)). Assume that one of the following holds:

(i) 𝑛 ≥ 5,
(ii) 𝑞 ≡ 𝜀 mod 8,

(iii) 𝑍 = 1.

Then 𝑆𝐿𝜀𝑛 (𝑞)/𝑍 is 3-generated.

We need the following lemma in order to prove Lemma 3.38.

Lemma 3.39 (see [45], [13]). Let 𝑞 > 2 be a prime power, and let 𝑛 ≥ 3 be a natural number. Let
𝜀 ∈ {+,−}. Define

𝑈1 :=
{(
𝐴
𝐼𝑛−2

)
: 𝐴 ∈ 𝑆𝐿𝜀2 (𝑞)

}
and

𝑈𝑛−1 :=
{(
𝐼𝑛−2

𝐴

)
: 𝐴 ∈ 𝑆𝐿𝜀2 (𝑞)

}
.

Moreover, for each 2 ≤ 𝑖 ≤ 𝑛 − 2, let

𝑈𝑖 :=
⎧⎪⎪⎨⎪⎪⎩��	
𝐼𝑖−1

𝐴
𝐼𝑛−𝑖−1


�� : 𝐴 ∈ 𝑆𝐿𝜀2 (𝑞)

⎫⎪⎪⎬⎪⎪⎭.
Then the following hold:

(i) We have 𝑆𝐿𝜀𝑛 (𝑞) = 〈𝑈𝑖 : 1 ≤ 𝑖 ≤ 𝑛 − 1〉.
(ii) For each 1 ≤ 𝑖 ≤ 𝑛 − 2, there is a monomial matrix 𝑚𝑖 in 𝑆𝐿𝜀𝑛 (𝑞) with𝑈𝑚𝑖

𝑖 = 𝑈𝑖+1.

Proof of Lemma 3.38. Let q be a nontrivial odd prime power, 𝑛 ≥ 4 be a natural number, 𝜀 ∈ {+,−},
𝐿 := 𝑆𝐿𝜀𝑛 (𝑞) and 𝑍 ≤ 𝑍 (𝐿). Suppose that one of the conditions 𝑛 ≥ 5, 𝑞 ≡ 𝜀 mod 8 or 𝑍 = 1 is
satisfied. We have to show that 𝐿/𝑍 is 3-generated.
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Let 𝑈1, . . . ,𝑈𝑛−1 denote the 𝑆𝐿𝜀2 (𝑞)-subgroups of L corresponding to the 2 × 2 blocks along the
main diagonal (as in Lemma 3.39). Let E be the subgroup of L consisting of the diagonal matrices in L
with diagonal entries in {−1, 1}.

Assume that 𝑛 ≥ 5. We claim that there is an 𝐸8-subgroup 𝐸𝑖 of E with 𝐸𝑖 ∩ 𝑍 (𝐿) = 1 and
[𝐸𝑖 ,𝑈𝑖] = 1 for each 𝑖 ∈ {1, . . . , 𝑛−1}. Let V be the module defining L. Let 𝑋 = {𝑥1, . . . , 𝑥𝑛} be a basis
for V, with X orthonormal if V is unitary, and let 𝑉𝑖 := 〈𝑥𝑖 , 𝑥𝑖+1〉 for 1 ≤ 𝑖 < 𝑛. Then 𝑈𝑖 = 𝑆𝐿𝜀 (𝑉𝑖).
We have 𝑚(𝐸) = 𝑛 − 1 ≥ 4. For 1 ≤ 𝑖 < 𝑛 let 𝑒𝑖 ∈ 𝐸 invert 𝑉𝑖 and centralize 𝑥 𝑗 for 𝑥 𝑗 ∉ 𝑉𝑖 , and
set 𝐹𝑖 := 𝐶𝐸 (𝑉𝑖)〈𝑒𝑖〉. Then 𝐹𝑖 is a hyperplane of E centralizing 𝑈𝑖 . If n is odd, then |𝑍 (𝐿) | is odd,
so we may choose 𝐸𝑖 ≤ 𝐹𝑖 . Thus, we may take n even, so 𝑛 ≥ 6. Choose a hyperplane 𝐷𝑖 of 𝐹𝑖 with
𝐷𝑖 ∩ 𝑍 (𝐿) = 1, and take 𝐸𝑖 ≤ 𝐷𝑖 .

For 1 ≤ 𝑖 < 𝑛, 𝑈𝑖𝑍/𝑍 centralizes 𝐸𝑖𝑍/𝑍 � 𝐸8 since [𝐸𝑖 ,𝑈𝑖] = 1. Now, if S is a Sylow 2-subgroup
of 𝐿/𝑍 containing 𝐸𝑍/𝑍 , we have 𝑈𝑖𝑍/𝑍 ≤ Γ𝑆,3 (𝐿/𝑍) for each 𝑖 ∈ {1, . . . , 𝑛 − 1}, and Lemma 3.39
(i) implies that 𝐿/𝑍 is 3-generated.

We now consider the case 𝑛 = 4. By hypothesis, 𝑍 = 1 or 𝑞 ≡ 𝜀 mod 8. Let

𝑈 :=
⎧⎪⎪⎨⎪⎪⎩��	 𝐴

0
0

0 0 1


�� : 𝐴 ∈ 𝑆𝐿𝜀3 (𝑞)

⎫⎪⎪⎬⎪⎪⎭.
If 𝑍 = 1, set 𝑦 := −𝐼4. If 𝑞 ≡ 𝜀 mod 8, let 𝜆 be an element of F∗

𝑞2 of order 8 such that 𝜆𝑞−𝜀 = 1. Note
that 𝜆 ∈ F∗𝑞 if 𝜀 = +. Also, if 𝑞 ≡ 𝜀 mod 8 and |𝑍 | = 2, let 𝑦 := 𝜆2𝐼4 ∈ 𝐿, and if 𝑞 ≡ 𝜀 mod 8 and
|𝑍 | = 4, let 𝑦 := diag(𝜆, 𝜆, 𝜆,−𝜆) ∈ 𝐿.

Let 𝑆0 be a Sylow 2-subgroup of U containing 𝐸 ∩𝑈. Let 𝑆 be a Sylow 2-subgroup of L containing
𝑆0 and y. Denote the image of 𝑆 in 𝐿/𝑍 by S. We have 𝑆 ∩𝑈𝑍/𝑍 = 𝑆0𝑍/𝑍 ∈ Syl2 (𝑈𝑍/𝑍). By Lemma
3.37,𝑈𝑍/𝑍 � 𝑈 � 𝑆𝐿𝜀3 (𝑞) is 2-generated. So we have

𝑈𝑍/𝑍 = Γ𝑆0𝑍/𝑍,2 (𝑈𝑍/𝑍) = 〈𝑁𝑈𝑍/𝑍 (𝑇) | 𝑇 ≤ 𝑆0𝑍/𝑍, 𝑚(𝑇) ≥ 2〉.

Let 𝑇 ≤ 𝑆0𝑍/𝑍 with 𝑚(𝑇) ≥ 2 and 𝑇 := 〈𝑇, 𝑦𝑍〉. Clearly, 𝑦𝑍 is an involution of S not contained in
𝑈𝑍/𝑍 and centralizing𝑈𝑍/𝑍 . Therefore, we have that𝑚(𝑇) ≥ 3 and 𝑁𝑈𝑍/𝑍 (𝑇) ≤ 𝑁𝐿/𝑍 (𝑇). It follows
that𝑈𝑍/𝑍 ≤ Γ𝑆,3 (𝐿/𝑍). In particular,𝑈𝑖𝑍/𝑍 ≤ Γ𝑆,3 (𝐿/𝑍) for 𝑖 ∈ {1, 2}.

From Lemma 3.39 (ii), we see that there is some 𝑚 ∈ 𝐿 such that 𝑈2
𝑚 = 𝑈3 and such that m

normalizes 〈𝐸, 𝑦〉. So 𝑚𝑍 normalizes 〈𝐸𝑍/𝑍, 𝑦𝑍〉. It is easy to note that 〈𝐸𝑍/𝑍, 𝑦𝑍〉 � 𝐸8, and so we
have 𝑚𝑍 ∈ Γ𝑆,3 (𝐿/𝑍). It follows that𝑈3𝑍/𝑍 = (𝑈2𝑍/𝑍)

𝑚𝑍 ≤ Γ𝑆,3 (𝐿/𝑍).
So we have 𝑈𝑖𝑍/𝑍 ≤ Γ𝑆,3 (𝐿/𝑍) for 𝑖 ∈ {1, 2, 3}, and Lemma 3.39 (i) implies that 𝐿/𝑍 is 3-

generated. �

3.7. Automorphisms of (𝑃)𝑆𝐿𝑛 (𝑞)

Fix a prime number p, a positive integer f and a natural number 𝑛 ≥ 2. Set 𝑞 := 𝑝 𝑓 and 𝑇 := 𝑆𝐿𝑛 (𝑞).
We now briefly describe the structure of Aut(𝑇/𝑍), where 𝑍 ≤ 𝑍 (𝑇), referring to [19] and [16, Section
2.1] for further details.

Let Inndiag(𝑇) := Aut𝐺𝐿𝑛 (𝑞) (𝑇). Note that

Inndiag(𝑇)/Inn(𝑇) � 𝐶(𝑛,𝑞−1) .

The map

𝜙 : 𝑇 → 𝑇, (𝑎𝑖 𝑗 ) ↦→ (𝑎𝑖 𝑗
𝑝)

is an automorphism of T with order f. One can check that 𝜙 normalizes Inndiag(𝑇). Set

𝑃Γ𝐿𝑛 (𝑞) := Inndiag(𝑇)〈𝜙〉.
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It is easy to note that 〈𝜙〉∩Inndiag(𝑇) = 1 so that 𝑃Γ𝐿𝑛 (𝑞) is the inner semidirect product of Inndiag(𝑇)
and 〈𝜙〉.

The map

𝜄 : 𝑇 → 𝑇, 𝑎 ↦→ (𝑎𝑡 )−1

is an automorphism of T with order 2. If 𝑛 = 2, then 𝜄 turns out to be an inner automorphism of T,
while we have 𝜄 ∉ 𝑃Γ𝐿𝑛 (𝑞) when 𝑛 ≥ 3. By a direct calculation,𝜄 normalizes Inndiag(𝑇) and commutes
with 𝜙. In particular, 𝐴 := 𝑃Γ𝐿𝑛 (𝑞)〈𝜄〉 is a subgroup of Aut(𝑇), and we have

𝐴/Inndiag(𝑇) � 𝐶 𝑓 × 𝐶𝑎,

where 𝑎 = 1 if 𝑛 = 2 and 𝑎 = 2 if 𝑛 ≥ 3.
Now let Z be a central subgroup of T. As 𝑍 (𝑇) is cyclic, Z is characteristic in T. Then as T is

perfect, 𝑆𝐿2 (2) or 𝑆𝐿2 (3), the natural homomorphism Aut(𝑇) → Aut(𝑇/𝑍) is injective. The image
of Inndiag(𝑇) under this homomorphism will be denoted by Inndiag(𝑇/𝑍). By abuse of notation, we
denote the image of 𝑃Γ𝐿𝑛 (𝑞) in Aut(𝑇/𝑍) again by 𝑃Γ𝐿𝑛 (𝑞) and the images of 𝜄 and 𝜙 again by 𝜄 and
𝜙, respectively.

With this notation, we have

Aut(𝑇/𝑍) = 𝑃Γ𝐿𝑛 (𝑞)〈𝜄〉.

Note that the natural homomorphism Aut(𝑇) → Aut(𝑇/𝑍) is an isomorphism and that it induces an
isomorphism Out(𝑇) → Out(𝑇/𝑍).

The elements of Inndiag(𝑇/𝑍) \ Inn(𝑇/𝑍) are said to be the (nontrivial) diagonal automorphisms of
𝑇/𝑍 . An automorphism of𝑇/𝑍 is called a field automorphism if it is conjugate to 𝜙𝑖 for some 1 ≤ 𝑖 < 𝑓 .
The automorphisms of the form 𝛼𝜄, where 𝛼 ∈ Inndiag(𝑇/𝑍), are said to be the graph automorphisms
of 𝑇/𝑍 . An automorphism of 𝑇/𝑍 is said to be a graph-field automorphism if it is conjugate to an
automorphism of the form 𝜙𝑖 𝜄 for some 1 ≤ 𝑖 < 𝑓 . We remark that these definitions are particular cases
of more general definitions; see [49, Chapter 10].

Proposition 3.40. Let q be a nontrivial prime power, and let 𝑛 ≥ 2. Then Out(𝑃𝑆𝐿𝑛 (𝑞)) is 2-nilpotent.

Proof. By the above remarks, Out(𝑃𝑆𝐿𝑛 (𝑞)) has a chief series with cyclic factors. Consequently,
Out(𝑃𝑆𝐿𝑛 (𝑞)) is supersolvable. By [38, Lemma 2.4 (4)], any supersolvable finite group is 2-nilpotent,
and so the proposition follows. �

The following proposition also follows from the above remarks.

Proposition 3.41. Let 𝑛 ≥ 2 be a natural number. Then Out(𝑆𝐿𝑛 (3)) is a 2-group.

3.8. Automorphisms of (𝑃)𝑆𝑈𝑛 (𝑞)

Let p be a prime number, f be a positive integer and 𝑛 ≥ 3 be a natural number. Set 𝑞 := 𝑝 𝑓 and
𝑇 := 𝑆𝑈𝑛 (𝑞). We now briefly describe the structure of Aut(𝑇/𝑍), where 𝑍 ≤ 𝑍 (𝑇), referring to [19]
and [16, Section 2.3] for further details.

Let Inndiag(𝑇) := Aut𝐺𝑈𝑛 (𝑞) (𝑆𝑈𝑛 (𝑞)). It is rather easy to note that

Inndiag(𝑇)/Inn(𝑇) � 𝐶(𝑛,𝑞+1) .

The map

𝜙 : 𝑇 → 𝑇, (𝑎𝑖 𝑗 ) ↦→ (𝑎𝑖 𝑗
𝑝)
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is an automorphism of T with order 2 𝑓 . One can check that 𝜙 normalizes Inndiag(𝑇). Set

𝑃Γ𝑈𝑛 (𝑞) := Inndiag(𝑇)〈𝜙〉.

It is rather easy to note that 〈𝜙〉 ∩ Inndiag(𝑇) = 1 so that 𝑃Γ𝑈𝑛 (𝑞) is the inner semidirect product of
Inndiag(𝑇) and 〈𝜙〉. Note that

𝑃Γ𝑈𝑛 (𝑞)/Inndiag(𝑇) � 𝐶2 𝑓 .

Now let Z be a central subgroup of T. As in the case 𝑇 = 𝑆𝐿𝑛 (𝑞), the natural homomorphism
Aut(𝑇) → Aut(𝑇/𝑍) is injective. The image of Inndiag(𝑇) under this homomorphism will be denoted
by Inndiag(𝑇/𝑍). By abuse of notation, we denote the image of 𝑃Γ𝑈𝑛 (𝑞) in Aut(𝑇/𝑍) again by
𝑃Γ𝑈𝑛 (𝑞) and the image of 𝜙 again by 𝜙.

With this notation, we have

Aut(𝑇/𝑍) = 𝑃Γ𝑈𝑛 (𝑞).

Note that the natural homomorphism Aut(𝑇) → Aut(𝑇/𝑍) is an isomorphism and that it induces an
isomorphism Out(𝑇) → Out(𝑇/𝑍).

The elements of Inndiag(𝑇/𝑍) \ Inn(𝑇/𝑍) are said to be the (nontrivial) diagonal automorphisms
of 𝑇/𝑍 . An automorphism of 𝑇/𝑍 is called a field automorphism if it is conjugate to 𝜙𝑖 for some
1 ≤ 𝑖 < 2 𝑓 such that 𝜙𝑖 has odd order. The automorphisms of the form 𝛼𝜙𝑖 , where 𝜙𝑖 has even order
and 𝛼 ∈ Inndiag(𝑇/𝑍), are said to be the graph automorphisms of 𝑇/𝑍 . There are no graph-field
automorphisms of 𝑇/𝑍 .

Proposition 3.42. Let q be a nontrivial prime power, and let 𝑛 ≥ 3. Then Out(𝑃𝑆𝑈𝑛 (𝑞)) is 2-nilpotent.

Proof. We see from the above remarks that Out(𝑃𝑆𝑈𝑛 (𝑞)) is supersolvable. So Out(𝑃𝑆𝑈𝑛 (𝑞)) is 2-
nilpotent by [38, Lemma 2.4 (4)]. �

The following proposition also follows from the above remarks.

Proposition 3.43. Let 𝑛 ≥ 3 be a natural number. Then Out(𝑆𝑈𝑛 (3)) is a 2-group.

3.9. Some lemmas

We now prove several results on the automorphism groups of (𝑃)𝑆𝐿𝑛 (𝑞) and (𝑃)𝑆𝑈𝑛 (𝑞), where 𝑛 ≥ 2
and q is a nontrivial odd prime power.

Lemma 3.44. Let q be a nontrivial odd prime power. Also, let 𝑇 := 𝑆𝐿2 (𝑞) and 𝑆 ∈ Syl2 (𝑇). Suppose
that 𝛼 and 𝛽 are 2-elements of Aut(𝑇) such that 𝑆𝛼 = 𝑆 = 𝑆𝛽 and 𝛼 |𝑆,𝑆 = 𝛽 |𝑆,𝑆 . Then 𝛼 = 𝛽.

Proof. Let 𝛾 := 𝛼𝛽−1 ∈ 𝐶Aut(𝑇 ) (𝑆). We have 𝐶Inndiag(𝑇 ) (𝑆) = 1 by [28, Lemma 4.10.10]. Therefore,
it suffices to show that 𝛾 ∈ Inndiag(𝑇). Clearly, the images of 𝛼 and 𝛽−1 in Aut(𝑇)/Inndiag(𝑇) are
2-elements of Aut(𝑇)/Inndiag(𝑇). Since Aut(𝑇)/Inndiag(𝑇) is abelian,

𝛾 · Inndiag(𝑇) = (𝛼 · Inndiag(𝑇)) · (𝛽−1 · Inndiag(𝑇))

is still a 2-element of Aut(𝑇)/Inndiag(𝑇). By [28, Lemma 4.10.10], 𝐶Aut(𝑇 ) (𝑆) is a 2′-group, and so 𝛾
has odd order. Therefore, 𝛾 · Inndiag(𝑇) has odd order. It follows that 𝛾 ∈ Inndiag(𝑇), as required. �

Lemma 3.45. Let 𝑞 = 𝑝 𝑓 , where p is an odd prime and f is a positive integer. Let 𝑇 := 𝑃𝑆𝐿2 (𝑞),
and let 𝛼 be an involution of Aut(𝑇). Suppose that 𝐶𝑇 (𝛼) has a 2-component K. Then we have 2 | 𝑓 ,
( 𝑓 , 𝑝) ≠ (2, 3) and 𝐾 � 𝑃𝑆𝐿2 (𝑝

𝑓
2 ). In particular, K is a component of 𝐶𝑇 (𝛼).
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Proof. Note that 𝐶𝑇 (𝛼) � 𝐶Inn(𝑇 ) (𝛼).
Assume that 𝛼 ∈ Inndiag(𝑇). Noticing that Inndiag(𝑇) � 𝑃𝐺𝐿2 (𝑞), we see from Lemma 3.3 that

𝐶Inndiag(𝑇 ) (𝛼) is solvable. Thus, 𝐶𝑇 (𝛼) � 𝐶Inn(𝑇 ) (𝛼) is solvable, and 𝐶𝑇 (𝛼) has no 2-components, a
contradiction to the choice of 𝛼.

So we have 𝛼 ∉ Inndiag(𝑇). By the structure of Aut(𝑃𝑆𝐿2 (𝑞)) and since 𝛼 has order 2, we can write 𝛼
as a product of an inner-diagonal automorphism and a field automorphism of order 2. In particular, f must
be even. Consulting [28, Proposition 4.9.1 (d)], we see that 𝛼 itself is a field automorphism. So we can
apply [28, Proposition 4.9.1 (b)] to conclude that 𝐶Inndiag(𝑇 ) (𝛼) � Inndiag(𝑃𝑆𝐿2 (𝑝

𝑓
2 )) � 𝑃𝐺𝐿2 (𝑝

𝑓
2 ).

Consequently, K is isomorphic to a 2-component of 𝑃𝐺𝐿2 (𝑝
𝑓
2 ). It follows that ( 𝑓 , 𝑝) ≠ (2, 3) and

𝐾 � 𝑃𝑆𝐿2 (𝑝
𝑓
2 ). �

Before we state the next lemma, we introduce some notational conventions for adjoint Chevalley
groups. Given a nontrivial prime power q, we denote 𝐴1(𝑞) also by 𝐵1(𝑞) and by 𝐶1 (𝑞). Moreover,
𝐵2 (𝑞) will be also denoted by 𝐶2 (𝑞), and 𝐴3(𝑞) will be also denoted by 𝐷3 (𝑞). We also set 𝐷2 (𝑞) :=
𝐴1 (𝑞) × 𝐴1 (𝑞) and 2𝐷2 (𝑞) := 𝐴1(𝑞

2).

Lemma 3.46. Let 𝑞 = 𝑝 𝑓 , where p is an odd prime and f is a positive integer. Let 𝑛 ≥ 3 be a natural
number and 𝜀 ∈ {+,−}. Let 𝑇 := 𝑃𝑆𝐿𝜀𝑛 (𝑞), and let 𝛼 be an involution of Aut(𝑇). Suppose that 𝐶𝑇 (𝛼)
has a 2-component K. Then K is in fact a component, and one of the following holds:

(i) 𝐾 � 𝑆𝐿𝜀𝑖 (𝑞) for some 2 ≤ 𝑖 < 𝑛, where 𝑖 > 2 if 𝑞 = 3;
(ii) n is even, and K is isomorphic to a nontrivial quotient of 𝑆𝐿 𝑛

2
(𝑞2);

(iii) 𝜀 = +, f is even, 𝐾 � 𝑃𝑆𝐿𝑛 (𝑝
𝑓
2 ) or 𝐾 � 𝑃𝑆𝑈𝑛 (𝑝

𝑓
2 );

(iv) 𝑞 ≠ 3, 𝑛 = 3 or 4, and 𝐾 � 𝑃𝑆𝐿2 (𝑞);
(v) n is odd, 𝑛 ≥ 5 and 𝐾 � 𝐵 𝑛−1

2
(𝑞);

(vi) n is even and 𝐾 � 𝐶 𝑛
2
(𝑞);

(vii) n is even, 𝑛 ≥ 6 and 𝐾 � 𝐷 𝑛
2
(𝑞);

(viii) n is even, 𝑛 ≥ 6 and 𝐾 � 2𝐷 𝑛
2
(𝑞).

Here, the (twisted) Chevalley groups appearing in (v)–(viii) are adjoint.

Proof. It can be shown that any involution of Aut(𝑇) is an inner-diagonal automorphism, a field
automorphism, a graph automorphism or a graph-field automorphism (see [16, Section 3.1.3] or [28,
Section 4.9]).

Case 1: 𝛼 ∈ Inndiag(𝑇), or 𝛼 is a graph automorphism.
Set 𝐶∗ := 𝐶Inndiag(𝑇 ) (𝛼) and 𝐿∗ := 𝑂 𝑝′ (𝐶∗). One can see from [28, Theorem 4.2.2 and Table 4.5.1]

that 𝐶∗/𝐿∗ is solvable and that one of the following holds:

(1) 𝐿∗ is the central product of two subgroups isomorphic to 𝑆𝐿𝜀𝑖 (𝑞) and 𝑆𝐿𝜀𝑛−𝑖 (𝑞) for some natural
number i with 1 ≤ 𝑖 ≤ 𝑛

2 ,
(2) n is even and 𝐿∗ is isomorphic to a nontrivial quotient of 𝑆𝐿 𝑛

2
(𝑞2),

(3) n is odd and 𝐿∗ � 𝐵 𝑛−1
2
(𝑞),

(4) n is even and 𝐿∗ � 𝐶 𝑛
2
(𝑞),

(5) n is even and 𝐿∗ � 𝐷 𝑛
2
(𝑞),

(6) n is even and 𝐿∗ � 2𝐷 𝑛
2
(𝑞),

where the (twisted) Chevalley groups appearing in the last four cases are adjoint. Since 𝐶𝑇 (𝛼) is
isomorphic to 𝐶Inn(𝑇 ) (𝛼) � 𝐶∗, we have that K is isomorphic to a 2-component of 𝐶∗ and thus
isomorphic to a 2-component of 𝐿∗. Therefore, one of the conditions (i)-(viii) is satisfied.

Case 2: 𝛼 is a field automorphism or a graph-field automorphism.
Again, let 𝐶∗ := 𝐶Inndiag(𝑇 ) (𝛼). Since the field automorphisms of 𝑃𝑆𝑈𝑛 (𝑞) have odd order and

𝑃𝑆𝑈𝑛 (𝑞) has no graph-field automorphisms, we have 𝜀 = +. Also, f is even since 𝛼 is a field au-
tomorphism or a graph-field automorphism of order 2. From [28, Proposition 4.9.1 (a), (b)], we see
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that 𝐶∗ � 𝑃𝐺𝐿𝑛 (𝑝
𝑓
2 ) if 𝛼 is a field automorphism and that 𝐶∗ � 𝑃𝐺𝑈𝑛 (𝑝

𝑓
2 ) if 𝛼 is a graph-field

automorphism. Since K is isomorphic to a 2-component of 𝐶∗, it follows that (iii) is satisfied. �

Corollary 3.47. Let 𝑞 = 𝑝 𝑓 , where p is an odd prime and f is a positive integer. Let 𝑛 ≥ 2 be a natural
number and 𝜀 ∈ {+,−}. Let Z be a central subgroup of 𝑆𝐿𝜀𝑛 (𝑞), and let 𝑇 := 𝑆𝐿𝜀𝑛 (𝑞)/𝑍 . Let 𝛼 be an
involution of Aut(𝑇), and let K be a 2-component of 𝐶𝑇 (𝛼). Then the following hold:

(i) K is a component of 𝐶𝑇 (𝛼), and 𝐾/𝑍 (𝐾) is a known finite simple group.
(ii) 𝐾/𝑍 (𝐾) � 𝑀11.

(iii) Assume that 𝐾/𝑍 (𝐾) � 𝑃𝑆𝐿𝜀
∗

𝑘 (𝑞∗) for some positive integer 2 ≤ 𝑘 ≤ 𝑛, some nontrivial odd
prime power 𝑞∗ and some 𝜀∗ ∈ {+,−}. Then one of the following holds:

(a) 𝑞∗ = 𝑞;
(b) 𝑞∗ = 𝑞2, 𝑛 ≥ 4 is even, 𝑘 = 𝑛

2 and 𝜀∗ = + if 𝑛 ≥ 6;
(c) f is even, 𝑘 = 𝑛, 𝑞∗ = 𝑝

𝑓
2 .

Proof. Set 𝑇 := 𝑇/𝑍 (𝑇) � 𝑃𝑆𝐿𝜀𝑛 (𝑞). Let 𝛼 be the automorphism of 𝑇 induced by 𝛼.
As 𝐾 is a 2-component of 𝐶𝑇 (𝛼) and 𝐶𝑇 (𝛼) � 𝐶𝑇 (𝛼), it follows that 𝐾 is a 2-component of 𝐶𝑇 (𝛼).

Lemmas 3.45 and 3.46 imply that 𝐾 is a component of𝐶𝑇 (𝛼) and that 𝐾/𝑍 (𝐾) is a known finite simple
group. Applying [37, 6.5.1], we conclude that 𝐾 ′ is a component of 𝐶𝑇 (𝛼). We have 𝐾 = 𝐾 ′ since K is
a 2-component of 𝐶𝑇 (𝛼), and so it follows that K is a component of 𝐶𝑇 (𝛼). Also, 𝐾/𝑍 (𝐾) � 𝐾/𝑍 (𝐾)
so that 𝐾/𝑍 (𝐾) is a known finite simple group. Hence, (i) holds.

If 𝐾/𝑍 (𝐾) � 𝑀11, then 𝐾/𝑍 (𝐾) � 𝑀11, which is not possible by Lemmas 3.45 and 3.46. So (ii)
holds.

Suppose that 𝐾/𝑍 (𝐾) � 𝑃𝑆𝐿𝜀∗𝑘 (𝑞∗) for some positive integer 2 ≤ 𝑘 ≤ 𝑛, some nontrivial odd prime
power 𝑞∗ and some 𝜀∗ ∈ {+,−}. By Lemmas 3.45 and 3.46, one of the following holds:

(1) 𝐾/𝑍 (𝐾) � 𝑃𝑆𝐿𝜀𝑖 (𝑞) for some 2 ≤ 𝑖 < 𝑛;
(2) n is even, and 𝐾/𝑍 (𝐾) is isomorphic to 𝑃𝑆𝐿 𝑛

2
(𝑞2);

(3) f is even, 𝐾 � 𝑃𝑆𝐿𝑛 (𝑝
𝑓
2 ) or 𝑃𝑆𝑈𝑛 (𝑝

𝑓
2 );

(4) 𝑞 ≠ 3, 𝑛 = 3 or 4, 𝐾 � 𝑃𝑆𝐿2 (𝑞);
(5) n is odd, 𝑛 ≥ 5, 𝐾 � 𝐵 𝑛−1

2
(𝑞);

(6) n is even, 𝑛 ≥ 4, 𝐾 � 𝐶 𝑛
2
(𝑞);

(7) n is even, 𝑛 ≥ 6, 𝐾 � 𝐷 𝑛
2
(𝑞);

(8) n is even, 𝑛 ≥ 6, 𝐾 � 2𝐷 𝑛
2
(𝑞).

Here, the (twisted) Chevalley groups appearing in (5)–(8) are adjoint. On the other hand, we have
𝐾/𝑍 (𝐾) � 𝑃𝑆𝐿𝜀

∗

𝑘 (𝑞∗). Now, if (1) holds, then 𝑃𝑆𝐿𝜀∗𝑘 (𝑞∗) � 𝑃𝑆𝐿𝜀𝑖 (𝑞) for some 2 ≤ 𝑖 < 𝑛, and [49,
Theorem 37] shows that this is only possible when 𝑞∗ = 𝑞 so that (a) holds. Similarly, if (2) holds, then
we have (b). Moreover, (3) implies (c) and (4) implies (a). As Theorem [49, Theorem 37] shows, the
cases (5) and (6) cannot occur, while (7) and (8) can only occur when 𝑛 = 6. As above, one can see that
if 𝑛 = 6 and (7) or (8) holds, then we have (a). �

Lemma 3.48. Let 𝑛 ≥ 3 and 𝜀 ∈ {+,−}. Then 𝑆𝐿𝜀𝑛 (3) is locally balanced (in the sense of Definition 2.7).

Proof. Set 𝑇 := 𝑆𝐿𝜀𝑛 (3). Let H be a subgroup of Aut(𝑇) containing Inn(𝑇), and let x be an involution
of H. It is enough to show that 𝑂 (𝐶𝐻 (𝑥)) = 1.

Assume that 𝑂 (𝐶𝐻 (𝑥)) ≠ 1. Then 𝑥 ∈ Inndiag(𝑇) by [28, Theorem 7.7.1]. By Propositions 3.41
and 3.43, Out(𝑇) is a 2-group. This implies 𝑂 (𝐶𝐻 (𝑥)) = 𝑂 (𝐶Inn(𝑇 ) (𝑥)) = 𝑂 (𝐶Inndiag(𝑇 ) (𝑥)). Since
x is an involution of Inndiag(𝑇) � 𝑃𝐺𝐿𝜀𝑛 (3), we have 𝑂 (𝐶Inndiag(𝑇 ) (𝑥)) = 1 by Corollary 3.9. Thus,
𝑂 (𝐶𝐻 (𝑥)) = 1. This contradiction completes the proof. �

Lemma 3.49. Let 𝑛 ≥ 3 be a natural number, let q be a nontrivial odd power, and let 𝜀 ∈ {+,−}. Then
any nontrivial quotient of 𝑆𝐿𝜀𝑛 (𝑞) is locally 2-balanced (in the sense of Definition 2.7).
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Proof. By [24, Theorem 4.61] or [28, Theorem 7.7.4], 𝑃𝑆𝐿𝜀𝑛 (𝑞) is locally 2-balanced. Let K be a
nontrivial quotient of 𝑆𝐿𝜀𝑛 (𝑞). As we have seen, there is an isomorphism Aut(𝐾) → Aut(𝑃𝑆𝐿𝜀𝑛 (𝑞))
mapping Inn(𝐾) to Inn(𝑃𝑆𝐿𝜀𝑛 (𝑞)). So the local 2-balance of K follows from the local 2-balance of
𝑃𝑆𝐿𝜀𝑛 (𝑞). �

Lemma 3.50. Let q be a nontrivial odd prime power and 𝑛 ≥ 4 be a natural number. Let 𝑍 ≤ 𝑍 (𝑆𝐿𝑛 (𝑞))
and 𝑇 := 𝑆𝐿𝑛 (𝑞)/𝑍 . Let 𝐾1 be the image of{(

𝐴
𝐼𝑛−2

)
: 𝐴 ∈ 𝑆𝐿2 (𝑞)

}
in T, and let 𝐾2 be the image of {(

𝐼2
𝐵

)
: 𝐵 ∈ 𝑆𝐿𝑛−2 (𝑞)

}
in T. Let 𝛼 be an automorphism of T with odd order such that 𝛼 normalizes 𝐾1 and centralizes 𝐾2. Then
𝛼 |𝐾1 ,𝐾1 is an inner automorphism.

Proof. By hypothesis, 𝑞 = 𝑝 𝑓 for some odd prime number p and some positive integer f. We have
𝛼 ∈ 𝑃Γ𝐿𝑛 (𝑞) since 𝛼 has odd order and |Aut(𝑇)/𝑃Γ𝐿𝑛 (𝑞) | = 2. So there are some 𝑚 ∈ 𝐺𝐿𝑛 (𝑞) and
some 1 ≤ 𝑟 ≤ 𝑓 such that, for each element (𝑎𝑖 𝑗 ) of 𝑆𝐿𝑛 (𝑞), 𝛼 maps (𝑎𝑖 𝑗 )𝑍 to ((𝑎𝑖 𝑗 )

𝑝𝑟 )𝑚𝑍 .
Let x be the image of diag(−1,−1, 1, . . . , 1) ∈ 𝑆𝐿𝑛 (𝑞) in T. Then x is the unique involution of 𝐾1,

and so we have 𝑥𝛼 = 𝑥. This easily implies that

𝑚 =

(
𝑚1

𝑚2

)
for some 𝑚1 ∈ 𝐺𝐿2 (𝑞) and some 𝑚2 ∈ 𝐺𝐿𝑛−2 (𝑞).

Since 𝛼 centralizes 𝐾2, we have ((𝑎𝑖 𝑗 )
𝑝𝑟 )𝑚2 = (𝑎𝑖 𝑗 ) for all (𝑎𝑖 𝑗 ) ∈ 𝑆𝐿𝑛−2 (𝑞). Therefore, the

automorphism 𝑆𝐿𝑛−2 (𝑞) → 𝑆𝐿𝑛−2 (𝑞), (𝑎𝑖 𝑗 ) ↦→ (𝑎𝑖 𝑗 )
𝑝𝑟 is an element of Inndiag(𝑆𝐿𝑛−2 (𝑞)). This

implies 𝑟 = 𝑓 .
Thus, under the isomorphism Aut(𝑆𝐿2 (𝑞)) → Aut(𝐾1) induced by the canonical isomorphism

𝑆𝐿2 (𝑞) → 𝐾1, the automorphism 𝛼 |𝐾1 ,𝐾1 of 𝐾1 corresponds to the inner-diagonal automorphism
�̃� : 𝑆𝐿2 (𝑞) → 𝑆𝐿2 (𝑞), 𝑎 ↦→ 𝑎𝑚1 , and this automorphism has odd order since 𝛼 has odd order. The
index of Inn(𝑆𝐿2 (𝑞)) in Inndiag(𝑆𝐿2 (𝑞)) is 2, and so it follows that �̃� ∈ Inn(𝑆𝐿2 (𝑞)). Consequently,
𝛼 |𝐾1 ,𝐾1 ∈ Inn(𝐾1). �

By using similar arguments as in the proof of Lemma 3.50, one can prove the following lemma.

Lemma 3.51. Let q be a nontrivial odd prime power and 𝑛 ≥ 4 be a natural number. Let 𝑍 ≤ 𝑍 (𝑆𝑈𝑛 (𝑞))
and 𝑇 := 𝑆𝑈𝑛 (𝑞)/𝑍 . Let 𝐾1 be the image of{(

𝐴
𝐼𝑛−2

)
: 𝐴 ∈ 𝑆𝑈2 (𝑞)

}
in T, and let 𝐾2 be the image of {(

𝐼2
𝐵

)
: 𝐵 ∈ 𝑆𝑈𝑛−2 (𝑞)

}
in T. Let 𝛼 be an automorphism of T with odd order such that 𝛼 normalizes 𝐾1 and centralizes 𝐾2. Then
𝛼 |𝐾1 ,𝐾1 is an inner automorphism.

Our next goal is to prove the following lemma.
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Lemma 3.52. Let q and 𝑞∗ be nontrivial odd prime powers. Let L be a group isomorphic to 𝑆𝐿2 (𝑞
∗). Let

Q be a Sylow 2-subgroup of L. Moreover, let V be a Sylow 2-subgroup of𝐺𝐿2 (𝑞) and𝑉0 := 𝑉 ∩ 𝑆𝐿2(𝑞).
Suppose that there is a group isomorphism𝜓 : 𝑉0 → 𝑄. Let 𝑣1, 𝑣2, 𝑣3 be elements of V such that 𝑣3 = 𝑣1𝑣2
and such that the square of any element of {𝑣1, 𝑣2, 𝑣3} lies in 𝑍 (𝐺𝐿2 (𝑞)). For each 𝑖 ∈ {1, 2, 3}, let 𝛼𝑖
be a 2-element of Aut(𝐿) normalizing Q such that

𝛼𝑖 |𝑄,𝑄 = 𝜓−1 (𝑐𝑣𝑖 |𝑉0 ,𝑉0 )𝜓.

