ON THE EVALUATION OF SOME
EXPRESSIONS CONCERNING
THE PBIB DESIGNS

Robert Cléroux

1. Introduction and summary. Consider a two associate
class partially balanced incomplete block (PBIB) design [2]

with parameters of the first kind t, b, r, k, )\1, )\2, n1, n2

i .
and parameters of the second kind pjk’ i, j, k = 1,2. Let
the letters m, p, £, s represent treatments and define
i .th
A1 = class of i associates of treatment m, X\ = number
m mps
of times the treatments m, p and s all occur together in the

same block, )\mpﬂ S = number of times the treatments m, p, {

and s all occur together in the same block,

A

o1 {m,p,s,peA:n,seA:n,p%s},

>
I

1 1
04 {m,p,ﬂ,slpeAm,seAl,m#s,miw,p+£,p+5}»

A

i

1
05 {m,p,s,peAm, seAfn} .

The purpose of this paper is to give explicit expressions
for Z X\ , =\ and DI for some classes
A A
04 ™MPS A04 mp/f s 05 mps
of PBIB designs. These expressions are useful when one
studies the robustness of the F-test in these designs, as was

seen in [5], by the line of approach used by Rao [7] and Giri [6].

2. Singular group divisible designs. A two associate
class PBIB design is group divisible [3] if the number of
treatments is t = mn, so that treatments can be separated
into m groups of n, two treatments in the same group being
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first associates and two treatments belonging to different groups

being second associates. Clearly we have n, = n-1, n_ = n(m-1),
(1)_(11-2 0 )and(2)~(0 n-1 2
pjk "V 0 n(m-1) pjk " 'n-1 n(m-2)"

The design is singular if )\1 =r. We can prove the

following:

LEMMA 1. In any two associate class PBIB design of the
singular group divisible type, k = k¥*n where k% is an integer

The proof of this lemma is found in Clatworthy [4].

Note that the case k¥ =1 or )\2 = 0 is without any

interest since then the design is disconnected.

THEOREM 1. For any two associate class PBIB design
of the singular group divisible type, we have

' = = -1)(n-2).
G, xmps bk(n-1)(n-2)
01
(i) T = bk(n-1)(n-2)(n-3) + m(m-1)n°(n-1)>
A~ “mpss 2
04
(iii) Z 0\ = mnz(m 1)(n-1) 2
A mps 2
05
Proof. (i) Consider a point (m,p, s) ¢ AOi' Since
P e Arn’ treatments p and m belong to the same group.

Similarly s and m belong to the same group; then m, p and
s belong to the same group and are first associates by pairs.
Since )\1 = r treatments m and p occur together in r

blocks and similarly for m and s. Therefore treatments
m, p and s occur together in r blocks because treatment
m cannot occur~in more than r blocks., It follows that

= r. Moreover we have m(n) 3! = mn(n-1)(n-2)
mps 3
points in AO1' Therefore
DI = mn(n-1)(n-2)r = tr(n-1)(n-2) = bk(n-1)(n-2) .
A mps
01
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(ii) Define A64 and A84 to be the following sets of the

association scheme:

A64 = {(m,p,L, s) ¢ AO4|m and { belong to the same group}

A84 = {(m,p,L,s) e Ao4lm and { belong to different groups} .
Then A64 and A84 are disjoint sets, A04 = A64 + A'O'4 and
(2.1) A§4 )\mpﬂ s Abi %mpl s * Ab‘f )\mpf s .

Consider (m,p,!,s) ¢ A'O4. Then the four treatments are

first associates by pairs since they belong to the same group.

Since )\1 = r and since no treatment can occur more than r

times in the design, the four treatments must occur together
in r blocks, thatis, X\ = r. Moreover there are
mp/{ s

) 41 = mn(n-1)(n-2)(n-3) points in A64. Then

A'Z )\mpﬁs = mn(n-1)(n-2)(n-3)r = tr(n-1)(n-2)(n-3)

1]

bk(n-1)(n-2)(n-3).

Consider now a point (m,p, £, s) € A84. Treatments m

and p belong to the same group and treatments £ and s
belong to another group. Then treatments m and f, m and
s, £ and p and s and p are second associates. Since

)\1 = r all the treatments in the same group occur together

in r blocks. By lemma 1, if k% > 1 then k> n. Therefore
in all the blocks containing treatments m and p, one or
more other groups of treatments will occur. And among these
groups, the group containing treatments £ and s will occur
as many times with m and p as m and £ can occur

together, thatis X\, times. Then X\ = \,. Moreover
2 mpf s 2
n 2 2 2 . .
there are m(m-1) [(2) 2!]7 = m(m-1)n (n-1)" points in A84.
109
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Then

(2.3) DI = m(m-i)nz(n—i)2 x
An mpLs 2

04
Combining (2.1), (2.2) and (2.3) yields the desired result.

(iii) Consider (m,p, s) € AO5' Since )\1 = r, treatments

m and p occur together in r blocks. Any block containing m
will therefore also contain p, so that treatment s will occur
with m and p as many times as it can occur with m, that

2
is \. times, since se¢ A . Hence X\ =\.. Moreover
2 2 m mps 2
there are mn (m-1)(n-1) points in AOS; thus
2
Z 0\ = mn (m-1)(n-1) .. QED
A mps 2
05

3. Semi-regular group divisible designs. A two associate
class PBIB design is of the semi-regular group divisible type

k
[3] if it is group divisible and if A, < and X, = rT . The

parameters n, ,n j» k = 1, 2, are the same as in

1" 72" Py P
the preceeding section. Bose and Connor [1] prove the following:

LEMMA 2. In any two associate class PBIB design of the
semi-regular group divisible type, k is divisible by m.
Moreover, if k = cm, then each block contains c treatments
of each group.

