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Liquid entrainment of the toroidal bubble
crossing the interface between two immiscible
liquids
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We experimentally investigate the transport of liquid by a toroidal bubble that
rises vertically and penetrates a horizontal interface between two immiscible liquids.
Experiments are conducted with various strengths of vortex circulation in the bubble, and
with different liquid densities and viscosities. In contrast to a spherical bubble, a rising
toroidal bubble carries a great amount of the lower liquid by virtue of the self-induction
of circulating flow. The lower liquid is entrained by the toroidal bubble and forms an
ellipsoidal body enclosing the bubble after it penetrates the interface. The downward
net force acting on the ellipsoidal body results in the radial contraction of the bubble,
reducing the volume of the entrained lower liquid. As the entrained volume decreases, the
nearby upper liquid eventually pierces the ellipsoidal body, making the bubble unstable. At
this instant, the net force acting on the ellipsoidal body approaches zero, and the volume
ratio of the entrained lower liquid and bubble converges to a specific value. For smaller
vortex circulation and larger density difference between the liquids, the volume of the
entrained lower liquid within the ellipsoidal body becomes smaller and the travel distance
of the bubble from the initial interface until it becomes unstable decreases. The effective
Froude number, which accounts for both the inertial effect of vortex circulation and the
gravitational effect of liquid density difference, is found to characterise the temporal
changes in the ring radius, propagation speed and entrained volume.
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1. Introduction

When a bubble rises under the buoyancy force and passes through a horizontal interface
between two immiscible liquids of different densities, some of the lower liquid is
transported upwards with the rising bubble in the form of a column (Greene, Chen &
Conlin 1991; Magnaudet & Mercier 2020). This liquid column then breaks up into tiny
droplets due to the Plateau–Rayleigh instability (Natsui et al. 2018). The formation of the
liquid column and the droplets dramatically increases the interfacial area between the two
liquids. These fluid transport and break-up phenomena can enhance the reaction efficiency
in industrial applications by enlarging the interfacial area (Mazumdar & Guthrie 1995).
For this reason, fluid entrainment by buoyancy-driven rising bubbles has been used in
diverse industrial fields, including metallurgical processes (Greene et al. 1991; Reiter &
Schwerdtfeger 1992; Natsui et al. 2018), solvent extractions (Dietrich et al. 2008; Singh,
Gebauer & Bart 2017) and air flotation for water treatment (Ghorbanpour-Arani, Rahimian
& Haghani-Hassan-Abadi 2020).

Previous studies on the interaction of a bubble with an interface between two immiscible
liquids have mostly focused on the use of relatively small spherical and ellipsoidal bubbles
(e.g. Dietrich et al. 2008; Singh et al. 2017; Emery, Raghupathi & Kandlikar 2018; Natsui
et al. 2018; Mao et al. 2020), although Bonhomme et al. (2012) considered bubble volumes
in the range of approximately 0.01–4 cm3 and diverse bubble shapes including a toroidal
form. Since Walters & Davidson (1963) generated a bubble of toroidal form by injecting
a single pulse of air through a narrow tube into a water tank, subsequent studies have
confirmed that this can be modelled as a vortex ring under the influence of buoyancy:
toroidal bubble (vortex ring bubble) (Pedley 1968; Vasel-Be-Hagh, Carriveau & Ting
2015a; Wang et al. 2005; Chang & Llewellyn Smith 2018). Compared with spherical
bubbles, toroidal bubbles induce a flow in the surrounding fluid, which contributes to
self-propagation in addition to the buoyancy force, and possess a relatively large frontal
area per unit volume. In addition, Lundgren & Mansour (1991) found that the buoyancy
and Kutta–Joukowski lift forces acting on the core of the vortex ring cause the expansion of
the ring throughout its propagation. This expansion increases the volume of the fluid flow
induced by the ring, namely the entrained fluid volume (Turner 1957; McKim, Jeevanjee
& Lecoanet 2020).

Because of the aforementioned salient properties, a toroidal bubble crossing an interface
can transport a significant amount of the lower liquid above the interface and remain
encapsulated by the lower liquid for a long distance after passing through the interface
(Bonhomme et al. 2012). In fact, the effectiveness of fluid transport using the entrainment
mechanism of a vortex ring has been reported for a single-phase vortex ring composed of
the same fluid as the surrounding fluid (Maxworthy 1972; Dabiri & Gharib 2004; McKim
et al. 2020). However, the toroidal bubble differs from the single-phase vortex ring with
regards to the important action of buoyancy. For toroidal bubbles, the effects of buoyancy
and the interface between immiscible liquids on fluid transport remain elusive.

By virtue of their buoyant nature and superior fluid transport capabilities, toroidal
bubbles represent a promising solution for enhancing the performance of fluid transport
and mixing between two immiscible liquid regions in engineering systems. Despite these
expected advantages of toroidal bubbles, the work of Bonhomme et al. (2012) is the
only study, to the best of our knowledge, that has considered the interaction between a
rising toroidal bubble and an immiscible liquid interface, primarily for the phase when
the bubble passes through the initial position of the interface. In the present study, we
experimentally investigate a toroidal bubble crossing the interface between two immiscible
liquids (water and oil) from the passage phase to the break-up phase to elucidate the fluid
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Figure 1. Schematic of the experimental set-up.

transport characteristics. By varying the size and propagation speed of a toroidal bubble,
and the fluid properties such as density and viscosity, the key parameters that determine
the dynamic behaviour of the toroidal bubble are identified.

The experimental set-up, input parameters and measurement techniques are described
in § 2. In § 3, several important quantities relevant to fluid entrainment and transport
are analysed. General features of the interactions between the toroidal bubble and the
liquid–liquid interface are presented in § 3.1. Then, the ring radius and propagation speed
of the bubble, the corresponding liquid volume transported by the bubble and the travel
distance of the bubble after it passes through the interface are examined in § 3.2. In § 3.3,
the temporal change in the ring radius is predicted through a theoretical approach based
on the observations of the previous sections. Furthermore, the effects of the viscosity
and density differences between the two liquids are discussed in § 3.4. Finally, our main
findings are summarised in § 4.

2. Experimental set-up

Experiments were conducted in a glass tank with a square cross-section of 45 cm × 45 cm
and a height of 130 cm at 22 ± 1 ◦C (figure 1). A sufficiently large tank was selected
to minimise the blockage effect of sidewalls on the toroidal bubble. A toroidal bubble
generator was fabricated, similar to the apparatus of previous studies (Vasel-Be-Hagh et al.
2015b; Lesage et al. 2016; Yan, Carriveau & Ting 2018). This cylindrical apparatus has
a small opening on its top (inset of figure 1). Compressed air is supplied from an air
compressor to the bubble generator, positioned at the bottom of the water tank, and the air
pressure is controlled using a pressure regulator. A solenoid valve in the path of the air is
computer-controlled with MATLAB (Mathworks, Inc.). Once the solenoid valve is open
for a short duration, the air passes through a check valve which inhibits backflow and then
passes into the bubble generator. The air is released through a small opening on the top
of the bubble generator. By controlling the air pressure in the range of 25–75 kPa and the
valve opening duration in the range of 0.20–0.30 s, toroidal bubbles of various sizes and
propagation speeds can be created.
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Upper liquid Density Kinematic viscosity Refractive index
(g cm−3) (mm2 s−1)

V1 (S-8) 0.87 16.6 1.47
V2 (S-8/S-96 mixture) 0.87 80.7 1.48
V3 (S-96) 0.87 240.2 1.48

Lower liquid Density Kinematic viscosity Refractive index

(g cm−3) (mm2 s−1)
Tap water 1.00 0.96 1.33
20 % NaCl solution 1.15 1.31 1.37

Table 1. Physical properties of the liquids used in experiments at 22 ◦C.

Two immiscible liquids with different densities were placed in the tank to form a
horizontal interface. The lower liquid was filled up to a height of 60 cm above the ejection
hole of the bubble generator so that the toroidal bubble had enough space to develop and
turn into an axisymmetric shape before impacting the interface. The upper liquid had a
height of 50 cm, which is sufficient to observe the evolution of the bubble and interface. To
examine the effects of the density difference between the upper and lower liquids, tap water
and a 20 % NaCl solution were successively used as the lower liquid. For the upper liquid,
three base oils (S-8, S-96, and a mixture of 40.8 % S-8 and 59.2 % S-96, S-Oil, Inc.) were
used to investigate variations in the viscosity ratio. For simplicity, base oil S-8, S-8/S-96
mixture and base oil S-96 are hereafter termed to as V1, V2 and V3, respectively, with an
increasing order of viscosity. The kinematic viscosity was measured using Zahn cups. The
interfacial tension coefficient σI between the upper and lower liquids was determined using
the pendant-drop method (de Gennes, Brochard-Wyart & Quéré 2004), and was found to
be in the range of 38–40 mN m−1. The density, kinematic viscosity and refractive index of
the liquids are summarised in table 1.