Then we have

3⋂
𝑖=1
𝑂 (𝐶𝐿 (𝛼𝑖)) = 1.

To prove Lemma 3.52, we need to prove some other lemmas.

Lemma 3.53. Let q be a nontrivial odd prime power with 𝑞 ≡ 1 mod 4, and let 𝑘 ∈ Nwith (𝑞−1)2 = 2𝑘 .
Let G be a group isomorphic to 𝑆𝐿2 (𝑞) and 𝑄 ∈ Syl2(𝐺). Then the following hold:

(i) There are elements 𝑎, 𝑏 generating Q such that ord(𝑎) = 2𝑘 , ord(𝑏) = 4, 𝑎𝑏 = 𝑎−1 and 𝑏2 = 𝑎2𝑘−1 .
(ii) Let a and b be as in (i). Then there is a group isomorphism 𝜑 : 𝐺 → 𝑆𝐿2 (𝑞) such that

𝑎𝜑 =

(
𝜆 0
0 𝜆−1

)
for some 𝜆 ∈ F∗𝑞 with order 2𝑘 and

𝑏𝜑 =

(
0 1
−1 0

)
.

Proof. (i) follows from Lemma 3.12.
We now prove (ii). Assume that 𝑘 ≥ 3. By Lemma 3.10 (i),

𝑅 =

{(
𝜇 0
0 𝜇−1

)
: 𝜇 is a 2-element of F∗𝑞

}〈(
0 1
−1 0

)〉
is a Sylow 2-subgroup of 𝑆𝐿2 (𝑞). Choose a group isomorphism 𝜓 : 𝐺 → 𝑆𝐿2 (𝑞) such that 𝑄𝜓 = 𝑅.
Since 𝑘 ≥ 3, Q has only one cyclic subgroup of order 2𝑘 . This implies that

𝑎𝜓 =

(
𝜆 0
0 𝜆−1

)
for some 𝜆 ∈ F∗𝑞 with order 2𝑘 . Since 𝑏 ∉ 〈𝑎〉, we have

𝑏𝜓 =

(
0 𝜇

−𝜇−1 0

)
for some 2-element 𝜇 of F∗𝑞 . Composing 𝜓 with the automorphism

𝑆𝐿2 (𝑞) → 𝑆𝐿2 (𝑞), 𝐴 ↦→

(
𝜇−1 0
0 1

)
𝐴

(
𝜇 0
0 1

)
,

we get a group isomorphism 𝜑 : 𝐺 → 𝑆𝐿2 (𝑞) with the desired properties. This completes the proof of
(ii) for the case 𝑘 ≥ 3.
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Assume now that 𝑘 = 2. Let 𝜓 : 𝐺 → 𝑆𝐿2 (𝑞) be a group isomorphism. We have (𝑎𝜓)2 = −𝐼2 since
−𝐼2 is the only involution of 𝑆𝐿2 (𝑞) and ord(𝑎2) = 2. So, by Lemma 3.3, we may assume that

𝑎𝜓 =

(
𝜆 0
0 𝜆−1

)
for some 𝜆 ∈ F∗𝑞 with order 4. Since 𝑎𝑏 = 𝑎−1, we have(

𝜆 0
0 𝜆−1

)𝑏𝜓
=

(
𝜆−1 0
0 𝜆

)
.

This implies that

𝑏𝜓 =

(
0 𝜇

−𝜇−1 0

)
for some 𝜇 ∈ F∗𝑞 . Again, we may compose 𝜓 with a suitable diagonal automorphism of 𝑆𝐿2 (𝑞) to obtain
a group isomorphism 𝜑 : 𝐺 → 𝑆𝐿2 (𝑞) with the desired properties. �

By using similar arguments as in the proof of Lemma 3.53, one can prove the following lemma.

Lemma 3.54. Let q be a nontrivial odd prime power with 𝑞 ≡ 3 mod 4, and let 𝑠 ∈ N with (𝑞 +1)2 = 2𝑠 .
Let G be a group isomorphic to 𝑆𝑈2 (𝑞) and 𝑄 ∈ Syl2(𝐺). Then the following hold:

(i) There are elements 𝑎, 𝑏 ∈ 𝑄 such that ord(𝑎) = 2𝑠 , ord(𝑏) = 4, 𝑎𝑏 = 𝑎−1 and 𝑏2 = 𝑎2𝑠−1 .
(ii) Let a and b be as in (i). Then there is a group isomorphism 𝜑 : 𝐺 → 𝑆𝑈2 (𝑞) such that

𝑎𝜑 =

(
𝜆 0
0 𝜆−1

)
for some 𝜆 ∈ F∗

𝑞2 with order 2𝑠 and

𝑏𝜑 =

(
0 1
−1 0

)
.

Lemma 3.55. Let q be a nontrivial odd prime power with 𝑞 ≡ 1 mod 4. Let 𝜌 be a generating element
of the Sylow 2-subgroup of F∗𝑞 , and let

𝑎 :=
(
𝜌
𝜌−1

)
, 𝑏 :=

(
0 1
−1 0

)
.

Let V be the Sylow 2-subgroup of 𝐺𝐿2 (𝑞) given by Lemma 3.10 (i), and let 𝑣, 𝑤 ∈ 𝑉 such that
𝑣2, 𝑤2, (𝑣𝑤)2 ∈ 𝑍 (𝐺𝐿2 (𝑞)). Then one of the following holds:

(i) {𝑣, 𝑤, 𝑣𝑤} ∩ 𝑍 (𝐺𝐿2 (𝑞)) ≠ ∅.
(ii) There exist 𝑟, 𝑠 ∈ {𝑣, 𝑤, 𝑣𝑤} with 𝑎𝑟 = 𝑎, 𝑏𝑟 = 𝑏3 and 𝑎𝑠 = 𝑎−1.

Proof. It is easy to note that (i) holds if v and w are diagonal matrices.
Suppose now that v or w is not a diagonal matrix. If neither v nor w is a diagonal matrix, then 𝑣𝑤 is

a diagonal matrix. So there exist 𝑟, 𝑠 ∈ {𝑣, 𝑤, 𝑣𝑤} such that

𝑟 =

(
𝜆1

𝜆2

)
, 𝑠 =

(
𝜇1

𝜇2

)
,

where 𝜆1, 𝜆2, 𝜇1 and 𝜇2 are 2-elements of F∗𝑞 .
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If 𝜆1 = 𝜆2, then (i) holds. Assume now that 𝜆1 ≠ 𝜆2. Then 𝜆2 = −𝜆1 since 𝑟2 ∈ 𝑍 (𝐺𝐿2 (𝑞)), and a
direct calculation shows that 𝑎𝑟 = 𝑎, 𝑏𝑟 = 𝑏3 and 𝑎𝑠 = 𝑎−1. �

Lemma 3.56. Let q be a nontrivial odd prime power with 𝑞 ≡ 3 mod 4, and let 𝑘 ∈ N with (𝑞+1)2 = 2𝑘 .
Let V be a Sylow 2-subgroup of 𝐺𝐿2 (𝑞).

(i) There exist 𝑥, 𝑦 ∈ 𝑉 with ord(𝑥) = 2𝑘+1, ord(𝑦) = 2 and 𝑥𝑦 = 𝑥−1+2𝑘 . We have 𝑉 ∩ 𝑆𝐿2 (𝑞) =
〈𝑥2〉〈𝑥𝑦〉.

(ii) Let x and y be as above, and let 𝑎 := 𝑥2 and 𝑏 := 𝑥𝑦. Let 𝑣, 𝑤 ∈ 𝑉 with 𝑣2, 𝑤2, (𝑣𝑤)2 ∈ 𝑍 (𝐺𝐿2 (𝑞)).
Then one of the following holds:

(a) {𝑣, 𝑤, 𝑣𝑤} ∩ 𝑍 (𝐺𝐿2 (𝑞)) ≠ ∅.
(b) There exist 𝑟, 𝑠 ∈ {𝑣, 𝑤, 𝑣𝑤} such that 𝑎𝑟 = 𝑎, 𝑏𝑟 = 𝑏3 and 𝑎𝑠 = 𝑎−1.

Proof. (i) follows from Lemma 3.16 (i), (ii).
We now prove (ii). We have 𝑍 (𝑉) = 〈𝑥2𝑘 〉 by Lemma [23, Chapter 5, Theorem 4.3]. Thus,

𝑍 (𝐺𝐿2 (𝑞)) ∩𝑉 = 〈𝑥2𝑘 〉. Clearly, {𝑣, 𝑤, 𝑣𝑤} ∩ 〈𝑥〉 ⊆ 〈𝑥2𝑘−1
〉.

If 𝑣, 𝑤 ∈ 〈𝑥〉, then 𝑣, 𝑤 ∈ 〈𝑥2𝑘−1
〉, and it easily follows that (a) holds.

Assume now that 𝑣 ∉ 〈𝑥〉 or 𝑤 ∉ 〈𝑥〉. If neither v nor w lies in 〈𝑥〉, then 𝑣𝑤 ∈ 〈𝑥〉. Consequently,
{𝑣, 𝑤, 𝑣𝑤} has an element r of the form 𝑥ℓ2𝑘−1 for some 1 ≤ ℓ ≤ 4 and an element s of the form 𝑥𝑖𝑦 for
some 1 ≤ 𝑖 ≤ 2𝑘+1. If ℓ = 2 or 4, then (a) holds. Assume now that ℓ = 1 or 3. It is clear that 𝑎𝑟 = 𝑎.
Furthermore, we have

𝑏𝑟 = (𝑥𝑦)𝑥
ℓ2𝑘−1

= 𝑥𝑦𝑥
ℓ2𝑘−1

= 𝑥𝑥−ℓ2𝑘−1
𝑦𝑥ℓ2𝑘−1

𝑦2

= 𝑥1−ℓ2𝑘−1
(𝑥𝑦)ℓ2𝑘−1

𝑦

= 𝑥1−ℓ2𝑘−1
(𝑥−1+2𝑘 )ℓ2𝑘−1

𝑦

= 𝑥1−ℓ2𝑘+ℓ22𝑘−1
𝑦

= 𝑥1−ℓ2𝑘 𝑦

ℓodd
= 𝑥1+2𝑘 𝑦.

On the other hand, we have

𝑏3 = (𝑥𝑦)3 = 𝑥2𝑘 𝑥𝑦 = 𝑥1+2𝑘 𝑦.

Consequently, 𝑏𝑟 = 𝑏3. Finally, we also have

𝑎𝑠 = (𝑥2)𝑥
𝑖𝑦 = (𝑥2)𝑦 = (𝑥𝑦)2 = (𝑥−1+2𝑘 )2 = 𝑥−2 = 𝑎−1.

Thus, (b) holds. �

Proof of Lemma 3.52. If 𝛼 𝑗 |𝑄,𝑄 = id𝑄 for some 𝑗 ∈ {1, 2, 3}, then 𝛼 𝑗 = id𝐿 by Lemma 3.44, which
implies that

3⋂
𝑖=1
𝑂 (𝐶𝐿 (𝛼𝑖)) ≤ 𝑂 (𝐶𝐿 (𝛼 𝑗 )) = 𝑂 (𝐿) = 1.
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Suppose now that 𝛼𝑖 acts nontrivially on Q for all 𝑖 ∈ {1, 2, 3}. Let 𝑚 ∈ N with |𝑄 | = 2𝑚. Using
Lemma 3.55 (together with Sylow’s theorem) and Lemma 3.56, we see that there exist 𝑎, 𝑏 ∈ 𝑄 and
𝑖, 𝑗 ∈ {1, 2, 3} such that the following hold:

(i) ord(𝑎) = 2𝑚−1, ord(𝑏) = 4, 𝑎𝑏 = 𝑎−1, 𝑏2 = 𝑎2𝑚−2 ;
(ii) 𝑎𝛼𝑖 = 𝑎, 𝑏𝛼𝑖 = 𝑏3, 𝑎𝛼𝑗 = 𝑎−1.

Clearly, 𝑏𝛼𝑗 = 𝑎ℓ𝑏 for some 1 ≤ ℓ ≤ 2𝑚−1.
Assume that 𝑞∗ ≡ 1 mod 4. By Lemma 3.53, there is group isomorphism 𝜑 : 𝐿 → 𝑆𝐿2 (𝑞

∗) with

𝑎𝜑 =

(
𝜆 0
0 𝜆−1

)
for some generator 𝜆 of the Sylow 2-subgroup of (F𝑞∗ )∗ and

𝑏𝜑 =

(
0 1
−1 0

)
.

Set 𝛽𝑘 := 𝜑−1𝛼𝑘𝜑 for 𝑘 ∈ {1, 2, 3}. Let i and j be as in (ii). Also, let

𝑚𝑖 :=
(
1
−1

)
.

Then 𝛽𝑖 and 𝑐𝑚𝑖 normalize 𝑄𝜑 , and we have 𝛽𝑖 |𝑄𝜑 ,𝑄𝜑 = 𝑐𝑚𝑖 |𝑄𝜑 ,𝑄𝜑 . Applying Lemma 3.44, we
conclude that 𝛽𝑖 = 𝑐𝑚𝑖 .

Clearly, (
0 1
−1 0

)𝛽 𝑗

=

(
0 𝜇

−𝜇−1 0

)
for some 2-element 𝜇 of (F𝑞∗ )∗. Set

𝑚 𝑗 :=
(

0 𝜇
−1 0

)
.

Then 𝛽 𝑗 and 𝑐𝑚 𝑗 normalize 𝑄𝜑 , and we have 𝛽 𝑗 |𝑄𝜑 ,𝑄𝜑 = 𝑐𝑚 𝑗 |𝑄𝜑 ,𝑄𝜑 . Applying Lemma 3.44, we
conclude that 𝛽 𝑗 = 𝑐𝑚 𝑗 .

It follows that 𝐶𝑆𝐿2 (𝑞∗) (𝛽𝑖) ∩ 𝐶𝑆𝐿2 (𝑞∗) (𝛽 𝑗 ) = 𝑍 (𝑆𝐿2 (𝑞
∗)). So we have 𝐶𝐿 (𝛼𝑖) ∩ 𝐶𝐿 (𝛼 𝑗 ) = 𝑍 (𝐿),

and this implies that

3⋂
𝑘=1

𝑂 (𝐶𝐿 (𝛼𝑘 )) = 1

since |𝑍 (𝐿) | = 2.
If 𝑞∗ ≡ 3 mod 4, then a very similar argumentation shows that the same conclusion holds. Here, one

has to use Lemma 3.54 instead of Lemma 3.53, together with the fact that 𝑆𝐿2 (𝑞
∗) � 𝑆𝑈2 (𝑞

∗). �

We bring this section to a close with a proof of the following lemma, which will play an important
role in the proof of Theorem B.

Lemma 3.57. Let q be a nontrivial odd prime power, 𝜀 ∈ {+,−} and 𝑛 ≥ 2 a natural number. Set
𝑇 := Inn(𝑃𝑆𝐿𝜀𝑛 (𝑞)). Let A be a subgroup of Aut(𝑃𝑆𝐿𝜀𝑛 (𝑞)) such that 𝑇 ≤ 𝐴 and such that the index of
T in A is odd. Let S be a Sylow 2-subgroup of T. Then we have F𝑆 (𝑇) = F𝑆 (𝐴).

To prove Lemma 3.57, we need to prove some other lemmas first.
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Lemma 3.58. Let q be a nontrivial odd prime power, 𝜀 ∈ {+,−}, and let r be positive integer. Also, let
W be a Sylow 2-subgroup of 𝐺𝐿𝜀2𝑟 (𝑞). Then Aut(𝑊) is a 2-group.

Proof. We proceed by induction over r.
Suppose that 𝑟 = 1. If 𝑞 ≡ −𝜀 mod 4, then W is semidihedral by Lemmas 3.10 and 3.11, and so

Aut(𝑊) is a 2-group by [18, Proposition 4.53]. If 𝑞 ≡ 𝜀 mod 4, then 𝑊 � 𝐶2𝑘 � 𝐶2 for some positive
integer k by Lemmas 3.10 and 3.11, and so Aut(𝑊) is a 2-group as a consequence of [21, Theorem 2].

Assume now that 𝑟 > 1 and that the lemma is true with 𝑟 − 1 instead of r. Let 𝑊0 be a Sylow 2-
subgroup of𝐺𝐿𝜀2𝑟−1 (𝑞). Hence, Aut(𝑊0) is a 2-group. By Lemma 3.14, we have𝑊 � 𝑊0 �𝐶2. Applying
[21, Theorem 2], we conclude that Aut(𝑊) is a 2-group. �

Lemma 3.59. Let q be a nontrivial odd prime power, 𝜀 ∈ {+,−}, and let 𝑛 ≥ 3 be a natural number.
Let 𝑇 := 𝑆𝐿𝜀𝑛 (𝑞), and let S be a Sylow 2-subgroup of Inndiag(𝑇). Then Aut𝑃Γ𝐿𝜀

𝑛 (𝑞) (𝑆) is a 2-group.

Proof. Let 𝛼 ∈ 𝑁𝑃Γ𝐿𝜀
𝑛 (𝑞) (𝑆). It suffices to show that 𝑐𝛼 |𝑆,𝑆 is a 2-automorphism of S.

Let 0 ≤ 𝑟1 < · · · < 𝑟𝑡 such that 𝑛 = 2𝑟1 + · · · + 2𝑟𝑡 . Let 𝑊𝑖 ∈ Syl2(𝐺𝐿𝜀2𝑟𝑖 (𝑞)) for all 1 ≤ 𝑖 ≤ 𝑡. By
Lemma 3.15,

𝑊 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
���	
𝐴1

. . .

𝐴𝑡


��� : 𝐴𝑖 ∈ 𝑊𝑖

⎫⎪⎪⎪⎬⎪⎪⎪⎭
is a Sylow 2-subgroup of 𝐺𝐿𝜀𝑛 (𝑞).

We have that {𝑐𝑤 |𝑇 ,𝑇 | 𝑤 ∈ 𝑊} is a Sylow 2-subgroup of Inndiag(𝑇) since it is the image of W
under the canonical group epimorphism 𝐺𝐿𝜀𝑛 (𝑞) → Inndiag(𝑇). Without loss of generality, we assume
that 𝑆 = {𝑐𝑤 |𝑇 ,𝑇 | 𝑤 ∈ 𝑊}.

Let p be the odd prime number and f be the positive integer with 𝑞 = 𝑝 𝑓 . Since 𝛼 ∈ 𝑃Γ𝐿𝜀𝑛 (𝑞), there
exist some 𝑚 ∈ 𝐺𝐿𝜀𝑛 (𝑞) and some natural number ℓ, where 1 ≤ ℓ ≤ 𝑓 if 𝜀 = + and 1 ≤ ℓ ≤ 2 𝑓 if
𝜀 = −, such that

(𝑎𝑖 𝑗 )
𝛼 = (𝑎𝑝

ℓ

𝑖 𝑗 )
𝑚

for all (𝑎𝑖 𝑗 ) ∈ 𝑇 .
Let

𝛼 : 𝐺𝐿𝜀𝑛 (𝑞) → 𝐺𝐿𝜀𝑛 (𝑞), (𝑎𝑖 𝑗 ) ↦→ (𝑎𝑝
ℓ

𝑖 𝑗 )
𝑚.

Observe that 𝛼 is the product of a field automorphism with an inner automorphism of 𝐺𝐿𝜀𝑛 (𝑞). Using
this fact, one can see that 𝛼−1(𝑐𝑤 |𝑇 ,𝑇 )𝛼 = 𝑐𝑤𝛼 |𝑇 ,𝑇 for all 𝑤 ∈ 𝑊 .

Let 𝑤 ∈ 𝑊 . Since 𝛼 normalizes S, there is some 𝑤 ∈ 𝑊 with 𝑐𝑤𝛼 |𝑇 ,𝑇 = 𝛼−1(𝑐𝑤 |𝑇 ,𝑇 )𝛼 = 𝑐𝑤 |𝑇 ,𝑇 . It
follows that 𝑤𝛼 ∈ 𝑤𝑍 (𝐺𝐿𝜀𝑛 (𝑞)) ⊆ 𝑊𝑍 (𝐺𝐿

𝜀
𝑛 (𝑞)). This implies 𝑤𝛼 ∈ 𝑊 since W is the unique Sylow

2-subgroup of𝑊𝑍 (𝐺𝐿𝜀𝑛 (𝑞)). In particular, 𝛼 induces an automorphism of W.
Let

𝑑𝑖 :=

��������	

𝐼2𝑟1

. . .

−𝐼2𝑟𝑖
. . .

𝐼2𝑟𝑡


��������
for each 1 ≤ 𝑖 ≤ 𝑡. Then 𝑑𝑖 is a central involution of W for each 1 ≤ 𝑖 ≤ 𝑡 and centralized by the field
automorphism (𝑎𝑖 𝑗 ) ↦→ (𝑎𝑝𝑖 𝑗 ). So we have that (𝑑𝑖)𝛼 = (𝑑𝑖)

𝑚 is a central involution of W for each
1 ≤ 𝑖 ≤ 𝑡. As we see from Lemma 3.17, this already implies that (𝑑𝑖)𝑚 = 𝑑𝑖 for each 1 ≤ 𝑖 ≤ 𝑡. For
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𝑑𝑖 is the unique member d of 〈𝑑1, . . . , 𝑑𝑛〉 with 𝑚([𝑉, 𝑑]) = 2𝑟𝑖 , where V is the defining module for
𝐺𝐿𝜀𝑛 (𝑞). So there is some 𝑚𝑖 ∈ 𝐺𝐿𝜀2𝑟𝑖 (𝑞) for each 1 ≤ 𝑖 ≤ 𝑡 such that

𝑚 =
���	
𝑚1

. . .

𝑚𝑡


���.
Now

𝑊𝑟 → 𝑊𝑟 , (𝑎𝑖 𝑗 ) ↦→ (𝑎𝑝
ℓ

𝑖 𝑗 )
𝑚𝑖

is an automorphism of 𝑊𝑟 for each 1 ≤ 𝑟 ≤ 𝑡. Applying Lemma 3.58, we conclude that 𝛼 |𝑊 ,𝑊 is
a 2-automorphism of W. Since 𝛼−1(𝑐𝑤 |𝑇 ,𝑇 )𝛼 = 𝑐𝑤𝛼 |𝑇 ,𝑇 for all 𝑤 ∈ 𝑊 , it follows that 𝑐𝛼 |𝑆,𝑆 is a
2-automorphism of S, as required. �

Corollary 3.60. Let q be a nontrivial odd prime power, 𝜀 ∈ {+,−}, and let 𝑛 ≥ 3 be a natural number.
Let 𝑇 := 𝑃𝑆𝐿𝜀𝑛 (𝑞), and let S be a Sylow 2-subgroup of Inndiag(𝑇). Then Aut𝑃Γ𝐿𝜀

𝑛 (𝑞) (𝑆) is a 2-group.

Lemma 3.61. Let q be a nontrivial odd prime power, 𝜀 ∈ {+,−}, and 𝑛 ≥ 3 be a natural number. Let S
be a Sylow 2-subgroup of 𝑃𝑆𝐿𝜀𝑛 (𝑞), and let 𝑆1 be a Sylow 2-subgroup of 𝑃𝐺𝐿𝜀𝑛 (𝑞) containing S. Then
𝑁𝑃𝐺𝐿𝜀

𝑛 (𝑞) (𝑆) = 𝑁𝑃𝐺𝐿𝜀
𝑛 (𝑞) (𝑆1).

Proof. Let 𝑇1 be a Sylow 2-subgroup of 𝐺𝐿𝜀𝑛 (𝑞)) such that 𝑆1 = 𝑇1𝑍 (𝐺𝐿
𝜀
𝑛 (𝑞))/𝑍 (𝐺𝐿

𝜀
𝑛 (𝑞)). Let

𝑇 := 𝑇1 ∩ 𝑆𝐿𝜀𝑛 (𝑞). Then 𝑆 = 𝑇𝑍 (𝐺𝐿𝜀𝑛 (𝑞))/𝑍 (𝐺𝐿
𝜀
𝑛 (𝑞)). It is rather easy to show 𝑁𝑃𝐺𝐿𝜀

𝑛 (𝑞) (𝑆) =
𝑁𝐺𝐿𝜀

𝑛 (𝑞) (𝑇)𝑍 (𝐺𝐿
𝜀
𝑛 (𝑞))/𝑍 (𝐺𝐿

𝜀
𝑛 (𝑞)). By [36, Theorem 1], 𝑁𝐺𝐿𝜀

𝑛 (𝑞) (𝑇) = 𝑇1𝐶𝐺𝐿𝜀
𝑛 (𝑞) (𝑇1) ≤

𝑁𝐺𝐿𝜀
𝑛 (𝑞) (𝑇1). It follows that 𝑁𝑃𝐺𝐿𝜀

𝑛 (𝑞) (𝑆) ≤ 𝑁𝑃𝐺𝐿𝜀
𝑛 (𝑞) (𝑆1). It is clear that we also have

𝑁𝑃𝐺𝐿𝜀
𝑛 (𝑞) (𝑆1) ≤ 𝑁𝑃𝐺𝐿𝜀

𝑛 (𝑞) (𝑆). �

Corollary 3.62. Let q be a nontrivial odd prime power, 𝜀 ∈ {+,−}, and let 𝑛 ≥ 3 be a natural number.
Let𝑇 := 𝑃𝑆𝐿𝜀𝑛 (𝑞), let S be a Sylow 2-subgroup of Inn(𝑇) and let 𝑆1 be a Sylow 2-subgroup of Inndiag(𝑇)
containing S. Then 𝑁Inndiag(𝑇 ) (𝑆) = 𝑁Inndiag(𝑇 ) (𝑆1).

We are now ready to prove Lemma 3.57.

Proof of Lemma 3.57. Assume that 𝑛 = 2 and 𝑞 ≡ 3 or 5 mod 8. Then 𝑆 � 𝐶2 × 𝐶2 by Lemma 3.13.
There is only one nonnilpotent fusion system on S. Since T and A are not 2-nilpotent, we have that
F𝑆 (𝑇) and F𝑆 (𝐴) are not nilpotent (see [39, Theorem 1.4]). It follows that F𝑆 (𝑇) = F𝑆 (𝐴).

From now on, we assume that either 𝑛 ≥ 3, or 𝑛 = 2 and 𝑞 ≡ 1 or 7 mod 8. Let 𝑃,𝑄 ≤ 𝑆 and 𝑎 ∈ 𝐴
such that 𝑃𝑎 ≤ 𝑄. We are going to show that 𝑐𝑎 |𝑃,𝑄 is a morphism in F𝑆 (𝑇). By the Frattini argument,
we have 𝑎 = 𝑤𝑢 for some 𝑤 ∈ 𝑁𝐴(𝑆) and some 𝑢 ∈ 𝑇 . We prove that 𝑐𝑤 |𝑆,𝑆 ∈ Inn(𝑆) so that 𝑐𝑎 |𝑃,𝑄 is
a morphism in F𝑆 (𝑇).

Suppose that 𝑛 = 2. Then S is dihedral of order at least 8 by Lemma 3.13, and so Aut(𝑆) is a 2-group
by [18, Proposition 4.53]. This implies that Aut𝐴(𝑆) = Inn(𝑆), whence 𝑐𝑤 |𝑆,𝑆 ∈ Inn(𝑆).

Suppose now that 𝑛 ≥ 3. Let 𝑆1 be a Sylow 2-subgroup of Inndiag(𝑃𝑆𝐿𝜀𝑛 (𝑞)) containing S. Since
T has odd index in A, we have that 𝐴 ≤ 𝑃Γ𝐿𝜀𝑛 (𝑞). By the Frattini argument, 𝑤 = 𝑤1𝑤2 for some
𝑤1 ∈ 𝑁𝑃Γ𝐿𝜀

𝑛 (𝑞) (𝑆1) and some 𝑤2 ∈ Inndiag(𝑃𝑆𝐿𝜀𝑛 (𝑞)). Since 𝑤1 normalizes both 𝑆1 and T, we have
that 𝑤1 normalizes S. And since 𝑤 = 𝑤1𝑤2 normalizes S, we also have that 𝑤2 normalizes S. So
𝑤2 normalizes 𝑆1 by Corollary 3.62. Consequently, 𝑤 = 𝑤1𝑤2 ∈ 𝑁𝑃Γ𝐿𝜀

𝑛 (𝑞) (𝑆1). By Corollary 3.60,
𝑐𝑤 |𝑆1 ,𝑆1 is a 2-automorphism of 𝑆1. So 𝑐𝑤 |𝑆,𝑆 is a 2-automorphism of S. Since 𝑆 ∈ Syl2(𝐴) and 𝑤 ∈ 𝐴,
this implies that 𝑐𝑤 |𝑆,𝑆 ∈ Inn(𝑆), as required. �

4. The case 𝑛 ≤ 5

In this section, we verify Theorem A for the case 𝑛 ≤ 5.
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Proposition 4.1. Let q be a nontrivial odd prime power, and let G be a finite simple group. Then the
following are equivalent:

(i) the 2-fusion system of G is isomorphic to the 2-fusion system of 𝑃𝑆𝐿2 (𝑞);
(ii) the Sylow 2-subgroups of G are isomorphic to those of 𝑃𝑆𝐿2 (𝑞);

(iii) 𝐺 � 𝑃𝑆𝐿𝜀2 (𝑞
∗) for some 𝜀 ∈ {+,−} and some odd prime power 𝑞∗ ≥ 5 with 𝜀𝑞∗ ∼ 𝑞, or

|𝑃𝑆𝐿2 (𝑞) |2 = 8 and 𝐺 � 𝐴7.

In particular, Theorem A holds for 𝑛 = 2.

Proof. The implication (i) ⇒ (ii) is clear.
(ii) ⇒ (iii): Assume that the Sylow 2-subgroups of G are isomorphic to those of 𝑃𝑆𝐿2 (𝑞). Hence, G

has dihedral Sylow 2-subgroups of order 1
2 (𝑞 − 1)2 (𝑞 + 1)2. Applying a result of Gorenstein and Walter

[30, Theorem 1], we may conclude that 𝐺 � 𝑃𝑆𝐿2 (𝑞
∗) for some odd prime power 𝑞∗ ≥ 5, or 𝐺 � 𝐴7.

Suppose that the former holds. Then (𝑞∗ −1)2(𝑞∗ +1)2 = 2|𝐺 |2 = (𝑞−1)2(𝑞 +1)2, whence either 𝑞∗ ∼ 𝑞
or −𝑞∗ ∼ 𝑞. Since 𝑃𝑆𝐿2 (𝑞

∗) � 𝑃𝑆𝑈2 (𝑞
∗), this implies that the first statement in (iii) is satisfied. If

𝐺 � 𝐴7, then |𝑃𝑆𝐿2 (𝑞) |2 = |𝐺 |2 = 8 so that the second statement in (iii) is satisfied.
(iii) ⇒ (i): Assume that (iii) holds. Set𝐺1 := 𝐺 and𝐺2 := 𝑃𝑆𝐿2 (𝑞). For 𝑖 ∈ {1, 2}, let 𝑆𝑖 ∈ Syl2 (𝐺𝑖)

and F𝑖 := F𝑆𝑖 (𝐺𝑖). Clearly, 𝑆1 and 𝑆2 are dihedral groups of the same order. Let 𝑖 ∈ {1, 2}. By [23,
Chapter 5, Theorem 4.3], any subgroup of 𝑆𝑖 is cyclic or dihedral. By [18, Proposition 4.53], a dihedral
subgroup of 𝑆𝑖 with order greater than 4 cannot be F𝑖-essential. Since the automorphism group of a
finite cyclic 2-group is itself a 2-group, a cyclic subgroup of 𝑆𝑖 cannot be F𝑖-essential either. So we
have that any F𝑖-essential subgroup of 𝑆𝑖 is a Klein four group. Alperin’s fusion theorem [10, Part I,
Theorem 3.5] implies that

F𝑖 = 〈AutF𝑖 (𝑃) | 𝑃 ≤ 𝑆𝑖 , 𝑃 � 𝐶2 × 𝐶2 or 𝑃 = 𝑆𝑖〉𝑆𝑖 .

If |𝑆𝑖 | = 4, then AutF𝑖 (𝑆𝑖) is the unique subgroup of Aut(𝑆𝑖) with order 3, because otherwise AutF𝑖 (𝑆𝑖) =
Inn(𝑆𝑖), so that [39, Theorem 1.4] would imply that 𝐺𝑖 is 2-nilpotent. If |𝑆𝑖 | ≥ 8, then AutF𝑖 (𝑆𝑖) =
Inn(𝑆𝑖) since Aut(𝑆𝑖) is a 2-group by [18, Proposition 4.53], and for any Klein four subgroup P of
𝑆𝑖 , we have AutF𝑖 (𝑃) = Aut(𝑃) by [23, Chapter 7, Theorem 7.3]. As 𝑆1 � 𝑆2 and as the preceding
observations do not depend on whether i is 1 or 2, we may conclude that F1 � F2, as required. �

Proposition 4.2. Let q be a nontrivial odd prime power, and let G be a finite simple group. Then the
following are equivalent:

(i) the 2-fusion system of G is isomorphic to the 2-fusion system of 𝑃𝑆𝐿3 (𝑞);
(ii) the Sylow 2-subgroups of G are isomorphic to those of 𝑃𝑆𝐿3 (𝑞);

(iii) 𝐺 � 𝑃𝑆𝐿𝜀3 (𝑞
∗) for some 𝜀 ∈ {+,−} and some nontrivial odd prime power 𝑞∗ with 𝜀𝑞∗ ∼ 𝑞, or

(𝑞 + 1)2 = 4 and 𝐺 � 𝑀11.

In particular, Theorem A holds for 𝑛 = 3.

Proof. The implication (i) ⇒ (ii) is clear.
(ii) ⇒ (iii): Assume that the Sylow 2-subgroups of G are isomorphic to those of 𝑃𝑆𝐿3 (𝑞). Hence, a

Sylow 2-subgroup of G is wreathed (i.e., isomorphic to𝐶2𝑘 �𝐶2 for some positive integer k) if 𝑞 ≡ 1 mod 4
and semidihedral if 𝑞 ≡ 3 mod 4. Applying work of Alperin, Brauer and Gorenstein, namely [1, Third
Main Theorem] and [2, First Main Theorem], we may conclude that either 𝐺 � 𝑃𝑆𝐿𝜀3 (𝑞

∗) for some
𝜀 ∈ {+,−} and some nontrivial odd prime power 𝑞∗ with 𝜀𝑞∗ ≡ 𝑞 mod 4 or 𝑞 ≡ 3 mod 4 and 𝐺 � 𝑀11.
If the former holds, then ((𝑞∗ − 𝜀)2)

2(𝑞∗ + 𝜀)2 = |𝐺 |2 = ((𝑞 − 1)2)2(𝑞 + 1)2, and it easily follows that
𝜀𝑞∗ ∼ 𝑞. If 𝐺 � 𝑀11, then 16 = |𝐺 |2 = ((𝑞 − 1)2)2(𝑞 + 1)2, and hence, (𝑞 + 1)2 = 4.

(iii) ⇒ (i): Assume that (iii) holds. If 𝑞 ≡ 1 mod 4, then Proposition 3.20 implies that the 2-fusion
system of G is isomorphic to the 2-fusion system of 𝑃𝑆𝐿3 (𝑞). Alternatively, this can be seen from [18,
Proposition 5.87]. Now suppose that 𝑞 ≡ 3 mod 4. If (𝑞 + 1)2 ≠ 4, then we could apply Proposition
3.20 again, but we are going to argue in a more elementary way. Let 𝐺1 := 𝐺 and 𝐺2 := 𝑃𝑆𝐿3 (𝑞). For
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𝑖 ∈ {1, 2}, let 𝑆𝑖 ∈ Syl2(𝐺𝑖) and F𝑖 := F𝑆𝑖 (𝐺𝑖). Clearly, 𝑆1 and 𝑆2 are semidihedral groups of the same
order. Let 𝑖 ∈ {1, 2}. By [23, Chapter 5, Theorem 4.3], any proper subgroup of 𝑆𝑖 is cyclic, dihedral
or generalized quaternion. By [18, Proposition 4.53], dihedral subgroups of 𝑆𝑖 with order greater than
4 and generalized quaternion subgroups of 𝑆𝑖 with order greater than 8 cannot be F𝑖-essential. Since
the automorphism group of a finite cyclic 2-group is itself a 2-group, a cyclic subgroup of 𝑆𝑖 cannot be
F𝑖-essential either. Alperin’s fusion theorem [10, Part I, Theorem 3.5] implies that

F𝑖 = 〈AutF𝑖 (𝑃) | 𝑃 � 𝐶2 × 𝐶2, 𝑃 � 𝑄8, or 𝑃 = 𝑆𝑖〉𝑆𝑖 .

Since Aut(𝑆𝑖) is a 2-group by [18, Proposition 4.53], we have AutF𝑖 (𝑆𝑖) = Inn(𝑆𝑖). From [1, pp. 10-11,
Proposition 1], one can see that AutF𝑖 (𝑃) = Aut(𝑃) for any subgroup P of 𝑆𝑖 isomorphic to 𝐶2 × 𝐶2
or 𝑄8. As 𝑆1 � 𝑆2 and as the preceding observations do not depend on whether i is 1 or 2, we may
conclude that F1 � F2, as required. �

The following lemma is required to verify Theorem A for the case 𝑛 = 4.

Lemma 4.3. Let q be a nontrivial odd prime power. Assume that G is 𝐴10, 𝐴11, 𝑀22, 𝑀23 or 𝑀𝑐𝐿. Then
the 2-fusion system of G is not isomorphic to the 2-fusion system of 𝑃𝑆𝐿4 (𝑞).

Proof. Assume otherwise. Let 𝐿 := 𝑃𝑆𝐿4 (𝑞) and 𝑆 ∈ Syl2(𝐿). Then |𝑆 | = |𝐺 |2 = 27, so 𝑞 ≡ ±3 mod 8.
Let E := F𝑆 (𝐿).