We can now prove the following:

THEOREM 2. In any two associate class PBIB design of
the semi-regular group divisible type, we have

(i) AZ )\mps = bk(c-1)(c-2).
01

(ii) AZ )\mpﬂs = bk(c-1)[(c-2)(c-3) + c(m-1)(c-1)].
04

(iii) AZ )\mps = bkc(m-1)(c-1) .
05
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Proof. (i) Let (m,p,s) e A01 and write

th
1 if the i~ block contains treatments m, p and s

«Si(m,p, s) =

0 otherwise.

b b
Then )\ = 2 6. (m,p,s) and X N = Z Z &.(m,p,s).

mPS oy A mPSyogA 7
01 01
We are going to compute z 6i(m, p, s), the number of points
AOi

of A which occur in block i. By lemma 2, block i contains

¢ treatments of each group; and (m,p,s) ¢ if and only if

A01
m,p and s belong to the same group. Thus 6i(rn,p, s) will

take the value 1 in A01 as many times as we will find, in

block i, triplets belonging to the same group, thatis
m(;) 3! = mc(c-1)(c-2) = k(c-1)(c-2). And that is independent

of i. Hence ,Z 1\ = bk(c-1)(c-2).
A mps

01
. . . " .
(ii}) Define A04 and A04 as in theorem 1. Then
= = Z
AO4 )\mpls = A64 )\mpﬂs +A84 )\mpls . Write
1 if block i contains treatments m, p, £ and s
Si(m,p,l,S) =
0 otherwise.
b
Then X\ = X §,(m,p,,s) and
mp{ s . i
i=1
b b
(3.1) DI = X zZ & (m,p,L,s)+ X 2 6.(m,p,1L,s).
A mpls iy opr E i=1 AU
04 04 04

We have (m,p,£,s) e A64 if and only if treatments m, p, £

and s belong to the same group. Then 5i(m,p,l, s) will take
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the value 1 in A64 as many times as we will find in block i,
points belonging to the same group. By lemma 3, this number

is m(z)4'. = mc(c-1)(c-2)(c-3) = k(c-1)(c-2)(c-3).

Therefore X Si(m,p,ﬂ,s) = k(c-1)(c-2)(c-3) and

A'
04
b
(3.2) = ~ &.(m,p,2,s) = bk(c-1)(c-2)(c-3).
i=1 A' 7
04
For any point (m,p,£,s) e A" treatments m and p

04’
belong to one group and treatments f and s to another.

Therefore Bi(m,p,l, s) will take the value 1 in A84

times as we will find in block i, points with two coordinates
in one group and with the other two in another group. By

lemma 2, this number is (;n) 2! [(;) 2'.]2 = m(m-i)cz(c—ﬂ

as many

2

= kc(m—'l)(c—i)z.

Therefore Z &§.(m,p,L,s) = kc(rn—1)(c—1)2 and
All 1
04
b 2
(3.3) = 2 &6.(m,p,f,s) = bkc(m-1)(c-1)".
. "
i=1 A04

Finally (3.1), (3.2), and (3.3) yield the desired result.

(iii) Let (m,p,s) e A

b
Then ,Z = Z Z 6.(m,p,s). Butfor (m,p,s)e A
A5 TIPS oy Bgs
m and p belong to the same group and s to another group.

Therefore 6i(m,p,j) will take the value 1 in A

05 and & (m,p,s) be as defined in (i)
1

05’

as many times
05 y 0

as we will find in block i, triplets with two components belonging
to the same group and the other to another group. By lemma 2,
this number is
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(rzn) 2! (g) 2! ¢ = m(m-'l)cz(c-i) = kc(m-1)(c-1)

Hence

=
A05 6i(m,p,s) = kc(m-1)(c-1)

b
and > AE 6,(m,p,s) oz bkc(m_'l)(c_'l) QED.
. i
i=1 05
4. Simple designs. A two associate class PBIB design is
simple if )\1 =0 or >\2 = 0. The case )\1 =0 is a trivial

case. Although designs with )\2 = 0 can become
designs with )\1 = 0 by interchanging the names of the associate

classes, the following theorem is of practical importance.

THEOREM 3. In any two associate class PBIB designs

with )\2 = 0 we have
(i) AZ )\mps = bk(k-1)(k-2).
01
(ii) AZ xmpﬂs = bk(k-1)(k-2)(k-3) .
04
(iii) DINEN = 0.
A05 mps

The proof is similar to that of theorem 3.

5. Designs of other types. Formulas for 2\ R
AOi mps
DINEDN and X \ have not been obtained for the
A mp{ s A mps
04 05
following types of designs: regular group divisible, triangular,
latin square and cyclic. But designs of these types being at the
same time simple or having k = 2 are covered by the four
previous theorems. Itis also worth noting that the values
f Z , = d Z be obtained
o A01 )\mps AO4 xmpﬂ S an AOS )\mps can be obtaine
by enumeration although that is laborious and sometimes

practically impossible.
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