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GRADED =-RINGS

D. D. ANDERSON AND J. MATIJEVIC

1. Introduction. All rings considered will be commutative with identity.

By a graded ring we will mean a ring graded by the non-negative integers.

A ring R is called a w-ring if every principal ideal of R is a product of prime
ideals. A 7-ring without divisors of zero is called a w-domain. A graded ring
(domain) is called a graded w-ring (-domain) if every homogeneous principal
ideal is a product of homogenous prime ideals. A ring R is called a general
ZPI-ring if every ideal is a product of primes. A graded ring is called a graded
general ZP1-ring if every homogenous ideal is a product of homogeneous prime
ideals.

In Section 2 we review the known results about (ungraded) w-rings and
general ZPI-rings. Eight characterizations of wm-domains are given, several of
which are new. The characterization to be used in Section 3 is that a domain
D is a m-domain if and only if D is locally a UFD (D, is a UFD for every
maximal ideal M of D) and D is a Krull domain.

In Section 3 we investigate graded w-rings. We show that a graded =-ring isa
finite direct product of special principal ideal rings, graded w-domains and a
special type of graded w-ring which is not a w-ring. We show that a graded
m-domain is actually a m-domain. We also show that a graded general ZPI-ring
is a general ZPI-ring.

The authors wish to thank the referee for several helpful suggestions.

Section 2. The ungraded case. Mori has completely characterized the
structure of w-rings in a series of four papers [12]-[15]. We state this charac-
terization as Theorem 1, the proof of which may also be found in [7].

THEOREM 1. 4 ring R is a w-ring if and only if R is a finite direct product of
w-domains and special principal ideal rings.

Thus the study of 7-rings is essentially reduced to the study of m-domains.
Next we give eight characterizations of r-domains.

THEOREM 2. For a domain D the following conditions are equivalent:

(1) D is a m-domain, (2) every principal ideal is a product of invertible prime
ideals, (3) every invertible ideal is a product of invertible prime ideals, (4) every
nonzero prime ideal contains an invertible prime ideal, (6) D 1s locally a UFD
and the minimal primes are finitely generated, (6) D is locally a UFD and a
Krull domain, (7) D 1s a Krull domain with the minimal primes being invertible,
(8) D(X) s a UFD.
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Proof. (1) = (2): Any factor of a principal ideal is invertible. (2) = (4):
Let P be a nonzero prime ideal and let 0 % x € P. Then (x) = P, ... P, a
product of invertible prime ideals. Since P is prime, some P; C P and P; is
invertible. (4) = (8): The proof then is similar to the proof of Theorem 5 [8]
but using ‘‘generalized”’ multiplicatively closed sets. (Also see Theorem 4.6 [2]).
As (8) = (1) is trivial, we see that (1)-(4) are equivalent. (1) = (§): Alocaliza-
tion of a m-domain is a r-domain and in a quasi-local domain, invertible ideals
are principal. (§) = (1): Since D is locally a UFD, every nonzero prime con-
tains a minimal prime P, which is by hypothesis finitely generated. Since P is
finitely generated and locally principal, P is invertible. That (1) implies (6) is
clear. (6) = (1): Let 0 # x € D be a nonunit. We show that xD is a product
of prime ideals. Since D is a Krull domain, xD = P,®0 N ... N P,® where
Py, ..., P, are the rank one primes containing x. We show that xD =
Py, .. Pl locally. Let M be a fixed maximal ideal of D. If P; ¢ M, then
Py, = Dy = Pyt If P;C M, then P, is a rank one prime in the
UFD D, and hence is principal. Thus P;,"i is primary and hence P;" =
P, 9. Since the P,'s are principal,

xDy = Py, "0 N .. NP, ) =P, mN .. NP, "

=_P11Mnl...P s = (Plnl...Psn‘)M.