Take a Sylow 2-subgroup V of 𝐺𝐿2 (𝑞), and let W be the Sylow 2-subgroup of 𝐺𝐿4 (𝑞) obtained
from V by the construction given in the last statement of Lemma 3.14. Then 𝑆0 := 𝑊 ∩ 𝑆𝐿4 (𝑞) is a
Sylow 2-subgroup of 𝑆𝐿4 (𝑞), and we assume without loss of generality that S is the image of 𝑆0 in L.

Now 𝑍 (𝑆) = 〈𝑧〉, where z is the image of diag(1, 1,−1,−1) in L. Let F be the image of{(
𝐴
𝐵

)
: 𝐴, 𝐵 ∈ 𝑆𝐿2 (𝑞)

}
in L, and let Q be the image of {(

𝐴
𝐵

)
: 𝐴, 𝐵 ∈ 𝑉0

}
,

in L, where𝑉0 := 𝑉 ∩ 𝑆𝐿2 (𝑞). Then 𝐹 � 𝐶𝐿 (𝑧), and so𝑄 = 𝑆∩𝐹 is strongly closed in S with respect to
𝐶E (𝑧). Also,𝑄 ′ = 〈𝑧〉 is strongly closed in S with respect to 𝐶E (𝑧), and we have [𝑄, 〈𝑧〉] = 1. Applying
[10, Part I, Proposition 4.6], we conclude that 𝑄 � 𝐶E (𝑧). Since Q is a self-centralizing subgroup of S,
it follows that 𝐶E (𝑧) is constrained. Set 𝑀 := 𝑁𝐶𝐿 (𝑧) (𝑄). Then M is the image of{(

𝐴
𝐵

)
: 𝐴, 𝐵 ∈ 𝑁𝐺𝐿2 (𝑞) (𝑉0), det(𝐴𝐵) = 1

}〈(
0 𝐼2
𝐼2 0

)〉
in L. Since 𝑞 ≡ ±3 mod 8, we have 𝑁𝑆𝐿2 (𝑞) (𝑉0) � 𝑆𝐿2 (3) by [48, Proposition 3.1]. Thus,
|𝑁𝐺𝐿2 (𝑞) (𝑉0) | = 24(𝑞 − 1), and it follows that |𝑀 | = 27 · 32. By [34, Proposition 8.8], M is a model of
𝐶E (𝑧).

Now let 𝑅 ∈ Syl2 (𝐺) and F := F𝑅 (𝐺). Also, let u be the central involution of R. Then 𝐶F (𝑢) �
𝐶E (𝑧) is constrained with M a model 𝐶F (𝑢). By [34, Proposition 8.8], there is a core-free section of
𝐶𝐺 (𝑢) which is isomorphic to M.

If G is 𝑀𝑐𝐿, then 𝐶𝐺 (𝑢)/〈𝑢〉 � 𝐴8 by [28, Table 5.3] so that 𝐶F (𝑢)/〈𝑢〉 is nonsolvable. On the
other hand, 𝐶E (𝑧)/〈𝑧〉 � 𝐶F (𝑢)/〈𝑢〉 is solvable. Thus, 𝐺 ≠ 𝑀𝑐𝐿.

If G is 𝐴10, 𝑀22 or 𝑀23, then |𝐶𝐺 (𝑢) | = 27 · 3 or 27 · 21 so that |𝑀 | does not divide |𝐶𝐺 (𝑢) |, a
contradiction.
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So G must be 𝐴11. Then |𝐶𝐺 (𝑢) | = 27 · 32, and 𝐶𝐺 (𝑢) has a normal subgroup of order 3. Therefore,
M cannot be isomorphic to a core-free section of 𝐶𝐺 (𝑢), which is again a contradiction.

The proof is now complete. �

Proposition 4.4. Let q be a nontrivial odd prime power, and let G be a finite simple group. Then the
following are equivalent:

(i) the 2-fusion system of G is isomorphic to the 2-fusion system of 𝑃𝑆𝐿4 (𝑞);
(ii) 𝐺 � 𝑃𝑆𝐿𝜀4 (𝑞

∗) for some 𝜀 ∈ {+,−} and some nontrivial odd prime power 𝑞∗ with 𝜀𝑞∗ ∼ 𝑞.

In particular, Theorem A holds for 𝑛 = 4.

Proof. The implication (ii) ⇒ (i) is given by Proposition 3.20.
(i) ⇒ (ii): Assume that the 2-fusion system of G is isomorphic to the 2-fusion system of 𝑃𝑆𝐿4 (𝑞).

Then the Sylow 2-subgroups of G are isomorphic to those of 𝑃𝑆𝐿4 (𝑞). Applying Mason’s results [41,
Theorem 1.1 and Corollary 1.3] and [40, Theorems 1.1 and 3.15], the latter together with [28, Theorem
4.10.5 (f)], we see that one of the following holds:

(1) 𝐺 � 𝑃𝑆𝐿𝜀4 (𝑞
∗) for some nontrivial odd prime power 𝑞∗ and some 𝜀 ∈ {+,−} with 𝜀𝑞∗ ≡ 𝑞 mod 4;

(2) 𝐺 � 𝐴10 or 𝐴11;
(3) 𝐺 � 𝑀22, 𝑀23 or 𝑀𝑐𝐿.

However, we know from Lemma 4.3 that the 2-fusion system of G is not isomorphic to the 2-fusion
system of 𝑃𝑆𝐿4 (𝑞) when (2) or (3) holds. Thus, (1) holds.

Let 𝑞0 be a nontrivial odd prime power, 𝜀0 ∈ {+,−}, and 𝑘0, 𝑠0 ∈ N such that 2𝑘0 = (𝑞0 − 𝜀0)2 and
2𝑠0 = (𝑞0 + 𝜀0)2. Then we have

|𝑃𝑆𝐿𝜀0
4 (𝑞0) |2 =

|𝐺𝐿𝜀0
4 (𝑞0) |2

2𝑘0 (4, 2𝑘0 )
=

2(|𝐺𝐿𝜀0
2 (𝑞0) |2)

2

2𝑘0 (4, 2𝑘0 )
=

23𝑘0+2𝑠0+1

(4, 2𝑘0)
.

Let 𝑘, 𝑘∗, 𝑠, 𝑠∗ ∈ N such that 2𝑘 = (𝑞 − 1)2, 2𝑘∗ = (𝑞∗ − 𝜀)2, 2𝑠 = (𝑞 + 1)2 and 2𝑠∗ = (𝑞∗ + 𝜀)2. Then we
have

23𝑘∗+2𝑠∗+1

(4, 2𝑘∗ )
= |𝐺 |2 =

23𝑘+2𝑠+1

(4, 2𝑘 )
.

Since 𝜀𝑞∗ ≡ 𝑞 mod 4, it follows that 𝜀𝑞∗ ∼ 𝑞. �

Proposition 4.5. Let q be a nontrivial odd prime power, and let G be a finite simple group. Then the
following are equivalent:

(i) the 2-fusion system of G is isomorphic to the 2-fusion system of 𝑃𝑆𝐿5 (𝑞);
(ii) the Sylow 2-subgroups of G are isomorphic to those of 𝑃𝑆𝐿5 (𝑞);

(iii) 𝐺 � 𝑃𝑆𝐿𝜀5 (𝑞
∗) for some nontrivial odd prime power 𝑞∗ and some 𝜀 ∈ {+,−} with 𝜀𝑞∗ ∼ 𝑞.

In particular, Theorem A holds for 𝑛 = 5.

Proof. The implication (i) ⇒ (ii) is clear, and the implication (iii) ⇒ (i) is given by Proposition 3.20.
(ii) ⇒ (iii): Assume that the Sylow 2-subgroups of G are isomorphic to those of 𝑃𝑆𝐿5 (𝑞). Applying

work of Mason [42, Theorem 1.1], it follows that 𝐺 � 𝑃𝑆𝐿𝜀5 (𝑞
∗) for some 𝜀 ∈ {+,−} and some

nontrivial odd prime power 𝑞∗. In view of Lemma 3.15, it is easy to see that a Sylow 2-subgroup
of G is isomorphic to a Sylow 2-subgroup of 𝐺𝐿𝜀4 (𝑞

∗), while a Sylow 2-subgroup of 𝑃𝑆𝐿5 (𝑞) is
isomorphic to a Sylow 2-subgroup of 𝐺𝐿4(𝑞). Now it is easy to deduce from Lemmas 3.10, 3.11
and 3.14 that a Sylow 2-subgroup of G has a center of order (𝑞∗ − 𝜀)2, while a Sylow 2-subgroup of
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𝑃𝑆𝐿5 (𝑞) has a center of order (𝑞 − 1)2. It follows that (𝑞∗ − 𝜀)2 = (𝑞 − 1)2. Let 𝑘, 𝑠, 𝑘∗, 𝑠∗ ∈ N with
2𝑘 = (𝑞 − 1)2, 2𝑠 = (𝑞 + 1)2, 2𝑘

∗
= (𝑞∗ − 𝜀)2 and 2𝑠∗ = (𝑞∗ + 𝜀)2. Then

24𝑘∗+2𝑠∗+1 = |𝐺𝐿𝜀4 (𝑞
∗) |2 = |𝐺 |2 = |𝐺𝐿4 (𝑞) |2 = 24𝑘+2𝑠+1.

Since 2𝑘∗ = 2𝑘 , we thus have 𝑘 = 𝑘∗ and 𝑠 = 𝑠∗. This implies 𝜀𝑞∗ ∼ 𝑞. �

5. The case 𝑛 ≥ 6: preliminary discussion and notation

Given a natural number 𝑘 ≥ 6, we say that 𝑃(𝑘) is satisfied if whenever 𝑞0 is a nontrivial odd prime
power and H is a finite simple group satisfying (CK) and realizing the 2-fusion system of 𝑃𝑆𝐿𝑘 (𝑞0),
we have 𝐻 � 𝑃𝑆𝐿𝜀𝑘 (𝑞

∗) for some nontrivial odd prime power 𝑞∗ and some 𝜀 ∈ {+,−} with 𝜀𝑞∗ ∼ 𝑞0.
In order to establish Theorem A for 𝑛 ≥ 6, we are going to prove by induction that 𝑃(𝑘) is satisfied

for all 𝑘 ≥ 6. From now on until the end of Section 8, we will assume the following hypothesis.

Hypothesis 5.1. Let 𝑛 ≥ 6 be a natural number such that 𝑃(𝑘) is satisfied for all natural numbers k
with 6 ≤ 𝑘 < 𝑛, and let q be a nontrivial odd prime power. Moreover, let G be a finite group satisfying
the following properties:

(i) G realizes the 2-fusion system of 𝑃𝑆𝐿𝑛 (𝑞);
(ii) 𝑂 (𝐺) = 1;

(iii) G satisfies (CK).

We will prove the following theorem.

Theorem 5.2. There is a normal subgroup 𝐺0 of G isomorphic to a nontrivial quotient of 𝑆𝐿𝜀𝑛 (𝑞∗) for
some nontrivial odd prime power 𝑞∗ and some 𝜀 ∈ {+,−} with 𝜀𝑞∗ ∼ 𝑞. In particular, 𝑃(𝑛) is satisfied.

The proof of Theorem 5.2 will occupy Sections 5-8. In this section, we introduce some notation and
prove some preliminary results needed for the proof.

For each 𝐴 ⊆ {1, . . . , 𝑛} of even order, let 𝑡𝐴 be the image of the diagonal matrix diag(𝑑1, . . . , 𝑑𝑛)
in 𝑃𝑆𝐿𝑛 (𝑞), where

𝑑𝑖 =

{
−1 if 𝑖 ∈ 𝐴
1 if 𝑖 ∉ 𝐴

for each 1 ≤ 𝑖 ≤ 𝑛. If i is an even natural number with 2 ≤ 𝑖 < 𝑛 and 𝐴 = {𝑛 − 𝑖 + 1, . . . , 𝑛}, then we
write 𝑡𝑖 for 𝑡𝐴. We denote 𝑡2 by t, and we write u for 𝑡 {1,2}.

We assume 𝜌 to be an element of F∗𝑞 of order (𝑛, 𝑞 − 1). If 𝜌 is a square in F𝑞 , then we assume 𝜇 to
be a fixed element of F𝑞 with 𝜌 = 𝜇2.

If n is even, 𝜌 is a square in F𝑞 , and i is an odd natural number with 1 ≤ 𝑖 < 𝑛, then(
𝜇𝐼𝑛−𝑖

−𝜇𝐼𝑖

)
is an element of 𝑆𝐿𝑛 (𝑞) by Proposition 3.5, and we will denote its image in 𝑃𝑆𝐿𝑛 (𝑞) by 𝑡𝑖 .

If n is even and 𝜌 is a nonsquare element of F𝑞 , then we denote the matrix(
𝐼𝑛/2

𝜌𝐼𝑛/2

)
by 𝑤, and if 𝑤 ∈ 𝑆𝐿𝑛 (𝑞), then we use w to denote its image in 𝑃𝑆𝐿𝑛 (𝑞).

Note that, by Proposition 3.5, any involution of 𝑃𝑆𝐿𝑛 (𝑞) is conjugate to 𝑡𝑖 for some 1 ≤ 𝑖 < 𝑛 such
that 𝑡𝑖 is defined, or to w (if defined).
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Next, we construct a Sylow 2-subgroup of𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑡) containing some ‘nice’ elements of 𝑃𝑆𝐿𝑛 (𝑞).
Take a Sylow 2-subgroup V of 𝐺𝐿2 (𝑞) containing each diagonal matrix in 𝐺𝐿2 (𝑞) with 2-elements of
F
∗
𝑞 along the main diagonal. Similarly, we assume𝑉2 to be a Sylow 2-subgroup of 𝐺𝐿𝑛−4 (𝑞) containing

each diagonal matrix in 𝐺𝐿𝑛−4 (𝑞) with 2-elements of F∗𝑞 along the main diagonal. Now let W be a
Sylow 2-subgroup of 𝐺𝐿𝑛−2 (𝑞) containing{(

𝐴
𝐵

)
: 𝐴 ∈ 𝑉, 𝐵 ∈ 𝑉2

}
.

If 𝑛 = 6, then we assume that 𝑉 = 𝑉2 and that W is the Sylow 2-subgroup{(
𝐴
𝐵

)
: 𝐴, 𝐵 ∈ 𝑉

}
·

〈(
𝐼2

𝐼2

)〉
of 𝐺𝐿4 (𝑞).

Let �̃� := diag(1, . . . , 1,−1,−1) ∈ 𝑆𝐿𝑛 (𝑞). Then we have

𝐶𝑆𝐿𝑛 (𝑞) (̃𝑡) =

{(
𝐴
𝐵

)
: 𝐴 ∈ 𝐺𝐿𝑛−2 (𝑞), 𝐵 ∈ 𝐺𝐿2 (𝑞), det(𝐴)det(𝐵) = 1

}
.

It is easy to note that

𝑇 :=
{(
𝐴
𝐵

)
: 𝐴 ∈ 𝑊, 𝐵 ∈ 𝑉, det(𝐴)det(𝐵) = 1

}
is a Sylow 2-subgroup of 𝐶𝑆𝐿𝑛 (𝑞) (̃𝑡). Let T denote the image of 𝑇 in 𝑃𝑆𝐿𝑛 (𝑞). As the centralizer of t in
𝑃𝑆𝐿𝑛 (𝑞) is the image of 𝐶𝑆𝐿𝑛 (𝑞) (̃𝑡) in 𝑃𝑆𝐿𝑛 (𝑞), we have that T is a Sylow 2-subgroup of 𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑡).
We assume S to be a Sylow 2-subgroup of 𝑃𝑆𝐿𝑛 (𝑞) containing T. Since𝐶𝑆 (𝑡) = 𝑇 ∈ Syl2 (𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑡)),
we have that 〈𝑡〉 is fully F𝑆 (𝑃𝑆𝐿𝑛 (𝑞))-centralized.

Let 𝐾1 be the image of {(
𝐴
𝐼2

)
: 𝐴 ∈ 𝑆𝐿𝑛−2 (𝑞)

}
in 𝑃𝑆𝐿𝑛 (𝑞), and let 𝐾2 be the image of{(

𝐼𝑛−2
𝐵

)
: 𝐵 ∈ 𝑆𝐿2 (𝑞)

}
in 𝑃𝑆𝐿𝑛 (𝑞). Clearly, 𝐾1 and 𝐾2 are normal subgroups of 𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑡) isomorphic to 𝑆𝐿𝑛−2 (𝑞) and
𝑆𝐿2 (𝑞), respectively. Define 𝑋1 to be the image of{(

𝐴
𝐼2

)
: 𝐴 ∈ 𝑊 ∩ 𝑆𝐿𝑛−2 (𝑞)

}
in 𝑃𝑆𝐿𝑛 (𝑞), and define 𝑋2 to be the image of{(

𝐼𝑛−2
𝐵

)
: 𝐵 ∈ 𝑉 ∩ 𝑆𝐿2 (𝑞)

}
in 𝑃𝑆𝐿𝑛 (𝑞).
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Note that 𝑋1 = 𝑇 ∩ 𝐾1 ∈ Syl2 (𝐾1) and 𝑋2 = 𝑇 ∩ 𝐾2 ∈ Syl2(𝐾2). Define

C𝑖 := F𝑋𝑖 (𝐾𝑖)

for 𝑖 ∈ {1, 2}. By [10, Part I, Proposition 6.2], C1 and C2 are normal subsystems of F𝑇 (𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑡)).
Lemma 5.3. Let F := F𝑆 (𝑃𝑆𝐿𝑛 (𝑞)). If 𝑞 ≡ 1 or 7 mod 8, then the components of𝐶F (〈𝑡〉) are precisely
the subsystems C1 and C2. If 𝑞 ≡ 3 or 5 mod 8, then C1 is the only component of 𝐶F (〈𝑡〉).

Proof. Set 𝐶 := 𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑡). Observe that the 2-components of C are precisely the quasisimple
members of {𝐾1, 𝐾2}. As 𝑛 ≥ 6 and as 𝐾1 � 𝑆𝐿𝑛−2 (𝑞) and 𝐾2 � 𝑆𝐿2 (𝑞), it follows that the 2-
components of C are 𝐾1 and 𝐾2 if 𝑞 ≠ 3 and that 𝐾1 is the only 2-component of C if 𝑞 = 3.

By Lemma 3.21, 𝐾1/𝑍 (𝐾1) is not a Goldschmidt group. If 𝑞 ≠ 3, then the lemma just cited also
shows that 𝐾2/𝑍 (𝐾2) is a Goldschmidt group if and only if 𝑞 ≡ 3 or 5 mod 8.

Now we apply Proposition 2.17 to conclude that F𝑇∩𝐾1 (𝐾1) and F𝑇∩𝐾2 (𝐾2) are precisely the
components of F𝑇 (𝐶) if 𝑞 ≡ 1 or 7 mod 8 and that F𝑇∩𝐾1 (𝐾1) is the only component of F𝑇 (𝐶)
if 𝑞 ≡ 3 or 5 mod 8. This completes the proof because 𝐶F (〈𝑡〉) = F𝑇 (𝐶), C1 = F𝑇∩𝐾1 (𝐾1) and
C2 = F𝑇∩𝐾2 (𝐾2). �

Lemma 5.4. Let F := F𝑆 (𝑃𝑆𝐿𝑛 (𝑞)). Then the factor system 𝐶F (〈𝑡〉)/𝑋1𝑋2 is nilpotent.

Proof. Set 𝐶 := 𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑡). As 𝑋𝑖 = 𝐾𝑖 ∩ 𝑇 is Sylow in 𝐾𝑖 , 𝑋1𝑋2 = 𝐾1𝐾2 ∩ 𝑇 . By Lemma 2.11,
𝐶F (〈𝑡〉)/𝑋1𝑋2 is isomorphic to the 2-fusion system of𝐶/𝐾1𝐾2. The factor group𝐶/𝐾1𝐾2 is 2-nilpotent
by Propositions 3.40 and 3.42, and so the 2-fusion system of𝐶/𝐾1𝐾2 is nilpotent. Hence,𝐶F (〈𝑡〉)/𝑋1𝑋2
is nilpotent. �

Lemma 5.5. Let 𝐴 ∈ 𝑊 and 𝐵 ∈ 𝑉 such that det(𝐴)det(𝐵) = 1. Let

𝑚 :=
(
𝐴
𝐵

)
𝑍 (𝑆𝐿𝑛 (𝑞)) ∈ 𝑇.

Then we have 𝑚 ∈ 𝑍 (C1〈𝑚〉) if and only if 𝐴 ∈ 𝑍 (𝐺𝐿𝑛−2 (𝑞)).

Proof. By [33, Proposition 1], we have C1〈𝑚〉 = F𝑋1 〈𝑚〉 (𝐾1〈𝑚〉). So, by Lemma 2.13, 𝑚 ∈ 𝑍 (C1〈𝑚〉)
if and only if 𝑚 ∈ 𝑍∗(𝐾1〈𝑚〉). This is the case if and only if [𝐾1, 〈𝑚〉] ≤ 𝑂 (𝐾1). If the latter holds, then
[〈𝑚〉, 𝐾1, 𝐾1] = [𝐾1, 〈𝑚〉, 𝐾1] = 1 as 𝑂 (𝐾1) ≤ 𝑍 (𝐾1), and so [𝐾1, 〈𝑚〉] = 1 by the three subgroups
lemma. Thus, the condition [𝐾1, 〈𝑚〉] ≤ 𝑂 (𝐾1) is satisfied if and only if [𝐾1, 〈𝑚〉] = 1. So we have
𝑚 ∈ 𝑍 (C1〈𝑚〉) if and only if m centralizes 𝐾1, and this is the case if and only if 𝐴 ∈ 𝑍 (𝐺𝐿𝑛−2 (𝑞)). �

Lemma 5.6. Set F := F𝑆 (𝑃𝑆𝐿𝑛 (𝑞)) and G := 𝐶F (〈𝑡〉). Then 𝔥𝔫𝔭(𝐶G (𝑋1)) = 𝑋2.

Proof. Set 𝐶 := 𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑡). Note that 𝐶 ′ = 𝐾1𝐾2.
By [23, Chapter 7, Theorem 3.4], we have 𝔣𝔬𝔠(𝐶G (𝑋1)) = 𝐶𝑇 (𝑋1) ∩ 𝐶𝐶 (𝑋1)

′ ≤ 𝐶𝑇 (𝑋1) ∩ 𝐶
′ =

𝐶𝑇 (𝑋1)∩𝑋1𝑋2 = 𝑍 (𝑋1)𝑋2. As 𝔥𝔫𝔭(𝐶G (𝑋1)) ≤ 𝔣𝔬𝔠(𝐶G (𝑋1)), it follows that 𝔥𝔫𝔭(𝐶G (𝑋1)) ≤ 𝑍 (𝑋1)𝑋2.
Let P be a subgroup of 𝐶𝑇 (𝑋1), and let 𝜑 be a 2′-element of Aut𝐶𝐶 (𝑋1) (𝑃). By [37, 8.2.7], we have

[𝑃, 〈𝜑〉] = [𝑃, 〈𝜑〉, 〈𝜑〉] ≤ [𝔥𝔫𝔭(𝐶G (𝑋1)) ∩ 𝑃, 〈𝜑〉] ≤ [𝑍 (𝑋1)𝑋2 ∩ 𝑃, 〈𝜑〉] .

Since 𝜑 ∈ Aut𝐶𝐶 (𝑋1) (𝑃), 𝐾2 � 𝐶 and 𝑋2 = 𝑇 ∩ 𝐾2, it follows [𝑃, 〈𝜑〉] ≤ 𝑋2. Consequently,
𝔥𝔫𝔭(𝐶G (𝑋1)) ≤ 𝑋2.

On the other hand, since 𝐾2 ≤ 𝑂2 (𝐶𝐶 (𝑋1)), we have 𝑋2 ≤ 𝔥𝔫𝔭(𝐶G (𝑋1)) by [18, Theorem 1.33]. �

Lemma 5.7. Set 𝐶 := 𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑡). Then Aut𝐶 (𝑋1) is a 2-group.

Proof. Let 𝑚 ∈ 𝑁𝐶 (𝑋1). We have

𝑚 =

(
𝑀1

𝑀2

)
𝑍 (𝑆𝐿𝑛 (𝑞))
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for some 𝑀1 ∈ 𝐺𝐿𝑛−2 (𝑞) and some 𝑀2 ∈ 𝐺𝐿2 (𝑞) with det(𝑀1)det(𝑀2) = 1. Let 𝐴 ∈ 𝑊 ∩ 𝑆𝐿𝑛−2 (𝑞)
and

𝑥 :=
(
𝐴
𝐼2

)
𝑍 (𝑆𝐿𝑛 (𝑞)) ∈ 𝑋1.

As m normalizes 𝑋1, we have (
𝐴𝑀1

𝐼2

)
𝑍 (𝑆𝐿𝑛 (𝑞)) = 𝑥

𝑚 ∈ 𝑋1.

This easily implies that 𝐴𝑀1 ∈ 𝑊 ∩ 𝑆𝐿𝑛−2 (𝑞). It follows that 𝑀1 normalizes 𝑊 ∩ 𝑆𝐿𝑛−2 (𝑞). By [36,
Theorem 1], we have 𝑁𝐺𝐿𝑛−2 (𝑞) (𝑊 ∩ 𝑆𝐿𝑛−2 (𝑞)) = 𝑊𝐶𝐺𝐿𝑛−2 (𝑞) (𝑊). It follows that 𝑐𝑚 |𝑋1 ,𝑋1 is a 2-
automorphism. �

Define 𝑇1 to be the image of {(
𝐴
𝐼𝑛−2

)
: 𝐴 ∈ 𝑉 ∩ 𝑆𝐿2 (𝑞)

}
in 𝑃𝑆𝐿𝑛 (𝑞) and 𝑇2 to be the image of⎧⎪⎪⎨⎪⎪⎩��	

𝐼2
𝐵
𝐼2


�� : 𝐵 ∈ 𝑉2 ∩ 𝑆𝐿𝑛−4 (𝑞)

⎫⎪⎪⎬⎪⎪⎭
in 𝑃𝑆𝐿𝑛 (𝑞). By the definitions of 𝑋1 and of W, 𝑇1 and 𝑇2 are subgroups of 𝑋1. Recall that we use u to
denote 𝑡 {1,2} ∈ 𝑋1. The following lemma sheds light on some properties of the centralizer fusion system
𝐶C1 (〈𝑢〉).

Lemma 5.8. The following hold.

(i) We have 𝐶𝑋1 (𝑢) ∈ Syl2(𝐶𝐾1 (𝑢)). In particular, 〈𝑢〉 is fully C1-centralized.
(ii) 𝔣𝔬𝔠(𝐶C1 (〈𝑢〉)) = 𝑇1𝑇2.

(iii) If 𝑛 = 6 and 𝑞 ≡ 3 or 5 mod 8, then 𝑇1 and 𝑇2 are the only subgroups of 𝔣𝔬𝔠(𝐶C1 (〈𝑢〉)) which are
isomorphic to 𝑄8 and strongly closed in 𝐶C1 (〈𝑢〉).

(iv) If 𝑛 ≥ 7 and 𝑞 ≡ 3 or 5 mod 8, then𝑇1 is the only subgroup of the intersection 𝔣𝔬𝔠(𝐶C1 (〈𝑢〉))∩𝐶𝑋1 (𝑇2)
which is isomorphic to 𝑄8 and strongly closed in 𝐶C1 (〈𝑢〉).

(v) Let 𝐶1 be the image of {(
𝐴
𝐼𝑛−2

)
: 𝐴 ∈ 𝑆𝐿2 (𝑞)

}
in 𝑃𝑆𝐿𝑛 (𝑞) and 𝐶2 be the image of⎧⎪⎪⎨⎪⎪⎩��	

𝐼2
𝐵
𝐼2


�� : 𝐴 ∈ 𝑆𝐿𝑛−4 (𝑞)

⎫⎪⎪⎬⎪⎪⎭
in 𝑃𝑆𝐿𝑛 (𝑞). Then any component of 𝐶C1 (〈𝑢〉) lies in {F𝑇1 (𝐶1),F𝑇2 (𝐶2)}. Moreover, F𝑇1 (𝐶1) is a
component if and only if 𝑞 ≡ 1 or 7 mod 8, and F𝑇2 (𝐶2) is a component if and only if 𝑛 ≥ 7 or
𝑞 ≡ 1 or 7 mod 8.
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Proof. Clearly, 𝐶𝐾1 (𝑢) is the image of⎧⎪⎪⎨⎪⎪⎩��	
𝐴
𝐵
𝐼2


�� : 𝐴 ∈ 𝐺𝐿2 (𝑞), 𝐵 ∈ 𝐺𝐿𝑛−4 (𝑞), det(𝐴)det(𝐵) = 1
⎫⎪⎪⎬⎪⎪⎭

in 𝑃𝑆𝐿𝑛 (𝑞). Let𝑊 be the image of⎧⎪⎪⎨⎪⎪⎩��	
𝐴
𝐵
𝐼2


�� : 𝐴 ∈ 𝑉, 𝐵 ∈ 𝑉2, det(𝐴)det(𝐵) = 1
⎫⎪⎪⎬⎪⎪⎭

in 𝑃𝑆𝐿𝑛 (𝑞). By definition of 𝑋1, we have 𝑊 ≤ 𝐶𝑋1 (𝑢). We have |𝐶𝐾1 (𝑢) | = |𝐺𝐿2 (𝑞) | |𝑆𝐿𝑛−4 (𝑞) | and
|𝑊 | = |𝑉 | |𝑉2 ∩ 𝑆𝐿𝑛−4 (𝑞) |; so𝑊 is a Sylow 2-subgroup of 𝐶𝐾1 (𝑢). Thus, 𝐶𝑋1 (𝑢) = 𝑊 ∈ Syl2(𝐶𝐾1 (𝑢)).
Hence, (i) holds.

We have 𝐶C1 (〈𝑢〉) = F𝐶𝑋1 (𝑢)
(𝐶𝐾1 (𝑢)) = F𝑊 (𝐶𝐾1 (𝑢)). The focal subgroup theorem [23, Chapter

7, Theorem 3.4] implies that 𝔣𝔬𝔠(𝐶C1 (〈𝑢〉)) = 𝑊 ∩ (𝐶𝐾1 (𝑢))
′. It is easy to see that (𝐶𝐾1 (𝑢))

′ = 𝐶1𝐶2,
where 𝐶1 and 𝐶2 are as in (v). We thus have 𝔣𝔬𝔠(𝐶C1 (〈𝑢〉)) = 𝑇1𝑇2. Hence, (ii) holds.

Now we turn to the proofs of (iii) and (iv). Assume that 𝑞 ≡ 3 or 5 mod 8. Clearly, 𝐶1 and 𝐶2
are normal subgroups of 𝐶𝐾1 (𝑢) and we have 𝑇1 = 𝐶1 ∩𝑊 , 𝑇2 = 𝐶2 ∩𝑊 . This implies that 𝑇1 and
𝑇2 are strongly closed in 𝐶C1 (〈𝑢〉). By Lemma 3.12, we have 𝑇1 � 𝑄8 and, if 𝑛 = 6, we also have
𝑇2 � 𝑄8. Clearly, any strongly 𝐶C1 (〈𝑢〉)-closed subgroup of 𝔣𝔬𝔠(𝐶C1 (〈𝑢〉)) = 𝑇1𝑇2 is strongly closed
in F𝑇1𝑇2 (𝐶1𝐶2). Hence, in order to prove (iii), it suffices to show that if 𝑛 = 6, then 𝑇1 and 𝑇2 are the
only strongly F𝑇1𝑇2 (𝐶1𝐶2)-closed subgroups of 𝑇1𝑇2 which are isomorphic to 𝑄8. Similarly, in order to
prove (iv), it suffices to show that if 𝑛 ≥ 7, then 𝑇1 is the only subgroup of 𝑇1𝑇2 which centralizes 𝑇2,
which is isomorphic to 𝑄8, and which is strongly closed in F𝑇1𝑇2 (𝐶1𝐶2).

Continue to assume that 𝑞 ≡ 3 or 5 mod 8. In order to prove the two statements just mentioned,
we need some observations. As 𝐶1 � 𝑆𝐿2 (𝑞), we have that 𝐶1 is not 2-nilpotent. So F𝑇1 (𝐶1) is not
nilpotent by [39, Theorem 1.4]. Again, by [39, Theorem 1.4], it follows that Aut𝐶1 (𝑇1) is not a 2-group.
So Aut𝐶1 (𝑇1) has an element of order 3. Similarly, if 𝑛 = 6, then Aut𝐶2 (𝑇2) has an element of order 3.
It follows that there is an element 𝛼 ∈ Aut𝐶1𝐶2 (𝑇1𝑇2) such that 𝛼 |𝑇1 ,𝑇1 has order 3, while 𝛼 |𝑇2 ,𝑇2 = id𝑇2 .
Moreover, if 𝑛 = 6, then there is an element 𝛽 ∈ Aut𝐶1𝐶2 (𝑇1𝑇2) such that 𝛽 |𝑇1 ,𝑇1 = id𝑇1 , while 𝛽 |𝑇2 ,𝑇2

has order 3.
Continue to assume that 𝑞 ≡ 3 or 5 mod 8. If 𝑛 = 6, then the observations in the preceding two

paragraphs show together with Lemma 2.15 that 𝑇1 and 𝑇2 are the only strongly F𝑇1𝑇2 (𝐶1𝐶2)-closed
subgroups of 𝑇1𝑇2 which are isomorphic to 𝑄8. As observed above, this is enough to conclude that (iii)
holds. If 𝑛 ≥ 7, then we may apply the observations in the preceding two paragraphs together with
Lemma 2.15 to conclude that if 𝑇0 is a strongly F𝑇1𝑇2 (𝐶1𝐶2)-closed subgroup of 𝑇1𝑇2 such that 𝑇0 � 𝑄8
and such that 𝑇0 centralizes 𝑇2, then 𝑇0 = 𝑇1. As observed above, this is enough to conclude that (iv)
holds.

Noticing that the 2-components of 𝐶𝐾1 (𝑢) are precisely the quasisimple members of {𝐶1, 𝐶2}, we
obtain (v) from Proposition 2.17 and Lemma 3.21. �

Let G be as in Hypothesis 5.1. The group G realizes the 2-fusion system of 𝑃𝑆𝐿𝑛 (𝑞). So, if R is
a Sylow 2-subgroup of G, then F𝑆 (𝑃𝑆𝐿𝑛 (𝑞)) � F𝑅 (𝐺). For the sake of simplicity, we will identify
S with a Sylow 2-subgroup R of G and F𝑆 (𝑃𝑆𝐿𝑛 (𝑞)) with F𝑅 (𝐺). Hence, we will work under the
following hypothesis.

Hypothesis 5.9. We will treat G as a group with 𝑆 ∈ Syl2(𝐺) and F𝑆 (𝐺) = F𝑆 (𝑃𝑆𝐿𝑛 (𝑞)).

The following lemma will play a key role in the proof of Theorem 5.2.
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Lemma 5.10. Let x be an involution of S such that 𝐶𝑆 (𝑥) ∈ Syl2(𝐶𝐺 (𝑥)). Let C be a component of
F𝐶𝑆 (𝑥) (𝐶𝐺 (𝑥)), and let k be a natural number with 3 ≤ 𝑘 < 𝑛. Then the following hold.

(i) There is a unique 2-component Y of 𝐶𝐺 (𝑥) such that C = F𝐶𝑆 (𝑥)∩𝑌 (𝑌 ).
(ii) If C is isomorphic to the 2-fusion system of 𝑆𝐿𝑘 (𝑞), then we either have that 𝑌/𝑂 (𝑌 ) �

𝑆𝐿𝜀𝑘 (𝑞
∗)/𝑂 (𝑆𝐿𝜀𝑘 (𝑞

∗)) for some nontrivial odd prime power 𝑞∗ and some 𝜀 ∈ {+,−} with 𝑞 ∼ 𝜀𝑞∗;
or 𝑘 = 3, (𝑞 + 1)2 = 4, and 𝑌/𝑍∗ (𝑌 ) � 𝑀11.

(iii) If C is isomorphic to the 2-fusion system of a nontrivial quotient of 𝑆𝐿𝑘 (𝑞2), then 𝑌/𝑂 (𝑌 ) is
isomorphic to a nontrivial quotient of 𝑆𝐿𝜀𝑘 (𝑞

∗) for some nontrivial odd prime power 𝑞∗ and some
𝜀 ∈ {+,−} with 𝑞2 ∼ 𝜀𝑞∗.

In order to prove Lemma 5.10, we need the following observation.

Lemma 5.11. Let 𝑘 ≥ 6 be a natural number satisfying 𝑃(𝑘). If 𝑞0 is a nontrivial odd prime power
and H is a known finite simple group realizing the 2-fusion system of 𝑃𝑆𝐿𝑘 (𝑞0), then 𝐻 � 𝑃𝑆𝐿𝜀𝑘 (𝑞

∗)

for some 𝜀 ∈ {+,−} and some nontrivial odd prime power 𝑞∗ with 𝜀𝑞∗ ∼ 𝑞0.

Proof. It suffices to show that any known finite simple group H satisfies (CK). Without using the CFSG,
this is a priori not clear. It can be deduced from [28, Proposition 5.2.9] if H is alternating, from [28,
Table 4.5.1] if H is a finite simple group of Lie type in odd characteristic, and from [28, Table 5.3] if H
is sporadic. If H is a finite simple group of Lie type in characteristic 2, then H satisfies (CK) since, in
this case, no involution centralizer in H has a 2-component (see [5, 47.8 (3)]). �

Proof of Lemma 5.10. Since G satisfies (CK), we have that 𝑌/𝑍∗ (𝑌 ) is a known finite simple group for
each 2-component Y of 𝐶𝐺 (𝑥). Proposition 2.17 implies that there is a unique 2-component Y of 𝐶𝐺 (𝑥)
with C = F𝐶𝑆 (𝑥)∩𝑌 (𝑌 ). Thus, (i) holds.

