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The Gelfond–Schnirelman Method in
Prime Number Theory

Igor E. Pritsker

Abstract. The original Gelfond–Schnirelman method, proposed in 1936, uses polynomials with in-

teger coefficients and small norms on [0, 1] to give a Chebyshev-type lower bound in prime number

theory. We study a generalization of this method for polynomials in many variables. Our main result is

a lower bound for the integral of Chebyshev’s ψ-function, expressed in terms of the weighted capacity.

This extends previous work of Nair and Chudnovsky, and connects the subject to the potential theory

with external fields generated by polynomial-type weights. We also solve the corresponding potential

theoretic problem, by finding the extremal measure and its support.

1 Lower Bounds for Arithmetic Functions

Let π(x) be the number of primes not exceeding x. The celebrated Prime Number

Theorem (PNT), suggested by Legendre and Gauss, states that

(1.1) π(x) ∼ x

log x
as x → ∞.

We include a very brief sketch of its history, referring for details to many excellent
books and surveys available on this subject (see, e.g., [8, 10, 17, 29]). Chebyshev [6]
made the first important step towards the PNT in 1852, by proving the bounds

(1.2) 0.921
x

log x
≤ π(x) ≤ 1.106

x

log x
as x → ∞.

Riemann’s famous paper [24], published in 1859, gave a strong impulse to the study

of complex analytic methods related to the zeta function. Thus, Hadamard and de la
Vallée Poussin independently proved the Prime Number Theorem in 1896, via estab-
lishing that ζ(s) does not have zeros on the line {1 + it, t ∈ R}. But the “elementary”
approaches to the PNT, which do not use complex analysis and the zeta function, still

remained attractive. Selberg [26] and Erdős [11] found the first elementary proof of
the Prime Number Theorem in 1949. A survey of elementary methods, with detailed
history, may be found in Diamond [10]. The subject of this paper is the elementary
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The Gelfond–Schnirelman Method in Prime Number Theory 1081

method of Gelfond and Schnirelman (see Gelfond’s comments in [6, pp. 285–288]),
proposed in 1936. Consider the Chebyshev function

(1.3) ψ(x) :=
∑

pm≤x

log p,

where the summation extends over the primes p. Note that ψ(x) = log lcm(1, . . . , x)

for x ∈ N. It is well known that the PNT is equivalent to

(1.4) ψ(x) ∼ x as x → +∞

(see [8, 10, 17] and [19, Ch. 10]). The idea of Gelfond and Schnirelman was based
on a clever use of polynomials with integer coefficients pn(x) =

∑n
k=0 akxk and their

integrals
∫ 1

0

pn(x) dx =

n
∑

k=0

ak

k + 1
.

Observe that multiplying the above integral by the least common multiple lcm(1, . . . ,
n + 1) gives an integer, so that

(1.5) lcm(1, . . . , n + 1)
∣

∣

∣

∫ 1

0

pn(x) dx
∣

∣

∣
≥ 1,

provided
∫ 1

0
pn(x) dx 6= 0. Taking the log of (1.5), we have

ψ(n + 1) ≥ − log
∣

∣

∣

∫ 1

0

pn(x) dx
∣

∣

∣
≥ − log max

x∈[0,1]
|pn(x)|.

Hence

(1.6) lim inf
n→∞

ψ(n + 1)

n
≥ − log lim sup

n→∞

(

max
x∈[0,1]

|pn(x)|
) 1/n

.

If one could find a sequence of polynomials pn with sufficiently small sup norms

‖pn‖[0,1], so that

(1.7) lim
n→∞

‖pn‖1/n
[0,1]

?
= 1/e,

then the PNT would follow from (1.6). A nice account of the original Gelfond–
Schnirelman attempt is contained in Montgomery [19, Ch. 10] (also see Chudnovsky
[7]). We are led by this method to the so-called integer Chebyshev problem on poly-

nomials with integer coefficients minimizing the sup norm (see, e.g., Borwein [5]).
Let Zn[x] be the set of polynomials over integers, of degree at most n. In view of
(1.6)–(1.7), we are interested in the integer Chebyshev constant

(1.8) tZ([0, 1]) := lim
n→∞

(

inf
0 6≡pn∈Zn[x]

‖pn‖[0,1]

)1/n

.

https://doi.org/10.4153/CJM-2005-041-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-041-8


1082 I. E. Pritsker

It was found by Gorshkov [15] in 1956 that (1.7) can never be achieved. In fact,
0.4213 < tZ([0, 1]) < 0.4232 (see [22] for a survey of recent results on this prob-

lem). Thus the Gelfond–Schnirelman method failed in its original form, but one
can generalize it for polynomials in many variables. Such an idea apparently had
first appeared in Trigub [31], and was independently implemented by Nair [21] and
Chudnovsky [7]. The basis of their argument lies in another equivalent form of the

Prime Number Theorem [17]:

(1.9)

∫ x

1

ψ(t) dt ∼ x2

2
as x → +∞.