SM
Thus (6) = (1). It is clear that (1)-(6) = (?) and that (7) = (6). If D is a
w-domain, then D[X] is also a m-domain as is easily seen from the equivalence
of (1) and (6). Thus D(X) = D[X]s is a m-domain where S = {f € D[X]|
A, = D} and A4, is the content of f. Since every invertible ideal in D(X) is
principal (Theorem 2 [4]), D(X) is a UFD. Hence (1) = (8). Conversely,
suppose that D(X) is a UFD. By Proposition 6.10 [6], D is a Krull domain
and every rank one prime ideal of D is invertible. Hence D is a w-domain.

Theorem 2 supports our philosophy that a m-domain is just a UFD where
invertible ideals have taken the place of principal ideals. Thus m-domains are
related to UFD’s in a manner similar to the way that Dedekind domains are
related to PID’S. One question of interest is: Given a w-domain D, does there
exist a UFD D’ such that D and D’ have isomorphic lattices of ideals? (See
[1] and [3] for a discussion of this question.)

The equivalence of (1), (5), and (7) appears as Theorem 46.7 [7, page 573].

The following theorem characterizes general ZPI-rings. The equivalence of
(1) and (2) is due to Mori [16] and the equivalence of (1) and (3) to Levitz
(91, [10]. Also see [7].

THEOREM 3. For a ring R the following statements are equivalent:

(1) R is a general ZP1-ring, (2) every ideal of R generated by two elements 1s a
product of prime ideals, (3) R is a finite direct product of Dedekind domains and
special principal ideal rings.
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Section 3. The graded case. In this section we consider graded =-rings and
graded — general ZPI-rings of the form R =Ry ® Ry ® Ry ® .... Our
characterization of graded r-rings will be given by a number of lemmas. Our
first lemma follows directly from Theorem 1.

LEMMA 1. Suppose that R = Ry ® Ry @ . .. is @ graded w-ring. Then Rq 1s
a m-ring. Moreover, R s a fintte direct product of graded m-rings each of which
has for its zero component a w-domain or a special principal ideal ring.

The case where Ry is a special principal ideal ring is easily handled.

LEMMA 2. Suppose that R = Ry @ R, @ ... is a graded m-ring where R, 1s
a special principal ideal ring. Then 0 = R1 @ R ® . . ..

Proof. Let 0 # pR, be the unique prime ideal of R, and suppose that
p* = 0. Let @ € Ry, then aR is a product of homogeneous prime ideals. Since
the zero degree part of any homogeneous prime ideal must be pR,, we see that
Ry = pR;. Hence R; = p"R; = 0. By induction R,, = 0 form > 0.

Thus we are reduced to the case where R is a m-domain.

LEMMA 3. Let R = Ry @ R, . ..bea graded w-ring. Then any rank zero prime
P in R 1s a “homogeneous’ multiplication ideal (i.e., A C P with A homo-
geneous implies A = BP for some homogeneous ideal B of R.) Furthermore,
P M Ry s a multiplication ideal of R,.

Proof. It is well-known that a rank zero prime in a graded ring is homo-
geneous. Let 4 C P be a homogeneous ideal and let 4 = (x,) where x, is
homogeneous. Then xR = P. ... P, isa product of homogeneous prime
ideals. Now rank P = 0 implies some P,; = P so that x,R = PB, for some
homogeneous ideal B,. Hence 4 = (x,) = > PB, = P(>_B.). It is easily
seen that P M R, is a multiplication ideal in R,.

LEMMA 4. Let R = Ry ® Ry @ ... bea graded m-ring where Ry is a field. Then
R is a domain or R =~ Ro[X]/(X™) for some n > 1 where X ix an indeterminate
over Ry assigned positive degree.