Suppose that C is isomorphic to the 2-fusion system of 𝑆𝐿𝑘 (𝑞0)/𝑍 , where either 𝑞0 = 𝑞 and 𝑍 = 1,
or 𝑞0 = 𝑞2 and 𝑍 ≤ 𝑍 (𝑆𝐿𝑘 (𝑞

2)). In order to prove (ii) and (iii), we need the following three claims.
(1) The 2-fusion systems of 𝑌/𝑍∗ (𝑌 ) and 𝑃𝑆𝐿𝑘 (𝑞0) are isomorphic.
As C = F𝐶𝑆 (𝑥)∩𝑌 (𝑌 ), we have that the 2-fusion system of Y is isomorphic to the 2-fusion system

of 𝑆𝐿𝑘 (𝑞0)/𝑍 . So, by Corollary 2.12, the 2-fusion system of 𝑌/𝑂 (𝑌 ) is isomorphic to the 2-fusion
system of 𝑆𝐿𝑘 (𝑞0)/𝑍 . Lemma 2.14 implies that the 2-fusion systems of 𝑌/𝑍∗ (𝑌 ) and 𝑃𝑆𝐿𝑘 (𝑞0) are
isomorphic.

(2) We have 𝑌/𝑍∗ (𝑌 ) � 𝑃𝑆𝐿𝜀𝑘 (𝑞
∗) for some nontrivial odd prime power 𝑞∗ and some 𝜀 ∈ {+,−}

with 𝑞0 ∼ 𝜀𝑞∗, or 𝑘 = 3, (𝑞0 + 1)2 = 4 and 𝑌/𝑍∗ (𝑌 ) � 𝑀11.
If 𝑘 = 3, then it follows from (1) and Proposition 4.2. If 𝑘 ∈ {4, 5}, then it follows from (1) together

with Propositions 4.4 and 4.5. Assume now that 𝑘 ≥ 6. By Hypothesis 5.1 and since 𝑘 < 𝑛, we have
that k satisfies 𝑃(𝑘). Since 𝑌/𝑍∗ (𝑌 ) is a known finite simple group, the claim follows from (1) and
Lemma 5.11.

(3) Suppose that 𝑌/𝑍∗ (𝑌 ) � 𝑃𝑆𝐿𝜀𝑘 (𝑞
∗), where 𝑞∗ and 𝜀 are as in (2). Then we have 𝑌/𝑂 (𝑌 ) �

𝑆𝐿𝜀𝑘 (𝑞
∗)/𝑈, where 𝑈 ≤ 𝑍 (𝑆𝐿𝜀𝑘 (𝑞

∗)) and the index of U in 𝑍 (𝑆𝐿𝜀𝑘 (𝑞
∗)) is equal to the 2-part of

|𝑍 (𝑆𝐿𝑘 (𝑞0))/𝑍 |.
The group 𝑌/𝑂 (𝑌 ) is a perfect central extension of 𝑃𝑆𝐿𝜀𝑘 (𝑞

∗). Since 𝑌/𝑂 (𝑌 ) is core-free, the center
of 𝑌/𝑂 (𝑌 ) is a 2-group. So, by Lemmas 3.1 and 3.2, there is a central subgroup U of 𝑆𝐿𝜀𝑘 (𝑞

∗) with
𝑌/𝑂 (𝑌 ) � 𝑆𝐿𝜀𝑘 (𝑞

∗)/𝑈. The claim now follows from

|𝑃𝑆𝐿𝑘 (𝑞0) |2 |𝑍 (𝑆𝐿𝑘 (𝑞0))/𝑍 |2 = |𝑆𝐿𝑘 (𝑞0)/𝑍 |2

= |𝑌 |2

= |𝑌/𝑍∗ (𝑌 ) |2 |𝑍 (𝑌/𝑂 (𝑌 )) |

= |𝑃𝑆𝐿𝑘 (𝑞0) |2 |𝑍 (𝑆𝐿
𝜀
𝑘 (𝑞

∗))/𝑈 |.

Here, the second equality follows from the fact that Y realizes C, the third one holds since |𝑍∗(𝑌 ) |2 =
|𝑍∗ (𝑌 )/𝑂 (𝑌 ) |2 = |𝑍 (𝑌/𝑂 (𝑌 )) |2 = |𝑍 (𝑌/𝑂 (𝑌 )) |, and the fourth one follows from (1).
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Assume that 𝑞0 = 𝑞 and 𝑍 = 1. By (2) and (3), one of the following holds: either 𝑘 = 3, (𝑞 + 1)2 = 4
and 𝑌/𝑍∗ (𝑌 ) � 𝑀11 or 𝑌/𝑂 (𝑌 ) � 𝑆𝐿𝜀𝑘 (𝑞

∗)/𝑈, where 𝑞∗ is a nontrivial odd prime power, 𝜀 ∈ {+,−},
𝑞 ∼ 𝜀𝑞∗, 𝑈 ≤ 𝑍 (𝑆𝐿𝜀𝑘 (𝑞

∗)) and the index of U in 𝑍 (𝑆𝐿𝜀𝑘 (𝑞
∗)) is equal to the 2-part of |𝑍 (𝑆𝐿𝑘 (𝑞)) |.

Assume that the latter holds. As 𝑞 ∼ 𝜀𝑞∗, we have (𝑞−1)2 = (𝜀𝑞∗−1)2 = (𝑞∗−𝜀)2. Since |𝑍 (𝑆𝐿𝑘 (𝑞)) | =
(𝑘, 𝑞−1) and |𝑍 (𝑆𝐿𝜀𝑘 (𝑞

∗)) | = (𝑘, 𝑞∗ −𝜀), it follows that the 2-part of |𝑍 (𝑆𝐿𝑘 (𝑞)) | is equal to the 2-part
of |𝑍 (𝑆𝐿𝜀𝑘 (𝑞

∗)) |. It follows that𝑈 = 𝑂 (𝑍 (𝑆𝐿𝜀𝑘 (𝑞
∗))) = 𝑂 (𝑆𝐿𝜀𝑘 (𝑞

∗)). This completes the proof of (ii).
Assume now that 𝑞0 = 𝑞2. Then, since 𝑞2 ≡ 1 mod 4, (2) and (3) imply that 𝑌/𝑂 (𝑌 ) is isomorphic

to a nontrivial quotient of 𝑆𝐿𝜀𝑘 (𝑞
∗) for some nontrivial odd prime power 𝑞∗ and some 𝜀 ∈ {+,−} with

𝑞2 ∼ 𝜀𝑞∗. Thus, (iii) holds. �

6. 2-components of involution centralizers

In this section, we continue to assume Hypotheses 5.1 and 5.9. We will use the notation introduced in
the last section without further explanation.

The main goal of this section is to describe the 2-components and the solvable 2-components of the
centralizers of involutions of G.

6.1. The subgroups K and L of 𝐶𝐺 (𝑡)

We start by considering 𝐶𝐺 (𝑡). Let F := F𝑆 (𝐺) = F𝑆 (𝑃𝑆𝐿𝑛 (𝑞)). Since 〈𝑡〉 is fully F-centralized, we
have that 𝑇 = 𝐶𝑆 (𝑡) ∈ Syl2(𝐶𝐺 (𝑡)). Also, note that F𝑇 (𝐶𝐺 (𝑡)) = 𝐶F (〈𝑡〉) = F𝑇 (𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑡)).

Proposition 6.1. There is a unique 2-component K of 𝐶𝐺 (𝑡) such that C1 = F𝑇∩𝐾 (𝐾). We have
𝐾/𝑂 (𝐾) � 𝑆𝐿𝜀𝑛−2 (𝑞

∗)/𝑂 (𝑆𝐿𝜀𝑛−2 (𝑞
∗)) for some nontrivial odd prime power 𝑞∗ and some 𝜀 ∈ {+,−}

with 𝑞 ∼ 𝜀𝑞∗. Moreover, K is a normal subgroup of 𝐶𝐺 (𝑡).

Proof. Set F := F𝑆 (𝐺). By Lemma 5.3, C1 is a component of 𝐶F (〈𝑡〉). Lemma 5.10 (i) im-
plies that there is a unique 2-component K of 𝐶𝐺 (𝑡) such that C1 = F𝑇∩𝐾 (𝐾). By definition,
the component C1 is isomorphic to the 2-fusion system of 𝑆𝐿𝑛−2 (𝑞). Lemma 5.10 (ii) implies that
𝐾/𝑂 (𝐾) � 𝑆𝐿𝜀𝑛−2 (𝑞

∗)/𝑂 (𝑆𝐿𝜀𝑛−2 (𝑞
∗)) for some nontrivial odd prime power 𝑞∗ and some 𝜀 ∈ {+,−}

with 𝑞 ∼ 𝜀𝑞∗.
It remains to show that K is a normal subgroup of 𝐶𝐺 (𝑡). Suppose that 𝐾 is a 2-component of 𝐶𝐺 (𝑡)

such that 𝐾 � 𝐾 . Set C̃ := F𝑇∩𝐾 (𝐾). Since 𝐾 is subnormal in 𝐶𝐺 (𝑡), it easily follows from [10, Part I,
Proposition 6.2] that C̃ is subnormal in 𝐶F (〈𝑡〉). Moreover, C̃ � C1 as 𝐾 � 𝐾 . Hence, C̃ is a component
of𝐶F (〈𝑡〉). But as a consequence of Lemma 5.3, there is no component of𝐶F (〈𝑡〉) which is isomorphic
to C1 and different from C1. So we have C1 = C̃. The uniqueness in the first statement of the proposition
implies that 𝐾 = 𝐾 . Consequently,𝐶𝐺 (𝑡) has no 2-component which is different from K and isomorphic
to K. So K is characteristic and hence normal in 𝐶𝐺 (𝑡). �

From now on, K, 𝑞∗ and 𝜀 will always have the meanings given to them by Proposition 6.1.
Our next goal is to prove the existence and uniqueness of a normal subgroup 𝐿 of 𝐶𝐺 (𝑡) :=

𝐶𝐺 (𝑡)/𝑂 (𝐶𝐺 (𝑡)) such that 𝐿 � 𝑆𝐿2 (𝑞
∗) and to show that the image 𝐾 of K in 𝐶𝐺 (𝑡)

and 𝐿 are the only subgroups of 𝐶𝐺 (𝑡) which are components or solvable 2-components
of 𝐶𝐺 (𝑡). First, we need to prove some lemmas.

Lemma 6.2. Let 𝐴 ∈ 𝑊 and 𝐵 ∈ 𝑉 such that det(𝐴)det(𝐵) = 1. Let

𝑚 :=
(
𝐴
𝐵

)
𝑍 (𝑆𝐿𝑛 (𝑞)) ∈ 𝑇.

Set 𝐶𝐺 (𝑡) := 𝐶𝐺 (𝑡)/𝑂 (𝐶𝐺 (𝑡)). Then 𝑚 centralizes 𝐾 if and only if 𝐴 ∈ 𝑍 (𝐺𝐿𝑛−2 (𝑞)).
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Proof. Let C1 be the subsystem of F𝑇 (𝐶𝐺 (𝑡)) corresponding to C1 under the isomorphism from
F𝑇 (𝐶𝐺 (𝑡)) to F𝑇 (𝐶𝐺 (𝑡)) given by Corollary 2.12. By [33, Proposition 1], we have

C1〈𝑚〉 = F𝑋1 〈𝑚〉 (𝐾 〈𝑚〉).

Since 𝑚 is a 2-element of 𝐶𝐺 (𝑡), we have𝑂 (𝐾 〈𝑚〉) = 𝑂 (𝐾) = 1. Applying Lemma 2.13, it follows that
the center of the fusion system C1〈𝑚〉 is equal to the center of 𝐾 〈𝑚〉. In particular, 𝑚 centralizes 𝐾 if
and only if 𝑚 ∈ 𝑍 (C1〈𝑚〉). By Lemma 5.5, this is the case if and only if 𝐴 ∈ 𝑍 (𝐺𝐿𝑛−2 (𝑞)). �

Lemma 6.3. Suppose that 𝑞∗ = 3. Let 𝐶 := 𝐶𝐺 (𝑡) and 𝐶 := 𝐶/𝑂 (𝐶). Then:

(i) The factor group 𝐶/𝐾𝐶𝐶 (𝐾) is a 2-group.
(ii) The centralizer 𝐶𝐶 (𝑢) is core-free.

(iii) The factor group 𝐶𝐶 (𝑢)/𝐶𝐶 (𝐾) is core-free.

Proof. Clearly, 𝐶/𝐾𝐶𝐶 (𝐾) is isomorphic to a subgroup of Out(𝐾). Since 𝑞∗ = 3, we have that
𝐾 � 𝑆𝐿𝜀𝑛−2 (3). By Propositions 3.41 and 3.43, Out(𝐾) is a 2-group. So (i) holds.

Set 𝐶0 := 𝐾𝐶𝐶 (𝐾). As a consequence of (i), 𝐶𝐶 (𝑢)/𝐶𝐶0
(𝑢) is a 2-group. Hence, in order to prove

(ii), it suffices to show that 𝐶𝐶0
(𝑢) is core-free. As 𝑢 ∈ 𝐾 , we have 𝐶𝐶0

(𝑢) = 𝐶𝐾 (𝑢)𝐶𝐶 (𝐾). It follows
that 𝐶𝐶0

(𝑢)/𝐶𝐶 (𝐾) � 𝐶𝐾 (𝑢)/(𝐶𝐾 (𝑢) ∩ 𝐶𝐶 (𝐾)) = 𝐶𝐾 (𝑢)/𝑍 (𝐾). By Corollary 3.8, 𝐶𝐾 (𝑢) is core-
free. This easily implies that 𝐶𝐾 (𝑢)/𝑍 (𝐾) is core-free. It follows that 𝐶𝐶0

(𝑢)/𝐶𝐶 (𝐾) is core-free.
Consequently, 𝑂 (𝐶𝐶0

(𝑢)) = 𝑂 (𝐶𝐶 (𝐾)) = 1. So (ii) follows.
Finally, (iii) is true since 𝐶𝐶 (𝑢)/𝐶𝐶0

(𝑢) is a 2-group and 𝐶𝐶0
(𝑢)/𝐶𝐶 (𝐾) is core-free. �

Lemma 6.4. Let 𝐶𝐺 (𝑡) := 𝐶𝐺 (𝑡)/𝑂 (𝐶𝐺 (𝑡)). Then there is a unique pair (𝐴1
+, 𝐴2

+) of normal sub-
groups 𝐴1

+, 𝐴2
+ of 𝐶𝐾 (𝑢)

′ such that 𝐶𝐾 (𝑢)
′ = 𝐴1

+ × 𝐴2
+, 𝐴1

+ � 𝑆𝐿𝜀2 (𝑞
∗), 𝐴2

+ � 𝑆𝐿𝜀𝑛−4 (𝑞
∗) and

𝑢 ∈ 𝐴1
+. Moreover, the following hold.

(i) 𝐴1
+ ∩ 𝑋1 = 𝑇1.

(ii) 𝐴2
+ ∩ 𝑋1 = 𝑇2.

(iii) There is a group isomorphism 𝜑 : 𝐾 → 𝑆𝐿𝜀𝑛−2 (𝑞
∗)/𝑂 (𝑆𝐿𝜀𝑛−2 (𝑞

∗)) under which 𝐴1
+ corresponds

to the image of {(
𝐴
𝐼𝑛−4

)
: 𝐴 ∈ 𝑆𝐿𝜀2 (𝑞

∗)

}
in 𝑆𝐿𝜀𝑛−2 (𝑞

∗)/𝑂 (𝑆𝐿𝜀𝑛−2 (𝑞
∗)) and under which 𝐴2

+ corresponds to the image of{(
𝐼2
𝐵

)
: 𝐵 ∈ 𝑆𝐿𝜀𝑛−4 (𝑞

∗)

}
in 𝑆𝐿𝜀𝑛−2 (𝑞

∗)/𝑂 (𝑆𝐿𝜀𝑛−2 (𝑞
∗)).

Proof. For each subsystem G of F𝑇 (𝐶𝐺 (𝑡)), we use G to denote the subsystem of F𝑇 (𝐶𝐺 (𝑡)) corre-
sponding to G under the isomorphism from F𝑇 (𝐶𝐺 (𝑡)) to F𝑇 (𝐶𝐺 (𝑡)) given by Corollary 2.12. Note
that C1 = F𝑋1

(𝐾).
Set 𝐻 := 𝑆𝐿𝜀𝑛−2 (𝑞

∗)/𝑂 (𝑆𝐿𝜀𝑛−2 (𝑞
∗)). For each even natural number i with 2 ≤ 𝑖 ≤ 𝑛 − 2, let ℎ𝑖 be

the image of ℎ̃𝑖 := diag(−1, . . . ,−1, 1, . . . , 1) ∈ 𝑆𝐿𝜀𝑛−2 (𝑞
∗) in H, where −1 occurs precisely i times as

a diagonal entry.
We claim that there is a group isomorphism 𝜑 : 𝐾 → 𝐻 such that 𝑢𝜑 = ℎ𝑖 for some even

2 ≤ 𝑖 < 𝑛 − 2. By Proposition 6.1, we have 𝐾 � 𝐾/𝑂 (𝐾) � 𝐻. As a consequence of Lemmas 3.3 and
3.4, any involution of 𝑆𝐿𝜀𝑛−2 (𝑞

∗) is conjugate to ℎ̃𝑖 for some even 2 ≤ 𝑖 ≤ 𝑛 − 2. Since any involution
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of H is induced by an involution of 𝑆𝐿𝜀𝑛−2 (𝑞
∗), it follows that any involution of H is conjugate to ℎ𝑖 for

some even 2 ≤ 𝑖 ≤ 𝑛 − 2. As 𝑢 is an involution of 𝐾 , it follows that there is an isomorphism 𝜑 : 𝐾 → 𝐻
mapping 𝑢 to ℎ𝑖 for some even 2 ≤ 𝑖 ≤ 𝑛 − 2. Assume that 𝑖 = 𝑛 − 2. Then 𝑢 is central in 𝐾 . Thus,
𝑢 ∈ 𝑍 (C1) and hence 𝑢 ∈ 𝑍 (C1). This is a contradiction to Lemma 3.18 and the definition of C1. So we
have 𝑖 < 𝑛 − 2.

Set ℎ := 𝑢𝜑 = ℎ𝑖 . Also, let 𝐻1 be the image of{(
𝐴
𝐼𝑛−2−𝑖

)
: 𝐴 ∈ 𝑆𝐿𝜀𝑖 (𝑞

∗)

}
in H, and let 𝐻2 be the image of {(

𝐼𝑖
𝐵

)
: 𝐵 ∈ 𝑆𝐿𝜀𝑛−2−𝑖 (𝑞

∗)

}
in H. For 𝑗 ∈ {1, 2}, let 𝐴 𝑗+ be the subgroup of 𝐾 corresponding to 𝐻 𝑗 under 𝜑.

We now proceed in a number of steps in order to complete the proof.
(1) We have 𝐶𝐾 (𝑢)

′ = 𝐴1
+𝐴2

+, [𝐴1
+, 𝐴2

+] = 1, 𝐴1
+, 𝐴2

+ � 𝐶𝐾 (𝑢), 𝑢 ∈ 𝐴1
+ and 𝑢 ∉ 𝐴2

+.
It is easy to note that 𝐶𝐻 (ℎ)′ is the central product of 𝐻1 and 𝐻2 and that 𝐻1 and 𝐻2 are normal in

𝐶𝐻 (ℎ). Therefore, 𝐶𝐾 (𝑢)
′ is the central product of 𝐴1

+ and 𝐴2
+, and 𝐴1

+, 𝐴2
+ are normal in 𝐶𝐾 (𝑢).

By definition of 𝐻1 and 𝐻2, we have ℎ ∈ 𝐻1 and ℎ ∉ 𝐻2. Thus, 𝑢 ∈ 𝐴1
+ and 𝑢 ∉ 𝐴2

+.
(2) We have 𝐶𝑋1

(𝑢) ∈ Syl2 (𝐶𝐾 (𝑢)), and {F𝑋1∩𝐴1
+ (𝐴1

+),F𝑋1∩𝐴2
+ (𝐴2

+)} contains every component
of 𝐶C1

(〈𝑢〉).
By Lemma 5.8 (i), we have that 〈𝑢〉 is fully C1-centralized. So we have 𝐶𝑋1

(𝑢) ∈ Syl2(𝐶𝐾 (𝑢)).
Set 𝑃 := 𝐶𝑋1

(𝑢)𝜑 ∈ Syl2(𝐶𝐻 (ℎ)). Noticing that the 2-components of 𝐶𝐻 (ℎ) are precisely the
quasisimple members of {𝐻1, 𝐻2}, we see from Proposition 2.17 that the components of F𝑃 (𝐶𝐻 (ℎ))
are precisely the quasisimple members of {F𝑃∩𝐻1 (𝐻1),F𝑃∩𝐻2 (𝐻2)}.

Thus, the components of 𝐶C1
(〈𝑢〉) = F𝐶𝑋1

(𝑢) (𝐶𝐾 (𝑢)) are precisely the quasisimple members of
{F𝑋1∩𝐴1

+ (𝐴1
+),F𝑋1∩𝐴2

+ (𝐴2
+)}.

(3) 𝑋1 ∩ 𝐴1
+ and 𝑋1 ∩ 𝐴2

+ are subgroups of 𝔣𝔬𝔠(𝐶C1
(〈𝑢〉)) and are strongly closed in 𝐶C1

(〈𝑢〉).
We have 𝔣𝔬𝔠(𝐶C1

(〈𝑢〉)) = 𝐶𝑋1
(𝑢) ∩𝐶𝐾 (𝑢)

′ by the focal subgroup theorem [23, Chapter 7, Theorem
3.4]. So the claim follows from (1).

(4) Suppose that 𝑛 = 6 and 𝑞 ≡ 3 or 5 mod 8. Then we have 𝑖 = 2 and hence 𝐴1
+ � 𝑆𝐿𝜀2 (𝑞

∗) � 𝐴2
+.

Moreover, 𝑋1 ∩ 𝐴1
+ = 𝑇1 and 𝑋1 ∩ 𝐴2

+ = 𝑇2.
Since 𝑛 = 6 and 2 ≤ 𝑖 < 𝑛 − 2 = 4, we have 𝑖 = 2. Thus, 𝐴1

+ � 𝐻1 � 𝑆𝐿𝜀2 (𝑞
∗) � 𝐻2 � 𝐴2

+.
By Proposition 6.1, we have 𝑞 ∼ 𝜀𝑞∗, whence 𝑞∗ ≡ 3 or 5 mod 8. Clearly, 𝑋1 ∩ 𝐴1

+ ∈ Syl2 (𝐴1
+) and

𝑋1 ∩ 𝐴2
+ ∈ Syl2 (𝐴2

+). Lemma 3.12 implies that 𝑋1 ∩ 𝐴1
+ � 𝑄8 � 𝑋1 ∩ 𝐴2

+. By Lemma 5.8 (iii),
𝑇1 and 𝑇2 are the only subgroups of 𝔣𝔬𝔠(𝐶C1

(〈𝑢〉)) which are isomorphic to 𝑄8 and strongly closed in
𝐶C1

(〈𝑢〉). So, by (3), {𝑋1 ∩ 𝐴1
+, 𝑋1 ∩ 𝐴2

+} = {𝑇1, 𝑇2}. We have 𝑢 ∈ 𝑇1, and 𝑢 ∉ 𝐴2
+ by (1). It follows

that 𝑋1 ∩ 𝐴1
+ = 𝑇1 and 𝑋1 ∩ 𝐴2

+ = 𝑇2.
(5) Suppose that 𝑛 = 6 and 𝑞 ≡ 1 or 7 mod 8 or that 𝑛 ≥ 7. Then we have 𝑖 = 2, and hence

𝐴1
+ � 𝑆𝐿𝜀2 (𝑞

∗) and 𝐴2
+ � 𝑆𝐿𝜀𝑛−4 (𝑞

∗). Moreover, 𝑋1 ∩ 𝐴1
+ = 𝑇1 and 𝑋1 ∩ 𝐴2

+ = 𝑇2.
We begin by proving that 𝑋1 ∩ 𝐴2

+ = 𝑇2. As a consequence of Lemma 5.8 (v), 𝐶C1
(〈𝑢〉) has a

component with Sylow group 𝑇2. Applying (2), we may conclude that 𝑇2 = 𝑋1 ∩ 𝐴1
+ or 𝑋1 ∩ 𝐴2

+. Since
𝑢 ∈ 𝐴+

1 by (1), but 𝑢 ∉ 𝑇2, we have 𝑋1 ∩ 𝐴2
+ = 𝑇2.

We show next that 𝑖 = 2. Using Proposition 3.19, or using the order formulas for |𝑆𝐿𝑛−4 (𝑞
∗) | and

|𝑆𝑈𝑛−4 (𝑞
∗) | given by [32, Proposition 1.1 and Corollary 11.29], we see that

|𝑆𝐿𝜀𝑛−4 (𝑞
∗) |2 = |𝑆𝐿𝑛−4 (𝑞) |2 = |𝑇2 | = |𝐴2

+|2 = |𝐻2 |2 = |𝑆𝐿𝜀𝑛−2−𝑖 (𝑞
∗) |2.
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Using the order formulas cited above, we may conclude that 𝑛−2− 𝑖 = 𝑛−4, whence 𝑖 = 2. In particular,
𝐴1

+ � 𝑆𝐿𝜀2 (𝑞
∗) and 𝐴2

+ � 𝑆𝐿𝜀𝑛−4 (𝑞
∗).

It remains to prove 𝑋1 ∩ 𝐴1
+ = 𝑇1. If 𝑞 ≡ 1 or 7 mod 8, then Lemma 5.8 (v) shows that 𝐶C1

(〈𝑢〉) has
a component with Sylow group 𝑇1. Since 𝑢 ∈ 𝑇1, but 𝑢 ∉ 𝐴2

+, we have 𝑋1 ∩ 𝐴1
+ = 𝑇1 by (2).

Now suppose that 𝑞 ≡ 3 or 5 mod 8. Then we have 𝑞∗ ≡ 3 or 5 mod 8 since 𝑞 ∼ 𝜀𝑞∗. So, by Lemma
3.12, a Sylow 2-subgroup of 𝐴1

+ is isomorphic to𝑄8. In particular, 𝑋1 ∩ 𝐴1
+ � 𝑄8. By (3), 𝑋1 ∩ 𝐴1

+ is
a subgroup of 𝔣𝔬𝔠(𝐶C1

(〈𝑢〉)) and is strongly closed in 𝐶C1
(〈𝑢〉). Moreover, by (1), 𝑋1 ∩ 𝐴1

+ centralizes
𝑋1 ∩ 𝐴2

+ = 𝑇2. Lemma 5.8 (iv) now implies that 𝑇1 = 𝑋1 ∩ 𝐴1
+.

(6) 𝐶𝐾 (𝑢)
′ = 𝐴1

+ × 𝐴2
+.

We have 𝐴1
+ � 𝑆𝐿𝜀2 (𝑞

∗) by (4) and (5), and 𝑢 ∈ 𝑍 (𝐴1
+) by (1). It follows that 𝑍 (𝐴1

+) = 〈𝑢〉.
By (1), 𝐴1

+ ∩ 𝐴2
+ ≤ 𝑍 (𝐴1

+) and 𝑢 ∉ 𝐴1
+ ∩ 𝐴2

+. It follows that 𝐴1
+ ∩ 𝐴2

+ = 1. So (1) implies that
𝐶𝐾 (𝑢)

′ = 𝐴1
+ × 𝐴2

+.
(7) Assume that 𝐴1

◦and 𝐴2
◦ are normal subgroups of 𝐶𝐾 (𝑢)

′such that 𝐶𝐾 (𝑢)
′ = 𝐴1

◦ × 𝐴2
◦,

𝐴1
◦ � 𝑆𝐿𝜀2 (𝑞

∗), 𝐴2
◦ � 𝑆𝐿𝜀𝑛−4 (𝑞

∗) and 𝑢 ∈ 𝐴1
◦. Then 𝐴1

◦ = 𝐴1
+ and 𝐴2

◦ = 𝐴2
+.

Let 𝑗 ∈ {1, 2}. As a consequence of (4) and (5), 𝐴 𝑗+ is either quasisimple or isomorphic to 𝑆𝐿2 (3).
In either case, 𝐴 𝑗+ is indecomposable, i.e., 𝐴 𝑗+ cannot be written as an internal direct product of two
proper normal subgroups. Moreover, |𝐴1

+/(𝐴1
+)′| and |𝑍 (𝐴2

+) | as well as |𝐴2
+/(𝐴2

+)′| and |𝑍 (𝐴1
+) |

are coprime. A consequence of the Krull–Remak–Schmidt theorem, namely [35, Kapitel I, Satz 12.6],
implies that {𝐴1

+, 𝐴2
+} = {𝐴1

◦, 𝐴2
◦}. Since 𝑢 ∈ 𝐴1

+ and 𝑢 ∉ 𝐴2
◦, we have 𝐴1

+ = 𝐴1
◦ and 𝐴2

+ = 𝐴2
◦.

(8) The isomorphism 𝜑 : 𝐾 → 𝐻 maps 𝐴1
+ to the image of{(

𝐴
𝐼𝑛−4

)
: 𝐴 ∈ 𝑆𝐿𝜀2 (𝑞

∗)

}
in H and 𝐴2

+ to the image of {(
𝐼2
𝐵

)
: 𝐵 ∈ 𝑆𝐿𝜀𝑛−4 (𝑞

∗)

}
in H.

By (4) and (5), we have 𝑖 = 2. So the claim follows from the definitions of 𝐴1
+ and 𝐴2

+. �

From now on, 𝐴1
+ and 𝐴2

+ will always have the meanings given to them by Lemma 6.4.

Lemma 6.5. Let 𝐶 := 𝐶𝐺 (𝑡) and 𝐶 := 𝐶/𝑂 (𝐶). Then 𝐴1
+ and 𝐴2

+ are normal subgroups of 𝐶𝐶 (𝑢).

Proof. We have 𝐶𝐾 (𝑢) � 𝐶𝐶 (𝑢) as 𝐾 � 𝐶. Thus, 𝐶𝐾 (𝑢)
′ � 𝐶𝐶 (𝑢). Having this observed, the lemma

is immediate from Lemma 6.4. �

Let 𝐶 := 𝐶𝐺 (𝑡) and 𝐶 := 𝐶/𝑂 (𝐶). Next, we introduce certain preimages of 𝐴1
+ and 𝐴2

+ in 𝐶𝐶 (𝑢).
By Corollary 2.2, we have 𝐶𝐶 (𝑢) = 𝐶𝐶 (𝑢). We may see from Proposition 2.4 that there is a bijection
from the set of 2-components of𝐶𝐶 (𝑢) to the set of 2-components of𝐶𝐶 (𝑢) sending each 2-component
A of 𝐶𝐶 (𝑢) to 𝐴.

Suppose that 𝑞∗ ≠ 3. Then 𝐴1
+ is a component and hence a 2-component of 𝐶𝐶 (𝑢). We use 𝐴1 to

denote the 2-component of 𝐶𝐶 (𝑢) corresponding to 𝐴1
+ under the bijection described above.

Suppose that 𝑞∗ ≠ 3 or 𝑛 ≥ 7. Then 𝐴2
+ is a component and hence a 2-component of 𝐶𝐶 (𝑢). We use

𝐴2 to denote the 2-component of 𝐶𝐶 (𝑢) corresponding to 𝐴2
+ under the bijection described above.

Suppose that 𝑞∗ = 3. By Lemma 6.3 (ii),𝑂 (𝐶𝐶 (𝑢)) = 1. So the factor group𝐶𝐶 (𝑢)/(𝐶𝐶 (𝑢) ∩𝑂 (𝐶))
is core-free, whence𝑂 (𝐶𝐶 (𝑢)) = 𝐶𝐶 (𝑢)∩𝑂 (𝐶). Let𝑂 (𝐶𝐶 (𝑢)) ≤ 𝐴1 ≤ 𝐶𝐶 (𝑢) such that 𝐴1/𝑂 (𝐶𝐶 (𝑢))
corresponds to 𝐴1

+ under the natural group isomorphism 𝐶𝐶 (𝑢)/𝑂 (𝐶𝐶 (𝑢)) → 𝐶𝐶 (𝑢). Furthermore,
if 𝑛 = 6, let 𝑂 (𝐶𝐶 (𝑢)) ≤ 𝐴2 ≤ 𝐶𝐶 (𝑢) such that 𝐴2/𝑂 (𝐶𝐶 (𝑢)) corresponds to 𝐴2

+ under the natural
group isomorphism 𝐶𝐶 (𝑢)/𝑂 (𝐶𝐶 (𝑢)) → 𝐶𝐶 (𝑢).
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Lemma 6.6. We have 𝑇1 ≤ 𝐴1 and 𝑇2 ≤ 𝐴2.
Proof. Let 𝑖 ∈ {1, 2}. Set 𝐶 := 𝐶𝐺 (𝑡) and 𝐶 := 𝐶/𝑂 (𝐶).

Let 𝐶𝐶 (𝑢) ∩ 𝑂 (𝐶) ≤ �̃�𝑖 ≤ 𝐶𝐶 (𝑢) such that �̃�𝑖/(𝐶𝐶 (𝑢) ∩ 𝑂 (𝐶)) corresponds to 𝐴𝑖
+ under the

natural group isomorphism 𝐶𝐶 (𝑢)/(𝐶𝐶 (𝑢) ∩ 𝑂 (𝐶)) → 𝐶𝐶 (𝑢). We have 𝑇𝑖 ≤ 𝐶𝐶 (𝑢) and, by Lemma
6.4, 𝑇𝑖 ≤ 𝐴𝑖

+. Thus, 𝑇𝑖 ≤ �̃�𝑖 . If 𝐴𝑖+ � 𝑆𝐿2 (3), then we have 𝐴𝑖 = �̃�𝑖 , and thus, 𝑇𝑖 ≤ 𝐴𝑖 . Assume now
that 𝐴𝑖+ is a component of𝐶𝐶 (𝑢). Then 𝐴𝑖 is the 2-component of𝐶𝐶 (𝑢) associated to the 2-component
�̃�𝑖/(𝐶𝐶 (𝑢) ∩ 𝑂 (𝐶)) of 𝐶𝐶 (𝑢)/(𝐶𝐶 (𝑢) ∩ 𝑂 (𝐶)). So, by Proposition 2.4, 𝐴𝑖 = 𝑂2′ ( �̃�𝑖), and hence,
𝑇𝑖 ≤ 𝐴𝑖 . �

Lemma 6.7. There is an element 𝑔 ∈ 𝐺 such that 𝑇1
𝑔 = 𝑋2 and 𝑋2

𝑔 = 𝑇1. For each such 𝑔 ∈ 𝐺, we
have 𝑢𝑔 = 𝑡 and 𝑡𝑔 = 𝑢.
Proof. The first statement easily follows from F𝑆 (𝐺) = F𝑆 (𝑃𝑆𝐿𝑛 (𝑞)). By Lemma 3.12, the groups 𝑇1
and 𝑋2 are generalized quaternion. So u is the only involution of 𝑇1 and t is the only involution of 𝑋2.
Thus, 𝑢𝑔 = 𝑡 and 𝑡𝑔 = 𝑢 for any 𝑔 ∈ 𝐺 with 𝑇1

𝑔 = 𝑋2 and 𝑋2
𝑔 = 𝑇1. �

With the above lemmas at hand, we can now prove the following proposition.
Proposition 6.8. Take an element 𝑔 ∈ 𝐺 such that 𝑇1

𝑔 = 𝑋2 and 𝑋2
𝑔 = 𝑇1. Set 𝐶 := 𝐶𝐺 (𝑡) and

𝐶 := 𝐶/𝑂 (𝐶). Let 𝐿 := 𝐴1
𝑔. Then the following hold.

(i) 𝐿 ≤ 𝐶𝐶 (𝑢).
(ii) 𝐿 is subnormal in 𝐶 and 𝐿 � 𝑆𝐿2 (𝑞

∗).
(iii) The subgroups 𝐾 and 𝐿 are the only subgroups of 𝐶 which are components or solvable 2-

components of 𝐶. In particular, 𝐾 and 𝐿 are normal subgroups of 𝐶.
Proof. By Lemma 6.7, we have 𝑡𝑔 = 𝑢 and 𝑢𝑔 = 𝑡. Hence, 𝐶𝐶 (𝑢)𝑔 = 𝐶𝐶 (𝑢). As 𝐴1 is a subgroup of
𝐶𝐶 (𝑢), we thus have 𝐿 = 𝐴1

𝑔 ≤ 𝐶𝐶 (𝑢). So (i) holds.
Before proving (ii), we show that𝐶𝐿 (𝐾) is a normal subgroup of 𝐿 containing 𝑋2. Since𝐶𝐶 (𝐾) � 𝐶,

we have 𝐶𝐿 (𝐾) = 𝐿 ∩ 𝐶𝐶 (𝐾) � 𝐿. Because of Lemma 6.6, we have 𝑋2 = 𝑇1
𝑔 ≤ 𝐴1

𝑔 = 𝐿. Thus,
𝑋2 ≤ 𝐿. By the definition of 𝑋2 and by Lemma 6.2, we have 𝑋2 ≤ 𝐶𝐶 (𝐾). Thus, 𝑋2 ≤ 𝐶𝐿 (𝐾).

