Canad. Math. Bull. Vol. 24 (1), 1981

A BOUND ON THE NUMBER OF INVARIANT MEASURES

BΥ

ABRAHAM BOYARSKY*

For τ a piecewise C^2 transformation, we present a method for obtaining an upper bound for the number of independent absolutely continuous measures invariant under τ .

Let I = [0, 1] and let $\tau: I \rightarrow I$ be a piecewise C^2 transformation with $\inf_{I_1} |d\tau/dx| > 1$, where $I_1 = I - P$ and P denotes the points of discontinuity of τ and τ' . A measure μ is invariant (under τ) if for all measurable sets $S \subset I$, $\mu(S) = \mu(\tau^{-1}(S))$, where $\tau^{-1}(S) = \{x \in I : \tau(x) \in S\}$. If there exists an integrable function f(x), $f(x) \ge 0$, such that $\theta(S) = \int_S f(x) dx$ for all measurable S, μ is said to be absolutely continuous (with respect to Lebesque measure). The function f is referred to as an invariant function.

In [1] it is shown that τ admits an absolutely continuous invariant measure. Let $\{x_1, x_2, \ldots, x_n\} \subset (0, 1)$ denote the points where τ' does not exist. Let F denote the space of invariant functions. In [2] it is shown that the dimension of F, N_{τ} , is less than or equal to n.

In this note we will consider the partition $0 = b_0 < b_1 < \cdots < b_m < b_{m+1} = 1$, where τ is continuous and monotonic on each interval (b_{i-1}, b_i) . Clearly $m \le n$.

Theorem. $N\tau \leq m$.

Proof. Let $\{f_1, f_2, \ldots, f_n\}$ and L_1, L_2, \ldots, L_n be as in Theorem 1 of [2]. We claim that for each $i = 1, 2, \ldots, n$, M_i contains some b_j , $j \in \{1, 2, \ldots, m\}$ in its interior. Suppose this is not true for some i, and let [a, b] be the largest interval in L_1 = support of f_i . Then τ is monotonic and continuous on [a, b]. Since inf $|\tau'| > 1$, $\tau[a, b]$ is an interval with length strictly greater than [a, b]. But L_i is invariant under τ , i.e., $\tau(L_i) = L_i$ a.e. Thus $\tau(a, b) \subset \tau(L_i) = L_i$ a.e., and L_i contains an interval a.e. larger than [a, b]. This is a contradiction. Therefore each L_i has to contain at least one b_j , $1 \le j \le m$, in its interior. Since the L_i 's have disjoint interior [2, Theorem 1], $N_{\tau} \le m$. Q.E.D.

REMARKS. (1) We can reword the theorem as follows: the number of independent absolutely continuous measures invariant under τ is at most one less than the number of incontinuous monotonic pieces in the graph of τ .

Received by the editors July 18, 1979

AMS (MOS) subject classification (1980) Primary 28DOS.

^{*} This research was supported by an NSERC Grant #A-9072.

(2) In the special case where τ is continuous on *I*, the total number of peaks and valleys (relative maxima and minima in (0,)) in the graph of τ constitutes an upper bound for the dimension of *F*.

EXAMPLE. The transformation shown below has 10 pieces but at most only 2 independent absolutely continuous invariant measures.

References

1. A. LASOTA and J. A. YORKE, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc., **186** (1973), 481–488.

2. T.Y. LI and J. A. YORKE, Ergodic transformations from an interval into itself, Trans. Amer. Math. Soc., 235 (1978), 183–192.

DEPARTMENT OF MATHEMATICS, SIR GEORGE WILLIAMS CAMPUS, CONCORDIA UNIVERSITY, MONTREAL, CANADA.

124