A high-speed camera (FASTCAM MINI-UX50, Photron Inc.) with a resolution of
1280 × 1024 pixels and an AF Nikkor 35 mm f/2D lens (Nikon Corp.) were used to
visualise the evolution of the toroidal bubble and the interface between the two liquids.
In this condition, one pixel corresponds to 0.72 mm, which is at maximum 3 % of the ring
radius. To reduce additional uncertainty from refraction through liquids and the wall of
the tank, the camera was located at a sufficient distance of 240 cm from the water tank and
facing the centre of the interface horizontally. The images were captured at 125 frames
per second with an exposure time ranging from 0.16 ms to 0.40 ms. The image plane was
illuminated using a light-emitting diode plate light located on the opposite side of the tank
to enhance the contrast of images; see figure 1.

To obtain velocity fields around a toroidal bubble in the lower fluid, particle image
velocimetry (PIV) was performed. Polyamide particles (Vestosint 1164 white, Evonik
Industries AG.) with a density of 1.06 g cm−3 and a mean diameter of 50 μm were used
as seeding particles. A planar laser sheet was generated vertically by a 10 W continuous
laser (MGL-W-532A, CNI Co.), and it included the path of the rising toroidal bubble
centre on the xz-plane in figure 2(b). For PIV, the same high-speed camera was used to
capture the images at 1000 frames per second, and the exposure time was in the range of
0.8–1.0 ms. The multi-grid cross-correlation method (PIVview2C 3.6.0, PIVTEC GmbH)
was used to process image pairs; the time interval between two images in a pair was 1 ms.
The initial and final window sizes were 32 × 32 pixels and 16 × 16 pixels, respectively,
with an overlap of 50 %, which created 79 × 55 nodes with a spatial resolution of 5.1 mm.
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Figure 2. (a) Parameters of the toroidal bubble and (b) its ring radius Rref and propagation speed Uref at the
reference time t = tref . At this instant, the centre point of the toroidal bubble is positioned at twice the ring
radius below the horizontal interface.

Flow regions which are not accessible by PIV, such as the shadow of the bubble and the
region near multiple interfaces with laser light scattered, were obtained by interpolating
nearby velocity data. PIV was conducted for a limited number of cases to identify the flow
pattern around the toroidal bubble. PIV results for the bubble after penetration were not
reliable due to refraction in the entrained lower fluid and surrounding upper fluid, and thus
the phase after penetration was not considered for PIV.

The interaction between the approaching toroidal bubble and the interface depends on
the shape and propagation speed U of the bubble. The bubble shape is determined by its
ring radius R and vortex core radius a, under the assumption that the bubble is a circular
toroid (figure 2a). Note that the x- and z-axes are in the horizontal and vertical directions,
respectively, and x = 0 denotes the centre of the bubble, while the initial position of the
interface is set to z = 0 (figure 2b). The interface of a toroidal bubble was challenging to
detect automatically from image processing because the interface of the front half of the
bubble with respect to its distance from the camera overlapped the interface of the other
half of the bubble. Therefore, we measured the ring radius, core radius and position of the
bubble manually. The core diameter was measured from a distance between the uppermost
and lowermost points of the front half of the bubble (i.e. the part that is closer to the
camera), while the ring diameter was measured by subtracting the core diameter from the
length between the left and right ends of the bubble. The propagation speed was computed
by the central difference scheme using the position data of the ring’s centre along the
z-axis with a time step of 0.16 s, and the bubble volume Vb was estimated as Vb = 2π2Ra2

under the assumption of a perfectly toroidal form. These data were corrected to account
for the difference in the refractive indices of the two liquids; see Appendix A.

Because the three parameters (U, R and a) are time-dependent, their values at either
specific instant or position should be chosen as reference values. The reference position
was chosen such that the bubble at this position barely changed the interface. We found
that the deformation of the interface was negligible when the centre of the bubble was
positioned at twice the ring radius below the initial horizontal interface, and thus this
position and corresponding instant were regarded as the reference position and reference
time tref , respectively. The propagation speed, ring radius and core radius of the bubble
at t = tref were defined as reference values: Uref , Rref and aref , respectively (figure 2b).
The bubble volume at t = tref was also defined as the reference bubble volume Vb,ref . The
mean absolute percentage errors of Uref , Rref , aref and Vb,ref due to the spatial resolution
of images are 1.0 %, 1.3 %, 7.4 % and 14.3 %, respectively. Here, the relatively large error
of Vb,ref was due to the accumulated errors from Rref and aref . To reduce the error in
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measuring Vb,ref , the values from five images taken at 0.04 s intervals around the reference
position were averaged.

The strength (circulation) of vortical flow around a toroidal bubble has a critical
influence on the dynamic behaviours of the bubble. According to Vasel-Be-Hagh et al.
(2015a), the circulation of a toroidal bubble in a single liquid can be estimated analytically
as

Γ = 4πRU
(

ln
8R
a

− 1
4

)−1

. (2.1)

A comparison with the PIV results confirmed that the use of (2.1) based on the ring radius,
propagation speed and core radius of the toroidal bubble provided a reasonable estimate
of its circulation before the bubble crosses the interface; see Appendix B. Throughout
this study, therefore, the circulation of the toroidal bubble is obtained from (2.1), and the
reference circulation at t = tref is termed Γref .

For a single-phase vortex ring impinging a density-stratified interface, the relative
magnitudes of the inertial force and gravitational force acting on the vortex ring are crucial
in characterising the interaction between the vortex ring and the interface (e.g. Linden
1973; Dahm, Scheil & Tryggvason 1989; Stock, Dahm & Tryggvason 2008; Advaith et al.
2017; Olsthoorn & Dalziel 2017; Song, Choi & Kim 2021; Wang & Feng 2022). Regarding
the penetration of a spherical or ellipsoidal bubble through an interface between two
immiscible liquids, the viscosity difference also affects the volume of the fluid entrained
by the bubble (Greene et al. 1991; Bonhomme et al. 2012). The Froude number Fr, which
represents the relative magnitude of the inertial and gravitational forces for a toroidal
bubble, the viscosity ratio Λ between the two liquids, and the Atwood number At, which
is a dimensionless form of the density difference between two liquids, are employed as the
main dimensionless variables to take these effects into account:

Fr = Γref

(gR3
ref )

1/2
, (2.2a)

Λ = μu

μl
, (2.2b)

At = ρl − ρu

ρl + ρu
, (2.2c)

where μ and ρ are the dynamic viscosity and density, respectively, and subscripts l
and u denote the lower and upper liquids, respectively. The reference circulation Γref
of the toroidal bubble replaces the inertial component of the Froude number, similar to
the definition given by Song, Bernal & Tryggvason (1992); Rref is the reference ring
radius. As the gravitational force of the toroidal bubble is closely related to the density
difference across the interface, we will consider a parameter that combines Fr and At to
identify the coupled effects of density difference and bubble inertia in § 3.4. The ranges of
these dimensionless parameters are Fr = 0.9–2.5, At = 0.067–0.133 and Λ = 15.1–217.9.
Here, the range of Fr is such that a stable toroidal bubble penetrates the interface; for very
small values of Fr, bubbles from the generator cannot form a toroid, whereas for very large
values of Fr, the bubbles become unstable and wrinkled before reaching the interface.

The Bond number (= ρlgD2
eq/σS), where Deq = (6Vb,ref /π)1/3 is the equivalent

diameter and σS is the surface tension coefficient for the interface between the air and
the lower liquid, and the Archimedes number (= ρlg1/2D3/2

eq /μl) are also known to play
a role in the three-phase system involving relatively small bubbles (Bonhomme et al.
2012). However, a toroidal bubble can only appear for high Bond and Archimedes numbers
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(Bonometti & Magnaudet 2006; Tripathi, Sahu & Govindarajan 2015). Because we aim to
identify the behaviours of toroidal bubbles, we only consider sufficiently high Bond and
Archimedes numbers (over 100 and 10 000, respectively), and these parameters did not
show significant effects on the interactions between the bubble and the interface for the
range available in our apparatus.

