
J. Functional Programming 2 (3): 375-385, July 1992 © 1992 Cambridge University Press 375

FUNCTIONAL PEARLS

Unravelling greedy algorithms
RICHARD S. BIRD

Programming Research Group, Oxford University, UK

1 Introduction

In my previous Functional Pearls article (Bird, 1992), I proved a theorem giving
conditions under which an optimization problem could be implemented by a greedy
algorithm. A greedy algorithm is one that picks a 'best' element at each stage. Here,
we return to this theorem and extend it in various ways. We then use the theory to
solve an intriguing problem about unravelling sequences into a smallest number of
ascending subsequences.

2 The greedy theorem

We begin by restating the theorem of Bird (1992). Suppose FeA -^{[B]}+, so that for
each aeA the value Fa is a non-empty set of sequences over B. Suppose f— [\c/ • F,
where Ce[5]->N. By definition, the binary operator nc returns the smaller of its
arguments under some unspecified total ordering ^ c which respects C, i.e. x ^cy
implies Cx ^ Cy. Thus, fa is specified as some C-minimizing sequence in Fa. The
theorem is that, under the conditions on C and F cited below, we can find an ordering
< c for which / can be computed by a greedy algorithm

([] ifpa

fa = < [b] -H-f(a Q b) otherwise

^ where b = V\B/Ha.

The conditions on C and F are as follows. First of all, C is assumed to be a cost
function, meaning that C satisfies the two conditions

Cx = 0 = x = []

C(M-H-y)

for all u, x and y. In particular, the length function # is a cost function, as is any
function of the form + / • w * provided w returns non-negative numbers.

Second, F admits a decomposition (p, H, ©) in the sense that, for all a,

[]eFa = pa

([b]-ti-x)eFa = beHa AxeF(a Qb).

Equivalently, F is assumed to satisfy the equation

Fa = {[]\pa}\J{[b]-H-x\beHaAxeF(aeb)}.

https://doi.org/10.1017/S0956796800000459 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000459

376 R. S. Bird

Third, F and C satisfy a certain greedy condition. The condition is that there exists
an ordering ^ f l o n 5 with the property that, for all a with -<pa, if

([b]-ti-x)eFaAb* nB/Ha,

then there exists a c and y such that

([c] -H- y) £ Fa A c < B b A C([c] -H- y) ^ C([b] -H- x).

These are the conditions under which the greedy theorem holds. The proof of the
theorem is in (Bird (1992), and we will not repeat it here.

There are a number of simple variations to the greedy theorem. For instance, we
could phrase it as a maximization rather than minimization problem. Also, the first
greedy condition, assigning minimum cost to the empty sequence, is not an important
one. If we assigned maximum cost to the empty sequence, the result would be that /
could be computed by the scheme

•p]-H-/(ae&) if Ha+ {}

fa =• [] otherwise

where b = U B/Ha.

3 Right-reductions

Let us now look at two particular expressions for Ffor which a suitable decomposition
exists. Both expressions involve right-reductions.

For an operator (BeBxA^A and eeA, the right-reduction ©</ee[5] ->i is
defined informally by

Thus, © </• e = foldr(©)e in functional programming. A number of computational
problems can be specified as asking for some cost-minimizing sequence in the inverse
image of a right-reduction:

/ = n c / - I n v (e «/•«)• (1)

Here, Inv(/) is the inverse image of/, defined forfeX-+ Yby

I f / is surjective, then Inv (f)y is non-empty for all y. Setting F = Inv(© </• e), and
assuming © </• e is surjective, we have FeA^{[£]}+. Furthermore,

[]eFa

= {definition of F}

= {definition of </•}

a = e

https://doi.org/10.1017/S0956796800000459 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000459

Functional pearls 377

and {[b]-Vrx)eFa

= {definition F)

= {definition of *f-}

(3ceA:a = b®cAc = (®<J- e)x)

= {definition of F)

(3ceA:a = b®c A xeFc).

So we have

Fa = {[]\a = e} U {[b]-U- x\3 ce A : b ® c = a A xe Fc}.

This decomposition for F is almost, but not quite, what is required by the greedy
theorem. To pass to that condition we need a property of ®, namely that there exist
H and © so that

b®c=a=be Ha Ac = aQb.

The greedy theorem therefore requires that ® be invertible, where © is invertible if
there is a © such that

(b © c) © b = c.

Many operators are invertible; for example, each of + , -H-, W (bag union), and /A
(merge) are. However, many operators are not; for example, U (set union), U
(maximum), and n (minimum) are not invertible. If © is not assumed to be
invertible, then at best we can find functions H and T so that

b®c = a = beHa AceT(a,b).