Note that 𝑋2 is generalized quaternion by Lemma 3.12 and in particular nonabelian.
We now prove (ii) for the case 𝑞∗ ≠ 3. Then 𝐴1 is a 2-component of 𝐶𝐶 (𝑢). As g normalizes 𝐶𝐶 (𝑢)

and 𝐿 = 𝐴1
𝑔, it follows that L is a 2-component of 𝐶𝐶 (𝑢). So 𝐿 is a 2-component of 𝐶𝐶 (𝑢). Moreover,

we have 𝐴1/𝑂 (𝐴1) � 𝑆𝐿2 (𝑞
∗) since 𝐴1/(𝐴1 ∩ 𝑂 (𝐶)) � 𝐴1 = 𝐴1

+ � 𝑆𝐿2 (𝑞
∗). Hence, 𝐿/𝑂 (𝐿) is

isomorphic to 𝑆𝐿2 (𝑞
∗). The group 𝐶𝐿 (𝐾)𝑂 (𝐿)/𝑂 (𝐿) is normal in 𝐿/𝑂 (𝐿), and it is nonabelian since

𝑋2 ≤ 𝐶𝐿 (𝐾). As 𝐿/𝑂 (𝐿) is quasisimple, it follows that 𝐶𝐿 (𝐾)𝑂 (𝐿) = 𝐿. So 𝐶𝐿 (𝐾) has odd index
in 𝐿. Since 𝐿 is a 2-component of 𝐶𝐶 (𝑢), we have 𝑂2′ (𝐿) = 𝐿. It follows that 𝐿 = 𝐶𝐿 (𝐾) ≤ 𝐶𝐶 (𝐾).
Since 𝐿 is subnormal in 𝐶𝐶 (𝑢) and 𝐶𝐶 (𝐾) ≤ 𝐶𝐶 (𝑢), we have that 𝐿 is subnormal in 𝐶𝐶 (𝐾). Hence,
𝐿 is subnormal in 𝐶. As 𝐶 is core-free, we have 𝑂 (𝐿) = 1. It follows that 𝑂 (𝐿) = 𝐿 ∩𝑂 (𝐶) and hence
𝐿 � 𝐿/𝑂 (𝐿) � 𝑆𝐿2 (𝑞

∗). So we have proved (ii) for the case 𝑞∗ ≠ 3.
Assume now that 𝑞∗ = 3. Then 𝑂 (𝐶𝐶 (𝑢)) = 𝐶𝐶 (𝑢) ∩ 𝑂 (𝐶), 𝑂 (𝐶𝐶 (𝑢)) ≤ 𝐴1 ≤ 𝐶𝐶 (𝑢), and

𝐴1/𝑂 (𝐶𝐶 (𝑢)) corresponds to 𝐴1
+ � 𝑆𝐿2 (3) under the natural isomorphism 𝐶𝐶 (𝑢)/𝑂 (𝐶𝐶 (𝑢)) →

𝐶𝐶 (𝑢). By Lemma 6.5, 𝐴1
+ is normal in 𝐶𝐶 (𝑢). Hence, 𝐴1/𝑂 (𝐶𝐶 (𝑢)) is a normal subgroup of

𝐶𝐶 (𝑢)/𝑂 (𝐶𝐶 (𝑢)) isomorphic to 𝑆𝐿2 (3). Since g normalizes 𝐶𝐶 (𝑢) and 𝐿 = 𝐴1
𝑔, it follows that

𝑂 (𝐶𝐶 (𝑢)) ≤ 𝐿 and that 𝐿/𝑂 (𝐶𝐶 (𝑢)) is a normal subgroup of𝐶𝐶 (𝑢)/𝑂 (𝐶𝐶 (𝑢)) isomorphic to 𝑆𝐿2 (3).
Since 𝐿/𝑂 (𝐶𝐶 (𝑢)) corresponds to 𝐿 under the natural isomorphism 𝐶𝐶 (𝑢)/𝑂 (𝐶𝐶 (𝑢)) → 𝐶𝐶 (𝑢), it
follows that 𝐿 is a normal subgroup of𝐶𝐶 (𝑢) isomorphic to 𝑆𝐿2 (3). Recall that 𝑋2 ≤ 𝐶𝐿 (𝐾) � 𝐿. As 𝐿
has order 24 and 𝑋2 has order 8, 𝐶𝐿 (𝐾) either equals 𝐿 or has index 3 in 𝐿. However, if the latter holds,
then 𝐿𝐶𝐶 (𝐾)/𝐶𝐶 (𝐾) is a normal subgroup of 𝐶𝐶 (𝑢)/𝐶𝐶 (𝐾) of order 3, which is a contradiction to
Lemma 6.3 (iii). Thus, 𝐿 = 𝐶𝐿 (𝐾) ≤ 𝐶𝐶 (𝐾). As 𝐿 � 𝐶𝐶 (𝑢) and 𝐶𝐶 (𝐾) ≤ 𝐶𝐶 (𝑢), it follows that 𝐿 is
normal in 𝐶𝐶 (𝐾) and hence subnormal in 𝐶. So we have proved (ii) for the case 𝑞∗ = 3.
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We now prove (iii). We have 𝑇 ∩ 𝐾 = 𝑋1 since 𝑋1 ≤ 𝑇 ∩ 𝐾 and 𝑋1 ∈ Syl2(𝐾). Also, 𝑇 ∩ 𝐿 = 𝑋2
since |𝑋2 | = |𝑆𝐿2 (𝑞) |2 = |𝑆𝐿2 (𝑞

∗) |2 = |𝐿 |2 and 𝑋2 ≤ 𝐿. As a consequence of Lemma 5.4, the fusion
system F𝑇 (𝐶)/(𝑋1𝑋2) is nilpotent. Applying Lemma 2.18, we may conclude that 𝐾 and 𝐿 are the only
subgroups of 𝐶 which are components or solvable 2-components of 𝐶. As 𝐾 and 𝐿 are not isomorphic,
both are characteristic and hence normal in 𝐶. �

Let 𝐸 = 〈𝑢, 𝑡〉. By construction, g acts on E and 𝐴1 � 𝐶𝐺 (𝐸). Hence, the definition of L in
Proposition 6.8 is independent of the choice of g. From now on, L will always have the meaning given
to it by the above proposition.

6.2. 2-components of centralizers of involutions conjugate to 𝑡𝑖 , 𝑖 ≠ 2

Having described the components and the solvable 2-components of the group 𝐶𝐺 (𝑡)/𝑂 (𝐶𝐺 (𝑡)), we
now turn our attention to centralizers of involutions of G not conjugate to t.

First, we recall some notation from Section 5. Let 1 ≤ 𝑖 < 𝑛. If i is even, then 𝑡𝑖 denotes the image of(
𝐼𝑛−𝑖

−𝐼𝑖

)
in 𝑃𝑆𝐿𝑛 (𝑞). We use 𝜌 to denote an element of F∗𝑞 with order (𝑛, 𝑞 − 1), and if 𝜌 is a square in F𝑞 , then
𝜇 denotes an element of F∗𝑞 with 𝜇2 = 𝜌. If n is even, 𝜌 is a square in F𝑞 and i is odd, then 𝑡𝑖 is defined
to be the image of (

𝜇𝐼𝑛−𝑖
−𝜇𝐼𝑖

)
∈ 𝑆𝐿𝑛 (𝑞)

in 𝑃𝑆𝐿𝑛 (𝑞). It is easy to note that 𝑡𝑖 lies in T and hence in S whenever 𝑡𝑖 is defined.
Let S denote the set of all subgroups E of 𝑃𝑆𝐿𝑛 (𝑞) such that there is some elementary abelian 2-

subgroup 𝐸 ≤ 𝑆𝐿𝑛 (𝑞) with 𝐸 = 𝐸𝑍 (𝑆𝐿𝑛 (𝑞))/𝑍 (𝑆𝐿𝑛 (𝑞)). For each 3 ≤ 𝑖 ≤ 𝑛, we define S𝑖 to be the
set of all elements E of S such that E contains a 𝑃𝑆𝐿𝑛 (𝑞)-conjugate of 𝑡 𝑗 for some even 2 ≤ 𝑗 < 𝑖.

Lemma 6.9. Let 1 ≤ 𝑖 < 𝑛 such that 𝑡𝑖 is defined. Assume that 𝑖 ≠ 2 and that 𝑖 ≤ 𝑛
2 if n is even. Let P

be a Sylow 2-subgroup of 𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑡𝑖) and F := F𝑃 (𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑡𝑖)). Then the following hold.

(i) Assume that 𝑖 ∉ {1, 𝑛 − 1}. Then F has precisely two components. Denoting them in a suitable way
by E1 and E2, the following hold.

(a) E1 is isomorphic to the 2-fusion system of 𝑆𝐿𝑛−𝑖 (𝑞).
(b) E2 is isomorphic to the 2-fusion system of 𝑆𝐿𝑖 (𝑞).
(c) Let 𝑌1 be the Sylow group of E1, and let 𝑌2 be the Sylow group of E2. Then 𝑌1𝑌2 is

strongly F-closed and F/𝑌1𝑌2 is nilpotent. The group 𝑌𝑖 , where 𝑖 ∈ {1, 2}, contains a
𝑃𝑆𝐿𝑛 (𝑞)-conjugate of t. Moreover, any elementary abelian subgroup of 𝑌1 of rank at least
2 is contained in S𝑛−𝑖 , and any elementary abelian subgroup of 𝑌2 of rank at least 2 is
contained in S𝑖 .

(ii) Assume that 𝑖 = 1 or 𝑖 = 𝑛 − 1. Then F has a unique component. This component is isomorphic
to the 2-fusion system of 𝑆𝐿𝑛−1 (𝑞). If Y is its Sylow group, then Y is strongly F-closed and F/𝑌 is
nilpotent. Moreover, any elementary abelian subgroup of Y of rank at least 2 is contained in S𝑛−1.

Proof. Assume that 𝑖 ∉ {1, 𝑛 − 1}. By hypothesis, we have 𝑖 ≠ 2, and 𝑖 ≤ 𝑛
2 if n is even. It follows that

𝑖 ≥ 3 and 𝑛 − 𝑖 ≥ 3. Let 𝐽1 be the image of{(
𝐴
𝐼𝑖

)
: 𝐴 ∈ 𝑆𝐿𝑛−𝑖 (𝑞)

}
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in 𝑃𝑆𝐿𝑛 (𝑞), and let 𝐽2 be the image of{(
𝐼𝑛−𝑖

𝐴

)
: 𝐴 ∈ 𝑆𝐿𝑖 (𝑞)

}
in 𝑃𝑆𝐿𝑛 (𝑞). Then 𝐽1 and 𝐽2 are the only 2-components of 𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑡𝑖). Applying Proposition 2.17 and
Lemma 3.21, we may conclude that E1 := F𝑃∩𝐽1 (𝐽1) and E2 := F𝑃∩𝐽2 (𝐽2) are the only components of
F = F𝑃 (𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑡𝑖)). By definition, E1 is isomorphic to the 2-fusion system of 𝑆𝐿𝑛−𝑖 (𝑞), while E2 is
isomorphic to the 2-fusion system of 𝑆𝐿𝑖 (𝑞). Set 𝑌1 := 𝑃 ∩ 𝐽1 and 𝑌2 := 𝑃 ∩ 𝐽2. Since 𝑌1𝑌2 ≤ 𝑃 ∩ 𝐽1𝐽2
and since both 𝑌1𝑌2 and 𝑃 ∩ 𝐽1𝐽2 are Sylow 2-subgroups of 𝐽1𝐽2, we have 𝑌1𝑌2 = 𝑃 ∩ 𝐽1𝐽2. As
𝐽1𝐽2 � 𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑡𝑖), we have that 𝑌1𝑌2 is strongly F-closed. By Lemma 2.11, F/𝑌1𝑌2 is isomorphic to
the 2-fusion system of 𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑡𝑖)/𝐽1𝐽2. Since 𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑡𝑖)/𝐽1𝐽2 is 2-nilpotent, it follows from [39,
Theorem 1.4] that F/𝑌1𝑌2 is nilpotent. As 𝑖 ≥ 3 ≤ 𝑛 − 𝑖, both 𝐽1 and 𝐽2 contain a 𝑃𝑆𝐿𝑛 (𝑞)-conjugate
of t. Hence, 𝑌𝑘 has an element which is 𝑃𝑆𝐿𝑛 (𝑞)-conjugate to t for 𝑘 ∈ {1, 2}. For any elementary
abelian 2-subgroup E of 𝐽𝑘 , 𝑘 ∈ {1, 2}, 𝐸 ∩ 𝑍 (𝑆𝐿𝑛 (𝑞)) = 1, so E lies in S . Moreover, any noncentral
involution of 𝐽1 is 𝑃𝑆𝐿𝑛 (𝑞)-conjugate to 𝑡 𝑗 for some even 2 ≤ 𝑗 < 𝑛 − 𝑖, and any noncentral involution
of 𝐽2 is 𝑃𝑆𝐿𝑛 (𝑞)-conjugate to 𝑡 𝑗 for some even 2 ≤ 𝑗 < 𝑖. This implies that any elementary abelian
subgroup of 𝑌1 of rank at least 2 is contained in S𝑛−𝑖 and that any elementary abelian subgroup of 𝑌2 of
rank at least 2 is contained in S𝑖 . This completes the proof of (i).

We omit the proof of (ii) since it is very similar to the one of (i). �

Proposition 6.10. Let 1 ≤ 𝑖 < 𝑛 such that 𝑡𝑖 is defined. Assume that 𝑖 ∉ {1, 2, 𝑛 − 1} and that 𝑖 ≤ 𝑛
2

if n is even. Let x be an involution of S which is G-conjugate to 𝑡𝑖 . Then 𝐶𝐺 (𝑥) has precisely two
2-components. Denoting them in a suitable way by 𝐽1 and 𝐽2, the following hold.

(i) 𝐽1/𝑂 (𝐽1) is isomorphic to 𝑆𝐿𝜀𝑛−𝑖 (𝑞
∗)/𝑂 (𝑆𝐿𝜀𝑛−𝑖 (𝑞

∗)), where 𝜀 and 𝑞∗ are as in Proposition 6.1.
(ii) 𝐽2/𝑂 (𝐽2) � 𝑆𝐿𝜀𝑖 (𝑞

∗)/𝑂 (𝑆𝐿𝜀𝑖 (𝑞
∗)), where 𝜀 and 𝑞∗ are as in Proposition 6.1.

(iii) Any elementary abelian 2-subgroup of 𝐽1 of rank at least 2 is G-conjugate to a subgroup of S
lying in S𝑛−𝑖 , and any elementary abelian 2-subgroup of 𝐽2 of rank at least 2 is G-conjugate to a
subgroup of S lying in S𝑖 .

Proof. Let F := F𝑆 (𝐺) = F𝑆 (𝑃𝑆𝐿𝑛 (𝑞)). It suffices to prove the proposition under the assumption that
〈𝑥〉 is fully F-centralized, and we will assume that this is the case. So we have 𝐶𝑆 (𝑥) ∈ Syl2(𝐶𝐺 (𝑥))
and 𝐶𝑆 (𝑥) ∈ Syl2(𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑥)). Also, F𝐶𝑆 (𝑥) (𝐶𝐺 (𝑥)) = 𝐶F (〈𝑥〉) = F𝐶𝑆 (𝑥) (𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑥)).

As x is G-conjugate to 𝑡𝑖 , we have that x is 𝑃𝑆𝐿𝑛 (𝑞)-conjugate to 𝑡𝑖 . So Lemma 6.9 (i) shows
together with Lemma 5.10 (i) that there exist two distinct 2-components 𝐽1 and 𝐽2 of 𝐶𝐺 (𝑥) satisfying
the following conditions, where 𝑌1 := 𝐶𝑆 (𝑥) ∩ 𝐽1 and 𝑌2 := 𝐶𝑆 (𝑥) ∩ 𝐽2.

(1) F𝑌1 (𝐽1) is isomorphic to the 2-fusion system of 𝑆𝐿𝑛−𝑖 (𝑞).
(2) F𝑌2 (𝐽2) is isomorphic to the 2-fusion system of 𝑆𝐿𝑖 (𝑞).
(3) 𝑌1𝑌2 is strongly closed in 𝐶𝑆 (𝑥) with respect to 𝐶F (〈𝑥〉), and 𝐶F (〈𝑥〉)/𝑌1𝑌2 is nilpotent.
(4) For 𝑘 ∈ {1, 2}, 𝑌𝑘 contains a G-conjugate of t.
(5) Any elementary abelian subgroup of 𝑌1 of rank at least 2 lies in S𝑛−𝑖 , and any elementary abelian

subgroup of 𝑌2 of rank at least 2 lies in S𝑖 .

By (3) and Corollary 2.19, 𝐽1 and 𝐽2 are the only 2-components of 𝐶𝐺 (𝑥). It remains to show that 𝐽1
and 𝐽2 satisfy (i)-(iii). As 𝑌𝑘 ∈ Syl2 (𝐽𝑘 ) for 𝑘 ∈ {1, 2}, (5) implies (iii).

We now prove (ii). The proof of (i) will be omitted since it is very similar to the proof of (ii).
Let s be an element of 𝐽1 which is G-conjugate to t. Set 𝐶 := 𝐶𝐺 (𝑠), 𝐶 := 𝐶/𝑂 (𝐶) and 𝐶𝐺 (𝑥) :=

𝐶𝐺 (𝑥)/𝑂 (𝐶𝐺 (𝑥)).
Since 𝐽1 and 𝐽2 are distinct components of 𝐶𝐺 (𝑥), we have [𝐽1, 𝐽2] = 1 by [37, 6.5.3]. As 𝑠 ∈ 𝐽1, it

follows that 𝐽2 is a component of 𝐶
𝐶𝐺 (𝑥)

(𝑠). As a consequence of Corollary 2.2 and Proposition 2.4,
𝐶𝐺 (𝑥) ∩ 𝐶 has a 2-component H with 𝐻 = 𝐽2.
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By assumption, s is G-conjugate to t. So, by Proposition 6.8, 𝐶 has a unique normal subgroup 𝐾+

isomorphic to 𝑆𝐿𝜀𝑛−2 (𝑞
∗)/𝑂 (𝑆𝐿𝜀𝑛−2 (𝑞

∗)) and a unique normal subgroup 𝐿+ isomorphic to 𝑆𝐿2 (𝑞
∗).

Moreover, 𝐾+ and 𝐿+ are the only subgroups of 𝐶 which are components or solvable 2-components
of 𝐶.

Clearly, 𝐻 is a 2-component of 𝐶𝐶 (�̂�). Lemma 2.5 implies that 𝐻 is a 2-component of 𝐶𝐾 + (�̂�)

or of 𝐶𝐿+ (�̂�). By Corollary 3.47 (i), we even have that 𝐻 is a component of 𝐶𝐾 + (�̂�) or 𝐶𝐿+ (�̂�). It is
easy to note that 𝐻/𝑍 (𝐻) � 𝐻/𝑍∗(𝐻) � 𝐽2/𝑍 (𝐽2). By Corollary 3.47 (ii), we have 𝐻/𝑍 (𝐻) � 𝑀11,
and so 𝐽2/𝑍 (𝐽2) � 𝑀11. Now (2) and Lemma 5.10 (ii) imply that 𝐽2 � 𝑆𝐿𝜀0

𝑖 (𝑞0)/𝑂 (𝑆𝐿𝜀0
𝑖 (𝑞0))

for some nontrivial odd prime power 𝑞0 and some 𝜀0 ∈ {+,−} with 𝑞 ∼ 𝜀0𝑞0. Hence, 𝐻/𝑍 (𝐻) �
𝐽2/𝑍 (𝐽2) � 𝑃𝑆𝐿

𝜀0
𝑖 (𝑞0). Note that 𝜀𝑞∗ ∼ 𝑞 ∼ 𝜀0𝑞0 and in particular (𝑞∗2 − 1)2 = (𝑞0

2 − 1)2. Applying
Corollary 3.47 (iii), we may conclude that 𝑞0 = 𝑞∗ and 𝜀0 = 𝜀. Consequently, we have 𝐽2/𝑂 (𝐽2) �
𝑆𝐿𝜀𝑖 (𝑞

∗)/𝑂 (𝑆𝐿𝜀𝑖 (𝑞
∗)). So we have proved (ii). �

The proof of the following proposition runs along the same lines as that of the previous result.
Proposition 6.11. Suppose that n is odd and 𝑖 = 𝑛 − 1 or that n is even, 𝑖 = 1 and 𝑡1 is defined. Let
x be an involution of S which is G-conjugate to 𝑡𝑖 . Then 𝐶𝐺 (𝑥) has precisely one 2-component J. We
have 𝐽/𝑂 (𝐽) � 𝑆𝐿𝜀𝑛−1 (𝑞

∗)/𝑂 (𝑆𝐿𝜀𝑛−1(𝑞
∗)), where 𝜀 and 𝑞∗ are as in Proposition 6.1. Moreover, any

elementary abelian 2-subgroup of J of rank at least 2 is G-conjugate to a subgroup of S lying in S𝑛−1.

Proof. Let F := F𝑆 (𝐺) = F𝑆 (𝑃𝑆𝐿𝑛 (𝑞)). It suffices to prove the proposition under the assumption that
〈𝑥〉 is fully F-centralized, and we will assume that this is the case. So we have 𝐶𝑆 (𝑥) ∈ Syl2(𝐶𝐺 (𝑥))
and 𝐶𝑆 (𝑥) ∈ Syl2(𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑥)). Also, F𝐶𝑆 (𝑥) (𝐶𝐺 (𝑥)) = 𝐶F (〈𝑥〉) = F𝐶𝑆 (𝑥) (𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑥)).

As x is G-conjugate to 𝑡𝑖 , we have that x is 𝑃𝑆𝐿𝑛 (𝑞)-conjugate to 𝑡𝑖 . Lemma 6.9 (ii) implies that
𝐶F (〈𝑥〉) has a unique component E and that E is isomorphic to the 2-fusion system of 𝑆𝐿𝑛−1 (𝑞). Apply-
ing Lemma 5.10 (i), we may conclude that 𝐶𝐺 (𝑥) has a unique 2-component J with E = F𝐶𝑆 (𝑥)∩𝐽 (𝐽).
By Lemma 5.10 (ii), 𝐽/𝑂 (𝐽) � 𝑆𝐿𝜀0

𝑛−1 (𝑞0)/𝑂 (𝑆𝐿𝜀0
𝑛−1 (𝑞0)) for some nontrivial odd prime power 𝑞0 and

some 𝜀0 ∈ {+,−} with 𝜀0𝑞0 ∼ 𝑞.
Set 𝑌 := 𝐶𝑆 (𝑥) ∩ 𝐽. By Lemma 6.9 (ii), Y is strongly closed in 𝐶𝑆 (𝑥) with respect to 𝐶F (〈𝑥〉) and

𝐶F (〈𝑥〉)/𝑌 is nilpotent. Applying Corollary 2.19, we may conclude that J is the only 2-component of
𝐶𝐺 (𝑥). Using Lemma 6.9 (ii), we see that any elementary abelian subgroup of Y of rank at least 2 lies
in S𝑛−1. As 𝑌 ∈ Syl2(𝐽), it follows that any elementary abelian 2-subgroup of J of rank at least 2 is
G-conjugate to a subgroup of S lying in S𝑛−1.

It remains to show that 𝜀0 = 𝜀 and 𝑞0 = 𝑞∗. Define 𝑠 := 𝑡𝑖 if 𝑖 = 1 and 𝑠 := 𝑡𝐴, where 𝐴 := {1, . . . , 𝑛−
1}, if 𝑖 = 𝑛 − 1. Then we have 𝑠 ∈ 𝐶𝐺 (𝑡), and s is G-conjugate to x. Set 𝐶𝐺 (𝑡) := 𝐶𝐺 (𝑡)/𝑂 (𝐶𝐺 (𝑡)).
Lemma 6.2 shows that 𝑠 centralizes 𝐾 . Hence, 𝐾 is a component of 𝐶

𝐶𝐺 (𝑡)
(𝑠). As a consequence of

Corollary 2.2 and Proposition 2.4, 𝐶𝐺 (𝑡) ∩ 𝐶𝐺 (𝑠) has a 2-component H with 𝐻 = 𝐾 . Set 𝐶 := 𝐶𝐺 (𝑠)
and 𝐶 := 𝐶/𝑂 (𝐶). Then 𝐻 is a 2-component of 𝐶𝐶 (̂𝑡). Since s is G-conjugate to x, 𝐶 has precisely one
component 𝐽+, and 𝐽+ is isomorphic to 𝑆𝐿𝜀0

𝑛−1 (𝑞0)/𝑂 (𝑆𝐿𝜀0
𝑛−1(𝑞0)). By Lemma 2.5, 𝐻 is a 2-component

of 𝐶𝐽+ (̂𝑡). We see from Corollary 3.47 (i) that 𝐻 is in fact a component of 𝐶𝐽+ (̂𝑡). It is easy to see
that 𝐻/𝑍 (𝐻) � 𝐻/𝑍∗(𝐻) � 𝐾/𝑍 (𝐾) � 𝑃𝑆𝐿𝜀𝑛−2 (𝑞

∗). Note that 𝜀0𝑞0 ∼ 𝑞 ∼ 𝜀𝑞∗ and in particular
(𝑞0

2−1)2 = (𝑞∗2−1)2. Using this, we may deduce from Corollary 3.47 (iii) that 𝑞0 = 𝑞∗ and 𝜀0 = 𝜀. �

6.3. 2-components of centralizers of involutions conjugate to w

Recall that we assume 𝜌 to be an element of F∗𝑞 with order (𝑛, 𝑞 − 1). Recall moreover that if n is even
and 𝜌 is a nonsquare element of F𝑞 , then 𝑤 denotes the matrix(

𝐼𝑛/2
𝜌𝐼𝑛/2

)
and, if 𝑤 ∈ 𝑆𝐿𝑛 (𝑞), then w denotes its image in 𝑃𝑆𝐿𝑛 (𝑞).
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Lemma 6.12. Suppose that w is defined. Let P be a Sylow 2-subgroup of 𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑤), and let F
denote the fusion system F𝑃 (𝐶𝑃𝑆𝐿𝑛 (𝑞) ) (𝑤)). Then F has precisely one component. This component is
isomorphic to the 2-fusion system of a nontrivial quotient of 𝑆𝐿 𝑛

2
(𝑞2). If Y is its Sylow subgroup, then

Y is strongly F-closed, and F/𝑌 is nilpotent.

Proof. By Lemma 3.6 (i), 𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑤) has precisely one 2-component J, and J is isomorphic to a
nontrivial quotient of 𝑆𝐿 𝑛

2
(𝑞2). Applying Proposition 2.17 and Lemma 3.21, we may conclude that

F𝑃∩𝐽 (𝐽) is the only component of F . The last statement of the lemma is given by Lemma 3.6 (ii). �

Proposition 6.13. Suppose that w is defined. Let x be an involution of S which is 𝑃𝑆𝐿𝑛 (𝑞)-conjugate to
w. Then 𝐶𝐺 (𝑥) has precisely one 2-component, say J. The group 𝐽/𝑂 (𝐽) is isomorphic to a nontrivial
quotient of 𝑆𝐿𝜀0

𝑛
2
(𝑞0) for some nontrivial odd prime power 𝑞0 and some 𝜀0 ∈ {+,−} with 𝑞2 ∼ 𝜀0𝑞0.

Proof. Let F := F𝑆 (𝐺) = F𝑆 (𝑃𝑆𝐿𝑛 (𝑞)). It suffices to prove the proposition under the assumption that
〈𝑥〉 is fully F-centralized, and we will assume that this is the case. So we have 𝐶𝑆 (𝑥) ∈ Syl2(𝐶𝐺 (𝑥))
and 𝐶𝑆 (𝑥) ∈ Syl2(𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑥)). Also, F𝐶𝑆 (𝑥) (𝐶𝐺 (𝑥)) = 𝐶F (〈𝑥〉) = F𝐶𝑆 (𝑥) (𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑥)).

As x is 𝑃𝑆𝐿𝑛 (𝑞)-conjugate to w, Lemma 6.12 implies that 𝐶F (〈𝑥〉) has precisely one component,
say E , and that E is isomorphic to the 2-fusion system of a nontrivial quotient of 𝑆𝐿 𝑛

2
(𝑞2). By Lemma

5.10 (i), 𝐶𝐺 (𝑥) has a unique 2-component J such that E = F𝐶𝑆 (𝑥)∩𝐽 (𝐽). Set 𝑌 := 𝐶𝑆 (𝑥) ∩ 𝐽. As a
consequence of Lemma 6.12, Y is strongly closed in 𝐶𝑆 (𝑥) with respect to 𝐶F (〈𝑥〉), and the factor
system 𝐶F (〈𝑥〉)/𝑌 is nilpotent. So, by Corollary 2.19, J is the only 2-component of 𝐶𝐺 (𝑥). Lemma
5.10 (iii) shows that 𝐽/𝑂 (𝐽) is isomorphic to a nontrivial quotient of 𝑆𝐿𝜀0

𝑛
2
(𝑞0) for some nontrivial odd

prime power 𝑞0 and some 𝜀0 ∈ {+,−} with 𝑞2 ∼ 𝜀0𝑞0. �

7. The components of 𝐶𝐺 (𝑡)

The goal of this section is to determine the isomorphism types of K and L. In order to do so, we will apply
the signalizer functor techniques introduced by Gorenstein and Walter in [31]. In particular, we will see
that L is isomorphic to 𝑆𝐿2 (𝑞

∗). This will enable us in Section 8 to prove that a certain collection of
conjugates of L generates a subgroup 𝐺0 of G which is isomorphic to a nontrivial quotient of 𝑆𝐿𝜀𝑛 (𝑞∗)
and normal in G. This will complete the proof of Theorem 5.2.

7.1. 3-generation of involution centralizers

For each 3 ≤ 𝑖 ≤ 𝑛, we define U𝑖 to be the set of all subgroups U of 𝑃𝑆𝐿𝑛 (𝑞) such that U has a subgroup
E with 𝐸 ∈ S𝑖 and 𝑚(𝐸) ≥ 3. The following lemma will be important later in this section.

Lemma 7.1. Let 1 ≤ 𝑖 < 𝑛 such that 𝑡𝑖 is defined. Suppose that 𝑖 ≤ 𝑛
2 if n is even. Let x be an involution

of S such that x is G-conjugate to 𝑡𝑖 and such that 〈𝑥〉 is fully F𝑆 (𝐺)-centralized. Then 𝐶𝐺 (𝑥) is
3-generated in the sense of Definition 3.36. Moreover, if 𝑖 ≥ 4, then we have

𝐶𝐺 (𝑥) = 〈𝑁𝐶𝐺 (𝑥) (𝑈) | 𝑈 ≤ 𝐶𝑆 (𝑥),𝑈 ∈ U𝑖〉.

If 𝑖 = 2, then we have

𝐶𝐺 (𝑥) = 〈𝑁𝐶𝐺 (𝑥) (𝑈) | 𝑈 ≤ 𝐶𝑆 (𝑥),𝑈 ∈ U𝑛−2〉.

Proof. Set 𝐶 := 𝐶𝐺 (𝑥) and 𝐶 := 𝐶/𝑂 (𝐶). Recall that 𝐿2′ (𝐶) denotes the subgroup of C generated by
the 2-components of C and that 𝐸 (𝐶) denotes the product of all components of 𝐶. As a consequence of
Proposition 2.4, 𝐿2′ (𝐶) = 𝐸 (𝐶).

First, we consider the case (𝑛, 𝑖) ≠ (6, 3). Then, by Propositions 6.1, 6.10 and 6.11, C has a
2-component J such that 𝐽 � 𝑆𝐿𝜀𝑘 (𝑞

∗)/𝑂 (𝑆𝐿𝜀𝑘 (𝑞
∗)) for some 𝑘 ≥ 4 and such that any elementary
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abelian subgroup of 𝑌 := 𝐶𝑆 (𝑥) ∩ 𝐽 of rank at least 2 lies in S𝑘 . If 𝑖 ≥ 4, then we may assume that 𝑘 = 𝑖,
and if 𝑖 = 2, then 𝑘 = 𝑛 − 2.

We have 𝑌 ∈ Syl2 (𝐽) since 𝐶𝑆 (𝑥) ∈ Syl2(𝐶) and J is subnormal in C. By Lemma 3.38, we have that
𝐽 is 3-generated. So we have

𝐽 = 〈𝑁𝐽 (𝑈) | 𝑈 ≤ 𝑌, 𝑚(𝑈) ≥ 3〉.

Set 𝑋 := 𝐶𝑆 (𝑥) ∩ 𝐿2′ (𝐶). By the Frattini argument, 𝐸 (𝐶) = 𝐽𝑁𝐸 (𝐶)
(𝑌 ) and 𝐶 = 𝐸 (𝐶)𝑁𝐶 (𝑋). It

follows that

𝐶 = 〈𝑁𝐶 (𝑈) | 𝑈 = 𝑋, or𝑈 ≤ 𝑌 and 𝑚(𝑈) ≥ 3〉.

Lemma 2.1 implies that C is generated by 𝑂 (𝐶) together with the normalizers 𝑁𝐶 (𝑈), where 𝑈 = 𝑋 ,
or𝑈 ≤ 𝑌 and 𝑚(𝑈) ≥ 3.

Let E denote the subgroup of S generated by t, 𝑡 {𝑛−2,𝑛−1}, 𝑡 {𝑛−3,𝑛−2} and 𝑡 {𝑛−4,𝑛−3}. Then 𝐸 � 𝐸16.
Since x is G-conjugate to 𝑡𝑖 and 𝐸 ≤ 𝐶𝐺 (𝑡𝑖), there is a subgroup 𝐸𝑥 of 𝐶𝑆 (𝑥) which is G-conjugate to
E. By [27, Proposition 11.23], we have

𝑂 (𝐶) = 〈𝐶𝑂 (𝐶) (𝐷) | 𝐷 ≤ 𝐸𝑥 , 𝐷 � 𝐸8〉.

As remarked above, any elementary abelian subgroup of Y of rank at least 2 lies in S𝑘 . So, if𝑈 ≤ 𝑌 and
𝑚(𝑈) ≥ 3, then𝑈 ∈ U𝑘 . Also, 𝑋 ∈ U𝑘 . Clearly, any 𝐸8-subgroup of 𝐸𝑥 lies in S𝑘 and hence in U𝑘 . We
therefore have

𝐶 = 〈𝑁𝐶 (𝑈) | 𝑈 ≤ 𝐶𝑆 (𝑥),𝑈 ∈ U𝑘〉.

Consequently, C is 3-generated, and the last two statements of the lemma are satisfied.
Suppose now that (𝑛, 𝑖) = (6, 3). By Proposition 6.10, C has precisely two 2-components 𝐽1 and 𝐽2,

and we have 𝐽1 � 𝑃𝑆𝐿𝜀3 (𝑞
∗) � 𝐽2. Set 𝑌1 := 𝐶𝑆 (𝑥) ∩ 𝐽1 and 𝑌2 := 𝐶𝑆 (𝑥) ∩ 𝐽2. Since 𝐽1 is 2-generated

by Lemma 3.37, we have

𝐽1 = 〈𝑁𝐽1
(𝑈) | 𝑈 ≤ 𝑌1, 𝑚(𝑈) ≥ 2〉.

Let y be an involution of 𝑌2. We have [𝐽1, 𝐽2] = 1 by [37, 6.5.3], and so 𝑦 centralizes 𝐽1. As 𝑍 (𝐽1) = 1,
we have 𝑦 ∉ 𝐽1. Now let 𝑈 ≤ 𝑌1 with 𝑚(𝑈) ≥ 2. Then 〈𝑈, 𝑦〉 has rank at least 3. Moreover, 𝑁𝐽1

(𝑈)

normalizes 〈𝑈, 𝑦〉 as 𝐽1 centralizes 𝑦. Thus,

𝐽1 = 〈𝑁𝐽1
(𝑈) | 𝑈 ≤ 𝑌1𝑌2, 𝑚(𝑈) ≥ 3〉.

Interchanging the roles of 𝐽1 and 𝐽2, we also see that

𝐽2 = 〈𝑁𝐽2
(𝑈) | 𝑈 ≤ 𝑌1𝑌2, 𝑚(𝑈) ≥ 3〉.

By the Frattini argument, 𝐶 = 𝐽1𝐽2𝑁𝐶 (𝑌1𝑌2). Lemma 2.1 implies that C is generated by 𝑂 (𝐶) together
with the normalizers 𝑁𝐶 (𝑈), where𝑈 ≤ 𝑌1𝑌2 and𝑚(𝑈) ≥ 3. For any 𝐸16-subgroup A of𝐶𝑆 (𝑥), we have

𝑂 (𝐶) = 〈𝐶𝑂 (𝐶) (𝐵) | 𝐵 ≤ 𝐴, 𝐵 � 𝐸8〉.

by [27, Proposition 11.23]. It follows that C is 3-generated. The proof is now complete. �

Lemma 7.2. Suppose that w is defined. Let x be an involution of S which is 𝑃𝑆𝐿𝑛 (𝑞)-conjugate to w.
Then 𝐶𝐺 (𝑥) is 3-generated.
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Proof. Set 𝐶 := 𝐶𝐺 (𝑥) and 𝐶 := 𝐶/𝑂 (𝐶). By Proposition 6.13, C has a unique 2-component J, and 𝐽
is isomorphic to a nontrivial quotient of 𝑆𝐿𝜀0

𝑛
2
(𝑞0) for some nontrivial odd prime power 𝑞0 and some

𝜀0 ∈ {+,−} with 𝑞2 ∼ 𝜀0𝑞0. Note that 𝑞0 ≡ 𝜀0 mod 8.
First, we prove that 𝐶 is 3-generated. Let R be a Sylow 2-subgroup of C and 𝑌 := 𝑅∩ 𝐽. We consider

two cases.
Case 1: 𝑛 ≥ 8.
As 𝑞0 ≡ 𝜀0 mod 8, by Lemma 3.38, 𝐽 is 3-generated. Hence,

𝐽 = 〈𝑁𝐽 (𝑈) | 𝑈 ≤ 𝑌, 𝑚(𝑈) ≥ 3〉.

By the Frattini argument, 𝐶 = 𝐽𝑁𝐶 (𝑌 ). So 𝐶 is 3-generated.
Case 2: 𝑛 = 6.
We have 𝐽 � 𝑃𝑆𝐿𝜀0

3 (𝑞0). By Lemma 3.37, 𝐽 is 2-generated. Applying the Frattini argument, we may
conclude that

𝐶 = 〈𝑁𝐶 (𝑈) | 𝑈 ≤ 𝑌, 𝑚(𝑈) ≥ 2〉.