To compare various cases in which Fr, Λ or At differs, the ring radius R and propagation
speed U are normalised by the reference values Rref and Uref , respectively. Also, the
dimensionless time t∗ is introduced as

t∗ = Γref (t − t0)

R2
ref

, (2.3)

where t0 is the instant at which the uppermost point of the toroidal bubble passes
the original horizontal position of the interface. At the initial stage of toroidal bubble
formation, in which the bubble is approximately spherical, a liquid jet from its bottom
surface causes a high-speed and intense flow (Chen et al. 1999; Bonometti & Magnaudet
2006; Cao & Macián-Juan 2020). The shape and propagation speed of the resultant
toroidal bubble were varied although the air pressure and valve opening time were kept
unchanged in our experiments. This inconsistency is because the bubble formation process
is sensitive even to slight disturbance of the flow. Accurate control and perfect prediction
of the initial toroidal bubble configuration were infeasible. Although the dimensional
values of the reference ring radius, propagation speed and circulation were different among
several trials, very similar dynamic behaviours appeared in a dimensionless sense (i.e.
temporal changes in normalised R/Rref , U/Uref ) when Fr, Λ and At were identical.

3. Results and discussion

3.1. Overview of toroidal bubble–interface interactions
As the behaviours of a toroidal bubble after passing through the liquid–liquid interface
remain elusive, we first describe general features regarding the evolutions of the toroidal
bubble and interface. The sequential images of the toroidal bubble and interface are
displayed in figure 3(a), and the corresponding ring radius and propagation speed are
shown in figure 3(b,c). Although one specific case is presented in figure 3(a), the
behaviours demonstrated in the figure are generally observed in the other cases in
which the bubble penetrates the interface. These data were tracked until the lower liquid
surrounding the bubble became corrugated due to instability because the corrugated
interface made the accurate correction of refraction impossible.

When the toroidal bubble rises far below the horizontal interface (t∗ < −1 in figure 3),
the bubble hardly interacts with the interface, and it gradually expands the ring radius
while reducing the propagation speed. This expansion is common for a toroidal bubble
rising vertically in a single uniform fluid (Pedley 1968; Cheng, Lou & Lim 2013;
Vasel-Be-Hagh et al. 2015a). As the bubble approaches the interface, the interface starts to
deform into an ellipsoidal cap (figure 3a, t∗ = −2.8). Simultaneously, the radial expansion
accelerates, and the propagation speed declines drastically (figure 3b,c, t∗ ≈ 0). These
trends of the ring radius and the propagation speed are also observed as a single-phase
vortex ring perpendicularly approaches a flat surface or a horizontal density-stratified
interface (Walker et al. 1987; Olsthoorn & Dalziel 2017; Xu et al. 2017; Yeo et al. 2020).

As the toroidal bubble crosses the initial position of the interface, it moves upwards
along with some of the lower liquid instead of passing the interface alone. The lower
liquid forms an ellipsoid that envelops the toroidal bubble, preventing direct contact
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Figure 3. (a) Sequential images of the toroidal bubble rising through an interface between two immiscible
liquids for Fr = 0.9, Λ = 73.2 and At = 0.067. (b,c) Temporal changes in the normalised ring radius and
propagation speed. See supplementary movie 1 available at https://doi.org/10.1017/jfm.2023.457 for panel (a).

between the bubble and the upper liquid (figure 3a, t∗ = 2.8). Although the horizontal
interface at a decent distance from the bubble is lowered by up to 0.3 cm at this point
as the lower liquid moves upwards, the dynamics of the bubble are hardly affected by
the change in the interface level. After penetration, the ring radius and the volume of
the lower liquid surrounding the bubble begin to decrease. The reduced volume of the
surrounding liquid results in the vertical liquid column being formed below the bubble.
This falling liquid column creates secondary vortices below the initial location of the
interface, which rotate in the direction opposite to the flow around the toroidal bubble
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(a) (b)

Bubble

Ellipsoidal body

Figure 4. (a) Side view of entrained lower liquid. The blue area denotes the entrained lower fluid consisting
of an ellipsoidal body with a toroidal bubble. (b) Top view of entrained lower fluid.

(figure 3a, t∗ ≥ 5.5). The radially contracting bubble accelerates and rises with a greater
speed (figure 3b,c, t∗ > 6). In the later stage, the ring radius and the volume of the lower
liquid enveloping the bubble become quite small, with most of the lower liquid lost to the
falling liquid column (figure 3a, t∗ = 11.0). The toroidal bubble then becomes unstable,
losing its axisymmetric form (figure 3a, t∗ = 16.5); we discuss the origin of this instability
in § 3.2. The unstable bubble eventually breaks up into tiny bubbles, primarily in the form
of a spherical cap (figure 3a, t∗ = 19.3). The remaining lower liquid near the tiny bubbles
loses its momentum and begins to fall down.

The lower liquid encapsulating the toroidal bubble fits into an ellipse when observed
from the side, as highlighted in figure 4(a), and it is axisymmetric with respect to the
longitudinal z-axis (figure 4b). Therefore, we assume that the three-dimensional shape
is ellipsoidal, and the combination of the bubble and the lower liquid encapsulating
the bubble is termed an ellipsoidal body hereafter. The lower liquid encapsulating the
bubble is a salient feature in the penetration of the toroidal bubble. Although non-toroidal
bubbles, such as spherical or spheroidal, also lift some of the lower liquid under the same
circumstance, only a thin film of the lower liquid surrounds the bubble, and the rest is
mostly below the bubble in the form of a liquid column (Reiter & Schwerdtfeger 1992;
Bonhomme et al. 2012; Natsui et al. 2018).

When the toroidal bubble is below the initial horizontal interface, the vortical flow of
the lower liquid is accompanied by the toroidal bubble, as can be seen from the velocity
field (in the laboratory reference frame) measured by PIV (figure 5a); in the figure, the
bubble is positioned at the reference position. The velocity field in the reference frame
moving with the centre of the bubble can be acquired by superimposing the propagation
speed of the bubble at this instant on the velocity field in the laboratory reference frame
(figure 5b). In this moving reference frame, the ellipsoidal boundary, which consists of
streamlines enclosing the toroidal bubble, is constructed (red dashed line in figure 5c).
This boundary can be regarded as the boundary of the vortex ring within which the
lower liquid is entrained by the vortical flow (Dabiri & Gharib 2004). As the toroidal
bubble passes through the liquid–liquid interface, the generated ellipsoidal body depicted
in figure 4(a) is similar to the ellipsoidal boundary of the flow structure in figure 5(c). That
is, the entrained volume of the lower liquid inside the ellipsoidal body originates from the
vortical flow formed around the toroidal bubble below the horizontal interface. Although
reliable velocity fields could not be obtained due to refraction through the interfaces and
the data are not presented here, the vortical flow around the toroidal bubble inside the
ellipsoidal body is also observed after the bubble penetrates the original interface.
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Figure 5. (a) Instantaneous velocity field around the toroidal bubble below the initial interface in the
laboratory reference frame, (b) instantaneous velocity field in the reference frame moving with the toroidal
bubble and (c) instantaneous streamlines from the velocity field in panel (b). The blue solid lines and greyed-out
areas in panels (a–c) denote the toroidal bubble and the shadow of the bubble, respectively, and the red dashed
line in panel (c) denotes the boundary of the toroidal bubble in the frame moving with the bubble. Here,
Fr = 2.5, Λ = 9.7 and At = 0.067.

3.2. Toroidal bubble dynamics and entrained volume
The passage of a toroidal bubble through the liquid–liquid interface exhibits a common
pattern, as reported in § 3.1. However, the behaviours of the toroidal bubble, such as ring
radius and propagation speed, and the entrained volume of the lower liquid depend on the
conditions of the system. In this section, we examine the effects of the Froude number
Fr by varying the circulation of the vortical flow around the bubble. The lower and upper
liquids are fixed as tap water and V2 oil, respectively: Λ = 73.2 and At = 0.067.

Temporal changes in the normalised ring radius R/Rref and propagation speed U/Uref
are depicted in figure 6 for six values of Fr. The corresponding values of Rref , Uref ,
Vb,ref and Γref are listed in table 2 for each case of Fr. The trends in the ring radius
and propagation speed are similar among the six cases, demonstrating that the trends
illustrated by figure 3(b,c) can be generalised. Although R/Rref and U/Uref are hardly
affected by Fr before crossing the interface, distinct differences appear after passing the
interface. Lower values of Fr produce steeper reductions in R/Rref and U/Uref after
t∗ = 0, followed by steeper growth in U/Uref after approximately t∗ = 6. This steeper
growth in U/Uref appears to begin when the bubble rises sufficiently high to form the
liquid column connected with the ellipsoidal body. The relative magnitude of vortex
strength is small for lower Fr, and the inertial effects of the bubble on the penetration
into the upper liquid are accordingly weak, causing a more dramatic reduction in R/Rref
and U/Uref as the bubble crosses the interface.