The functions / /and Tcan be defined in terms of Inv(©)6^-»{5x^4}:

Ha = 7i1*Inv(©)a

T(a,b) = ni*((b=)-nt)-a Inv(©)a,

where nx, K2 are the first and second projection functions on pairs. We then have

Fa = {[]\a = e] U {[6]-H-x\beHa Axe\J /F* T(a,b)}. (2)

With this decomposition for F, and with the other conditions of the greedy theorem,
we get what we can call a semi-greedy theorem: there exists an ordering ^ c such that
/ c a n be computed by the scheme

fa = I [b] -H- n df* T(a, b) otherwise

^where b = fl

The proof is an easy modification of the original one and will not be given.

https://doi.org/10.1017/S0956796800000459 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000459

378 R. S. Bird

The appearance of the above scheme for/can be improved. First, we construct an
ordering ^ so that

nc/f*s=f(nA/s) (3)
for all non-empty sets Se{A}. To define ^ , let <, be any ordering (which we assume
to exist) on A. Define

Equation (3) follows, since a^Ab implies fa ^cfb. Next, define yet another
ordering:

(bl,cl)^BA(b2,c2) = bl <Bb2v{b\ =blhc\ ^Ac2).

Here, ^ B is the ordering given in the statement of the greedy theorem. The ordering
^BA is just the lexicographic ordering on BxA, using ^ B and ^^ as suborderings.
The upshot of all this is that / can be computed by the scheme

([] if a = c

fa =1 [b] -w-fc otherwise

[where (b,c) = nBA/Inv(@)a.

The proof is immediate from the fact that (b, c) = nB^/Inv(©)a if and only if
b = WjHa and c = nA/1\a,b).

The revised scheme for/does not increase the efficiency of the algorithm. The given
construction of ^ means that evaluations of n BA involve additional computations
off. However, if we find some simpler definition of <,, to satisfy (3), the new scheme
will involve less work.

Finally, we mention an easy generalization of (1). Consider

g). (4)

The difference with (1) is the presence of a filter operation which selects only those
members of Inv(© </• e) satisfying the predicate all/;. By definition, a\\px holds just
in the case that p holds for every element of x. An easy modification to the above
theory establishes, again under the cost and greedy conditions on C and F, where
F = a\\p<3 Inv(© */- e), that/can be computed by the scheme

ifa = e

fa =1 [b] -W-fc otherwise

where (b,c) = r\BA/(p • nj o Inv(®)a.

4 Converse

There is a second form for F that posses a similar decomposition. The form is
F = n(® </• E), where for geX^-{Y) the converse uGe Y->{X} is defined by

[iGy = {xeX\yeGx}.

The function uG corresponds to the relational converse of G when G is interpreted as
a relation R (so that xRy just when yeGx). Problems whose specifications involve

https://doi.org/10.1017/S0956796800000459 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000459

Functional pearls 379

relational converse arise in a number of areas,: for example in language recognition
and pattern matching. Another example appears below.

If u(® */• E) is to have type A^{[B]}+ for some A and B, we need at least Ee{A}
and ®eBx{A}^{A}. It is sometimes the case that ® can be defined in terms of
another operator © eB x A -+{A} by the equation

b®x = U /(b®)*x.

If such an equation does hold, then we write ® = ©°. A simple example is provided
by the function subs, which returns the set of subsequences of a sequence. We have
subs =©"</• {[]}, where a © x — {[aj-H-x, x}. The function usubs returns the set of
super sequences of a sequence.

Example
Here is another example. Given sequences x and y, consider all the ways x and y can
be shuffled together to give a single sequence. The set of shuffles x x y o f j c and y is
defined by taking x x [] = [] x x = {x} and ,

([a] -ff x) X ([b] -U-y) = ([a] -H-) * (x X ([6] -H- j,)) U ([ft] -ff * (([a] 4f x) X y).

Thus x has type [A] x [,4] -> {[/I]} for some A. The operator x ° has type
[A] x [{A]} -> {|/4]}. The value x x ° xs shuffles x with sequences in xs in all possible
ways. The function R = x ° < / {[]} takes a list of sequences (or, since the order in
which the sequences are processed is not important, a bag of sequences) and
shuffles them together in all possible ways. For example,

= {[1,4,2,3], [4,1,2,3],[4,2,1,3], [4,2,3,1],...}.