Now let 𝑈 ≤ 𝑌 with 𝑚(𝑈) ≥ 2. Since 𝑥 is a central involution of 𝐶 and 𝑍 (𝐽) is trivial, we have
𝑥 ∉ 𝐽 and hence 𝑥 ∉ 𝑈. It follows 〈𝑈, 𝑥〉 has rank at least 3. Moreover, as 𝑥 is central in 𝐶, we have
𝑁𝐶 (𝑈) ≤ 𝑁𝐶 (〈𝑈, 𝑥〉). Clearly, 〈𝑈, 𝑥〉 ≤ 𝑅. It follows that

𝐶 = 〈𝑁𝐶 (𝑈) | 𝑈 ≤ 𝑅, 𝑚(𝑈) ≥ 3〉.

Hence, 𝐶 is 3-generated.
Applying Lemma 2.1, we may conclude that C is generated by 𝑂 (𝐶) together with the normalizers

𝑁𝐶 (𝑈), where 𝑈 ≤ 𝑅 and 𝑚(𝑈) ≥ 3. By Lemma 3.6 (iii), R has an elementary abelian 2-subgroup of
rank 4, say A. By [27, Proposition 11.23], we have

𝑂 (𝐶) = 〈𝐶𝑂 (𝐶) (𝐵) | 𝐵 ≤ 𝐴, 𝐵 � 𝐸8〉.

So C is 3-generated. �

Corollary 7.3. Let x be an involution of S. Then 𝐶𝐺 (𝑥) is 3-generated.

Proof. As a consequence of Proposition 3.5, x is G-conjugate to 𝑡𝑖 for some 1 ≤ 𝑖 < 𝑛 such that 𝑡𝑖 is
defined or 𝑃𝑆𝐿𝑛 (𝑞)-conjugate to w (if defined). So the statement follows from Lemmas 7.1 and 7.2. �

7.2. The case 𝑞∗ = 3

Recall that our goal is to determine the isomorphism types of K and L. First, we will deal with the case
𝑞∗ = 3. We will prove that, in this case, 𝑂 (𝐶𝐺 (𝑡)) = 1.

Lemma 7.4. Let x be an involution of S, and let J be a 2-component of 𝐶𝐺 (𝑥). Let 1 ≤ 𝑖 < 𝑛 such that
𝑡𝑖 is defined. Suppose that 𝑞∗ = 3 and that x is G-conjugate to 𝑡𝑖 . Then 𝐽/𝑂 (𝐽) is locally balanced.

Proof. By Propositions 6.8 (iii), 6.10 and 6.11, we have 𝐽/𝑂 (𝐽) � 𝑆𝐿𝜀𝑘 (3) for some 3 ≤ 𝑘 < 𝑛. So
𝐽/𝑂 (𝐽) is locally balanced by Lemma 3.48. �

Lemma 7.5. Let P and Q be subgroups of S.

(i) If 𝑃 ∈ S and 𝑚(𝑃) ≤ 2, then there is a subgroup 𝑃 of S such that 𝑃 < 𝑃, 𝑃 ∈ S and 𝑚(𝑃) = 3.
(ii) If P and Q are elements of S of rank at least 3, then there exist some 𝑚 ≥ 1 and a sequence

𝑃 = 𝑃1, . . . , 𝑃𝑚 = 𝑄,

https://doi.org/10.1017/fms.2022.53 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.53


Forum of Mathematics, Sigma 61

where 𝑃𝑖 , 1 ≤ 𝑖 ≤ 𝑚, is a subgroup of S of rank at least 2 lying in S and where

𝑃𝑖 ⊆ 𝑃𝑖+1 or 𝑃𝑖+1 ⊆ 𝑃𝑖

for all 1 ≤ 𝑖 < 𝑚.

Proof. Suppose that 𝑃 ∈ S and 𝑚(𝑃) ≤ 2. Let 𝑆 be a Sylow 2-subgroup of 𝑆𝐿𝑛 (𝑞) such that S is the
image of 𝑆 in 𝑃𝑆𝐿𝑛 (𝑞). Note that 𝑆 is unique. Since P is an element of S , there exists some elementary
abelian 2-subgroup 𝑃 of 𝑆𝐿𝑛 (𝑞) such that P is the image of 𝑃 in 𝑃𝑆𝐿𝑛 (𝑞). Clearly, 𝑃 ≤ 𝑆. We have
𝑚(𝑃) ≤ 3 as 𝑚(𝑃) ≤ 2. By Corollary 3.35, 𝑃 is contained in an 𝐸16-subgroup of 𝑆. This implies (i).

We now prove (ii). Suppose that P and Q are elements of S of rank at least 3. There are elementary
abelian subgroups 𝑃 and 𝑄 of 𝑆𝐿𝑛 (𝑞) such that P is the image of 𝑃 in 𝑃𝑆𝐿𝑛 (𝑞) and such that Q is the
image of𝑄 in 𝑃𝑆𝐿𝑛 (𝑞). Clearly, 𝑃,𝑄 ≤ 𝑆. Also,𝑚(𝑃), 𝑚(𝑄) ≥ 3. Since 𝑆 is 3-connected by Corollary
3.34, there exist some 𝑚 ≥ 1 and a sequence

𝑃 = 𝑃1, . . . , 𝑃𝑛 = 𝑄,

where 𝑃𝑖 (1 ≤ 𝑖 ≤ 𝑚) is an elementary abelian subgroup of 𝑆 of rank at least 3 and where

𝑃𝑖 ⊆ 𝑃𝑖+1 or 𝑃𝑖+1 ⊆ 𝑃𝑖

for all 1 ≤ 𝑖 < 𝑚. Let 𝑃𝑖 , 1 ≤ 𝑖 ≤ 𝑚, denote the image of 𝑃𝑖 in S. Then the sequence

𝑃 = 𝑃1, . . . , 𝑃𝑚 = 𝑄

has the desired properties. �

Lemma 7.6. Suppose that 𝑞∗ = 3. For each elementary abelian subgroup E of S of rank at least 2, let

𝑊𝐸 := 〈𝑂 (𝐶𝐺 (𝑥)) | 𝑥 ∈ 𝐸
#〉.

Let P and Q be subgroups of S with 𝑃,𝑄 ∈ S and 𝑚(𝑃), 𝑚(𝑄) ≥ 3. Then𝑊𝑃 = 𝑊𝑄.

Proof. By Lemma 7.5 (ii), there exist some 𝑚 ≥ 1 and a sequence

𝑃 = 𝑃1, . . . , 𝑃𝑚 = 𝑄,

where 𝑃𝑖 , 1 ≤ 𝑖 ≤ 𝑚, is a subgroup of S of rank at least 2 lying in S and where

𝑃𝑖 ⊆ 𝑃𝑖+1 or 𝑃𝑖+1 ⊆ 𝑃𝑖

for all 1 ≤ 𝑖 < 𝑚. By Lemma 7.5 (i), there is a subgroup 𝑃𝑖 of S such that 𝑃𝑖 ∈ S , 𝑚(𝑃𝑖) ≥ 3 and
𝑃𝑖 ≤ 𝑃𝑖 for each 1 ≤ 𝑖 ≤ 𝑚.

Let 1 ≤ 𝑖 ≤ 𝑚, and let x be an involution of 𝑃𝑖 . Also, let J be a 2-component of 𝐶𝐺 (𝑥). As 𝑃𝑖 ∈ S ,
we have that x is G-conjugate to 𝑡 𝑗 for some even 2 ≤ 𝑗 < 𝑛. Therefore, by Lemma 7.4, 𝐽/𝑂 (𝐽) is
locally balanced. Applying [31, Corollary 5.6], we may conclude that G is balanced with respect to 𝑃𝑖 .

Let 1 ≤ 𝑖 < 𝑚. We have 𝑚(𝑃𝑖 ∩ 𝑃𝑖+1) ≥ 2 since 𝑃𝑖 ⊆ 𝑃𝑖+1 or 𝑃𝑖+1 ⊆ 𝑃𝑖 and 𝑚(𝑃𝑖), 𝑚(𝑃𝑖+1) ≥ 2.
Hence, 𝑚(𝑃𝑖 ∩ 𝑃𝑖+1) ≥ 2. Proposition 2.8 (ii) implies

𝑊𝑃𝑖 = 𝑊𝑃𝑖 = 𝑊𝑃𝑖∩𝑃𝑖+1
= 𝑊𝑃𝑖+1

= 𝑊𝑃𝑖+1 .

Consequently,𝑊𝑃 = 𝑊𝑄, as wanted. �

Proposition 7.7. Suppose that 𝑞∗ = 3. Let x be an involution of S which is G-conjugate to 𝑡𝑖 for some
even 2 ≤ 𝑖 < 𝑛. Then we have 𝑂 (𝐶𝐺 (𝑥)) = 1. In particular, 𝑂 (𝐶𝐺 (𝑡)) = 1.
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Proof. We follow the pattern of the proof of [31, Theorem 9.1]. Let E be the subgroup of S consisting
of all 𝑡𝐴, where 𝐴 ⊆ {1, . . . , 𝑛} has even order. For each elementary abelian 2-subgroup A of G of rank
at least 2, let

𝑊𝐴 := 〈𝑂 (𝐶𝐺 (𝑦)) | 𝑦 ∈ 𝐴
#〉.

Set𝑊0 := 𝑊𝐸 and 𝑀 := 𝑁𝐺 (𝑊0). We accomplish the proof step by step.
(1) 𝑁𝐺 (𝑆) ≤ 𝑀 .
Let 𝑔 ∈ 𝑁𝐺 (𝑆). Clearly, 𝐸 ∈ S , and it is easy to note 𝐸𝑔 still lies in S . Lemma 7.6 implies that

𝑊0 = 𝑊𝐸𝑔 . On the other hand, we have (𝑊0)
𝑔 = 𝑊𝐸𝑔 by Proposition 2.8 (i). So we have (𝑊0)

𝑔 = 𝑊0
and hence 𝑔 ∈ 𝑀 .

(2) Let y be an involution of S such that y is G-conjugate to 𝑡 𝑗 for some even 2 ≤ 𝑗 < 𝑛. Then y is
M-conjugate to 𝑡 𝑗 .

We have 〈𝑦〉 ∈ S . By Lemma 7.5 (i), there is a subgroup A of S with 〈𝑦〉 ≤ 𝐴, 𝐴 ∈ S and 𝑚(𝐴) = 3.
As a consequence of Lemma 3.22, there is an element g of G with 𝐴𝑔 ≤ 𝐸 . By Lemma 7.6 and
Proposition 2.8 (i), we have (𝑊0)

𝑔 = (𝑊𝐴)
𝑔 = 𝑊𝐴𝑔 = 𝑊0. Thus, 𝑔 ∈ 𝑀 .

We have 𝑦𝑔 ∈ 𝐸 , and 𝑦𝑔 is G-conjugate and hence 𝑃𝑆𝐿𝑛 (𝑞)-conjugate to 𝑡 𝑗 . So we have 𝑦𝑔 = 𝑡𝐵 for
some 𝐵 ⊆ {1, . . . , 𝑛} with |𝐵 | = 𝑗 . From Lemma 3.23 (i), we see that 𝑦𝑔 = 𝑡𝐵 is 𝑁𝑃𝑆𝐿𝑛 (𝑞) (𝐸)-conjugate
and hence 𝑁𝐺 (𝐸)-conjugate to 𝑡 𝑗 . As 𝑁𝐺 (𝐸) ≤ 𝑀 , it follows that 𝑦𝑔 is M-conjugate to 𝑡 𝑗 . Hence, y is
M-conjugate to 𝑡 𝑗 .

(3) Let y be an involution of S such that y is G-conjugate to 𝑡 𝑗 for some even 2 ≤ 𝑗 < 𝑛. Then
𝐶𝐺 (𝑦) ≤ 𝑀 .

Because of (2), we may assume that 〈𝑦〉 is fully F𝑆 (𝐺)-centralized. Then, by Lemma 7.1, 𝐶𝐺 (𝑦) is
generated by the normalizers 𝑁𝐶𝐺 (𝑦) (𝑈), where U is a subgroup of 𝐶𝑆 (𝑦) such that there exists 𝐵 ≤ 𝑈
with 𝐵 ∈ S and 𝑚(𝐵) ≥ 3. It suffices to show that each such normalizer lies in M.

Let U and B be as above, and let 𝑔 ∈ 𝑁𝐶𝐺 (𝑦) (𝑈). By Lemma 7.6 and Proposition 2.8 (i), we have
(𝑊0)

𝑔 = (𝑊𝐵)
𝑔 = 𝑊𝐵𝑔 = 𝑊0. Thus, 𝑔 ∈ 𝑀 and hence 𝑁𝐶𝐺 (𝑦) (𝑈) ≤ 𝑀 , as required.

(4) Let y be an involution of S. Then 𝐶𝐺 (𝑦) ≤ 𝑀 .
We can see from Lemmas 3.14 and 3.15 that 𝑍 (𝑆) has an involution s which is G-conjugate to 𝑡 𝑗 for

some even 2 ≤ 𝑗 < 𝑛. Let P be a Sylow 2-subgroup of 𝐶𝐺 (𝑦) with 𝑠 ∈ 𝑃. By (1), 𝑠 ∈ 𝑀 and hence
𝑠 ∈ 𝑃 ∩ 𝑀 . Now let 𝑟 ∈ 𝑁𝑃 (𝑃 ∩ 𝑀). Then 𝑠𝑟 ∈ 𝑃 ∩ 𝑀 . As a consequence of (1) and (2), 𝑠𝑟 and s
are M-conjugate to 𝑡 𝑗 . Therefore, there is some 𝑚 ∈ 𝑀 with 𝑠𝑟 = 𝑠𝑚. We have 𝑟𝑚−1 ∈ 𝐶𝐺 (𝑠), and so
𝑟𝑚−1 ∈ 𝑀 by (3). Hence, 𝑟 ∈ 𝑀 . Consequently, 𝑁𝑃 (𝑃 ∩ 𝑀) = 𝑃 ∩ 𝑀 . It follows that 𝑃 = 𝑃 ∩ 𝑀 .

Let 𝑈 ≤ 𝑃 with 𝑚(𝑈) ≥ 3, and let 𝑔 ∈ 𝑁𝐶𝐺 (𝑦) (𝑈). By Lemma 2.3, any 𝐸8-subgroup of S has
an involution which is the image of an involution of 𝑆𝐿𝑛 (𝑞). Since 𝑚(𝑈) ≥ 3, it follows that U has
an element u which is G-conjugate to 𝑡𝑘 for some even 2 ≤ 𝑘 < 𝑛. By the preceding paragraph,
𝑢, 𝑢𝑔 ∈ 𝑈 ≤ 𝑃 ≤ 𝑀 . As a consequence of (1) and (2), u and 𝑢𝑔 are M-conjugate to 𝑡𝑘 . So there is some
𝑚 ∈ 𝑀 with 𝑢𝑔 = 𝑢𝑚. Hence, 𝑔𝑚−1 ∈ 𝐶𝐺 (𝑢). From (3), we see that 𝐶𝐺 (𝑢) ≤ 𝑀 , and so 𝑔𝑚−1 ∈ 𝑀 .
Thus, 𝑔 ∈ 𝑀 and hence 𝑁𝐶𝐺 (𝑦) (𝑈) ≤ 𝑀 . Since 𝐶𝐺 (𝑦) is 3-generated by Corollary 7.3, it follows that
𝐶𝐺 (𝑦) ≤ 𝑀 .

(5) 𝑀 = 𝐺.
Assume that 𝑀 ≠ 𝐺. By [27, Proposition 17.11], we may deduce from (1) and (4) that M is strongly

embedded in G, i.e., 𝑀 ∩𝑀𝑔 has odd order for any 𝑔 ∈ 𝐺 \𝑀 . Applying [50, Chapter 6, 4.4], it follows
that G has only one conjugacy class of involutions. On the other hand, we see from Proposition 3.5 that
G has at least two conjugacy classes of involutions. This contradiction shows that 𝑀 = 𝐺.

(6) Conclusion.
Let 𝑦 ∈ 𝐸#, and let J be a 2-component of𝐶𝐺 (𝑦). By Lemma 7.4, 𝐽/𝑂 (𝐽) is locally balanced. So, by

[31, Corollary 5.6], G is balanced with respect to E. Proposition 2.8 (ii) implies that 𝑊0 has odd order.
By (5), we have 𝑀 = 𝐺 and hence𝑊0 � 𝐺. As 𝑂 (𝐺) = 1 by Hypothesis 5.1, it follows that𝑊0 = 1. So
we have 𝑂 (𝐶𝐺 (𝑦)) = 1 for all 𝑦 ∈ 𝐸#, and the statement of the proposition follows. �
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Proposition 7.7 implies that if 𝑞∗ = 3, then 𝐾 � 𝑆𝐿𝜀𝑛−2 (3) and 𝐿 � 𝑆𝐿2 (3). Our next goal is to find
the isomorphism types of K and L for the case 𝑞∗ ≠ 3.

In general,𝑂 (𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑡)) is not trivial. So, if 𝑞∗ is not assumed to be 3, we have no chance to prove
that 𝑂 (𝐶𝐺 (𝑡)) = 1. However, we will be able to show that

Δ𝐺 (𝐹) =
⋂
𝑎∈𝐹#

𝑂 (𝐶𝐺 (𝑎)) = 1

for any Klein four subgroup F of G consisting of elements of the form 𝑡𝐴, where 𝐴 ⊆ {1, . . . , 𝑛} has
even order. This will later enable us to determine the isomorphism types of K and L for the case 𝑞∗ ≠ 3.

7.3. 2-balance of G

In this subsection, we prove that G is 2-balanced when 𝑞∗ ≠ 3.

Lemma 7.8. Set 𝐶 := 𝐶𝐺 (𝑡) and 𝐶 := 𝐶/𝑂 (𝐶). Let F be a Klein four subgroup of C. Then
[Δ𝐶 (𝐹), 𝐾] = 1.

Proof. We closely follow arguments found in the proof of [31, Theorem 5.2].
First, we consider the case that F has a nontrivial element y such that 𝑦 centralizes 𝐾 . Then 𝐾

normalizes 𝑂 (𝐶𝐶 (𝑦)) and, as 𝐾 � 𝐶, 𝑂 (𝐶𝐶 (𝑦)) also normalizes 𝐾 . It follows that

[𝐾,𝑂 (𝐶𝐶 (𝑦))] ≤ 𝐾 ∩𝑂 (𝐶𝐶 (𝑦)).

Hence, [𝐾,𝑂 (𝐶𝐶 (𝑦))] is a subgroup of 𝐾 with odd order. By [37, 1.5.5], 𝐾 normalizes [𝐾,𝑂 (𝐶𝐶 (𝑦))].
It follows that

[𝐾,𝑂 (𝐶𝐶 (𝑦))] ≤ 𝑂 (𝐾).

As 𝑂 (𝐾) = 1, this implies that 𝑂 (𝐶𝐶 (𝑦)) centralizes 𝐾 . By definition of Δ𝐶 (𝐹), we have Δ𝐶 (𝐹) ≤

𝑂 (𝐶𝐶 (𝑦)). Consequently, Δ𝐶 (𝐹) centralizes 𝐾 .
Now we treat the case that 𝐶𝐹 (𝐾) = 1. For each subgroup or element X of C, let 𝑋 denote the

image of 𝑋 in 𝐶/𝐶𝐶 (𝐾). Since 𝐶𝐹 (𝐾) = 1, we have 𝐹 � 𝐹, and so 𝐹 is a Klein four subgroup of 𝐶.
As 𝐾 � 𝑆𝐿𝜀𝑛−2 (𝑞

∗)/𝑂 (𝑆𝐿𝜀𝑛−2 (𝑞
∗)), we have that 𝐾 is locally 2-balanced (see Lemma 3.49). Using this

together with the fact that the group 𝐶 = 𝐶/𝐶𝐶 (𝐾) is isomorphic to a subgroup of Aut(𝐾) containing
Inn(𝐾), we may conclude that Δ𝐶 (𝐹) = 1. By [31, Proposition 3.11], if X is a finite group, B a 2-
subgroup of X and 𝑁 � 𝑋 , then the image of 𝑂 (𝐶𝑋 (𝐵)) in 𝑋/𝑁 lies in 𝑂 (𝐶𝑋/𝑁 (𝐵𝑁/𝑁)). Thus, if y
is an involution of F, then the image of 𝑂 (𝐶𝐶 (𝑦)) in 𝐶 lies in 𝑂 (𝐶𝐶 ( �̂�)). It follows that the image of
Δ𝐶 (𝐹) in 𝐶 is contained in Δ𝐶 (𝐹) = 1. Hence, Δ𝐶 (𝐹) ≤ 𝐶𝐶 (𝐾). �

Lemma 7.9. Let 𝐶 := 𝐶𝐺 (𝑡) and 𝐶 := 𝐶/𝑂 (𝐶). Then 𝐶𝐶 (𝐾) ∩ 𝐶𝐶 (𝐿) is a 2-group.

Proof. For convenience, we denote 𝐶𝐶 (𝐾) ∩ 𝐶𝐶 (𝐿) by 𝐶𝐶 (𝐾, 𝐿). Since 𝐶 is core-free, we have that
𝐶𝐶 (𝐾, 𝐿) is core-free. So it is enough to prove that 𝐶𝐶 (𝐾, 𝐿) is 2-nilpotent. By [39, Theorem 1.4], it
suffices to show that 𝐶𝐶 (𝐾, 𝐿) has a nilpotent 2-fusion system.

Let X denote the subgroup of T consisting of all elements of T of the form(
𝐴
𝐵

)
𝑍 (𝑆𝐿𝑛 (𝑞))

with 𝐴 ∈ 𝑊 ∩ 𝑍 (𝐺𝐿𝑛−2 (𝑞)), 𝐵 ∈ 𝑉 ∩ 𝑍 (𝐺𝐿2 (𝑞)) and det(𝐴)det(𝐵) = 1.
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Let 𝐴 ∈ 𝑊 and 𝐵 ∈ 𝑉 with det(𝐴)det(𝐵) = 1 and

𝑚 :=
(
𝐴
𝐵

)
𝑍 (𝑆𝐿𝑛 (𝑞)) ∈ 𝑇.

Assume that𝑚 centralizes𝐾 and 𝐿. Then we have 𝐴 ∈ 𝑍 (𝐺𝐿𝑛−2 (𝑞)) by Lemma 6.2. Since𝑚 centralizes
𝐿, 𝑚 also centralizes 𝑋2. Thus, m centralizes 𝑋2, and so B centralizes 𝑉 ∩ 𝑆𝐿2 (𝑞). Lemma 3.17 implies
that 𝐵 ∈ 𝑍 (𝐺𝐿2 (𝑞)). So we have 𝑚 ∈ 𝑋 . Conversely, if 𝐴 ∈ 𝑍 (𝐺𝐿𝑛−2 (𝑞)) and 𝐵 ∈ 𝑍 (𝐺𝐿2 (𝑞)), then
𝑚 ∈ 𝐶𝐶 (𝐾, 𝐿) as a consequence of Lemmas 6.2 and 3.44. It follows that 𝑇 ∩ 𝐶𝐶 (𝐾, 𝐿) = 𝑋 .

Let F := F𝑆 (𝑃𝑆𝐿𝑛 (𝑞)) = F𝑆 (𝐺). Since X is central in 𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑡), the only subsystem of 𝐶F (〈𝑡〉)

on X is the nilpotent fusion system on X. It follows that F𝑋 (𝐶𝐶 (𝐾, 𝐿)) is nilpotent. So 𝐶𝐶 (𝐾, 𝐿) has a
nilpotent 2-fusion system, as required. �

In the following lemma, 𝐴1 and 𝐴2 have the meanings given to them after Lemma 6.5.

Lemma 7.10. Set 𝐶 := 𝐶𝐺 (𝑡). Suppose that 𝑞∗ ≠ 3. Then 𝐴1, 𝐴2 and L are the only 2-components of
𝐶𝐶 (𝑢). Moreover, the following hold:

(i) 𝐴1 is the only 2-component of 𝐶𝐶 (𝑢) containing u.
(ii) 𝐴2 is the only 2-component of 𝐶𝐶 (𝑢) containing neither u nor t.

(iii) L is the only 2-component of 𝐶𝐶 (𝑢) containing t.

Proof. By definition, 𝐴1 and 𝐴2 are 2-components of 𝐶𝐶 (𝑢). Also, it is clear from the definition of L
(see Proposition 6.8) that L is a 2-component of 𝐶𝐶 (𝑢).

Set 𝐶 := 𝐶/𝑂 (𝐶). As a consequence of Lemma 6.4, 𝐴1 and 𝐴2 are the only 2-components of
𝐶𝐾 (𝑢). Moreover, 𝐿 is a component of 𝐶𝐶 (𝑢). So Lemma 2.5 shows that 𝐴1, 𝐴2 and 𝐿 are the only
2-components of 𝐶𝐶 (𝑢). As we have observed after Lemma 6.5, there is a bijection from the set of
2-components of 𝐶𝐶 (𝑢) to the set of 2-components of 𝐶𝐶 (𝑢) sending each 2-component A of 𝐶𝐶 (𝑢) to
𝐴. Therefore, 𝐴1, 𝐴2 and L are the only 2-components of 𝐶𝐶 (𝑢).

It remains to prove (i), (ii) and (iii). We have 𝑇1 ≤ 𝐴1 by Lemma 6.6 and thus 𝑢 ∈ 𝐴1. From the
definition of L, it is clear that 𝑡 ∈ 𝐿. Moreover, 𝑢 ∉ 𝐿 since 𝑡 is the only involution of 𝐿. Similarly,
𝑡 ∉ 𝐴1. Also, it is easy to see from Lemma 6.4 that u and t cannot be elements of 𝐴2. �

Lemma 7.11. Suppose that 𝑞∗ ≠ 3. Let F be a Klein four subgroup of T. Then we have Δ𝐺 (𝐹)∩𝐶𝐺 (𝑡) ≤
𝑂 (𝐶𝐺 (𝑡)).

Proof. Set 𝐶 := 𝐶𝐺 (𝑡), 𝐷 := Δ𝐺 (𝐹) ∩ 𝐶 and 𝐶 := 𝐶/𝑂 (𝐶). We are going to show that 𝐷 is trivial.
A direct calculation shows that 𝐷 ≤ Δ𝐶 (𝐹). For each 𝑎 ∈ 𝐹#, we have 𝑂 (𝐶𝐶 (𝑎)) ≤ 𝑂 (𝐶𝐶 (𝑎)) as a

consequence of Corollary 2.2. Therefore, we have Δ𝐶 (𝐹) ≤ Δ𝐶 (𝐹), and hence, 𝐷 ≤ Δ𝐶 (𝐹). Lemma
7.8 implies that [𝐷, 𝐾] = 1. In particular, 𝐷 ≤ 𝐶𝐶 (𝑢) = 𝐶𝐶 (𝑢). Fix a subgroup 𝐷0 of 𝐶𝐶 (𝑢) with
𝐷0 = 𝐷. Also, let 𝑔 ∈ 𝐺 with 𝑢𝑔 = 𝑡 and 𝑡𝑔 = 𝑢 (such an element exists by Lemma 6.7). Note that
(𝐷0)

𝑔 ≤ (𝐶𝐶 (𝑢))
𝑔 = 𝐶𝐶 (𝑢).

We accomplish the proof step by step.
(1) 𝐴1, 𝐴2 and L are normal subgroups of 𝐶𝐶 (𝑢).
This is immediate from Lemma 7.10.
(2) There is a group isomorphism Aut(𝐴1) → Aut(𝐿) which maps Inn(𝐴1) to Inn(𝐿) and

Aut
(𝐷0)𝑔

(𝐴1) to Aut𝐷 (𝐿).
Let Aut𝐷0 (𝐿/𝑂 (𝐿)) denote the image of Aut𝐷0 (𝐿) under the natural group homomorphism

Aut(𝐿) → Aut(𝐿/𝑂 (𝐿)). Also, let Aut(𝐷0)𝑔 (𝐴1/𝑂 (𝐴1)) denote the image of Aut(𝐷0)𝑔 (𝐴1) under
the natural group homomorphism Aut(𝐴1) → Aut(𝐴1/𝑂 (𝐴1)).

From Lemma 7.10, it is clear that (𝐴1)
𝑔−1

= 𝐿. The group isomorphism 𝑐𝑔−1 |𝐴1 ,𝐿 induces a group
isomorphism 𝐴1/𝑂 (𝐴1) → 𝐿/𝑂 (𝐿), and this group isomorphism induces a group isomorphism
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Aut(𝐴1/𝑂 (𝐴1)) → Aut(𝐿/𝑂 (𝐿)). By a direct calculation, the group isomorphism just mentioned
maps Aut(𝐷0)𝑔 (𝐴1/𝑂 (𝐴1)) to Aut𝐷0 (𝐿/𝑂 (𝐿)) and Inn(𝐴1/𝑂 (𝐴1)) to Inn(𝐿/𝑂 (𝐿)).

We have 𝐴1/(𝐴1 ∩ 𝑂 (𝐶)) � 𝐴1 � 𝑆𝐿2 (𝑞
∗). As 𝑆𝐿2 (𝑞

∗) is core-free, it follows that 𝐴1 ∩ 𝑂 (𝐶) =
𝑂 (𝐴1). So the natural group homomorphism 𝐴1 → 𝐴1 induces a group isomorphism 𝐴1/𝑂 (𝐴1) → 𝐴1.
This group isomorphism induces a group isomorphism Aut(𝐴1/𝑂 (𝐴1)) → Aut(𝐴1). By a direct
calculation, the group isomorphism just mentioned maps Aut(𝐷0)𝑔 (𝐴1/𝑂 (𝐴1)) to Aut

(𝐷0)𝑔
(𝐴1) and

Inn(𝐴1/𝑂 (𝐴1)) to Inn(𝐴1). In a very similar way, we obtain an isomorphism Aut(𝐿/𝑂 (𝐿)) → Aut(𝐿)
which maps Aut𝐷0 (𝐿/𝑂 (𝐿)) to Aut𝐷0

(𝐿) = Aut𝐷 (𝐿) and Inn(𝐿/𝑂 (𝐿)) to Inn(𝐿).
As a consequence of the preceding observations, there is a group isomorphism Aut(𝐴1) → Aut(𝐿)

which maps Inn(𝐴1) to Inn(𝐿) and Aut
(𝐷0)𝑔

(𝐴1) to Aut𝐷 (𝐿), as asserted.

(3) Aut
(𝐷0)𝑔

(𝐴1) ≤ Inn(𝐴1).
As observed above, 𝐷0 = 𝐷 centralizes 𝐾 . In particular, 𝐷 centralizes 𝐴2. This implies that

[𝐷0, 𝐴2] ≤ 𝑂 (𝐶). As 𝐷0 normalizes 𝐴2 by (1), we also have that [𝐷0, 𝐴2] ≤ 𝐴2. Consequently,
[𝐷0, 𝐴2] ≤ 𝑂 (𝐴2). Because of Lemma 7.10, we have (𝐴2)

𝑔 = 𝐴2. It follows that [(𝐷0)
𝑔, 𝐴2] ≤ 𝑂 (𝐴2).

This easily implies [(𝐷0)𝑔, 𝐴2] ≤ 𝑂 (𝐴2). As 𝐴2 � 𝑆𝐿𝜀𝑛−4 (𝑞
∗) by Lemma 6.4, we have𝑂 (𝐴2) ≤ 𝑍 (𝐴2).

It follows that [𝐴2, (𝐷0)𝑔, 𝐴2] = [(𝐷0)𝑔, 𝐴2, 𝐴2] ≤ [𝑍 (𝐴2), 𝐴2] = 1. The three subgroups lemma [37,
1.5.6] implies [𝐴2, (𝐷0)𝑔] = [𝐴2, 𝐴2, (𝐷0)𝑔] = 1. Hence, (𝐷0)𝑔 centralizes 𝐴2. By (1), (𝐷0)𝑔 normal-
izes 𝐴1. Moreover, Aut

(𝐷0)𝑔
(𝐾) has odd order since (𝐷0)𝑔 has odd order. The assertion now follows

from Lemmas 6.4 (iii), 3.50 and 3.51.

(4) 𝐷 ≤
⋂
𝑦∈𝐹# 𝑂 (𝐶𝐿 (𝑦)).

As a consequence of (2) and (3), we have Aut𝐷 (𝐿) ≤ Inn(𝐿). This implies 𝐷 ≤ 𝐿𝐶𝐶 (𝐿). By [37,
6.5.3], 𝐿 ≤ 𝐶𝐶 (𝐾). As observed above, [𝐷, 𝐾] = 1 and hence 𝐷 ≤ 𝐶𝐶 (𝐾). It follows that 𝐷 is a
subgroup of 𝐿(𝐶𝐶 (𝐿) ∩ 𝐶𝐶 (𝐾)). By Lemma 7.9, 𝐶𝐶 (𝐿) ∩ 𝐶𝐶 (𝐾) is a 2-group. As 𝐷 has odd order
and 𝐿 � 𝐶, this implies that 𝐷 ≤ 𝐿. Now we see that

𝐷 ≤ 𝐿 ∩ Δ𝐶 (𝐹)

=
⋂
𝑦∈𝐹#

(𝐿 ∩𝑂 (𝐶𝐶 (𝑦)))

=
⋂
𝑦∈𝐹#

(𝐶𝐿 (𝑦) ∩𝑂 (𝐶𝐶 (𝑦)))

=
⋂
𝑦∈𝐹#

𝑂 (𝐶𝐿 (𝑦)).

(5) Conclusion.
As F is a Klein four subgroup of T, we have 𝐹 = 〈𝑦1, 𝑦2〉 for two commuting involutions 𝑦1 and 𝑦2

of T. For 𝑖 ∈ {1, 2}, we have

𝑦𝑖 =

(
𝐴𝑖

𝐵𝑖

)
𝑍 (𝑆𝐿𝑛 (𝑞))

for some 𝐴𝑖 ∈ 𝑊 and 𝐵𝑖 ∈ 𝑉 with det(𝐴𝑖)det(𝐵𝑖) = 1. Let 𝑦3 := 𝑦1𝑦2, 𝐴3 := 𝐴1𝐴2 and 𝐵3 := 𝐵1𝐵2. As
𝑦1, 𝑦2, 𝑦3 are involutions, we have (𝐵𝑖)

2 ∈ 𝑍 (𝐺𝐿2 (𝑞)) for each 𝑖 ∈ {1, 2, 3}.
It is easy to note that 𝑋2 ∈ Syl2 (𝐿). If 𝐵 ∈ 𝑉 ∩ 𝑆𝐿2 (𝑞) and

𝑦 :=
(
𝐼𝑛−2

𝐵

)
𝑍 (𝑆𝐿𝑛 (𝑞)) ∈ 𝑋2,
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then

𝑦𝑦𝑖 =

(
𝐼𝑛−2

𝐵𝐵𝑖

)
𝑍 (𝑆𝐿𝑛 (𝑞))

for each 𝑖 ∈ {1, 2, 3}. Applying Lemma 3.52, we deduce that⋂
𝑦∈𝐹#

𝑂 (𝐶𝐿 (𝑦)) = 1.

So we have 𝐷 = 1 by (4). This completes the proof. �

Lemma 7.12. Suppose that 𝑞∗ ≠ 3. Then G is 2-balanced.

Proof. Let F be a Klein four subgroup of G, and let a be an involution of G centralizing F. We have to
show that Δ𝐺 (𝐹) ∩ 𝐶𝐺 (𝑎) ≤ 𝑂 (𝐶𝐺 (𝑎)).

Assume that a is G-conjugate to t. Then there is some 𝑔 ∈ 𝐺 with 𝑎𝑔 = 𝑡 and 𝐹𝑔 ≤ 𝑇 . By
Lemma 7.11, we have Δ𝐺 (𝐹𝑔) ∩ 𝐶𝐺 (𝑡) ≤ 𝑂 (𝐶𝐺 (𝑡)). Clearly, Δ𝐺 (𝐹)𝑔 = Δ𝐺 (𝐹𝑔). It follows that
Δ𝐺 (𝐹) ∩ 𝐶𝐺 (𝑎) ≤ 𝑂 (𝐶𝐺 (𝑎)).

Assume now that a is not G-conjugate to t. Let J be a 2-component of 𝐶𝐺 (𝑎). By Propositions
6.10, 6.11 and 6.13, either 𝐽/𝑂 (𝐽) � 𝑆𝐿𝜀𝑘 (𝑞

∗)/𝑂 (𝑆𝐿𝜀𝑘 (𝑞
∗)) for some 𝑘 ≥ 3, or 𝐽/𝑂 (𝐽) is isomorphic

to a nontrivial quotient of 𝑆𝐿𝜀0
𝑛
2
(𝑞0) for some nontrivial odd prime power 𝑞0 and some 𝜀0 ∈ {+,−}.

So 𝐽/𝑂 (𝐽) is locally 2-balanced by Lemma 3.49. Applying [31, Theorem 5.2], we may conclude that
Δ𝐶𝐺 (𝑎) (𝐹) ≤ 𝑂 (𝐶𝐺 (𝑎)). A direct calculation shows that Δ𝐺 (𝐹) ∩ 𝐶𝐺 (𝑎) ≤ Δ𝐶𝐺 (𝑎) (𝐹). Hence,
Δ𝐺 (𝐹) ∩ 𝐶𝐺 (𝑎) ≤ 𝑂 (𝐶𝐺 (𝑎)). �

7.4. The case 𝑞∗ ≠ 3: triviality of Δ𝐺 (𝐹)

Lemma 7.13. Suppose that 𝑞∗ ≠ 3. Assume moreover that 𝑞 ≡ 1 mod 4 or 𝑛 ≥ 7. Then we have
Δ𝐺 (𝐹) = 1 for each Klein four subgroup F of S.

Proof. We follow the pattern of the proof of [31, Theorem 9.1].
For each elementary abelian 2-subgroup A of G of rank at least 3, we define

𝑊𝐴 := 〈Δ𝐺 (𝐹) | 𝐹 ≤ 𝐴, 𝑚(𝐹) = 2〉.