Another main interest is to evaluate how much of the lower liquid the toroidal bubble
can entrain and carry upwards across the interface. As shown in figure 5(c), the ellipsoidal
boundary of the toroidal bubble in the reference frame fixed with the bubble is caused
by the circulatory flow near the bubble. Several studies of the vortex ring have defined
the entrained volume as the volume of the fluid inside the ellipsoidal boundary (Dabiri
& Gharib 2004). Similarly, the ellipsoidal body in the upper fluid is formed by the
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Figure 6. Temporal changes in (a) normalised ring radius R/Rref and (b) propagation speed U/Uref for Fr =
0.9–2.5 (Λ = 73.2 and At = 0.067). In each case, data are presented while the bubble remains stable, and a
smooth bubble interface can be clearly observed.

Fr Λ At Rref (cm) Uref (cm s−1) Vb,ref (cm3) Γref (cm2 s−1)

2.5 73.2 0.067 2.77 37.5 12.5 366.8
2.1 73.2 0.067 2.98 33.8 13.0 341.9
1.7 73.2 0.067 3.26 29.6 12.7 313.5
1.4 73.2 0.067 3.81 27.9 13.0 330.1
1.2 73.2 0.067 3.94 25.7 12.5 305.6
0.9 73.2 0.067 4.29 20.7 10.2 254.1

Table 2. Reference values of the toroidal bubble for each case of Fr with Λ = 73.2 and At = 0.067.

circulatory flow near the toroidal bubble. In this sense, the volume inside the ellipsoidal
body, excluding the liquid column volume, is only considered for the entrained volume.
Consequently, the volume of the ellipsoidal body subtracted by the bubble volume is
defined as the entrained volume, Ve, in this study.

In our experiments, toroidal bubbles rose stably to approximately 30 cm above the
reference position. The hydrostatic pressure, which considers the densities of the upper
and lower liquids, changes along the vertical direction from the reference position. With
the adiabatic assumption, the volume change over this vertical distance by the hydrostatic
pressure difference is estimated to be approximately 2 %. As the bubble volume is much
smaller than the entrained volume, this 2 % change in the bubble volume is negligible
in estimating the entrained volume. Thus, the bubble volume is assumed to be constant
throughout its penetration phase: Vb = Vb,ref . The entrained volume is measured from
the instant at which the lowermost part of the bubble passes through the initial position
of the interface until the bubble and the enveloping lower liquid become unstable and
asymmetric. When the entrained volume is not in a completely ellipsoidal form and the
liquid column has not yet formed (see figure 3a, t∗ = 2.8), only the volume above the
initial position of the interface is considered.

The temporal variations in the entrained volume Ve, made dimensionless by R3
ref , are

depicted in figure 7(a) for six values of Fr (in table 2). The entrained volume drops quickly
after the bubble crosses the interface. A greater decrease in Ve/R3

ref is observed for lower
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Figure 7. (a) Temporal changes in normalised entrained volume Ve/R3
ref and (b) normalised volume of the

ellipsoidal body, Vs/R3
ref , versus normalised ring radius cubed, (R/Rref )

3, for Fr = 0.9–2.5 (Λ = 73.2 and
At = 0.067). The black solid line is from (3.1).

values of Fr. Comparing figures 6(a) and 7(a), the tendency of the entrained volume
is quite similar to that of the ring radius R, suggesting the possibility of predicting the
entrained volume based on the ring radius.

The correlation between the ring radius and entrained volume of the toroidal bubble
becomes apparent when the bubble is sufficiently far above the initial position of the
interface (i.e. z ≥ Rref ) to allow the lower liquid encapsulating the bubble to become
almost ellipsoidal. The normalised volume of the ellipsoidal body, Vs/R3

ref , is plotted
versus (R/Rref )

3 for the six values of Fr (Λ = 73.2 and At = 0.067) in figure 7(b).
Regardless of Fr, these parameters collectively exhibit a linear relationship with a non-zero
y-intercept. As R approaches zero, the bubble becomes spherical, having the non-zero
volume of the ellipsoidal body. Thus, a non-zero y-intercept is reasonable. Using the
least-squares method, the following empirical relation with an R-squared value of 0.97
is acquired:

Vs = Ve + Vb,ref = 5.8R3 + 0.6R3
ref . (3.1)

Even for other values of Λ and At considered in this study, the data for Vs/R3
ref and

(R/Rref )
3 fit well into (3.1), suggesting the universal similarity of the ellipsoidal body

with respect to the ring radius.
This similarity suggests that the ellipsoidal boundary of the toroidal bubble in the

reference frame fixed with the bubble (red dashed line in figure 5c) before penetration
retains its shape throughout the penetration process. For general vortex rings in a single
phase, the shape of the ellipsoidal boundary is dependent on the flow structure of the
vortex ring (Norbury 1973). However, in the present study, due to the unavailability of
velocity fields after penetration, it is difficult to reliably analyse the flow structure near the
bubble after penetration. Hence, the explanation of the correlation between Vs/R3

ref and
(R/Rref )

3 is limited to be conjectural, based on the observation that the boundary shape of
the toroidal bubble before penetration is similar to the boundary shape of the ellipsoidal
body after penetration (figures 4a and 5c).
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(a) (b) (c)

Piercing

Figure 8. Piercing process of the upper liquid into the lower liquid encapsulating the toroidal bubble. See
supplementary movie 2.

How long the ellipsoidal body rises stably is also examined in a qualitative manner.
When the toroidal bubble shrinks and the entrained volume decreases (figure 7), the lower
liquid falling from the ellipsoidal body forms a thick liquid column (figure 8a). Up to
this stage, the liquid falling through the column obstructs the piercing of the upper liquid
into the ellipsoidal body on the lower side of the ellipsoidal body. As the bubble travels
farther, the reduction in the entrained volume becomes slower, and the flux of the lower
liquid falling through the column decreases, resulting in a thinner column (figure 8b). The
slender column becomes corrugated due to instability, just as in the case of a single-phase
vortex ring crossing a density-stratified interface (Advaith et al. 2017), and the bottom
surface of the ellipsoidal body becomes unstable. The upper liquid around the ellipsoidal
body then pierces the ellipsoidal body through its bottom interface (figure 8c).

The piercing of the upper liquid can occur when the reduction in the ring radius becomes
slower, and it commences near the bottom of the ellipsoidal body in all experimental cases,
because the circulation of the toroidal bubble induces an inward flow of the entrained
liquid near the bottom surface; see figure 5(a). Soon after the piercing, the ellipsoidal
body becomes asymmetric, accelerating the instability of the bubble. We confirmed that
this kind of instability was not observed for a toroidal bubble rising in a single liquid in
the range of Fr used in our experiments. In addition, Pedley (1968) theoretically predicted
that the height to which a toroidal bubble with a volume of 21 cm3 could rise stably was
over 150 cm when it was immersed in a single liquid. In contrast, hstable is mainly below
30 cm in the present study, suggesting that the piercing of the upper liquid is the primary
cause of the instability in our cases.

After the piercing, the bubble breaks up at an instant. Although the entrained liquid still
has a little momentum, this height at which the piercing occurs appears to be the clear
limit of the stable transport height of the toroidal bubble as the bubble breaks shortly.
Hence, the height of the bubble centre at which the piercing begins, hstable, is regarded as
a characteristic travel distance to represent the effectiveness of fluid transport across the
interface. This distance is measured from the original position of the interface (figure 9a).
The travel distance hstable is correlated with the Froude number. For high values of Fr,
the ellipsoidal body possesses large inertia, which makes it more stable and thus delays
the piercing of the upper liquid. Indeed, hstable/Rref tends to increase linearly with Fr
(figure 9b).

To evaluate how effectively the entrained volume Ve is transported until the centre
of the toroidal bubble reaches z = hstable for a given volume of the toroidal bubble,
figure 10 plots Ve normalised by the reference bubble volume Vb,ref with respect to the
vertical position of the bubble centre, z, normalised by hstable (see figure 2b for the
definition of the z-coordinate). With decreasing Fr, Ve/Vb,ref becomes greater around
z/hstable = 0.1–0.2, which seems to conflict with the results shown in figure 7. However,
this result is reasonable when the definition of the Froude number (2.2a) is considered.
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Figure 9. (a) Definition of characteristic travel distance hstable and (b) travel distance normalised by reference
ring radius, hstable/Rref , versus Fr (Λ = 73.2 and At = 0.067).
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Figure 10. Entrained volume normalised by bubble volume, Ve/Vb,ref with respect to dimensionless height
z/hstable of the toroidal bubble for Fr = 0.9–2.5 (Λ = 73.2 and At = 0.067).