The result is the set of twelve permutations of {1,2,3,4} in which 2 precedes 3.
Replacing the argument [[1],[2,3],[4]] with the bag \[1], [2,3], [4]/ gives exactly the
same result. A right-reduction ® </• e is defined on bags if a ® (b ® c) = b ® (a ® c)
for all a, b and c. We omit the proof that x ° has this property.

Finally, \iRx returns the set of lists (or bags) of sequences that when shuffled
together can give back x. For example, supposing we exclude the empty list from each
bag, the value of \iR[l, 2,3] is the set of five bags

To return to the general situation, let F = u(©° </• E). We have

[]eFa

= {definition of u}

= {definition of «/•}
aeE

https://doi.org/10.1017/S0956796800000459 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000459

380 R. S. Bird

and [b]-ti-xeFa

= {definition of F and u}

= {definition of

aeb®°(®°j-E)x

= {definition of©"}

aeU/(b®)*(®°*/-E)x

= {set theory}

(3ceA:aeb@cAce(®°*/-E)x)

= {definition of u and F)

(3ceA:(b,c)e\i((&)aAxeFc)

= {introducing H and T; see below}

(3ceA:beHaAceT(a,b)AxeFc)

= {set theory}

beHaAxeU/F*T(a,b).

The definitions of H and T are

Ha = 7ij* n(®)a,

T(a,b) = n2*(b = -n2)-a u(@)a.

Hence, we again get decomposition (2). We summarize the above calculations as a
theorem.

Theorem 1
Let f= n c / - n (© ° V" E)- Suppose that C is a cost function and the greedy condition
holds for C and F = \a{©° */• E), where we suppose also that F returns non-empty sets.
Then we can find orderings < c and ^BAfor which f can be computed by the scheme

{
[b] 4f/c otherwise

where (b,c)= nBA/\i{®)a.
5 Bags

The greedy theorem is stated in terms of a function FeA-+ {[B]}+ but does not
critically depend on F returning sets of sequences. Here, we recast the theorem in
terms of bags, that is, we now suppose that FeA->{\BS}+- Except for the greedy
condition, there is no real problem: we replace [] by \J, [b] by \bf, and -H- by W (bag
union) throughout the statements of the cost and decomposition conditions. In
particular, the modified definition of a cost function gives that #, the size of a bag,

https://doi.org/10.1017/S0956796800000459 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000459

Functional pearls 381

is a cost function. Since the order of the elements of a bag is not determined, the
second clause of the decomposition condition, namely

(\bj\3x)eFa = beHa A xeF(a Q b),

has the consequence that xeFa implies setx £ Ha, where setx is the set of distinct
elements in x.

The greedy condition has to be reformulated as follows: there exists an ordering
^ B o n 5 such that for all a satisfying -<pa (and so \j$Fa), if

xeFaA nB/Ha$x
there is a y such that

yeFah [}B/y<BnB/xACy^Cx.

With this change, the greedy theorem holds for bags (provided we also change the
program for/in the obvious way). More precisely,

Theorem 2
Let FeA^-{\Bj}+ and f= [\C/-F. Suppose the cost, decomposition, and greedy
conditions hold for C and F. Then there exists an ordering ^ c such that f can be
computed by a scheme

fa = | \bj \&f(a 0 b) otherwise

^ where b = [\B/Ha.

The proof is a straightforward modification of the one in Bird (1992).

6 The smallest upravel

We now apply the theory above to a problem about sequences. By definition, an
unravel of a sequence x is a bag of subsequences of x that when shuffled together can
give back x. For example, ' accompany' can be unravelled into three subsequences:
'acm', 'an' and 'copy'. The order of these lists is not important, but duplications do
matter; for example, 'peptet' can be unravelled into two copies of 'pet'. Thus, an
unravel is essentially a bag of sequences and not a list or set.

An unravel is called an upravel if all its member sequences are in ascending order.
Since each of 'acm', 'an' and 'copy' are ascending sequences (assuming normal
alphabetical order) they give an upravel of'accompany'. Each non-empty sequence
has at least one upravel, namely the upravel consisting of singleton sequences.
However, of all possible upravels we want to determine one with the least number of
elements.

The problem can be specified as one of computing/= n #/ • F, where

The operators u, x and x ° were defined above, and the predicate up is given by

upx = (V/,ye[0-*•#*]:/ <j=> index*/ < index;c/),

https://doi.org/10.1017/S0956796800000459 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000459

382 R. S. Bird

where [0-*«] is the interval consisting of all natural j with 0 ^j < n, and index xj is
the element of JC at position j .