Proof. Suppose that R is not a domain. Now M = R; ® R, @ ... is the
unique maximal homogeneous ideal of R. We show that rank M = 0. Now
since (0) is a finite product of (homogeneous) primes, R has only a finite
number of minimal primes Py, . . ., P,, each of which is homogeneous. Assume
that P, & Mfori =1,...,n Weset A = P, ...N P, and R = R/A.
It is easy to see that Z(R) = P;/4 U ...\U P,/4 (here Z(R) denotes the
zero-divisors of R.) By Prop. 8 [5, p. 161] there exists a homogeneous element
meM— (P,\U...UP,) and m = m + A is a regular element of R. Let
(m) = Q1...Q, be a prime factorization of (m) into a product of homo-
geneous prime ideals. Then () = Q;...(Q,is a prime factorization of () in
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R. Since 7 is regular, the ideal Q; is invertible and (; properly contains some
P,. Therefore P; = P,Q, and hence P; = P;M. Suppose that P; # 0. Then
there exists a nonzero homogeneous element y € P;. By Lemma 3, (y) = BP,
for some homogeneous ideal B. Hence (y) = BP; = B(P,M) = (BP,) M=
(y) M. Thus R = 1 + (0:y). But since y is a nonzero homogeneous element,
(0:y) is a proper homogeneous ideal and hence (0:y) C M, the unique
maximal homogeneous ideal of R. Thus P; = 0. Hence P; = 4 so R has a
unique prime P of rank zero. Thus R/P is a graded =-domain, in fact since
(R/P)y = Ryisafield, R/P is a graded UFD and hence a UFD (Theorem 5).
Choose a homogeneous non-zero prime element ¢ + P of R/P. 1f (¢) = Q. ..
Q. is a homogeneous prime factorization of (¢) in R, then (§)= 0y ... Q, is
the prime factorization of (¢) in R/P. Consequently ¢ = 1 and (g) is a homo-
geneous prime ideal of R with P & (¢) € M. Hence P = P(g) andso P = P1/.
As before, this implies that P = 0. This contradiction shows that A is the
unique minimal prime ideal of R and hence the unique homogeneous prime
ideal of R. We show that M is principal. Let M = (x,) where x, is homogen-
eous. By Lemma 3, (x,) = MB, where B, is some homogeneous ideal. Hence
M=% (x) = >MB,=M(}YB.). If YB,=R, then some B,, = R so
M = (x4) is principal. Otherwise M = M?* and the argument used above
shows that M = 0. Let X be an indeterminate over R, assigned the degree of
Xq- Then the graded homomorphism f : Ro[X] — R given by X — xy is clearly
onto. Since M is the unique homogeneous prime of R, there exists an # > 0
such that M* = 0, but M"! # 0. Thus ker f = (X") so R & Ro[X]/(X").

LEMMA 5. Let R = Ry ® Ry @ ... be a graded w-ring where (Ry, M) is «
quasi-local domain but not a field. Then R is either a domain or Ry1s @ DVR and
R =~ Ry[X]/A where A 1s a homogeneous 1deal with /A = X M[X].

Proof. First suppose that dim Ry > 1. Then R, is a quasi-local UFD with
an infinite number of principal primes. Assume that R is not a domain, so that
R has a finite number of minimal primes Py, ..., P,. By Lemma 3, P, M Ry is
a multiplication ideal, so each P; /M R, is either 0 or a principal prime. Thus
we can choose a homogeneous element in My ® R; ® R, @ ..., but not in
Py, ..., P, Proceeding as in Lemma 4, we get that R must be a domain. Thus
we may suppose that dim Ry = 1, so that R, must be a DVR. Since R, is a
domain, Q = R; @ R, ® ... is a prime ideal. We show that rank Q = 0.
Let S = Ry — {0},then Rg = Ry ® Ry, ® ... is a graded w-ring with Roga
field. Hence by Lemma 4, R s contains a unique minimal prime, and hence R
must contain a unique minimal prime P with P M Ry = 0. Let M, = pR,.
Now pR is a product of homogeneous primes and hence itself must be prime.
Now pR must be minimal. For if P/ & pR is a prime, then either P’ M R, = 0
sopRD P D Por PPN Ry= pRyso P’ D pR. If pR D P, then P would be
the unique minimal prime of R. Passing to R/P we see that this would imply
that P = (0) and thus R would be a domain. Thus R has exactly two minimal
primes: pR and P. As in Lemma 4, we see that P is principal. Suppose that
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Q = P. Then by Proposition 8 [5, page 161], there exists a homogeneous ele-
ment m € pRy ® R, @ ..., but not in pR or P. Proceeding as in Lemma 4,
we see that R/pR (M P must have a unique minimal prime. This contradiction
showsthat Q = P. Thus P = Q = R, ® Ry @ . .. is principal. The result now

follows as in Lemma 4.