In our experiments, lower values of Fr tend to produce bubbles with a greater reference
ring radius Rref (see table 2), which leads to a large entrained volume Ve immediately
above the initial position of the interface. Remarkably, just after crossing the interface,
the bubble carries a massive amount of the lower liquid, approximately 15–50 times its
volume Vb,ref up to z/hstable = 0.1–0.2, even without including the volume of the liquid
column (figure 10).

It is worth comparing the performance of liquid transport between the toroidal bubble
and non-toroidal bubbles. Non-toroidal bubbles rising in a single liquid have various
shapes depending on their size and liquid properties such as viscosity and surface tension
coefficient, and their paths are also diverse, in addition to vertical straight motion without
oscillation, because of instability (Magnaudet & Mougin 2007; Tripathi et al. 2015; Sharaf
et al. 2017). When a non-toroidal bubble passes through a liquid–liquid interface, the
colliding angle between the bubble and the interface also plays a big role (Choi & Park
2021). Although the trajectory and colliding angle are regarded as critical parameters for
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liquid transport, only a few cases of non-toroidal bubbles are chosen for comparison with
the toroidal bubble. To compare the toroidal bubble and non-toroidal bubbles of the same
volume, an equivalent diameter Deq = (6Vb,ref /π)1/3 is useful. According to Bonhomme
et al. (2012), the total volume of the lower liquid transported by a vertically ascending
spherical bubble (including the volume of the liquid column below the bubble) is three
times the bubble volume when the vertical position of the bubble is around z = Deq. The
volume of the transported liquid drops quickly afterwards and reaches zero at z = 4Deq
(figures 4 and 5 in Bonhomme et al. 2012). The volume of the transported lower liquid
by a spherical cap bubble rising vertically (including the liquid column) reaches up to
seven times the bubble volume at z = 4Deq (figures 8 and 9 in Bonhomme et al. 2012).
Furthermore, Choi & Park (2021) reported that bubbles in zigzagging paths transported
the lower liquid for a distance much shorter than bubbles in rocking motion; bubbles in
rocking motion can rise with the lower liquid approximately by 5Deq from the position of
the undisturbed interface.

By comparison, the maximum entrained volume of the toroidal bubble (excluding
the liquid column) is roughly 15–50 times the volume of the toroidal bubble at z =
0.6–1.0Deq. The value of Ve/Vb,ref decreases as the bubble continues to rise towards
z = hstable (figure 10). Here, the travel distances hstable for the six Fr cases correspond
to 5.6–9.6Deq. Despite the long travel distance, the toroidal bubble can still transport
approximately five times the volume of the lower liquid. Although the bubble and
liquid conditions are not identical, our results suggest that toroidal bubbles have superior
transport performance compared with bubbles of other shapes. Interestingly, while there
are huge differences in Ve/Vb,ref between the six Fr cases at z/hstable < 0.5, their values
tend to collapse onto each other when z/hstable > 0.5. Furthermore, the converged values
of Ve/Vb,ref at z/hstable = 1 are in quite a narrow band between 4.3 and 6.0. This unique
feature – convergence of the volume ratio Ve/Vb,ref – is related to the balance of linear
momentum of the ellipsoidal body, which is analysed in the following section.

3.3. Prediction of temporal change in ring radius
The relationship between the entrained volume and the ring radius, as shown in (3.1),
indicates that the transport capability of a toroidal bubble can be evaluated from the
temporal change in the ring radius of the bubble. In this section, we theoretically predict
the temporal variation in the ring radius. The ring radius before passing the liquid–liquid
interface is discussed first. When the bubble is far below the interface, the deformation
of the interface is not observable; that is, the bubble has little effect on the interface. At
this time, the behaviour of the toroidal bubble can be explained by referring to a toroidal
bubble rising in a single liquid. For a single liquid, the theoretical ring radius R is given by

R =
[

R2
a + FB(t − ta)

πρlΓ

]1/2

, (3.2)

assuming that the circulation Γ remains constant (Turner 1957). Here, ta is an arbitrary
time, Ra is the vortex ring radius at t = ta and ρl is the density of the surrounding liquid.
Additionally, FB is the buoyancy force acting on the toroidal bubble, which is assumed to
remain constant: FB = (ρl − ρair)gVb, where ρair = 1.2 kg m−3. According to (3.2), the
ring radius increases over time, which agrees with our observation at t∗ < 0 in figure 6(a).
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Figure 11. Comparison of normalised ring radius R/Rref between experimental measurements (markers) and
numerical solutions of (3.10) (solid lines) for Fr = 0.9–2.5 (Λ = 73.2 and At = 0.067). The black dash–dotted
line is from (3.5), and the solid lines are from (3.10).

Dividing both sides by Rref and substituting (2.3) gives the dimensionless form of (3.2):

R
Rref

=
[

1 + ρl − ρair

ρl

gVb,ref

πΓ 2
ref

(t∗ − t∗ref )

]1/2

=
[

1 + 1
Fr2

ρl − ρair

ρl

Vb,ref

πR3
ref

(t∗ − t∗ref )

]1/2

, (3.3)

where t∗ref is the dimensionless time at t = tref . Here, ta, Ra, Γ and Vb are replaced by tref ,
Rref , Γref and Vb,ref , respectively.

In figure 6(a), R/Rref is hardly affected by Fr before crossing the interface. The
independence of R/Rref by Fr can be derived as follows. Walters & Davidson (1963)
theoretically estimated the circulation of the toroidal bubble, Γ , as

Γ = 3g1/2V1/2
b , (3.4)

and showed that their experimental data were in reasonable agreement with (3.4) although
this relation was derived from the instant when a spherical bubble deforms significantly
and turns toroidal. In (3.3), the air density is negligible compared to the liquid density, and
Vb = Vb,ref . Combining (3.4) with (3.3) yields

R
Rref

=
[

1 + 1
9π

(t∗ − t∗ref )

]1/2

, (3.5)

which is independent of Fr. The dash–dotted line in figure 11 is from (3.5), which shows
the theoretical prediction of the ring radius is in good agreement with the experimental
data.

However, after passing the interface, the buoyancy force of the toroidal bubble is not
the only force critical for the bubble dynamics. To take other forces into account without
considering the complexity outside the ellipsoidal body, the boundary of the ellipsoidal
body (figure 4a) is selected as a control surface. By doing so, mass flux across the control
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surface appears only through the liquid column below the ellipsoidal body. As the control
volume moves upwards at a propagation speed U, the z-momentum equation from the
Reynolds transport theorem is given as∑

Fz −
∫

CV
az dm = d

dt

∫
CV

uz,rel dm +
∫

CS
uz,rel dṁout, (3.6)

where az(= dU/dt) is the z-directional acceleration of the control volume with respect
to the ground reference frame, and uz,rel is the z-directional velocity of flow relative to
the reference frame moving with the control volume (White 2015). CV and CS represent
the control volume and control surface, respectively. Here, dm is the differential mass
of the fluid inside the control volume and dṁout is the differential mass flow rate out of
the control surface. The first and second terms on the left-hand side are the sum of the
forces applied on the ellipsoidal body and the inertial force accounting for the accelerating
control volume, respectively, and the first and second terms on the right-hand side are the
momentum change within the control volume and the momentum flux through the control
surface, respectively.