Can we apply the greedy theorem to this problem? Certainly, # (the size function
on bags) is a cost function. Moreover, we know from the previous sections that F
satisfies

Fx = UJ| x = []} U {\yf&ys\yeHxAyss U /F* T(x,y)},

where Hx = u p o n1*\i(yc)x

In fact, H = up<i subs, where subs x is the set of subsequences of x. We have
nY * u (x) x = subsx, and also K2*\I(X)X = subs*.

Setting B = [A], it remains to find an ordering < B for which the greedy condition
holds. One reasonable candidate for < B is some kind of lexicographical ordering.
However, the standard lexicographical ordering on lists assigns u ^ v when u is an
initial segment of v; in particular, the empty sequence is the least element under ^ .
It is likely that we get a smaller bag by choosing longer rather than shorter sequences
at each stage; certainly, we never want to choose the empty sequence. So we shall
reverse the standard convention and take v ̂ u when u is an initial segment of v. In
the reversed lexicographical ordering, the empty sequence is the last entry in the
dictionary. We define u ̂ B[] for all u and

([a]-H-u) ^B{[b]-Wv) == a < bv(a = bMi ^Bv).

With this choice of ^ B the greedy algorithm identifies y = lusx as the best sequence
to choose, where

lus = nB/up<] subs.

To establish the greedy condition, we need some properties of lus, so we shall
consider this function first.

6.1 The least upsequence

The first property is that lusx is the least subsequence of x:

lus = nB/subs.

If the least subsequence y were not an upsequence, we could find a subsequence of y
that was smaller than y.

Using this fact, and the definition of subs as a right-reduction, we can derive that
lus = © </• [], where a @ [] = [a] and

([a,b]-»-x, tfa^b

[[b] -H- x otherwise.

For reasons of space, we shall leave this task as an exercise. It is also possible to derive
the program by appealing to the greedy theorem, the only difference that the ordering
is fixed and not specified by a cost function.

https://doi.org/10.1017/S0956796800000459 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000459

Functional pearls 383

It follows from the above program that lusx is uniquely located as a subsequence
of x. In other words, if y = lusx, there is a unique z such that (7, z) e u(x) x. In fact,
z = x—y, where (—) is the list-difference operator denned by x — [] = [] and

[x—y if a = b

\ [a W x _ m « y)) otherwise.

Two other properties of I us follow from the program for computing it. Suppose
lusx is located at position ft,/2, •••,'„] in x. Then

4-i <j < >k =*• index xj > index x ik, (5)

ik ^ j => index x jfc < index xy. (6)

Properties (5) and (6) are used below.

6.2 The greedy condition

Now for the greedy condition. Let y = lusx and suppose useFx is such that y$us.
We have to find a vseFx so that n B/vs <B n B/us and #vs ^# us.

Before starting, we should warn the reader that what follows is complicated by the
fact that we have to refer to the locations of upsequences in x. Although the definition
of ^ B does not depend on locations, the proof that it works does. This is because we
are going to use a cut-and-paste argument, and we need to know that what we cut and
paste remain subsequences of x.

Each ueus can be associated with some location locw of u in x. The value locw
is a subsequence of [0 -> # x] satisfying

indexx* locw = u

and chosen so that the sequences loc*w.s partition [0->#x]. As we have seen, the
value loc>> is fixed and independent of the way we choose loc for the bag us.

Let w = n B/us. Since y < B u, we know that y is not an initial segment of u, and so
locj' is not an initial segment of locw. Let locwl be the longest common initial
segment of locj> and locw, and let \ocy begin with locwl-H-[/]. Let indexx/ = a.

There are now two cases. Suppose firstly that wl = w. Since z'^locw, we have
ie\ocv for some veus. Let v = v\ -H-[a]-H-v2, and define vs by

vs = us-\u,vj\$\u-H-[a],v] -H-v2f.

We have #vs = #us, and w-H-[a] and v\-W-v2 are upsequences of x. Since
u-H-[a] <Bu, the greedy condition is established.

In the second case, wl is a proper initial segment of w. Let w = wl -H- [b] -H- w2, where
locw = loc wl -H-[/]-H- loc w2 and b = index xj. We now argue that /£locw2, so
r^locw. If ;elocw2, then j < i and a < b by property (5). But then w is not an
upsequence.