LEMMA 6. Let R = Ry @ Ry @ ... be a graded w-ring where Ry is a domain
but not a field. Then either R is a domain or R =~ Ro[X]/A where A is a homo-
geneous ideal of R X]| with ~/A = XM, ... M, X] where My, ..., M, are
invertible maximal ideals of R,.

Proof. Assume that R is not a domain. Let S = R, — {0}, then Rs is a
graded m-ring with Ry a field, so that Rs is a domain or is isomorphic to
Ro[X]/(X™) and hence contains a unique minimal prime. Hence R contains a
unique minimal (necessarily homogeneous) prime P with P M Ry, = 0. Let
M, be a maximal ideal of Ry and put S(M,) = Ry — M,. Then Rgqyy is a
graded -ring so R s(ar,) is a domain or P gy = (Ry @ Re @ .. .) s(arp. In the
latter case P = R; @ R: @ ... (for both are prime ideals of R). Suppose that
P R ® Ry ® ....Then we may assume that R, is a domain for every
maximal ideal A/, of Ro. Thus P sur,) = 0scar,) for every maximal ideal M of
Ry, so that P, = 0, for every homogeneous maximal ideal of R. Hence
P = 0and R is a domain. This contradiction shows that P = R; ® R, @ . ..
is the unique minimal prime ideal of R contracting to 0 in R,.

Suppose that P, Py, ..., P, are the minimal prime ideals of R (n > 0 since
R is not a domain). Then P,/ = P; M R, % 0 is a multiplication ideal in the
domain R,. Thus P/ is invertible |7, page 77]. Let M be a maximal ideal of R,
containing P, and put S = Ry — M. Then P,s and P are distinct minimal
primes in Rs. By Lemma 5, Ry must be a DVR and hence we see that each
P/ is also a maximal ideal in R,. Also, P/R and P; are homogeneous ideals
that are equally locally at the maximal homogeneous ideals of R. Thus P/R =
P;. We next show that P = R; ® R, @ ... is principal. Let M be a maximal
homogeneous ideal containing P. Let My = M M Ry and S = Ry — M,. If
P; C M for some 1, then R g contains two minimal prime ideals. By Lemma 5,
M=P/®RI®R,®.... If P, Mforalli=1,...,n, then Pgis the
unique minimal prime ideal of R g and hence R s is a domain. Then P, =0,,.
Thus Py = 0, for almost all maximal homogeneous ideals M of R. An easy
modification of Theorem 2 [3] shows that P is principal. Thus R & R (X]/4
where A is a homogeneous ideal of Ro[X]. Since v/0 =P NP, N\...N\P,
in R, we have vA4 = X)NP/[XIN... N\NP/[X]=XP/...P/)[X]in
Ro[X].

LEMMA 7. Let Ry be a w-domain that is not a field. Suppose that A 1is a homo-
geneous ideal of Ro|X] with /A = XM, ... M,[X]| where { M, ..., M,} is a
(possibly empty) set of invertible maximal ideals of Ro. Then R = Ro[X]/A is a
graded w-ring if and only if A = X*M:*r. .. M,*[X]B where s, s1, ..., s, are
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postiwve integers, B 1s a (possibly vacuous) product of M [X] + (X)-primary
ideals and s = 1 unless { M, . .., M,} is the set of all maximal 1deals of R. R 1s a
m-ring if and only if A = (X).