Some assumptions should be made because the exact velocity field inside the control
volume cannot be obtained. We assume that the first term on the right-hand side of
(3.6) is minor because the flow is circulatory around the ring core of the toroidal bubble
and thus uz,rel inside the control volume is mostly cancelled out for volume integral.
Although the downward flow near the lower region of the ellipsoidal body exists towards
the liquid column, the temporal variation of the downward flow velocity is minimal.
Because the momentum flux through the control surface occurs only through the liquid
column descending from the ellipsoidal body, the second term on the right-hand side can
be rewritten as (ṁuz,rel)out, where ṁ at the outlet means the outward mass flow rate from
the ellipsoidal body into the liquid column. As the momentum of the liquid column is
relatively small compared with that of the ellipsoidal body, the liquid column is assumed
to be nearly still in the ground reference frame, and the relative z-velocity uz,rel at the outlet
is supposed to be equal to −U. That is, the second term on the right-hand side of (3.6) is
dominant over the first term. Equation (3.6) is then simplified as∑

Fz = m
dU
dt

− ṁoutU = d
dt

(mU), (3.7)

where ṁout = −dm/dt; m is the total mass inside the control volume.
For z-directional forces on the left-hand side in (3.7), the body force acting on the

control volume and the surface force acting on the control surface should be considered.
Neglecting air density, the gravitational body force acting on the ellipsoidal body in the
downward direction is ρlgVe, and the buoyancy force due to the hydrostatic pressure
distribution on the surface of the ellipsoidal body is ρug(Ve + Vb,ref ) in the upward
direction. To evaluate the drag from the pressure and shear stress distributed on the surface
of the ellipsoidal body, we refer to Gan, Dawson & Nickels (2012) in which the drag force
over the ellipsoidal boundary of the turbulent and single-phase vortex ring is obtained.
The drag force acting on the ellipsoidal boundary in the downward direction is given by

FD = C′′
D × 1

2
ρuU2 × πR2k4, (3.8)

where C′′
D is the drag coefficient and k4 is the geometrical coefficient related to the shape of

the ellipsoidal body. According to their estimation, C′′
Dk4 is approximately 0.042 for their

cases. The drag by the shear stress on the ellipsoidal boundary is an order of magnitude
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smaller than the pressure drag for turbulent vortex rings. Because of similarity between the
ellipsoidal boundary of the vortex ring noted by Gan et al. (2012) and the surface of the
ellipsoidal body in our study, we adopt C′′

Dk4 = 0.042 and assume that the viscous drag is
negligible; the effect of viscous drag is discussed again in § 3.4 with other experimental
data using the three upper liquids with different viscosities.

The liquid column below the ellipsoidal body has an additional effect on the pressure for
the lower surface of the ellipsoidal body (Ji, Yang & Feng 2021). The Laplace pressure due
to the curvature of the liquid column, which acts on the lower surface, is σI/Rc, where Rc
is the curvature radius of the liquid column surface. Consequently, the force in the upward
direction due to the Laplace pressure in the liquid column is approximately (σI/Rc)πR2

c .
Assuming that Rc is of the same order of magnitude as R, this force can scale as πσIR,
which is only 1/400 of the gravitational force acting on the ellipsoidal body. Therefore, the
force by the Laplace pressure is negligible. In addition, the interfacial tension force acting
on the region connecting the ellipsoidal body and the liquid column scales as 2πRσI and is
negligible, considering that its scale is only approximately 1/200 of the gravitational force
acting on the ellipsoidal body.

Substitution of the aforementioned forces into (3.7) leads to

(ρu − ρl)gVe + ρugVb,ref − 1
2
πC′′

Dk4ρuU2R2 = d
dt

(mU). (3.9)

According to (3.1), m(= ρlVe) is a function of R; the mass of the toroidal bubble inside
the ellipsoidal body is negligible. Also, from the assumption that the bubble volume
remains constant, Vb(= 2π2Ra2) = Vb,ref and a = (Vb,ref /2π2R)1/2. Hence, (3.9) has two
variables (U and R), which can be reduced to one if we express U in terms of R. If
the passage through the interface does not significantly affect the circulation, Γ can be
replaced by Γref , and U can be expressed as a function of only R in (2.1). Combining (2.1),
(3.1) and (3.9) yields the equation for R,

(ρu − ρl)g(5.8R3 + 0.6R3
ref − Vb,ref ) + ρugVb,ref

− 1
2
πC′′

Dk4ρu

[
Γref

4π

{
1
2

ln
(

128π2R3

Vb,ref

)
− 1

4

}]2

= d
dt

[
ρl(5.8R3 + 0.6R3

ref − Vb,ref )
Γref

4πR

{
1
2

ln
(

128π2R3

Vb,ref

)
− 1

4

}]
. (3.10)

Discretisation using the forward Euler method for R with a time step of �t = 0.003 s is
employed to solve (3.10) numerically. Because (3.10) is derived under the condition in
which the ellipsoidal body is fully formed after penetration, the numerical simulation uses
the value of R at z = Rref , which is high enough to have the complete ellipsoidal body, as
the initial condition.

Admittedly, the theoretical prediction from (3.10) has several limitations. As the ring
radius decreases, the inward radial velocity makes the Kutta–Joukowski lift, accelerating
the core upwards (Lundgren & Mansour 1991). Therefore, (2.1) that represents the relation
between U and R needs to be modified after passing through the interface, especially
for low Fr where the bubble undergoes significant speed change. In addition, although
we use a single drag coefficient C′′

D which was originally acquired for turbulent and
single-phase vortex rings, the presence of the three phases in this study makes the detailed
flow structure of the toroidal bubble differ from that of the turbulent vortex rings, which
also causes errors in the theoretical prediction. Despite these limitations, the numerical
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Figure 12. Normalised force in z-direction with respect to dimensionless height z/hstable of the toroidal
bubble for Fr = 0.9–2.5 (Λ = 73.2 and At = 0.067).

solutions of (3.10) successfully capture the temporal change in the ring radius from the
experiments (figure 11). This theoretical result explains that the downward force acting on
the ellipsoidal body eventually leads to its contraction.

For a solid sphere passing through a horizontal liquid–liquid interface, Pierson &
Magnaudet (2018) theoretically estimated the amount of liquid that adheres to the sphere
and moves together, using vertical force balance acting on the sphere with buoyancy and
surface tension forces. Even for a non-toroidal bubble coated with oil, the volume fraction
of the bubble and oil is determined where the resultant force of vertical forces approaches
zero (Ji et al. 2021). Similarly, we examine the vertical forces acting on the ellipsoidal body
to find the relationship between the vertical forces and the entrained volume. Figure 12
plots the left-hand side of (3.10) (i.e.

∑
Fz) with respect to the vertical position z/hstable

of the bubble. Here,
∑

Fz is normalised by the buoyancy force acting on the bubble when
it is immersed entirely in the lower liquid, FB in (3.2): F∗ = ∑

Fz/FB. In figure 12, the
vertical net force F∗ is very close to zero when the piercing of the upper liquid into the
ellipsoidal body occurs at z/hstable = 1 (figure 8). In other words, because F∗ close to zero
causes slow change in the ring radius as inferred from (3.10), the liquid column becomes
thinner, resulting in the piercing of the upper liquid.

As the piercing of the upper liquids occurs when the vertical forces acting on the
ellipsoidal body balance each other, we can also predict the entrained volume at z/hstable =
1 from the force balance in (3.9). From our observation, the magnitude of pressure
drag is minimal at z/hstable = 1 for all cases, while gravitational and buoyancy forces
are dominant. Neglecting the pressure drag, the following approximation is valid at
z/hstable = 1:

(ρu − ρl)gVe,f + ρugVb,ref ≈ 0, (3.11a)

Ve,f

Vb,ref
≈ ρu

ρl − ρu
, (3.11b)

where Ve,f is the entrained volume at z/hstable = 1. For our cases, (3.11) yields
Ve,f /Vb,ref ≈ 6.7, which is very close to the experimental values of Ve/Vb,ref at z/hstable =
1 in figure 10. In short, the final value of the entrained volume is simply determined by the
densities of the liquids and the bubble volume.
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Fr Λ At Rref (cm) Uref (cm s−1) Vb,ref (cm3) Γref (cm2 s−1)

1.7 15.1 0.067 3.57 30.0 16.0 354.1
1.7 73.2 0.067 3.26 29.6 12.7 313.5
1.7 217.9 0.067 3.79 32.2 17.8 400.2

Table 3. Reference values of the toroidal bubbles in figures 13 and 14(a–c).

3.4. Effects of viscosity and density difference
Two dimensionless parameters, the viscosity ratio Λ and the Atwood number At, are now
controlled to explore how the dynamics of a toroidal bubble change with the relative
magnitudes of viscosity and density between the two liquids. First, by changing the
viscosity of the upper liquid, Λ varies from 15.1 to 217.9, while Fr and At remain fixed
at 1.7 and 0.067, respectively (three cases in table 3). Comparing the cases of Λ = 15.1
and 217.9, the overall sequential patterns of the toroidal bubble after crossing the interface
are similar at the same t∗, although the interface of the liquid column is smoother for
Λ = 217.9 (figure 13).

Obviously, the ring radius and propagation speed are not affected by the viscosity ratio
before t∗ = 0 because only the upper liquid has changed (figure 14a,b). After t∗ = 0,
however, the toroidal bubble exhibits faster radial contraction at given t∗ for higher Λ,
leading to a slightly greater propagation speed. The solid lines in figure 14(a) are from
the numerical solutions of (3.10). Note that (3.10) neglects the drag force from the viscous
stress on the ellipsoidal body. Thus, it shows good accuracy in predicting the change in
the ring radius for low Λ, but deviates from the experimental observations for high Λ. The
viscous drag resists the upward motion of the ellipsoidal body, adding a downward force
along with the gravitational force. As a result, a stronger viscous drag force would make
the ellipsoidal body and bubble shrink more rapidly.