Let P and Q be elementary abelian subgroups of S of rank at least 3. We claim that 𝑊𝑃 = 𝑊𝑄. By
Corollary 3.34 (iii), S is 3-connected. So there exist a natural number 𝑚 ≥ 1 and a sequence

𝑃 = 𝑃1, . . . , 𝑃𝑚 = 𝑄

such that 𝑃𝑖 , 1 ≤ 𝑖 ≤ 𝑚, is an elementary abelian subgroup of S of rank at least 3 and such that

𝑃𝑖 ⊆ 𝑃𝑖+1 or 𝑃𝑖+1 ⊆ 𝑃𝑖

for all 1 ≤ 𝑖 < 𝑚. By Lemma 7.12, G is 2-balanced. Proposition 2.8 (ii) implies that𝑊𝑃𝑖 = 𝑊𝑃𝑖+1 for all
1 ≤ 𝑖 < 𝑚. Therefore,𝑊𝑃 = 𝑊𝑄, as asserted.

We use 𝑊0 to denote 𝑊𝑃 , where P is an elementary abelian subgroup of S of rank at least 3. Let
𝑀 := 𝑁𝐺 (𝑊0). We accomplish the proof step by step.

(1) 𝑁𝐺 (𝑆) ≤ 𝑀 .
Let 𝑔 ∈ 𝑁𝐺 (𝑆). Take an elementary abelian subgroup P of S with 𝑚(𝑃) ≥ 3. By Proposition 2.8 (i),

we have (𝑊0)
𝑔 = (𝑊𝑃)

𝑔 = 𝑊𝑃𝑔 = 𝑊0. Thus, 𝑔 ∈ 𝑀 .
(2) Let x be an involution of S. Then 𝐶𝐺 (𝑥) ≤ 𝑀 .
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By Corollary 3.35, there is an elementary abelian subgroup P of S with 𝑥 ∈ 𝑃 and 𝑚(𝑃) = 4.
Clearly, 𝑃 ≤ 𝐶𝐺 (𝑥). Let R be a Sylow 2-subgroup of 𝐶𝐺 (𝑥) containing P. By Corollary 7.3, 𝐶𝐺 (𝑥) is
3-generated. Hence, 𝐶𝐺 (𝑥) is generated by the normalizers 𝑁𝐶𝐺 (𝑥) (𝑈), where 𝑈 ≤ 𝑅 and 𝑚(𝑈) ≥ 3.
It suffices to show that each such normalizer lies in M.

So let U be a subgroup of R with 𝑚(𝑈) ≥ 3, and let 𝑔 ∈ 𝑁𝐶𝐺 (𝑥) (𝑈). Let Q be an elementary
abelian subgroup of U with 𝑚(𝑄) = 3, and let ℎ ∈ 𝐺 with 𝑅ℎ ≤ 𝑆. Then 𝑊𝑄ℎ = 𝑊𝑄𝑔ℎ = 𝑊𝑃ℎ = 𝑊0.
Proposition 2.8 (i) implies that 𝑊𝑄 = 𝑊𝑄𝑔 = 𝑊𝑃 = 𝑊0. Applying Proposition 2.8 (i) again, it follows
that (𝑊0)

𝑔 = (𝑊𝑄)
𝑔 = 𝑊𝑄𝑔 = 𝑊0. Hence, 𝑔 ∈ 𝑀 and thus 𝑁𝐶𝐺 (𝑥) (𝑈) ≤ 𝑀 .

(3) 𝑀 = 𝐺.
Assume that 𝑀 ≠ 𝐺. By [27, Proposition 17.11]; we may deduce from (1) and (2) that M is strongly

embedded in G, i.e., 𝑀 ∩𝑀𝑔 has odd order for any 𝑔 ∈ 𝐺 \𝑀 . Applying [50, Chapter 6, 4.4], it follows
that G has only one conjugacy class of involutions. On the other hand, we see from Proposition 3.5 that
G has at least two conjugacy classes of involutions. This contradiction shows that 𝑀 = 𝐺.

(4) Conclusion.
Let F be a Klein four subgroup of S. By Corollary 3.35, there is an elementary abelian subgroup

P of S with 𝐹 ≤ 𝑃 and 𝑚(𝑃) = 4. Clearly, Δ𝐺 (𝐹) ≤ 𝑊𝑃 . Since G is 2-balanced, 𝑊𝑃 has odd order
by Proposition 2.8 (ii). Since 𝑊𝑃 = 𝑊0, we have 𝑊𝑃 � 𝐺 by (3). As 𝑂 (𝐺) = 1 by Hypothesis 5.1, it
follows that𝑊𝑃 = 1. Hence, Δ𝐺 (𝐹) = 1. �

Next, we deal with the case that 𝑛 = 6, 𝑞 ≡ 3 mod 4 and 𝑞∗ ≠ 3. We show that, in this case,Δ𝐺 (𝐹) = 1
for each Klein four subgroup F of S consisting of elements of the form 𝑡𝐴, where 𝐴 ⊆ {1, . . . , 𝑛} has
even order. We need the following lemma.

Lemma 7.14. Suppose that 𝑞∗ ≠ 3. Set ℓ := 𝑛 − 4. Let E be the subgroup of T consisting of all 𝑡𝐴,
where 𝐴 ⊆ {1, . . . , 𝑛} has even order. Let 𝐸1 denote the subgroup of 𝑋1 consisting of all 𝑡𝐴, where A is
a subset of {1, . . . , 𝑛 − 2} of even order. Then we may choose elements 𝑚1, . . . , 𝑚ℓ ∈ 𝑁𝐾 (𝐸1) and an
𝐸8-subgroup 𝐸0 of E with

𝐾 = 〈𝑂 (𝐾), 𝐿2′ (𝐶𝐾 (𝐸0)), 𝐿2′ (𝐶𝐾 (𝐸0))
𝑚1 , . . . , 𝐿2′ (𝐶𝐾 (𝐸0))

𝑚ℓ 〉.

Proof. Set 𝐶 := 𝐶𝐺 (𝑡) and 𝐶 := 𝐶/𝑂 (𝐶). Let 𝐻 := 𝑆𝐿𝜀𝑛−2 (𝑞
∗)/𝑂 (𝑆𝐿𝜀𝑛−2 (𝑞

∗)). Let 𝐷 be the subgroup
of 𝑆𝐿𝜀𝑛−2 (𝑞

∗) consisting of all diagonal matrices in 𝑆𝐿𝜀𝑛−2 (𝑞
∗) with diagonal entries in {1,−1}, and let

D denote the image of 𝐷 in H. Denote by 𝐻1 the image of{(
𝐴
𝐼𝑛−4

)
: 𝐴 ∈ 𝑆𝐿𝜀2 (𝑞

∗)

}
in H.

We claim that there is a group isomorphism 𝜓 : 𝐾 → 𝐻 which maps 𝐸1 to D and 𝐴1 to 𝐻1. By
Lemma 6.4 (iii), there is a group isomorphism 𝜑 : 𝐾 → 𝐻 under which 𝐴1 corresponds to 𝐻1. Since
𝑢 is the only involution of 𝐴1, we have that 𝑢𝜑 is the image of diag(−1,−1, 1, . . . , 1) ∈ 𝑆𝐿𝜀𝑛−2 (𝑞

∗) in
H. Clearly, 𝐸1 is elementary abelian of order 2𝑛−3. Using Lemma 3.22, we conclude that 𝐸1

𝜑 is H-
conjugate to D. So there is some 𝛼 ∈ Inn(𝐻) mapping 𝐸1

𝜑 to D. We may assume that 𝛼 centralizes 𝑢𝜑 .
Then 𝐻1

𝛼 = 𝐻1, and the isomorphism 𝜓 := 𝜑𝛼 maps 𝐸1 to D and 𝐴1 to 𝐻1, as desired.
Using Lemma 3.39, we can find elements 𝑥1, . . . , 𝑥ℓ ∈ 𝑁𝐻 (𝐷) such that 𝐻 = 〈𝐻1, 𝐻1

𝑥1 , . . . , 𝐻1
𝑥ℓ 〉.

Therefore, K has elements 𝑚1, . . . , 𝑚ℓ such that

𝐾 = 〈𝐴1, 𝐴1
𝑚1
, . . . , 𝐴1

𝑚ℓ
〉

and 𝑚1, . . . , 𝑚ℓ ∈ 𝑁𝐾 (𝐸1). From Lemma 2.1, we see that 𝑁𝐾 (𝐸1) = 𝑁𝐾 (𝐸1). So we may assume
𝑚𝑖 ∈ 𝑁𝐾 (𝐸1) for 𝑖 ∈ {1, . . . , ℓ}. Let 𝐸0 := 〈𝑢, 𝑡 {3,4}, 𝑡 {4,5}〉. By Lemma 6.5, we have 𝐴1 � 𝐶𝐶 (𝑢). In
particular, 𝐸0 normalizes 𝐴1. Moreover, 𝐸0 centralizes 𝑇1. We have 𝐴1 � 𝑆𝐿2 (𝑞

∗) and 𝑇1 ∈ Syl2(𝐴1)
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(see Lemma 6.4). Applying Lemma 3.44, we conclude that 𝐴1 ≤ 𝐶𝐾 (𝐸0). As 𝐴1 � 𝐶𝐾 (𝑢) and
𝐴1 ≤ 𝐶𝐾 (𝐸0) ≤ 𝐶𝐾 (𝑢), we even have that 𝐴1 is a component of 𝐶𝐾 (𝐸0). It follows that

𝐾 = 〈𝐿2′ (𝐶𝐾 (𝐸0)), 𝐿2′ (𝐶𝐾 (𝐸0))
𝑚1 , . . . , 𝐿2′ (𝐶𝐾 (𝐸0))

𝑚ℓ 〉.

Let 𝑘 ∈ 𝐾 such that 𝑘 ∈ 𝐶𝐾 (𝐸0). As 𝐾 � 𝐶, we have [𝑘, 𝐸0] ≤ 𝑂 (𝐶) ∩ 𝐾 = 𝑂 (𝐾). Thus,
𝑘𝑂 (𝐾) ∈ 𝐶𝐶/𝑂 (𝐾 ) (𝐸0𝑂 (𝐾)/𝑂 (𝐾)). By Lemma 2.1, there is an element 𝑧 ∈ 𝐶𝐶 (𝐸0) such that
𝑘𝑂 (𝐾) = 𝑧𝑂 (𝐾). Observing that 𝑧 ∈ 𝐶𝐾 (𝐸0) and that 𝑘 = 𝑧, we may conclude that𝐶𝐾 (𝐸0) = 𝐶𝐾 (𝐸0).
If 1 ≤ 𝑖 ≤ ℓ, then 𝐿2′ (𝐶𝐾 (𝐸0))

𝑚𝑖 = 𝐿2′ (𝐶𝐾 (𝐸0))
𝑚𝑖 = 𝐿2′ (𝐶𝐾 (𝐸0))

𝑚𝑖
= 𝐿2′ (𝐶𝐾 (𝐸0))𝑚𝑖 , where the

second equality follows from Proposition 2.4. It follows that

𝐾 = 〈𝑂 (𝐾), 𝐿2′ (𝐶𝐾 (𝐸0)), 𝐿2′ (𝐶𝐾 (𝐸0))
𝑚1 , . . . , 𝐿2′ (𝐶𝐾 (𝐸0))

𝑚ℓ 〉.

This completes the proof. �

Lemma 7.15. Suppose that 𝑛 = 6, 𝑞 ≡ 3 mod 4 and 𝑞∗ ≠ 3. Let E denote the subgroup of S consisting
of all 𝑡𝐴, where A is a subset of {1, . . . , 𝑛} of even order. Then Δ𝐺 (𝐹) = 1 for any Klein four subgroup
F of E.

Proof. We follow the pattern of the proof of [31, Theorem 9.1].
Set𝑊0 := 〈Δ𝐺 (𝐹) | 𝐹 ≤ 𝐸, 𝑚(𝐹) = 2〉 and 𝑀 := 𝑁𝐺 (𝑊0). Since T is the image of{(

𝐴
𝐵

)
: 𝐴 ∈ 𝑊, 𝐵 ∈ 𝑉, det(𝐴)det(𝐵) = 1

}
in 𝑃𝑆𝐿𝑛 (𝑞), we have 𝑇 ∈ Syl2(𝑃𝑆𝐿𝑛 (𝑞)) by Lemma 3.15. Hence, 𝑆 = 𝑇 and thus 𝑡 ∈ 𝑍 (𝑆). By choice
of W (see Section 5), we have

𝑊 =

{(
𝐴
𝐵

)
: 𝐴, 𝐵 ∈ 𝑉

}
·

〈(
𝐼2

𝐼2

)〉
We accomplish the proof step by step.

(1) For each subgroup 𝐸0 of E with order at least 8, we have 𝑁𝐺 (𝐸0) ≤ 𝑀 .
Clearly, 𝐸 � 𝐸16. Therefore, the statement follows from the 2-balance of G (see Lemma 7.12) and

Proposition 2.8 (ii).
(2) 𝑁𝐺 (𝑆) ≤ 𝑀 .
First, we prove 𝑆 ≤ 𝑀 . By (1), we have 𝐸 ≤ 𝑀 . As 𝑞 ≡ 3 mod 4 and 𝑆 = 𝑇 , any element of S can be

written as a product of an element of E and an element of S induced by a matrix of the form(
𝐴
𝐵

)
with 𝐴 ∈ 𝑊 ∩ 𝑆𝐿4 (𝑞) and 𝐵 ∈ 𝑉 ∩ 𝑆𝐿2 (𝑞). So, in order to prove that 𝑆 ≤ 𝑀 , it suffices to show that
each element of S induced by a matrix of this form lies in M. If 𝐵 ∈ 𝑉 ∩ 𝑆𝐿2 (𝑞), then the image of(

𝐼4
𝐵

)
in S centralizes the group 〈𝑡 {1,2}, 𝑡 {2,3}, 𝑡 {3,4}〉 � 𝐸8. So it is contained in M by (1). Hence, in order to
prove that 𝑆 ≤ 𝑀 , it suffices to show that if 𝐴 ∈ 𝑊 ∩ 𝑆𝐿4 (𝑞), then the image of(

𝐴
𝐼2

)
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in S lies in M. So assume that 𝐴 ∈ 𝑊 ∩ 𝑆𝐿4 (𝑞). By the structure of W, there are elements 𝑀1, 𝑀2 of V
such that det(𝑀1) = det(𝑀2) and

𝐴 =

(
𝑀1

𝑀2

)
or 𝐴 =

(
𝑀1

𝑀2

) (
𝐼2

𝐼2

)
.

The image of

��	
𝑀1

𝑀2
𝐼2


��
in S can be written as a product of an element of E and an element of S induced by a matrix of the form

��	
𝑀1

𝑀2
𝐼2


��
with 𝑀1, 𝑀2 ∈ 𝑉 ∩ 𝑆𝐿2 (𝑞). The images of(

𝑀1
𝐼4

)
and ��	

𝐼2
𝑀2

𝐼2


��
in S centralize the groups 〈𝑡 {3,4}, 𝑡 {4,5}, 𝑡 {5,6}〉 and 〈𝑡 {1,2}, 𝑡 {2,5}, 𝑡 {5,6}〉, respectively. So they are elements
of M. It follows that the image of

��	
𝑀1

𝑀2
𝐼2


��
in S lies in M. The image of the block matrix

��	
𝐼2

𝐼2
𝐼2


��
in S normalizes E and is thus contained in M. It follows that the image of(

𝐴
𝐼2

)
in S lies in M. Consequently, 𝑆 ≤ 𝑀 .

By Lemma 3.24, Aut𝑃𝑆𝐿𝑛 (𝑞) (𝑆) = Inn(𝑆). As F𝑆 (𝐺) = F𝑆 (𝑃𝑆𝐿𝑛 (𝑞)), it follows that Aut𝐺 (𝑆) =
Inn(𝑆), and so 𝑁𝐺 (𝑆) = 𝑆𝐶𝐺 (𝑆). We have seen above that 𝑆 ≤ 𝑀 , and we have 𝐶𝐺 (𝑆) ≤ 𝑀 by (1).
Hence, 𝑁𝐺 (𝑆) ≤ 𝑀 .

(3) 𝐶𝐺 (𝑡) ≤ 𝑀 .
Let 𝐸1 be the subgroup of 𝑋1 consisting of all 𝑡𝐴, where A is a subset of {1, . . . , 𝑛−2} of even order. As

a consequence of Lemma 7.14, there is an𝐸8-subgroup𝐸0 of E such that𝐾 = 〈𝑂 (𝐾), 𝐶𝐾 (𝐸0), 𝑁𝐾 (𝐸1)〉.
By (1), 𝐶𝐾 (𝐸0) and 𝑁𝐾 (𝐸1) are subgroups of M. By [27, Proposition 11.23], we have

𝑂 (𝐾) = 〈𝐶𝑂 (𝐾 ) (𝐵) | 𝐵 ≤ 𝐸, 𝑚(𝐵) = 3〉.
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Therefore, 𝑂 (𝐾) ≤ 𝑀 by (1). Consequently, 𝐾 ≤ 𝑀 . By the Frattini argument,

𝐶𝐺 (𝑡) = 𝐾𝑁𝐶𝐺 (𝑡) (𝑋1).

So it suffices to show that 𝑁𝐶𝐺 (𝑡) (𝑋1) ≤ 𝑀 . Since F𝑆 (𝐺) = F𝑆 (𝑃𝑆𝐿𝑛 (𝑞)), we may conclude from
Lemma 5.7 that Aut𝐶𝐺 (𝑡) (𝑋1) is a 2-group. Hence, 𝑁𝐶𝐺 (𝑡) (𝑋1)/𝐶𝐶𝐺 (𝑡) (𝑋1) is a 2-group. As 𝑋1 �
𝑇 = 𝑆 ∈ Syl2 (𝐶𝐺 (𝑡)), it follows that 𝑁𝐶𝐺 (𝑡) (𝑋1) = 𝑆𝐶𝐶𝐺 (𝑡) (𝑋1). We have 𝑆 ≤ 𝑀 by (2), and
𝐶𝐶𝐺 (𝑡) (𝑋1) ≤ 𝐶𝐺 (𝐸1) ≤ 𝑀 by (1). Consequently, 𝑁𝐶𝐺 (𝑡) (𝑋1) ≤ 𝑀 , as required.

(4) Let x be an involution of S which is G-conjugate to t. Then x is M-conjugate to t.
It is easy to see that if an element of T is 𝑃𝑆𝐿𝑛 (𝑞)-conjugate to t, then it is 𝐶𝑃𝑆𝐿𝑛 (𝑞) (𝑡)-conjugate

to an element of E. As F𝑆 (𝐺) = F𝑆 (𝑃𝑆𝐿𝑛 (𝑞)) and 𝑆 = 𝑇 , it follows that x is 𝐶𝐺 (𝑡)-conjugate and
hence M-conjugate to an element y of E. From Lemma 3.23, we see that if an element of E is 𝑃𝑆𝐿𝑛 (𝑞)-
conjugate to t, then it is 𝑁𝑃𝑆𝐿𝑛 (𝑞) (𝐸)-conjugate to t. So, as F𝑆 (𝐺) = F𝑆 (𝑃𝑆𝐿𝑛 (𝑞)), we have that y is
𝑁𝐺 (𝐸)-conjugate to t. By (1), 𝑁𝐺 (𝐸) ≤ 𝑀 , and so x is M-conjugate to t.

(5) Let x be an involution of S. Then 𝐶𝐺 (𝑥) ≤ 𝑀 .
Let R be a Sylow 2-subgroup of 𝐶𝐺 (𝑥) with 𝐶𝑆 (𝑥) ≤ 𝑅. We have 𝑡 ∈ 𝑍 (𝑆) ≤ 𝐶𝑆 (𝑥) and 𝑡 ∈ 𝑀 .

Thus, 𝑡 ∈ 𝑅∩𝑀 . Let 𝑟 ∈ 𝑁𝑅 (𝑅∩𝑀). Then 𝑦 := 𝑡𝑟 ∈ 𝑅∩𝑀 . As a consequence of (4), y is M-conjugate
to t. So there is an element m of M such that 𝑡𝑟 = 𝑦 = 𝑡𝑚. We have 𝑟𝑚−1 ∈ 𝐶𝐺 (𝑡) ≤ 𝑀 by (3), and so
𝑟 ∈ 𝑅 ∩ 𝑀 . Hence, 𝑁𝑅 (𝑅 ∩ 𝑀) = 𝑅 ∩ 𝑀 , and thus, 𝑅 = 𝑅 ∩ 𝑀 .

By Corollary 7.3, 𝐶𝐺 (𝑥) is 3-generated. Therefore, 𝐶𝐺 (𝑥) is generated by the normalizers
𝑁𝐶𝐺 (𝑥) (𝑈), where𝑈 ≤ 𝑅 and 𝑚(𝑈) ≥ 3. It suffices to show that each such normalizer lies in M.

So let𝑈 ≤ 𝑅with𝑚(𝑈) ≥ 3, and let 𝑔 ∈ 𝑁𝐶𝐺 (𝑥) (𝑈). Take an elementary abelian subgroup Q of U of
rank 3. Lemma 2.3 shows that any 𝐸8-subgroup of S has an involution which is the image of an involution
of 𝑆𝐿𝑛 (𝑞). This implies that Q has an element s which is G-conjugate to t. Since 𝑠, 𝑠𝑔 ∈ 𝑈 ≤ 𝑅 ≤ 𝑀 ,
we see from (4) that s and 𝑠𝑔 are M-conjugate to t. So there are elements 𝑚, 𝑚′ ∈ 𝑀 such that 𝑠 = 𝑡𝑚
and 𝑠𝑔 = 𝑡𝑚

′ . We have 𝑡𝑚′
= 𝑠𝑔 = (𝑡𝑚)𝑔 = 𝑡𝑚𝑔. Thus, 𝑚𝑔𝑚′−1 ∈ 𝐶𝐺 (𝑡) ≤ 𝑀 , and hence, 𝑔 ∈ 𝑀 . It

follows that 𝑁𝐶𝐺 (𝑥) (𝑈) ≤ 𝑀 .
(6) 𝑀 = 𝐺.
Assume that 𝑀 ≠ 𝐺. By [27, Proposition 17.11], we may deduce from (2) and (5) that M is strongly

embedded in G, i.e., 𝑀 ∩𝑀𝑔 has odd order for any 𝑔 ∈ 𝐺 \𝑀 . Applying [50, Chapter 6, 4.4], it follows
that G has only one conjugacy class of involutions. On the other hand, we see from Proposition 3.5 that
G has precisely two conjugacy classes of involutions. This contradiction shows that 𝑀 = 𝐺.

(7) Conclusion.
Let F be a Klein four subgroup of E. Clearly, Δ𝐺 (𝐹) ≤ 𝑊0. By (6), we have 𝑊0 � 𝐺. Since G is

2-balanced, 𝑊0 has odd order by Proposition 2.8 (ii). As 𝑂 (𝐺) = 1 by Hypothesis 5.1, it follows that
𝑊0 = 1. Hence, Δ𝐺 (𝐹) = 1. �

7.5. Quasisimplicity of the 2-components of 𝐶𝐺 (𝑡)

In this subsection, we determine the isomorphism types of K and L.
Lemma 7.16. Let x and y be two commuting involutions of G. Set 𝐶 := 𝐶𝐺 (𝑥) and 𝐶 := 𝐶/𝑂 (𝐶). Then
any 2-component of 𝐶𝐶 (𝑦) is a component of 𝐶𝐶 (𝑦).

Proof. By [31, Corollary 3.2], 𝐿2′ (𝐶𝐶 (𝑦)) = 𝐿2′ (𝐶𝐸 (𝐶)
(𝑦)). We know from Section 6 that 𝐸 (𝐶) is a

K-group, i.e., the composition factors of 𝐸 (𝐶) are known finite simple groups. Applying [25, Theorem
3.5], we conclude that 𝐿2′ (𝐶𝐸 (𝐶)

(𝑦)) = 𝐸 (𝐶𝐸 (𝐶)
(𝑦)). Therefore, any 2-component of 𝐶𝐸 (𝐶)

(𝑦) is a
component of 𝐶𝐸 (𝐶)

(𝑦). So any 2-component of 𝐶𝐶 (𝑦) is a component of 𝐶𝐶 (𝑦).
Instead of using [25, Theorem 3.5], the lemma could be proved directly by using Corollary 3.47 (i)

and the results of Section 6. �

Proposition 7.17. K is isomorphic to a quotient of 𝑆𝐿𝜀𝑛−2 (𝑞
∗) by a central subgroup of odd order.
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Proof. The proof is inspired from the proof of [31, Theorem 10.1].
For 𝑞∗ = 3, the proposition follows from Proposition 7.7. From now on, we assume that 𝑞∗ ≠ 3.
Set 𝐶 := 𝐶𝐺 (𝑡). Let E denote the subgroup of T consisting of all 𝑡𝐴, where 𝐴 ⊆ {1, . . . , 𝑛} has even

order. We assume 𝑚1, . . . , 𝑚ℓ , where ℓ := 𝑛 − 4, to be elements of K and 𝐸0 to be an 𝐸8-subgroup of E
with

𝐾 = 〈𝑂 (𝐾), 𝐿2′ (𝐶𝐾 (𝐸0)), 𝐿2′ (𝐶𝐾 (𝐸0))
𝑚1 , . . . , 𝐿2′ (𝐶𝐾 (𝐸0))

𝑚ℓ 〉.

Such elements 𝑚1, . . . , 𝑚ℓ and such a subgroup 𝐸0 exist by Lemma 7.14.
The proof will be accomplished step by step.

(1) Let f be an involution of 𝐸0. Then 𝐿2′ (𝐶𝐾 (𝐸0)) ≤ 𝐿2′ (𝐶𝐶 ( 𝑓 )).
As 𝐾 � 𝐶, we have 𝐶𝐾 (𝐸0) � 𝐶𝐶 (𝐸0). This implies 𝐿2′ (𝐶𝐾 (𝐸0)) ≤ 𝐿2′ (𝐶𝐶 (𝐸0)). By [31,

Theorem 3.1], we have 𝐿2′ (𝐶𝐶𝐶 ( 𝑓 ) (𝐸0)) ≤ 𝐿2′ (𝐶𝐶 ( 𝑓 )). Clearly, 𝐶𝐶𝐶 ( 𝑓 ) (𝐸0) = 𝐶𝐶 (𝐸0). It follows
that 𝐿2′ (𝐶𝐾 (𝐸0)) ≤ 𝐿2′ (𝐶𝐶 (𝐸0)) ≤ 𝐿2′ (𝐶𝐶 ( 𝑓 )).

(2) Let F be a Klein four subgroup of 𝐸0. Set 𝐷 := [𝐶𝑂 (𝐾 ) (𝐹), 𝐿2′ (𝐶𝐾 (𝐸0))]. Then 𝐷 = 1.
Clearly, 𝐿2′ (𝐶𝐾 (𝐸0)) normalizes 𝐶𝑂 (𝐾 ) (𝐹). Also, 𝑂2′ (𝐿2′ (𝐶𝐾 (𝐸0))) = 𝐿2′ (𝐶𝐾 (𝐸0)), and

𝐶𝑂 (𝐾 ) (𝐹) is a 2′-group. Applying [27, Proposition 4.3 (i)], we conclude that 𝐷 = [𝐷, 𝐿2′ (𝐶𝐾 (𝐸0))].
Now let f be an involution of F. We are going to show that 𝐷 ≤ 𝑂 (𝐶𝐺 ( 𝑓 )). Set 𝑀 := 𝐿2′ (𝐶𝐶 ( 𝑓 )).

By (1), 𝐿2′ (𝐶𝐾 (𝐸0)) ≤ 𝑀 . Also, 𝐷 ≤ 𝐶𝐶 (𝐹) ≤ 𝐶𝐶 ( 𝑓 ) and 𝑀 � 𝐶𝐶 ( 𝑓 ). It follows that 𝐷 =
[𝐷, 𝐿2′ (𝐶𝐾 (𝐸0))] ≤ [𝐶𝐶 ( 𝑓 ), 𝑀] ≤ 𝑀 .

Let 𝐶𝐺 ( 𝑓 ) := 𝐶𝐺 ( 𝑓 )/𝑂 (𝐶𝐺 ( 𝑓 )). By Corollary 2.2, 𝐶
𝐶𝐺 ( 𝑓 )

(𝑡) = 𝐶𝐶 ( 𝑓 ). As a consequence of
Proposition 2.4, 𝐿2′ (𝐶𝐶𝐺 ( 𝑓 )

(𝑡)) = 𝑀 . Lemma 7.16 implies that 𝑀 = 𝐿(𝐶
𝐶𝐺 ( 𝑓 )

(𝑡)). It easily follows
that 𝑂 (𝑀) is central in 𝑀 .

From the definition of D, it is clear that 𝐷 ≤ 𝑂 (𝐾). So we have 𝐷 ≤ 𝑀 ∩ 𝑂 (𝐾) ≤ 𝑂 (𝑀). It
follows that 𝐷 ≤ 𝑂 (𝑀) ≤ 𝑂 (𝑀) ≤ 𝑍 (𝑀). In particular, 𝐿2′ (𝐶𝐾 (𝐸0)) centralizes 𝐷. Thus, 𝐷 =
[𝐷, 𝐿2′ (𝐶𝐾 (𝐸0))] ≤ 𝑂 (𝐶𝐺 ( 𝑓 )).

Since f was arbitrarily chosen, it follows that 𝐷 ≤ Δ𝐺 (𝐹). By Lemmas 7.13 and 7.15, we have
Δ𝐺 (𝐹) = 1. Consequently, 𝐷 = 1, as wanted.

(3) 𝑂 (𝐾) ≤ 𝑍 (𝐾).
By [27, Proposition 11.23], we have

𝑂 (𝐾) = 〈𝐶𝑂 (𝐾 ) (𝐹) : 𝐹 ≤ 𝐸0, 𝑚(𝐹) = 2〉.

Because of (2), it follows that 𝑂 (𝐾) centralizes 𝐿2′ (𝐶𝐾 (𝐸0)). By choice of 𝐸0, we have

𝐾 = 〈𝑂 (𝐾), 𝐿2′ (𝐶𝐾 (𝐸0)), 𝐿2′ (𝐶𝐾 (𝐸0))
𝑚1 , . . . , 𝐿2′ (𝐶𝐾 (𝐸0))

𝑚ℓ 〉

for some 𝑚1, . . . , 𝑚ℓ ∈ 𝐾 . It follows that 𝐾 = 𝑂 (𝐾)𝐶𝐾 (𝑂 (𝐾)). Therefore,𝐶𝐾 (𝑂 (𝐾)) has odd index in
K. We have 𝑂2′ (𝐾) = 𝐾 since K is a 2-component of C. It follows that 𝐾 = 𝐶𝐾 (𝑂 (𝐾)). Consequently,
𝑂 (𝐾) ≤ 𝑍 (𝐾).

(4) Conclusion.
Applying [27, Lemma 4.11], we deduce from (3) that K is a component of C. Therefore, K is

quasisimple. We have

𝐾/𝑍 (𝐾) � (𝐾/𝑂 (𝐾))/𝑍 (𝐾/𝑂 (𝐾)) � 𝑃𝑆𝐿𝜀𝑛−2 (𝑞
∗).

Applying Lemmas 3.1 and 3.2, we conclude that 𝐾 � 𝑆𝐿𝜀𝑛−2 (𝑞
∗)/𝑍 for some central subgroup Z of

𝑆𝐿𝜀𝑛−2 (𝑞
∗). Using Proposition 3.19 or using the order formulas for |𝑆𝐿𝜀𝑛−2 (𝑞

∗) | and |𝑆𝐿𝑛−2 (𝑞) | given
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by [32, Proposition 1.1 and Corollary 11.29], we see that

|𝑆𝐿𝜀𝑛−2 (𝑞
∗) |2 = |𝑆𝐿𝑛−2 (𝑞) |2 = |𝑋1 | = |𝐾 |2 = |𝑆𝐿𝜀𝑛−2 (𝑞

∗)/𝑍 |2.

Thus, Z has odd order. �

Proposition 7.18. We have 𝐿 � 𝑆𝐿2 (𝑞
∗) and 𝐿 � 𝐶𝐺 (𝑡). Moreover, L is the only normal subgroup of

𝐶𝐺 (𝑡) which is isomorphic to 𝑆𝐿2 (𝑞
∗).

Proof. For 𝑞∗ = 3, this follows from Propositions 7.7 and 6.8.
Assume now that 𝑞∗ ≠ 3. Let𝐾 := 𝐾𝑂 (𝐶𝐺 (𝑡)). By the last statement in Proposition 2.4,𝐾 = 𝑂2′ (𝐾).

Let 𝑖 ∈ {1, 2}. Since 𝐴𝑖 is a 2-component of 𝐶𝐶𝐺 (𝑡) (𝑢), we have 𝐴𝑖 = 𝑂2′ (𝐴𝑖). Also, 𝐴𝑖 ≤ 𝐾 , and so
𝐴𝑖 ≤ 𝑂

2′ (𝐾) = 𝐾 . It follows that 𝐴𝑖 is a 2-component of 𝐶𝐾 (𝑢).
By Proposition 7.17, we have 𝐾 � 𝑆𝐿𝜀𝑛−2 (𝑞

∗)/𝑍 for some central subgroup Z of 𝑆𝐿𝜀𝑛−2 (𝑞
∗) with

odd order. It is easy to see that if m is a noncentral involution of 𝑆𝐿𝜀𝑛−2 (𝑞
∗)/𝑍 and J is a 2-component

of its centralizer in 𝑆𝐿𝜀𝑛−2 (𝑞
∗)/𝑍 , then 𝐽 � 𝑆𝐿𝜀𝑘 (𝑞

∗) for some 𝑘 ≥ 2. Since u is a noncentral involution
of K and 𝐴1/𝑂 (𝐴1) � 𝑆𝐿2 (𝑞

∗), it follows that 𝐴1 � 𝑆𝐿2 (𝑞
∗). By definition of L (see Proposition 6.8),

L is isomorphic to 𝐴1. So we have 𝐿 � 𝑆𝐿2 (𝑞
∗).

Let 𝐿0 be the 2-component of 𝐶𝐺 (𝑡) associated to 𝐿𝑂 (𝐶𝐺 (𝑡))/𝑂 (𝐶𝐺 (𝑡)). By [37, 6.5.2], we have
[𝐿0, 𝐾] = 1. Hence, 𝐿0 ≤ 𝐶𝐶𝐺 (𝑡) (𝑢). So 𝐿0 is a 2-component of 𝐶𝐶𝐺 (𝑡) (𝑢). Clearly, 𝐴1 ≠ 𝐿0 ≠ 𝐴2.
Lemma 7.10 implies that 𝐿0 = 𝐿. From Proposition 6.8 (iii), we see that 𝐿 = 𝐿0 � 𝐶𝐺 (𝑡).

Proposition 6.8 (iii) also shows that K and L are the only 2-components of 𝐶𝐺 (𝑡). So L is the only
normal subgroup of 𝐶𝐺 (𝑡) isomorphic to 𝑆𝐿2 (𝑞

∗). �

8. The subgroup 𝐺0

Let A be a subset of {1, . . . , 𝑛} with order 2. Then 𝑡𝐴 is G-conjugate to t. Proposition 7.18 implies that
𝐶𝐺 (𝑡𝐴) has a unique normal subgroup isomorphic to 𝑆𝐿2 (𝑞

∗). We denote this subgroup by 𝐿𝐴, and we
define 𝐺0 to be the subgroup of G generated by the groups 𝐿𝐴, where 𝐴 = {𝑖, 𝑖 + 1} for some 1 ≤ 𝑖 < 𝑛.
We are going to prove that 𝐺0 � 𝐺 and that 𝐺0 is isomorphic to a nontrivial quotient of 𝑆𝐿𝜀𝑛 (𝑞∗). This
will complete the proof of Theorem 5.2.

By Proposition 7.17, K is isomorphic to a quotient of 𝑆𝐿𝜀𝑛−2 (𝑞
∗) by a central subgroup of odd order.

By the proof of Proposition 7.18, 𝐴1 and 𝐴2 are 2-components of 𝐶𝐾 (𝑢) if 𝑞∗ ≠ 3.

Lemma 8.1. Let 𝑍 ≤ 𝑍 (𝑆𝐿𝜀𝑛−2 (𝑞
∗)) with 𝐾 � 𝐻 := 𝑆𝐿𝜀𝑛−2 (𝑞

∗)/𝑍 . Let 𝐻1 be the image of{(
𝐴
𝐼𝑛−4

)
: 𝐴 ∈ 𝑆𝐿𝜀2 (𝑞

∗)

}
in H and 𝐻2 the image of {(

𝐼2
𝐴

)
: 𝐴 ∈ 𝑆𝐿𝜀𝑛−4 (𝑞

∗)

}
in H. Then there is a group isomorphism 𝜑 : 𝐾 → 𝐻 which maps 𝐴1 to 𝐻1 and 𝐴2 to 𝐻2.

Proof. For 𝑞∗ = 3, this follows from Proposition 7.7 and Lemma 6.4 (iii).
Assume now that 𝑞∗ ≠ 3. Let 𝜑 : 𝐾 → 𝐻 be a group isomorphism. For each even natural number k

with 2 ≤ 𝑘 < 𝑛 − 2, let ℎ𝑘 be the image of (
−𝐼𝑘

𝐼𝑛−2−𝑘

)
in H. Since Z has odd order by Proposition 7.17, we have that any involution of H is the image of
an involution of 𝑆𝐿𝜀𝑛−2 (𝑞

∗). Applying Lemmas 3.3 (i) and 3.4 (ii), we conclude that each noncentral
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involution of H is conjugate to ℎ𝑘 for some even 2 ≤ 𝑘 < 𝑛 − 2. As u is a noncentral involution of K,
we may assume that 𝑢𝜑 = ℎ𝑘 for some even 2 ≤ 𝑘 < 𝑛 − 2.