Proof. Suppose that 4 = X*M*t... M*[X]B. Then the ideals XR, MR,
..., M,R are prime ideals in R. If N is another invertible prime ideal in R,
then N[X] and M,*'. .. M,»[X]B are comaximal. Thus

N[X] + M. .. My[X])B = R[X] so
XN[X] 4+ XMy ... M»[X]B = (X).

Since in this case s = 1, N[X] 4+ 4 = N[X] + (X) so NR is also a prime
ideal in R. Since every homogeneous element of R has the form 7X™ where
r ¢ Ryand X = X + 4, Risa graded r-ring.

Conversely, suppose that R is a graded w-ring. Now 4 has a homogeneous
primary decomposition with minimal primes (X), Mi[X], ..., M,[X]. Since
each of these primes is invertible, the primary ideals belonging to these minimal
primes are prime powers. From Lemma 5 we see that M,[X] + (X), =1,
..., nare the only possible embedded prime ideals. Thus

A= XN MIXIN . . NMSXIN0N...NQ,

where Q; is either M, [X] + (X)-primary or Ro[X]. Since (X)®, M, [X],...,
M,*[X] are invertible primary ideals, we have

X)ysMN M@ XITN oo Mo X] = (X)SMS X ... M [X].
Hence

A= X)yMX]... M XINQN...NQ,
= (X)sMs X] .. M XT(Qu MY .o Qi (XD)SM S X ... M, X]).
But
(O oo N Qu (X)SM S X ... M X])
= M2 (Qp (X)SM 5 X] ... M,»[X] and
Q) = Qu(X)*M 1 [X] ... M, "[X]
is either M;[X] 4+ (X)-primary or Ro[X]. Since Q/, ..., Q, are comaximal,
o/ MN...MNQ) =0/ ...Q,) . Suppose that M is a maximal ideal of R, other
than My, ..., M, Then R, = Ro,[X]/(X)*°Ry,, is a graded =-ring. By
Lemma 5 this is not possible unless Rz, is a domain, that is, s = 1.
Clearly if 4 = (X), R = Ry[X]/A4 is a m-domain. If 4 # (X), then R is
not a domain. Since R is indecomposable, R cannot be a w-ring.

Thus we have established

THEOREM 4. Let R = Ry @ R1 @ ... be a graded w-ring. Then R is a finite
direct product of graded w-domains and special graded w-rings of the following
types:
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(1) special principal ideal rings (ungraded), (2) k[X]/(X"), ka field, X an
indeterminate assigned positive degree, (3) D[ X]/A where D is a w-domain, X 1s

an wndeterminate over D assigned positive degree and A 1s a homogeneous ideal of
DX with

4 =XMM[X]) ... M, X]B

where s, . . ., s, are positive integers, { M, . .., M,} 1s a (possibly empty) set of
invertible maximal ideals of D and B is a (possibly vacuous) product of M [X]
+ (X)-primary ideals. If M, ..., M, are not all the invertible prime ideals of
D, then s = 1.

We are now reduced to the case where R = Ry @ R; ® ... is a graded
m-domain.

THEOREM 5. Let R = Ry @ Ry @ .... If R 1s a graded UFD, then R 1s a
UFD. If R is a graded w-domain where Ry is quasi-local, then R 1s a graded UFD
and hence ¢ UFD.

Proof. We may assume that R # R,. Let S be the set of homogeneous
non-zero elements of R. Now .S is a multiplicatively closed set in R generated
by the non-zero homogeneous principal primes. By Lemma 1.2 [11], Ry is
isomorphic to K[u, u~'] where K is a field and u is transcendental over K.
Thus Rsisa UFD. By Nagata’s Lemma to show that R isa UFD it is sufficient
to show that R satisfies ACC on principal ideals. Let (f1) € (f.) € (f3) < . ..
be an ascending chain of principal ideals in R. Surely R satisfies ACC on prin-
cipal homogeneous ideals. It is easily verified that R[X] satisfies ACC on
homogeneous principal ideals when X is an indeterminate assigned degree 1.
We homogenize the chain of principal ideals to R[X] and then de-homogenize
them back into R (for the process of homogenization see [11] or [17, p. 179]).