The entrained volume also exhibits a slightly faster decrease for the higher Λ, following
the trend of R/Rref (figure 14c). As a consequence, Ve/Vb,ref at z = hstable becomes smaller
for the higher value of Λ. The values of Ve,f /Vb,ref are 6.4 and 3.6 for Λ = 15.1 and 217.9,
respectively. Although not presented here, Ve/Vb,ref tends to decrease with increasing Λ

for fixed values of Fr other than 1.7 reported in figure 14(c). As discussed in § 3.3, the
entrained volume is determined by the vertical forces imposed on the ellipsoidal body,
and the entrained volume at z = hstable corresponds to a zero net vertical force in (3.11).
However, the force acting on the surface of the ellipsoidal body from the viscous stress of
the upper liquid was neglected in § 3.3 because of the difficulty in rigorously estimating
the viscous stress. As a result, a stronger viscous drag force would make the ellipsoidal
body and bubble shrink more rapidly, leading to the reduced Ve,f /Vb,ref for higher Λ. The
characteristic travel distance hstable/Rref is almost unaffected by Λ in the range considered
in this study (figure 14d); for this plot, other cases with different Fr values are included
in addition to the three cases in table 3. This is because, for the higher Λ, the increase in
the propagation speed owing to the faster reduction in the ring radius offsets the negative
effect of the stronger viscous force on the travel distance.

Despite an increase in the viscosity ratio by a factor of approximately 15, the changes are
relatively minor compared with those in figure 6, in which the effects of Fr are depicted. In
other words, changing the viscosity ratio has a limited effect on the interactions between
the bubble and the interface compared with the Froude number, at least for the range of
viscosities considered in this study. This is because the toroidal bubble does not directly
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Entrainment of the toroidal bubble crossing an interface

10 cm
(a)

(b)

t∗ = 0 t∗ = 5.6 t∗ = 11.1 t∗ = 16.7 t∗ = 22.2 t∗ = 27.8t∗ = –5.6

t∗ = 0 t∗ = 5.6 t∗ = 11.1 t∗ = 16.7 t∗ = 22.3 t∗ = 27.9t∗ = –5.6

10 cm

Figure 13. Sequential images of the toroidal bubble rising through an interface between two immiscible
liquids for (a) Λ = 15.1 and (b) Λ = 217.9 (Fr = 1.7 and At = 0.067). See supplementary movie 3.

contact the upper liquid owing to the surrounding lower liquid. In contrast, non-toroidal
bubbles penetrating through the interface are sensitive to the viscosity ratio since they
undergo direct contact with the upper liquid (Greene et al. 1991; Bonhomme et al. 2012;
Magnaudet & Mercier 2020; Choi & Park 2021).

Next, while the upper liquid (V2 oil) remains unchanged, the density of the lower liquid
is varied using tap water and an NaCl solution to investigate the effect of the Atwood
number between At = 0.067 and 0.133. The viscosity ratios of these two cases differ
because the viscosity of the NaCl solution is greater than that of tap water: Λ = 73.2
for At = 0.067 and Λ = 51.7 for At = 0.133 (first two rows in table 4). Nevertheless, this
difference is negligible because the bubble–interface interactions are insensitive to such
small variations in the viscosity ratio, as explained previously.

For At = 0.133, the greater density of the lower liquid causes a stronger downward body
force on the ellipsoidal body, resulting in a significant reduction in the ring radius at a given
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Figure 14. Temporal changes in (a) ring radius R/Rref , (b) propagation speed U/Uref and (c) entrained volume
Ve/Vb,ref for Λ = 15.1, 73.2, 217.9 (Fr = 1.7 and At = 0.067). (d) Travel distance hstable/Rref versus Fr (At =
0.067). In panel (a), the black dash–dotted line is from (3.5), and the solid lines are from (3.10).

Fr Λ At Rref (cm) Uref (cm s−1) Vb,ref (cm3) Γref (cm2 s−1)

1.4 73.2 0.067 3.81 27.9 13.0 330.1
1.4 51.7 0.133 3.98 29.0 16.0 357.2
2.0 51.7 0.133 3.76 35.2 24.7 449.4

Table 4. Reference values of the toroidal bubbles. The first two rows are compared in figures 15 and 16(a–c),
while the first and third are in figure 17(a,b).

time (figures 15 and 16a). Because of the greater mass in the ellipsoidal body for At =
0.133, the upward motion is more severely retarded immediately after the bubble crosses
the interface (figure 16b). However, the greater contraction in the ring radius eventually
induces a steeper increase in the propagation speed after t∗ = 6. Remarkably, just a twofold
increase in At induces dramatic variations in R/Rref and U/Uref , while their variations are
minor despite a 15 times increase in Λ, as shown in figure 14(a,b). Also, in figure 16(a), the
numerical solutions of (3.10) (solid lines) are in excellent agreement with the experimental
results for both cases.

The higher Atwood number leads to a faster reduction in the entrained volume due to a
significant contraction in the ring radius (figure 16c). Consequently, Ve/Vb,ref at z = hstable
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Entrainment of the toroidal bubble crossing an interface

(a)

(b)

t∗ = 0 t∗ = 4.6 t∗ = 9.1 t∗ = 13.7 t∗ = 18.2 t∗ = 22.8t∗ = –4.6

t∗ = 0 t∗ = 4.5 t∗ = 9.0 t∗ = 13.6 t∗ = 18.1 t∗ = 22.6t∗ = –4.5

10 cm

10 cm

Figure 15. Sequential images of the toroidal bubble rising through an interface between two immiscible
liquids for (a) At = 0.067, Λ = 73.2 and (b) At = 0.133, Λ = 51.7 (Fr = 1.4). See supplementary movie 4.

becomes smaller for the higher At: these values in figure 16(c) are 6.0 and 3.0 for At =
0.067 and 0.133, respectively. Substituting the densities of the liquids used for At = 0.133
into (3.11) yields Ve,f /Vb,ref ≈ 3.2, which matches well with the experimental value of
Ve,f /Vb,ref = 3.0. Moreover, under a similar Fr value, the travel distance hstable/Rref is
noticeably smaller for the higher At because of the heavier lower liquid (figure 16d);
additional cases with Fr values other than 1.4 are considered for this plot. The value
of hstable/Rref is determined by At rather than Λ, as seen from a comparison between
figures 14(d) and 16(d).

In short, both the radius change and travel distance are more sensitive to Fr and At rather
than Λ, given the ranges of these dimensionless parameters. Furthermore, in figures 6
and 16, the increase in At and decrease in Fr have similar effects on the variations in
R and U, as well as hstable. Thus, it appears reasonable to introduce a dimensionless
parameter that integrates the opposite effects of Fr and At. Dahm et al. (1989) reported
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Figure 16. Temporal changes in (a) ring radius R/Rref , (b) propagation speed U/Uref and (c) entrained volume
Ve/Vb,ref for At = 0.067 and 0.133 (Fr = 1.4). (d) Travel distance hstable/Rref versus Fr. Here, Λ = 73.2 for
At = 0.067 and Λ = 51.7 for At = 0.133. In panel (a), the black dash–dotted line is from (3.5), and the solid
lines are from (3.10).

that, for a single-phase vortex ring impinging a density-stratified interface with a small
density variation, the dynamics were primarily determined by Fr divided by the square
root of At. In some aspects, the interaction between a toroidal bubble and an interface
between two immiscible liquids is similar to that of the single-phase vortex ring and the
density-stratified interface. Accordingly, it is worth examining whether the effective Froude
number Freff (= FrAt−1/2) can better characterise the toroidal bubble interacting with the
immiscible interface.

For two cases with very similar Freff values (5.4 and 5.5), but distinctly different Fr
and At values, R/Rref and U/Uref collapse onto each other at a given t∗ (figure 17a,b);
these two cases correspond to the first and third rows in table 4. Furthermore, hstable/Rref
is collectively in a linear relation with Freff in figure 17(c). The feasible range of Fr is
limited in our apparatus, and there were not enough experimental cases to make identical
Freff pairs, except for the cases of Freff ≈ 5.5 presented in figure 17. Due to experimental
difficulties, we are able to validate only a few cases, so additional validation with wider
ranges of Fr and At is essential to support the reliability of our argument. Nevertheless,
the results in figure 17 indicate that the combined parameter Freff successfully reflects the
effects of density difference between the two liquids.