Let 𝐻1 be the image of {(
𝐴
𝐼𝑛−2−𝑘

)
: 𝐴 ∈ 𝑆𝐿𝜀𝑘 (𝑞

∗)

}
in H and 𝐻2 be the image of {(

𝐼𝑘
𝐴

)
: 𝐴 ∈ 𝑆𝐿𝜀𝑛−2−𝑘 (𝑞

∗)

}
in H. The 2-components of𝐶𝐻 (ℎ𝑘 ) are precisely the quasisimple members of {𝐻1, 𝐻2}. Also, ℎ𝑘 ∈ 𝐻1,
but ℎ𝑘 ∉ 𝐻2. On the other hand, 𝐴1 and 𝐴2 are the 2-components of 𝐶𝐾 (𝑢), and we have 𝑢 ∈ 𝐴1. This
implies (𝐴1)

𝜑 = 𝐻1 and (𝐴2)
𝜑 = 𝐻2. Since 𝐴1 � 𝐿 � 𝑆𝐿2 (𝑞

∗), we have 𝑘 = 2, and hence, 𝐻1 = 𝐻1
and 𝐻2 = 𝐻2. �

Lemma 8.2. Let 1 ≤ 𝑖 < 𝑗 < 𝑛. Set 𝐴 := {𝑖, 𝑖 + 1} and 𝐵 := { 𝑗 , 𝑗 + 1}. Then:

(i) If 𝑖 + 1 < 𝑗 , then [𝐿𝐴, 𝐿𝐵] = 1.
(ii) Suppose that 𝑗 = 𝑖 + 1. Then there is a group isomorphism from 〈𝐿𝐴, 𝐿𝐵〉 to 𝑆𝐿𝜀3 (𝑞

∗) under which
𝐿𝐴 corresponds to the subgroup ⎧⎪⎪⎨⎪⎪⎩��	 𝑀

0
0

0 0 1


�� : 𝑀 ∈ 𝑆𝐿𝜀2 (𝑞
∗)

⎫⎪⎪⎬⎪⎪⎭
of 𝑆𝐿𝜀3 (𝑞

∗) and under which 𝐿𝐵 corresponds to the subgroup⎧⎪⎪⎨⎪⎪⎩��	
1 0 0
0
0 𝑀


�� : 𝑀 ∈ 𝑆𝐿𝜀2 (𝑞
∗)

⎫⎪⎪⎬⎪⎪⎭
of 𝑆𝐿𝜀3 (𝑞

∗).
(iii) Suppose that 1 ≤ 𝑖 ≤ 𝑛−3 and that 𝑗 = 𝑖 +1. Set 𝑘 := 𝑖 +2 and𝐶 := {𝑘, 𝑘 +1}. Then 〈𝐿𝐴, 𝐿𝐵, 𝐿𝐶〉

is isomorphic to 𝑆𝐿𝜀4 (𝑞
∗).

Proof. To prove (i), (ii) and (iii), we first introduce some notation and make some preliminary obser-
vations. Let H, 𝐻1, 𝐻2 and 𝜑 be as in Lemma 8.1. For each 𝐷 ⊆ {1, . . . , 𝑛 − 2} of even order, let ℎ𝐷
be the image of the matrix diag(𝑑1, . . . , 𝑑𝑛−2) ∈ 𝑆𝐿

𝜀
𝑛−2 (𝑞

∗) in H, where 𝑑ℓ = −1 if ℓ ∈ 𝐷 and 𝑑ℓ = 1
if ℓ ∈ {1, . . . , 𝑛 − 2} \ 𝐷. We have 𝑢𝜑 = ℎ{1,2} as u and ℎ{1,2} are the unique involutions of 𝐴1 and
𝐻1 = (𝐴1)

𝜑 , respectively.
Let J be the subgroup of H consisting of all ℎ𝐷 , where 𝐷 ⊆ {1, . . . , 𝑛− 2} has even order, and let 𝐸1

denote the subgroup of 𝑋1 consisting of all 𝑡𝐷 , where 𝐷 ⊆ {1, . . . , 𝑛 − 2} has even order. Then (𝐸1)
𝜑

is an elementary abelian 2-subgroup of H of rank 𝑛 − 3. As a consequence of Lemma 3.22, there is an
element ℎ ∈ 𝐻 such that (𝐸 𝜑1 )

ℎ = 𝐽. Then (ℎ{1,2})
ℎ = (𝑢𝜑)ℎ ∈ (𝐸

𝜑
1 )
ℎ = 𝐽. Lemma 3.23 (i) shows

that (ℎ{1,2})ℎ is 𝑁𝐻 (𝐽)-conjugate to ℎ{1,2}. Therefore, we can assume that h centralizes ℎ{1,2}. Then
(𝐻1)

ℎ = 𝐻1 and (𝐻2)
ℎ = 𝐻2. Upon replacing 𝜑 by 𝜑𝑐ℎ , we may thus assume that (𝐸1)

𝜑 = 𝐽.
We have𝐶𝐻 (ℎ{1,2})

′ = 𝐻1×𝐻2, and𝐻1 � 𝑆𝐿𝜀2 (𝑞
∗) and𝐻2 � 𝑆𝐿𝜀𝑛−4 (𝑞

∗) are indecomposable. Also,
(|𝐻1/𝐻

′
1 |, |𝑍 (𝐻2) |) = 1 = (|𝐻2/𝐻

′
2 |, |𝑍 (𝐻1) |). So, by a consequence of the Krull–Remark–Schmidt

theorem [35, Kapitel I, Satz 12.6], 𝐶𝐻 (ℎ{1,2})
′ = 𝐻1 × 𝐻2 is the only decomposition of 𝐶𝐻 (ℎ{1,2})

′

into a direct product of indecomposable groups. This implies that 𝐻1 is the only normal subgroup of
𝐶𝐻 (ℎ{1,2}) which contains ℎ{1,2} and is isomorphic to 𝑆𝐿𝜀2 (𝑞

∗). For each 𝐷 ⊆ {1, . . . , 𝑛 − 2} of order
2, ℎ𝐷 and ℎ{1,2} are conjugate, and so 𝐶𝐻 (ℎ𝐷) has a unique normal subgroup 𝐻𝐷 with ℎ𝐷 ∈ 𝐻𝐷 and

https://doi.org/10.1017/fms.2022.53 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.53


74 Julian Kaspczyk

𝐻𝐷 � 𝑆𝐿𝜀2 (𝑞
∗). Note that the groups 𝐻{1,2}, 𝐻{2,3}, . . . , 𝐻{𝑛−3,𝑛−2} are the 𝑆𝐿𝜀2 (𝑞

∗)-subgroups of H
corresponding to the 2 × 2-blocks along the main diagonal.

Now let 𝐷0 ⊆ {1, . . . , 𝑛 − 2} with order 2. Then (𝑡𝐷0)
𝜑 ∈ (𝐸1)

𝜑 = 𝐽, and (𝑡𝐷0)
𝜑 is conjugate to

𝑢𝜑 = ℎ{1,2}. Thus, (𝑡𝐷0 )
𝜑 = ℎ𝐷 for some 𝐷 ⊆ {1, . . . , 𝑛 − 2} of order 2. We claim that 𝐿𝐷0 ≤ 𝐾 and

(𝐿𝐷0 )
𝜑 = 𝐻𝐷 . To see this, let 𝑘 ∈ 𝐾 with 𝑡𝐷0 = 𝑢𝑘 = (𝑡 {1,2})

𝑘 . Then 𝐿𝐷0 = (𝐿 {1,2})
𝑘 = (𝐴1)

𝑘 ≤ 𝐾 ,
where the last equality follows from the definition of L (see Proposition 6.8) and the definition of
𝐿 {1,2}. Since 𝐿𝐷0 � 𝐶𝐾 (𝑡𝐷0), 𝐿𝐷0 � 𝑆𝐿𝜀2 (𝑞

∗) and 𝑡𝐷0 ∈ 𝐿𝐷0 , the previous paragraph implies that
(𝐿𝐷0 )

𝜑 = 𝐻𝐷 , as claimed.
We are now ready to prove (i), (ii) and (iii). To prove (i), suppose that 𝑖 + 1 < 𝑗 . As F𝑆 (𝐺) =

F𝑆 (𝑃𝑆𝐿𝑛 (𝑞)), we see from Lemma 3.23 (i) that there is some 𝑔 ∈ 𝐺 with (𝑡𝐴)
𝑔 = 𝑡 {1,2} and (𝑡𝐵)

𝑔 =
𝑡 {3,4}. As [𝐿𝐴, 𝐿𝐵]

𝑔 = [(𝐿𝐴)
𝑔, (𝐿𝐵)

𝑔] = [𝐿 {1,2}, 𝐿 {3,4}], we may assume that 𝐴 = {1, 2} and 𝐵 =
{3, 4}. Then (𝐿𝐴)

𝜑 = (𝐴1)
𝜑 = 𝐻1. Also, (𝑡𝐵)

𝜑 ∈ (𝐴2)
𝜑 = 𝐻2, and so (𝑡𝐵)

𝜑 = ℎ𝐷 for some
𝐷 ⊆ {3, 4, . . . , 𝑛 − 2} with |𝐷 | = 2. By the previous paragraph, [𝐿𝐴, 𝐿𝐵]

𝜑 = [(𝐿𝐴)
𝜑 , (𝐿𝐵)

𝜑] =
[𝐻1, 𝐻𝐷] = 1, and so [𝐿𝐴, 𝐿𝐵] = 1, whence (i) holds.

Assume now that 𝑗 = 𝑖 + 1. As F𝑆 (𝐺) = F𝑆 (𝑃𝑆𝐿𝑛 (𝑞)), we see from Lemma 3.23 (i) that there is
some 𝑔 ∈ 𝐺 with (𝑡𝐴)

𝑔 = 𝑡 {1,2} and (𝑡𝐵)
𝑔 = 𝑡 {2,3}. As 〈𝐿𝐴, 𝐿𝐵〉𝑔 = 〈(𝐿𝐴)

𝑔, (𝐿𝐵)
𝑔〉 = 〈𝐿 {1,2}, 𝐿 {2,3}〉,

we may assume that 𝐴 = {1, 2} and 𝐵 = {2, 3}. Let 𝐷 ⊆ {1, . . . , 𝑛 − 2} with (𝑡𝐵)
𝜑 = ℎ𝐷 . We have

|𝐷 | = 2 by paragraph four and ℎ𝐷 ∉ (𝐻1 ∪ 𝐻2) since 𝑡𝐵 ∉ (𝐴1 ∪ 𝐴2). Thus, 𝐷 = {𝑘, ℓ} for some
𝑘 ∈ {1, 2} and some ℓ ∈ {3, 4, . . . , 𝑛 − 2}. Because of Lemma 3.23 (i), we may assume that 𝑘 = 2 and
ℓ = 3. Since (𝐿𝐴)

𝜑 = 𝐻1 = 𝐻{1,2} and (𝐿𝐵)
𝜑 = 𝐻{2,3}, we have proved (ii).

Assume now that the hypotheses of (iii) are satisfied. Arguing as in the proof of (ii), we may assume
that 𝐴 = {1, 2}, 𝐵 = {2, 3}, 𝐶 = {3, 4} and (𝑡𝐵)

𝜑 = ℎ{2,3}. Let 𝐷 ⊆ {1, . . . , 𝑛−2} with (𝑡𝐶 )
𝜑 = ℎ𝐷 . By

paragraph four, we have |𝐷 | = 2. Also, ℎ𝐷 ∈ (𝐴2)
𝜑 = 𝐻2, so 𝐷∩{1, 2} = ∅. We claim that 𝐷∩{2, 3} =

{3}. Assume not. Then 𝐷 ∩ {1, 2, 3} = ∅, and Lemma 3.23 (i) shows that there is an element of 𝑁𝐻 (𝐽)
which interchanges ℎ{1,2} and ℎ{2,3} and fixes ℎ𝐷 . So there is an element of 𝑁𝐾 (𝐸1) which interchanges
u and 𝑡 {2,3} and fixes 𝑡 {3,4}. Having in mind that F𝑆 (𝐺) = F𝑆 (𝑃𝑆𝐿𝑛 (𝑞)), we see from Lemma 3.23 (ii)
that 𝑁𝐾 (𝐸1) has no such element. This contradiction shows that 𝐷 ∩ {2, 3} = {3}. By Lemma 3.23 (i),
we may assume that 𝐷 = {3, 4}. Now 〈𝐿𝐴, 𝐿𝐵, 𝐿𝐶〉

𝜑 = 〈𝐻{1,2}, 𝐻{2,3}, 𝐻{3,4}〉 � 𝑆𝐿𝜀4 (𝑞
∗), and the

proof of (iii) is complete. �

Proposition 8.3. 𝐺0 is isomorphic to a nontrivial quotient of 𝑆𝐿𝜀𝑛 (𝑞∗).

Proof. Assume that 𝜀 = +. By Lemma 8.2, the groups 𝐿 {1,2}, . . . , 𝐿 {𝑛−1,𝑛} form a weak Curtis–Tits
system in G of type 𝑆𝐿𝑛 (𝑞∗) (in the sense of [29, p. 9]). Applying a version of the Curtis–Tits theorem,
namely [29, Chapter 13, Theorem 1.4], we conclude that 𝐺0 is isomorphic to a quotient of 𝑆𝐿𝑛 (𝑞∗).

Assume now that 𝜀 = −. Then Lemma 8.2 shows that 𝐺0 has a weak Phan system of rank 𝑛 − 1 over
F𝑞∗2 (in the sense of [13, p. 288]). If 𝑞∗ ≠ 3, then [13, Theorem 1.2] implies that 𝐺0 is isomorphic to a
quotient of 𝑆𝑈𝑛 (𝑞∗). If 𝑞∗ = 3, the same follows from [13, Theorem 1.3] and Lemma 8.2 (iii). �

Lemma 8.4. Let R be a Sylow 2-subgroup of 𝐺0. Then 𝑅 ∈ Syl2 (𝐺) and F𝑅 (𝐺0) = F𝑅 (𝐺).

Proof. Since 𝑞 ∼ 𝜀𝑞∗, we have that the 2-fusion system of 𝑃𝑆𝐿𝜀𝑛 (𝑞∗) is isomorphic to the 2-fusion
system of 𝑃𝑆𝐿𝑛 (𝑞) (see Proposition 3.20). Clearly, 𝐺0/𝑍 (𝐺0) � 𝑃𝑆𝐿𝜀𝑛 (𝑞

∗). So the 2-fusion system of
𝐺0/𝑍 (𝐺0) is isomorphic to the 2-fusion system of G. It easily follows that |𝐺0 |2 = |𝐺0/𝑍 (𝐺0) |2 = |𝐺 |2,
and Lemma 2.11 shows that the 2-fusion system of 𝐺0 is isomorphic to that of 𝐺0/𝑍 (𝐺0) and hence to
that of G. This completes the proof. �

Lemma 8.5. The following hold.

(i) If 𝑞∗ ≠ 3, then 𝑂2′ (𝑂2 (𝐶𝐺 (𝑡))) = 𝐾𝐿.
(ii) If 𝑞∗ = 3, then 𝑂2(𝐶𝐺 (𝑡)) = 𝐾𝐿.

Proof. Set 𝐶 := 𝐶𝐺 (𝑡).
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Assume that 𝑞∗ ≠ 3. Then 𝐾𝐿 is perfect. This implies that 𝐾𝐿 = 𝑂2′ (𝑂2 (𝐾𝐿)) ≤ 𝑂2′ (𝑂2 (𝐶)).
Since 𝑇 ∩𝐾𝐿 = (𝑇 ∩𝐾) (𝑇 ∩𝐿) = 𝑋1𝑋2, Lemmas 5.4 and 2.11 show that𝐶/𝐾𝐿 has a nilpotent 2-fusion
system. So 𝐶/𝐾𝐿 is 2-nilpotent by [39, Theorem 1.4]. This implies 𝑂2′ (𝑂2(𝐶)) ≤ 𝐾𝐿.

We assume now that 𝑞∗ = 3. Then 𝐾𝐿 = 𝑂2(𝐾𝐿) since K is perfect and 𝐿 � 𝑆𝐿2 (3). Thus,
𝐾𝐿 ≤ 𝑂2(𝐶). In order to prove equality, it suffices to show that 𝐶/𝐾𝐿 is a 2-group. By Proposition 7.7
and Lemma 6.3 (i), 𝐶/𝐾𝐶𝐶 (𝐾) is a 2-group. By [37, 6.5.2], we have 𝐿 ≤ 𝐶𝐶 (𝐾). It is enough to show
that 𝐶𝐶 (𝐾)/𝐿 is a 2-group.

We have 𝑂2(𝐶𝐶 (𝐾)) ∩ 𝑇 ≤ 𝑂2 (𝐶𝐶 (𝑋1)) ∩ 𝑇 = 𝑋2 by Lemma 5.6 and the hyperfocal subgroup
theorem [18, Theorem 1.33]. On the other hand, 𝑋2 ≤ 𝐿 = 𝑂2(𝐿) ≤ 𝑂2(𝐶𝐶 (𝐾)). Consequently,
𝑋2 = 𝑂2(𝐶𝐶 (𝐾)) ∩ 𝑇 ∈ Syl2(𝑂2 (𝐶𝐶 (𝐾))). Set 𝑈 := 𝐶𝑂2 (𝐶𝐶 (𝐾 )) (𝑋2). We have 𝑋2 � 𝐶 since 𝑋2 is
the unique Sylow 2-subgroup of 𝐿 � 𝑆𝐿2 (3). So we have 𝑈 � 𝐶. Hence, 𝑍 (𝑋2) = 𝑋2 ∩𝑈 ∈ Syl2(𝑈).
Applying [37, 7.2.2], we conclude that U is 2-nilpotent. We have 𝑂 (𝑈) = 1 since𝑈 � 𝐶 and 𝑂 (𝐶) = 1
by Proposition 7.7. It follows that𝑈 = 𝑍 (𝑋2).

Clearly,𝑂2(𝐶𝐶 (𝐾))/𝑈 is isomorphic to a subgroup of Aut(𝑋2). We have |𝑂2 (𝐶𝐶 (𝐾))/𝑈 |2 = 4 since
𝑄8 � 𝑋2 ∈ Syl2(𝑂2 (𝐶𝐶 (𝐾))) and 𝑈 = 𝑍 (𝑋2). Also, |𝑂2 (𝐶𝐶 (𝐾))/𝑈 | ≥ 12 since 𝐿 ≤ 𝑂2 (𝐶𝐶 (𝐾)).
As Aut(𝑋2) � Aut(𝑄8) � 𝑆4 by [37, 5.3.3], it follows that |𝑂2 (𝐶𝐶 (𝐾))/𝑈 | = 12. This implies
𝑂2 (𝐶𝐶 (𝐾)) = 𝐿. So 𝐶𝐶 (𝐾)/𝐿 is a 2-group, as required. �

Lemma 8.6. We have 𝐾𝐿 ≤ 𝐺0.
Proof. We have 𝑡 ∈ 𝑋2 ≤ 𝐿 = 𝐿 {𝑛−1,𝑛} ≤ 𝐺0. Let 𝑅 ∈ Syl2 (𝐺0) with 𝑡 ∈ 𝑅 such that 〈𝑡〉 is fully
centralized in G := F𝑅 (𝐺0). By Lemma 8.4, 𝑅 ∈ Syl2 (𝐺) and G = F𝑅 (𝐺). Therefore, 𝐶𝑅 (𝑡) ∈

Syl2(𝐶𝐺 (𝑡)) and 𝐶G (〈𝑡〉) = F𝐶𝑅 (𝑡) (𝐶𝐺 (𝑡)). Also, 𝑇 = 𝐶𝑆 (𝑡) ∈ Syl2(𝐶𝐺 (𝑡)) and 𝐶F𝑆 (𝐺) (〈𝑡〉) =
F𝑇 (𝐶𝐺 (𝑡)). So, by Lemma 5.3,𝐶G (〈𝑡〉) has a component isomorphic to the 2-fusion system of 𝑆𝐿𝑛−2 (𝑞).

Let 𝑍 ≤ 𝑍 (𝑆𝐿𝜀𝑛 (𝑞
∗)) with 𝐺0 � 𝑆𝐿𝜀𝑛 (𝑞

∗)/𝑍 . By the proof of Lemma 8.4, 𝑍 (𝐺0) has odd order.
Let �̃� be an element of 𝑆𝐿𝜀𝑛 (𝑞∗) such that 𝑥 := �̃�𝑍 is an involution of 𝑆𝐿𝜀𝑛 (𝑞∗)/𝑍 . Set 𝐶 :=

𝐶𝑆𝐿𝜀
𝑛 (𝑞∗)/𝑍 (𝑥). Noticing that the 2-components of C are precisely the images of the 2-components of

𝐶𝑆𝐿𝜀
𝑛 (𝑞∗) (�̃�) in 𝑆𝐿𝜀𝑛 (𝑞∗)/𝑍 , one can see from Lemmas 3.3 and 3.4 that one of the following holds:

(1) 𝑞∗ ≠ 3, 𝑂2′ (𝑂2(𝐶)) = 𝐾0𝐿0, where 𝐾0 and 𝐿0 are subnormal subgroups of C such that 𝐾0 �
𝑆𝐿𝜀𝑛−𝑖 (𝑞

∗) and 𝐿0 � 𝑆𝐿𝜀𝑖 (𝑞
∗) for some 1 ≤ 𝑖 < 𝑛. Moreover, the 2-components of C are precisely

the quasisimple members of {𝐾0, 𝐿0}.
(2) 𝑞∗ = 3, 𝑂2(𝐶) = 𝐾0𝐿0, where 𝐾0 and 𝐿0 are subnormal subgroups of C such that 𝐾0 � 𝑆𝐿𝜀𝑛−𝑖 (𝑞

∗)

and 𝐿0 � 𝑆𝐿𝜀𝑖 (𝑞
∗) for some 1 ≤ 𝑖 < 𝑛. Moreover, the 2-components of C are precisely the

quasisimple members of {𝐾0, 𝐿0}.
(3) C has precisely one 2-component, and this 2-component is isomorphic to a nontrivial quotient of

𝑆𝐿𝑛/2 ((𝑞
∗)2).

As seen above, 𝐶G (〈𝑡〉) = F𝐶𝑅 (𝑡) (𝐶𝐺0 (𝑡)) has a component isomorphic to the 2-fusion system of
𝑆𝐿𝑛−2 (𝑞). By Proposition 2.17, this component is induced by a 2-component of 𝐶𝐺0 (𝑡). In view of the
preceding observations, we can conclude that 𝐶𝐺0 (𝑡) has subgroups 𝐾0 and 𝐿0 with 𝐾0 � 𝑆𝐿𝜀𝑛−2 (𝑞

∗)

and 𝐿0 � 𝑆𝐿2 (𝑞
∗) such that 𝑂2′ (𝑂2 (𝐶𝐺0 (𝑡))) = 𝐾0𝐿0 if 𝑞∗ ≠ 3 and 𝑂2(𝐶𝐺0 (𝑡)) = 𝐾0𝐿0 if 𝑞∗ = 3.

Clearly, 𝑂2′ (𝑂2(𝐶𝐺0 (𝑡))) ≤ 𝑂2′ (𝑂2(𝐶𝐺 (𝑡))) and 𝑂2 (𝐶𝐺0 (𝑡)) ≤ 𝑂2(𝐶𝐺 (𝑡)). Lemma 8.5 implies
that 𝐾0𝐿0 ≤ 𝐾𝐿. If n is odd, then it is easy to see that |𝐾0𝐿0 | = |𝐾0 | |𝐿0 | ≥ |𝐾 | |𝐿 | = |𝐾𝐿 |. If n is even,
then one can easily see that |𝐾0𝐿0 | = 1

2 |𝐾0 | |𝐿0 | ≥
1
2 |𝐾 | |𝐿 | = |𝐾𝐿 |. Consequently, 𝐾0𝐿0 ≤ 𝐾𝐿 and

|𝐾0𝐿0 | ≥ |𝐾𝐿 |. It follows that 𝐾𝐿 = 𝐾0𝐿0 ≤ 𝐺0. �

Corollary 8.7. Let x be an involution of 𝐺0 which is G-conjugate to t. Let 𝐿0 be the unique normal
𝑆𝐿2 (𝑞

∗)-subgroup of 𝐶𝐺 (𝑥), and let 𝐾0 be the component of 𝐶𝐺 (𝑥) different from 𝐿0. Then we have
𝐾0𝐿0 ≤ 𝐺0.
Proof. Since 𝑡 ∈ 𝐺0, we see from Lemma 8.4 that there is some 𝑔 ∈ 𝐺0 with 𝑥 = 𝑡𝑔. Clearly,
(𝐾0𝐿0) = (𝐾𝐿)𝑔, and so 𝐾0𝐿0 ≤ 𝐺0 by Lemma 8.6. �

Lemma 8.8. We have 𝑁𝐺 (𝑆) ≤ 𝑁𝐺 (𝐺0).
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Proof. Set 𝑀 := 𝑁𝐺 (𝐺0). Let 𝑠 ∈ 𝑁𝑆 (𝑆 ∩ 𝑀), and let 1 ≤ 𝑖 ≤ 𝑛 − 1. We have 𝑡 {𝑖,𝑖+1} ∈ 𝑆 ∩ 𝐿 {𝑖,𝑖+1} ≤
𝑆∩𝐺0 ≤ 𝑆∩𝑀 , and hence, (𝑡 {𝑖,𝑖+1})

𝑠 ∈ 𝑆∩𝑀 ≤ 𝑀 . Since𝐺0 has odd index in M by Lemma 8.4, we even
have (𝑡 {𝑖,𝑖+1})

𝑠 ∈ 𝐺0. Corollary 8.7 implies that (𝐿 {𝑖,𝑖+1})
𝑠 ≤ 𝐺0. So we have 𝑠 ∈ 𝑀 by the definition

of𝐺0. Thus, 𝑁𝑆 (𝑆∩𝑀) = 𝑆∩𝑀 and hence 𝑆 ≤ 𝑀 . We have𝐶𝐺 (𝑆) ≤ 𝐶𝐺 (𝑡 {𝑖,𝑖+1}) ≤ 𝑁𝐺 (𝐿 {𝑖,𝑖+1}) for
all 1 ≤ 𝑖 ≤ 𝑛−1. Thus,𝐶𝐺 (𝑆) ≤ 𝑀 . Using Lemma 3.24, we conclude that 𝑁𝐺 (𝑆) = 𝑆𝐶𝐺 (𝑆) ≤ 𝑀 . �

Lemma 8.9. If x is an involution of S, then 𝐶𝐺 (𝑥) ≤ 𝑁𝐺 (𝐺0).

Proof. Set 𝑀 := 𝑁𝐺 (𝐺0).
We begin by proving that 𝐶𝐺 (𝑡) ≤ 𝑀 . We have 𝐾 ≤ 𝐺0 ≤ 𝑀 by Lemma 8.6 and 𝐶𝐺 (𝑡) =

𝐾𝑁𝐶𝐺 (𝑡) (𝑋1) by the Frattini argument. Also, 𝑁𝐶𝐺 (𝑡) (𝑋1) = 𝑇𝐶𝐶𝐺 (𝑡) (𝑋1) as a consequence of Lemma
5.7, and 𝑇 ≤ 𝑀 by Lemma 8.8. So it suffices to show that 𝐶𝐶𝐺 (𝑡) (𝑋1) ≤ 𝑀 .

Let 𝑧 ∈ 𝐶𝐶𝐺 (𝑡) (𝑋1). In order to prove 𝑧 ∈ 𝑀 , it is enough to show that (𝐿 {𝑖,𝑖+1})
𝑧 ≤ 𝐺0 for all

1 ≤ 𝑖 < 𝑛. If 1 ≤ 𝑖 < 𝑛 and 𝑖 ≠ 𝑛 − 2, we have 𝑧 ∈ 𝐶𝐺 (𝑡 {𝑖,𝑖+1}) and hence (𝐿 {𝑖,𝑖+1})
𝑧 = 𝐿 {𝑖,𝑖+1} ≤ 𝐺0.

It remains to show that (𝐿 {𝑛−2,𝑛−1})
𝑧 ≤ 𝐺0. Since F𝑆 (𝐺) = F𝑆 (𝑃𝑆𝐿𝑛 (𝑞)), there is some 𝑔 ∈ 𝐺 with

𝑡𝑔 = 𝑢, 𝑢𝑔 = 𝑡 and (𝑡 {2,3})
𝑔 = 𝑡 {𝑛−2,𝑛−1} (see Lemma 3.23 (i)). From the definition of L (Proposition

6.8), we see that 𝐿 {1,2} = 𝐴1 ≤ 𝐾 . Since 𝑢 = 𝑡 {1,2} and 𝑡 {2,3} are K-conjugate by Lemma 3.23 (i), we
thus have 𝐿 {2,3} ≤ 𝐾 ≤ 𝐿2′ (𝐶𝐺 (𝑡)). Hence, 𝐿 {𝑛−2,𝑛−1} = (𝐿 {2,3})

𝑔 ≤ 𝐿2′ (𝐶𝐺 (𝑡))
𝑔 = 𝐿2′ (𝐶𝐺 (𝑢)).

Since z centralizes u, it follows that (𝐿 {𝑛−2,𝑛−1})
𝑧 ≤ 𝐿2′ (𝐶𝐺 (𝑢)). From Corollary 8.7, we see that

𝐿2′ (𝐶𝐺 (𝑢)) ≤ 𝐺0. So we have (𝐿 {𝑛−2,𝑛−1})
𝑧 ≤ 𝐺0, and it follows that𝐶𝐶𝐺 (𝑡) (𝑋1) ≤ 𝑀 . Consequently,

𝐶𝐺 (𝑡) ≤ 𝑀 .
Since 𝐺0 has odd index in M by Lemma 8.4, we see from Lemma 8.8 that 𝑆 ≤ 𝐺0. Also, F𝑆 (𝐺0) =

F𝑆 (𝐺) by Lemma 8.4. As 𝐶𝐺 (𝑡) ≤ 𝑀 , it follows that 𝐶𝐺 (𝑥) ≤ 𝑀 for any involution x of S which is
G-conjugate to t.

Assume now that x is an involution of S which is G-conjugate to 𝑡𝑖 for some even natural number
i with 4 ≤ 𝑖 < 𝑛 such that 𝑖 ≤ 𝑛

2 if n is even. We are going to show that 𝐶𝐺 (𝑥) ≤ 𝑀 . Arguing by
induction over i and using the preceding observations, we may assume that, for each even 2 ≤ 𝑗 < 𝑖 and
each involution y of S which is G-conjugate to 𝑡 𝑗 , we have 𝐶𝐺 (𝑦) ≤ 𝑀 . Furthermore, we may assume
that 〈𝑥〉 is fully F𝑆 (𝐺)-centralized since F𝑆 (𝐺) = F𝑆 (𝐺0).

As a consequence of Lemma 7.1, 𝐶𝐺 (𝑥) is generated by the normalizers 𝑁𝐶𝐺 (𝑥) (𝑈), where U is a
subgroup of 𝐶𝑆 (𝑥) containing a G-conjugate of 𝑡 𝑗 for some even 2 ≤ 𝑗 < 𝑖. We show that each such
normalizer is contained in M. Thus, let U be a subgroup of 𝐶𝑆 (𝑥), and let y be an element of U which is
G-conjugate to 𝑡 𝑗 for some even 2 ≤ 𝑗 < 𝑖. Also, let 𝑔 ∈ 𝑁𝐶𝐺 (𝑥) (𝑈). Then 𝑦𝑔 ∈ 𝑈 ≤ 𝐶𝑆 (𝑥) ≤ 𝑆. Since
F𝑆 (𝐺0) = F𝑆 (𝐺), we have that y and 𝑦𝑔 are𝐺0-conjugate. Hence, there is some 𝑚 ∈ 𝐺0 with 𝑦𝑔 = 𝑦𝑚.
We have 𝑚𝑔−1 ∈ 𝐶𝐺 (𝑦) ≤ 𝑀 . This implies 𝑔 ∈ 𝑀 since 𝑚 ∈ 𝐺0 ≤ 𝑀 . So we have 𝑁𝐶𝐺 (𝑥) (𝑈) ≤ 𝑀
and hence 𝐶𝐺 (𝑥) ≤ 𝑀 .

Assume now that x is an arbitrary involution of S. We are going to prove that 𝐶𝐺 (𝑥) ≤ 𝑀 . Since
F𝑆 (𝐺) = F𝑆 (𝐺0), we may assume that 〈𝑥〉 is fully F𝑆 (𝐺)-centralized. By Corollary 7.3, 𝐶𝐺 (𝑥) is
3-generated. Therefore, 𝐶𝐺 (𝑥) is generated by the normalizers 𝑁𝐶𝐺 (𝑥) (𝑈), where 𝑈 ≤ 𝐶𝑆 (𝑥) and
𝑚(𝑈) ≥ 3. Take some 𝑈 ≤ 𝐶𝑆 (𝑥) with 𝑚(𝑈) ≥ 3. By Lemma 2.3, any 𝐸8-subgroup of S has an
involution which is the image of an involution of 𝑆𝐿𝑛 (𝑞). It follows that U has an element y which is
G-conjugate to 𝑡𝑘 for some even 2 ≤ 𝑘 < 𝑛. By the preceding observations, 𝐶𝐺 (𝑦) ≤ 𝑀 . Arguing as
above, we can conclude that 𝑁𝐶𝐺 (𝑥) (𝑈) ≤ 𝑀 . It follows that 𝐶𝐺 (𝑥) ≤ 𝑀 . �

Proposition 8.10. We have 𝐺0 � 𝐺.

Proof. Suppose that 𝑀 := 𝑁𝐺 (𝐺0) is a proper subgroup of G. By [27, Proposition 17.11], we may
deduce from Lemmas 8.8 and 8.9 that M is strongly embedded in G. Therefore, by [50, Chapter 6, 4.4],
G has only one conjugacy class of involutions. On the other hand, we see from Proposition 3.5 that G has
at least two conjugacy classes of involutions. This contradiction shows that 𝑀 = 𝐺. Hence,𝐺0 � 𝐺. �

With Propositions 8.3 and 8.10, we have completed the proof of Theorem 5.2.
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9. Proofs of the main results

Proof of Theorem A. By Section 4, Theorem A is true for 𝑛 ≤ 5.
Suppose now that 𝑛 ≥ 6. Let q be a nontrivial odd prime power, and let G be a finite simple group

satisfying (CK).
Recall that a natural number 𝑘 ≥ 6 is said to satisfy 𝑃(𝑘) if whenever 𝑞0 is a nontrivial odd prime

power and H is a finite simple group satisfying (CK) and realizing the 2-fusion system of 𝑃𝑆𝐿𝑘 (𝑞0),
we have 𝐻 � 𝑃𝑆𝐿𝜀𝑘 (𝑞

∗) for some nontrivial odd prime power 𝑞∗ and some 𝜀 ∈ {+,−} with 𝜀𝑞∗ ∼ 𝑞0.
Theorem 5.2 shows that 𝑃(𝑘) is satisfied for all natural numbers 𝑘 ≥ 6.

Therefore, if the 2-fusion system of G is isomorphic to the 2-fusion system of 𝑃𝑆𝐿𝑛 (𝑞), then
condition (i) of Theorem A is satisfied.

Conversely, if one of the conditions (i), (ii), (iii) of Theorem A is satisfied, then this can only be
condition (i), and Proposition 3.20 implies that the 2-fusion system of G is isomorphic to the 2-fusion
system of 𝑃𝑆𝐿𝑛 (𝑞). �

Proof of Theorem B. Let q be a nontrivial odd prime power, and let 𝑛 ≥ 2 be a natural number, where
𝑞 ≡ 1 or 7 mod 8 if 𝑛 = 2. Let G be a finite simple group and 𝑆 ∈ Syl2(𝐺). Suppose that F𝑆 (𝐺) has a
normal subsystem E on a subgroup T of S such that E is isomorphic to the 2-fusion system of 𝑃𝑆𝐿𝑛 (𝑞)
and such that𝐶𝑆 (E) = 1. We have to show that F𝑆 (𝐺) is isomorphic to the 2-fusion system of 𝑃𝑆𝐿𝑛 (𝑞).

By Lemma 3.21, 𝑃𝑆𝐿𝑛 (𝑞) is not a Goldschmidt group. Applying [9, Theorem 5.6.18], we conclude
that E is simple. We see from [15, Theorem B] that E is tamely realized by some finite simple group of
Lie type K.

By Theorem A, we have𝐾 � 𝑃𝑆𝐿𝜀𝑛 (𝑞∗) for some nontrivial odd prime power 𝑞∗ and some 𝜀 ∈ {+,−}
with 𝜀𝑞∗ ∼ 𝑞.

By Propositions 3.40 and 3.42, we have that Out(𝐾) is 2-nilpotent. Now Proposition 2.20 implies
that F𝑆 (𝐺) is tamely realized by a subgroup L of Aut(𝐾) containing Inn(𝐾) such that the index of
Inn(𝐾) in L is odd. By Lemma 3.57, the 2-fusion system of L is isomorphic to the 2-fusion system of
Inn(𝐾) � 𝐾 and hence isomorphic to the 2-fusion system of 𝑃𝑆𝐿𝑛 (𝑞). So F𝑆 (𝐺) is isomorphic to the
2-fusion system of 𝑃𝑆𝐿𝑛 (𝑞). �

Proof of Corollary C. Let q be a nontrivial odd prime power, and let 𝑛 ≥ 2 be a natural number, where
𝑞 ≡ 1 or 7 mod 8 if 𝑛 = 2. Let G be a finite simple group, and let S be a Sylow 2-subgroup of G. Suppose
that 𝐹∗(F𝑆 (𝐺)) is isomorphic to the 2-fusion system of 𝑃𝑆𝐿𝑛 (𝑞).

We have 𝐹∗(F𝑆 (𝐺)) � F𝑆 (𝐺) and 𝐶𝑆 (𝐹∗(F𝑆 (𝐺))) = 𝑍 (𝐹∗(F𝑆 (𝐺))) = 1. So Theorem B implies
that F𝑆 (𝐺) is isomorphic to the 2-fusion system of 𝑃𝑆𝐿𝑛 (𝑞). �
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