Thus (f1)" € (fo)* © (f3)* © ... is an ascending chain of homogeneous
principal ideals in R[X]. Hence the chain becomes stable, say (f,)* = (fou1)"
= . ... De-homogenizing the chain we get that (f,)" = (f,u1)" = ... in R.
But since for any ideal 7 in R, I"* = I, we have (f,) = (fu41) = .... Thus R

satisfies the ascending chain condition on principal ideals. We remark that
this same proof also applies to Z-graded UFD’s.

Suppose that R is a graded w-domain where R, is quasi-local. Then every
homogeneous invertible ideal of R is principal. Hence R is a graded UFD and
hence a UFD.

THeoREM 6. 4 graded m-domain R = Ry ® R; @ . . .1s a w-domain.

Proof. Let M be a maximal ideal of R and let My = M M Ry,. Then
Rz, 1, is a m-domain with Rz, s, quasi-local. By Theorem 5, Rz, is a
UFD and hence R, is a UFD. Thus R is locally a UFD. We show that R is a
Krull domain. Since R is locally a UFD, Rpisa DVR for every rank one prime
Pin Rand R = M Rp where the intersection runs over all rank one primes of
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R. Let 0 # x € R be a nonunit. We must show that x is contained in only
finitely many rank one primes of R. If x is homogeneous, the result is clear, so
suppose that x is not homogeneous. Since a homogeneous component of x can
be contained in only finitely many rank one homogeneous prime ideals, x can
be contained in only finitely many rank one homogeneous prime ideals of R.
Now any rank one non-homogeneous prime ideal Q containing x must satisfy
QM Ry =0 (since rank Q = 1, (¥, the prime ideal generated by the homo-
geneous elements of ), must be 0). Putting § = Ro— {0}, Rg= R ®
Tig ® ...isagraded m-domain with Ry a field, so R is a graded UFD and
hence a UFD. Thus xR g is contained in only finitely many rank one primes and
hence the same is true of xR.

THEOREM 7. Let R = Ry ® Ry ® ... be a graded ring in which every ideal
generated by two homogeneous elements is a product of homogeneous prime 1deals.
Then R is a general ZP1 ring. Further, R is a finite direct product of the following
types of (graded) general ZP1 rings: (1) Ry a special principal ideal ring and
0=R®R,®..., (2) Ry a Dedekind domain and 0 = R, ® R, @ . . .,
(3)Roafield (a) 0 =R, ® R ® ..., (b) R~ Ry[X], (¢) R~ R[X]/(X").

Proof. It is easily seen that in Ry every ideal generated by two elements is a
product of prime ideals. Hence R, is a general ZPI-ring and hence by Theorem 3
is a finite direct product of special principal ideal rings and Dedekind domains.
Thus we see that R is a finite direct product of graded rings where the zero
coordinate is either a special principal ideal ring or a Dedekind domain. If
Ry is a special principal ideal ring, then 0 = R; ® Ry ® ... by Lemma 2.
Thus we may assume that R, is a field or a Dedekind domain. If R, is a field,
but R is not a domain, then R & R [X]/(X") by Lemma 4. So suppose that R
is a domain and 0 # R; ® R ® . ... By Lemma 4.8 [2], we see that R; ®
R, @ ... is a principal prime ideal and hence R &~ Ry [X]. We are reduced to
the case where R, is a Dedekind domain. It is easily seen that the rings occur-
ring in case (3) of Theorem 4 do not satisfy the hypothesis of the Theorem.
Thus R must be a domain. By Theorem 4.9 [2] we see that every homogeneous
non-zero prime ideal in R is maximal. Thussince0 C R, ® R ® ... &S M @
R, ® R, .. .forany maximal ideal M of Ry, we musthave) = Ri® R, ® . . ..
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