966 A27-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

45
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.457


Entrainment of the toroidal bubble crossing an interface

U
/
U

re
f

R/
R re

f

t∗ t∗

h st
ab

le
/
R re

f

Freff

(a) (b)

(c)

0 2 4 6 8 10 12

2

4

6

8

10

12

At = 0.133 
At = 0.067 

–10 0 10 20–10 0 10 20
0

0.2

0.4

0.6

0.8

1.0

1.2

0

0.2

0.4

0.6

0.8

1.0

1.2

Fr  = 2.0, At = 0.133
Fr = 1.4, At = 0.067

Fr = 2.0, At = 0.133
Fr = 1.4, At = 0.067

Figure 17. Temporal changes in (a) ring radius R/Rref and (b) propagation speed U/Uref for Freff = 5.4 (Fr =
2.0, At = 0.133) and Freff = 5.5 (Fr = 1.4, At = 0.067). (c) Travel distance hstable/Rref versus Freff for the two
At values. In panel (a), the black dash–dotted line is from (3.5), and the solid lines are from (3.10).

Finally, using the effective Froude number, we briefly compare the penetration capability
of a toroidal bubble with that of the single-phase vortex rings analysed in previous studies.
The single-phase vortex ring can only partially penetrate the density-stratified interface
and bounces backwards at Freff = 8.6 in figure 7 of Dahm et al. (1989), and it does not
penetrate the interface at Freff = 5.2 in figure 7 of Stock et al. (2008). Furthermore, the
single-phase vortex ring deforms the interface between immiscible liquids and rebounds
without complete penetration even at Freff = 9.6 in figure 7 of Song et al. (2021). By
contrast, in the present study, the toroidal bubble clearly penetrates the interface at the
small values of Freff = 3.5 (figure 3a: Fr = 0.9, At = 0.067) and Freff = 3.9 (figure 15b:
Fr = 1.4, At = 0.133). Despite much smaller values of Freff , the toroidal bubble can pass
through the interface stably by virtue of the buoyancy force acting on the bubble, which
implies that a toroidal bubble is capable of mixing surrounding liquids more easily across
a broader range of conditions, compared with a single-phase vortex ring.

4. Concluding remarks

The vertical penetration of a rising toroidal bubble through a horizontal interface between
two immiscible liquids has been investigated, with a particular focus on the transport of
the lower liquid along with the toroidal bubble. When the toroidal bubble is far below
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the horizontal interface, it slowly expands radially as it is immersed in a single liquid.
However, significant changes in the bubble dynamics occur as it passes through the
interface along with the considerable amount of surrounding heavier liquid in the form of
an ellipsoid. Because of the downward gravitational force acting on the ellipsoidal body,
the ring radius and propagation speed of the bubble decrease dramatically immediately
after the bubble crosses the initial position of the interface. Although the volume of the
entrained lower liquid diminishes as the bubble continues to rise, the bubble maintains a
stable state until the upper liquid pierces into the enveloping lower liquid. At the instant of
this piercing, the volume ratio of the entrained lower liquid and the bubble converges
to a specific value. This convergence is caused by the balance of the buoyancy and
gravitational forces exerted on the ellipsoidal body. Moreover, smaller Fr and larger At
tend to reduce the ring radius, propagation speed and entrained volume at a given time
after the bubble penetration, and decrease the travel distance up to the position where
the bubble becomes unstable, while these quantities are relatively insensitive to Λ. The
effective Froude number Freff (= FrAt−1/2) is employed to take into account the inertial
and buoyancy effects together, and for similar Freff , toroidal bubbles show almost identical
behaviours.

The rising toroidal bubble has been found to carry a larger amount of the lower liquid
to a higher position in the upper liquid by virtue of the surrounding vortical flow and
superior flow entrainment performance. This remarkable feature of the toroidal bubble is
advantageous in enhancing liquid transport and enlarging the interfacial area between two
liquids. Although some representative characteristics of the bubble–interface interactions
have been revealed in this fundamental study by varying the main dimensionless
parameters, the comprehensive investigation of the entire lifecycle of the toroidal bubble
is far from complete, particularly after the bubble becomes unstable. Furthermore, the
mixing and transport behaviours should be robustly evaluated and optimised for practical
application to fluid systems under various configurations of single or multiple toroidal
bubbles.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.457.
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Appendix A. Refraction correction

Light refracts on interfaces as the refractive indices of the liquids used in this study
differ. Figure 18(a) shows the refraction of light associated with the vertical position of
the bubble after it crosses the initial position of the interface. The camera is located at
a distance L from the wall of the glass tank and in line with the interface. The toroidal
bubble rises vertically, maintaining a horizontal distance L1 between the bubble centre
and the wall. The thickness of the glass is neglected because it is small compared to L
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Figure 18. Refraction of light across (a) the wall of the glass tank and (b) the interface between the
ellipsoidal body and the upper liquid. The red solid line denotes the path of light.

and L1. Point P in figure 18 is an arbitrary point along the path of the bubble centre.
Since the light from point P to the camera is deflected on the wall through point R (red
solid line in figure 18a), the observed position in image is point Q with the corresponding
observed vertical height zobs. For the angle of incidence, φ1, and the angle of refraction,
φ, three equations are established: zobs = (L + L1) tan φ, ztrue = L tan φ + L1 tan φ1 and
sin φ/ sin φ1 = n1, where n1 is the refractive index of the upper liquid (table 1). The
distance between points O1 and P is obtained by combining these equations, which yields

ztrue = L tan φ + L1 tan
[

sin−1
(

1
n1

sin φ

)]
, (A1)

where we set L1 = 22.5 cm and L = 240 cm. Before the bubble passes the interface, the
correction of the vertical position is also performed using the same method.

After penetration, the actual value of the ring radius inside the ellipsoidal body is
different from the ring radius observed in the image. Thus, we correct the actual value
of the ring radius with the assumption that the bubble and the ellipsoidal body are
axisymmetric. The outer radius of the toroidal bubble, which is equal to the sum of the
ring radius and core radius, is defined as R̂: R̂ = R + a; see figure 2(a).

In figure 18(b) which depicts light refraction across the surface of the ellipsoidal body,
the angle of incidence O2BA of the light travelling from point A on the interface of the
bubble to point B on the surface of the ellipsoidal body is defined as θ2, and the angle of
refraction CBD is defined as θ1. The length of the major axis of the ellipsoidal body, Rs,
is equal to that of line segment O2B. The actual value of R̂, which is equal to the length of
line segment O2A, is R̂true = Rs sin θ2. The observed value of R̂ is R̂obs = Rs sin θ1. From
Snell’s law, sin θ1/ sin θ2 = n2/n1, where n2 is the refractive index of the lower liquid
(table 1). Combining the given equations, R̂true is (n1/n2)R̂obs.

With R̂true known, we can then estimate the actual ring radius Rtrue. Assuming that the
bubble is axisymmetric with a perfectly circular core and its volume remains constant
along the propagation, the bubble volume should be Vb,ref = 2π2Rtruea2

true. From atrue =
R̂true − Rtrue, Vb,ref = 2π2Rtrue(R̂true − Rtrue)

2. Because the Vb,ref value on the left-hand
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Figure 19. (a) Closed curve to compute circulation Γ . (b) Circulation around the toroidal bubble from (2.1),
Γth, with respect to that obtained from PIV, ΓPIV . The red solid line denotes Γth = ΓPIV .

side of this relationship is acquired from the phase before penetration, Rtrue can be obtained
by solving the cubic equation and selecting a reasonable one among the three solutions.

Appendix B. Experimental measurement of vortex circulation

The velocity fields around a toroidal bubble were acquired in water by using PIV to
obtain circulation around the bubble. For the measurement of circulation, experiments
were performed only in water without the upper liquid, and other conditions are the same
as those given in § 2. The circulation is defined as

Γ =
∫

C
ut dl =

∑
C

ut�l, (B1)

where C is a closed curve, ut is the tangential velocity component along C, �l is the
differential line segment of C and �l is the spatial resolution of the velocity fields
from PIV. Here, the closed curve C was set to be sufficiently large to include the area
with non-zero vorticity around the toroidal bubble; see figure 19(a). The circulation
was calculated when the toroidal bubble was positioned 60 cm above the hole of the
bubble generator, which is similar to the reference position. The circulation obtained
from PIV, ΓPIV , was compared with that predicted by (2.1), Γth, for 23 cases in the
range of ΓPIV = 271–491 cm2 s−1 (figure 19b). The mean of the relative error, defined
as (ΓPIV − Γth)/ΓPIV , for these 23 cases was 0.38 %, with a mean absolute percentage
error of 4.28 % and an R-squared value of 0.86.
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