So /^locw and there is a veus so that ie\ocv. Let v = vl -H-[a]-tfi>2, where
locu = locul -H-[/]-H-loci>2. There are now two subsidiary cases, depending on
whether / <j or i > j . In both cases we need the fact that the last element /o f wl,
if it exists, satisfies / < iuj, since locwl is the initial segment of y before /.

https://doi.org/10.1017/S0956796800000459 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000459

384 R. S. Bird

If i < j , then a ^ b by property (6). We can therefore define vs by

vs = us — \u,vf\£}\ul -tt-[a,b]-H-u2,vl -H-v2j.

Since wl 41- [a, b] -ft- «2 <Bwl -ft- [b] -ft- «2 = u the greedy condition is established.
If i>j, then a < b by property (5). Let the last element of locul, if it exists,

be denoted by /'. We have I' < i, but also I <j because l<j^l'<i implies
index xl' > a by (5), contradicting the fact that v is an upsequence. Hence we can
define vs by

vs = us-\u,vf\!J\ul-U-[a]-ti-v2,vl-H-[b]-H-u2f.

Since a < b we have ul-w-[a]-W-v2 <Bul-¥r[b]-W-u2 = u and the greedy condition is
again satisfied.

6.3 Optimization

The result is the following greedy algorithm for computing / :

U> if* = []

y/W/(x—y), otherwise

where y = I us*.

With the given implementation of I us as a right-reduction, the greedy algorithm takes
O(n2) steps, where n = # x.

The greedy algorithm makes several passes through the input, computing a single
component of the bag at each pass. To obtain a single-pass algorithm, we represent
the bag \x l ,x2 , . . . ,xkj by a sequence [xl,x2, ...,xk], where xi ^Bxjif i <j. Then we
have xl = \usx, x2 = lus(x—xl), and so on. Using this representation, we can
compute /by a right-reduction/= O *f- [], where aQ[] = [[a]] and

f [[a]-ft-x]-ft-X5 i f a s g h d x
a(D([x]-U-xs)=\

\[x]-\j-(aQxs), otherwise.

For reasons of space we leave the derivation as another exercise. Implemented
directly, evaluation of a Q xs takes time linear in the length of xs, but since the first
elements of sequences in xs are in increasing order, we can use binary search to reduce
this to logarithmic time. It follows that the smallest upravel can be computed in
O(n log n) steps, where n is the length of the input.

7 Comments

The problem of the smallest upravel was first posedj by Kaldewaij (1985), who solved
it by reducing it to the problem of computing a longest decreasing subsequence.
Subsequently, Meertens (1985) gave a direct solution. The present treatment followed
yet a third course, namely to reduce it to an instance of the greedy theorem.

There is a lot to be gained from the study of the example. First of all, there is the
specification which uses the converse operator u. Specifications using u or Inv arise

t Added in proof: we have learnt subsequently that the problem is due to Meertens.

https://doi.org/10.1017/S0956796800000459 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000459

Functional pearls 385

frequently in the formulation of optimization problems. Second, there is the idea of
phrasing the problem in terms of bags rather than lists. Although the final form of
the algorithm represents bags by ordered lists, the order of the lists is not arbitrary.
Indeed, the ordering ^ a is crucial to the success of the algorithm and only emerges
as a result of trying to satisfy the greedy condition. Third, there is the way the greedy
algorithm appears. The idea of choosing the lexicographically least upsequence as the
' best' one at each stage is, though reasonable, not entirely obvious (the technical term
is 'rabbit'), and the accompanying proof that it works is fairly subtle. I have tried
without success to find a simpler proof.

Similar problems with rabbits arose in Kaldewaij (1985) and Meertens (1985).
Kaldewaij used a combinatorial lemma, a dual of Dilworth's theorem, to reduce the
problem to one of computing a longest decreasing subsequence. But the idea of a
longest decreasing subsequence appears nowhere in the formulation of the problem.
Meertens used an inductive strategy, essentially the idea of heading for a right-
reduction, from the outset. First, the definition of F was messaged into the form of
a right-reduction, and then this pattern of computation was promoted over the filter
and the minimizing function. Unfortunately, this method' involved inventing a non-
obvious preorder. The only conclusion Î ca'n draw is that all approaches to the
problem involve a rabbit, and perhaps the same is true Tor other greedy algorithms.

References

Bird, R. S. 1992. Two greedy algorithms. J. Functional Programming, 2 (1).
Kaldewaij, A. 1985. On the decomposition of sequences into ascending subsequences. Infor.

Processing Lett., 21, 69. • '
Meertens, L. 1985. Some more examples of algoritlimic developments. IFIP Wg2.1 Working

Paper, Pont a Mousson, France.

https://doi.org/10.1017/S0956796800000459 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000459