Both Nair and Chudnovsky used the following weighted version of the Vandermonde
determinant:

(1.10) V w
n (x1, . . . , xn) :=

∏

1≤i< j≤n

(xi − x j)w(xi)w(x j )

=

n
∏

i=1

wn−1(xi)
∏

1≤i< j≤n

(xi − x j),

where xi ∈ [0, 1] and w(x) = (x(1 − x))α1 , α1 > 0, to generate multivariate polyno-
mials with small sup norms on the cube [0, 1]n. They obtained the numerical bound

(1.11)

∫ x

1

ψ(t) dt ≥ 0.99035
x2

2
as x → +∞,

produced by the optimal choice α1 ≈ 0.195 (our notations differ from those of [7,

21]). Chudnovsky [7] also indicated how this approach can be generalized for the
weights of the form

(1.12) w(x) =

k
∏

i=1

|Qmi
(x)|αi ,

where Qmi
∈ Zmi

[x] and αi > 0, i = 1, . . . , k. We develop the ideas of [7, 21],
and establish a connection with the weighted potential theory (or potential theory

with external fields) that originated in the work of Gauss [14] and Frostman [13]
(see [25] for a modern account of this theory). An important part of the method
is the analysis of the asymptotic behavior for the supremum norms of the weighted
Vandermonde determinants (1.10), which is governed by the weighted capacity cw of

[0, 1] corresponding to the weight w (cf. Section 2 below and [25]). This method
leads to the following lower bound for the integral of ψ-function via cw.

Theorem 1.1 Let w(x) be as in (1.12) and let α :=
∑k

i=1 αimi . Then

(1.13)

∫ x

1

ψ(t) dt ≥ −2 log cw

4α + 3

x2

2
+ O(x log2 x) as x → +∞.
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We recover the results of Nair and Chudnovsky as a special case of Theorem 1.1.

Corollary 1.2 If w(x) = xα1 (1 − x)α2 , x ∈ [0, 1], α1 = α2 = 0.195, then cw ≈
0.1045575588 and (1.11) holds true.

It is natural to try improving the bound (1.11) by choosing a weight with a proper
combination of factors Qmi

(x) and exponents αi . The most interesting question is,

of course, can one find a weight w(x) of the form (1.12) such that

−2 log cw

4α + 3
= 1?

It turns out this is impossible to achieve for any fixed weight of the type (1.12). The

reason for such a conclusion transpires from the error term in (1.13), which is “too
good.” Indeed, it is known from Littlewood’s theorem that the difference

∫ x

1
ψ(t) dt−

x2/2 takes both positive and negative values of the amplitude cx3/2, c > 0, infinitely
often as x → +∞. This is conveniently written in the notation

∫ x

1

ψ(t) dt − x2

2
= Ω±(x3/2) as x → +∞

(cf. [17, pp. 91–92]). Hence the correct error term should be of the order O(x3/2).
Relating this to (1.9) and (1.13), we obtain in such an indirect way the following.

Proposition 1.3 Given a weight w(x) of the form (1.12), we have

(1.14) B(w) :=
−2 log cw

4α + 3
< 1,

where α =
∑k

i=1 αimi .

We should also note that if the Riemann hypothesis is true, then

∫ x

1

ψ(t) dt − x2

2
= O(x3/2) as x → +∞

(see [17, Theorem 30, p. 83]). It would be very interesting to find a direct poten-

tial-theoretic argument explaining (1.14). Although (1.13) cannot provide a proof of
the PNT for a fixed weight w, this does not preclude the possibility that such a proof
can be obtained by finding a sequence of weights wn with B(wn) → 1, as n → ∞. On
the other hand, we did not observe a numerical improvement of the estimate (1.11)

when using further factors of the one-dimensional integer Chebyshev polynomials
for the weight w, beyond the factors x and 1 − x (see [7, 19, 22] ). Thus one needs a
better insight into the arithmetic nature of such factors to address the problem stated
below.
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1084 I. E. Pritsker

Problem 1.4 For w(x) as in (1.12) and α =
∑k

i=1 αimi , find

(1.15) B := sup
w

−2 log cw

4α + 3
.

If B = 1, then find a sequence of weights that gives this value. If B < 1, then investigate

whether B is attained for a weight of the form (1.12).

The solution of this problem also requires a detailed knowledge of the potential
theory with external fields generated by the weights (1.12), which is discussed in the
following section.

We remark that the scope of the multivariate Gelfond–Schnirelman method still

remains much wider than the approach proposed by Nair and Chudnovsky. Indeed,
the weighted Vandermonde determinant V w

n (x1, . . . , xn) of (1.10) is a very special
case of a multivariate polynomial with small norm, which is unlikely to be best pos-
sible. It is of great interest to design other sequences of polynomials providing good

bounds for the arithmetic functions, along the lines discussed. Among the natural
candidates are the multivariate Vandermonde determinants (see [3, 32]) and other
sequences of minimal polynomials [4]. This subject is closely related to pluripoten-
tial theory [18].

2 Potential Theory With External Fields

We consider a special case of the weighted energy problem on a segment of the real
line [a, b] which is associated with the “polynomial-type” weights (1.12). A compre-
hensive treatment of the potential theory with external fields, or weighted potential
theory, is contained in the book by Saff and Totik [25], together with historical re-

marks and numerous references. It is convenient to rewrite the weight function in
the following more general form:

w(x) = A

K
∏

i=1

|x − zi |pi , x ∈ [a, b],(2.1)

where A > 0, pi > 0 and zi ∈ C. Let M([a, b]) be the set of positive unit Borel
measures supported on [a, b]. For any measure µ ∈ M([a, b]) and weight w of (2.1),
we define the energy functional

(2.2) Iw(µ) :=

∫∫

log
1

|z − t|w(z)w(t)
dµ(z)dµ(t)

=

∫∫

log
1

|z − t| dµ(z)dµ(t) − 2

∫

log w(t) dµ(t),

and consider the minimum energy problem

(2.3) Vw := inf
µ∈M([a,b])

Iw(µ).
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It follows from [25, Theorem I.1.3] that Vw is finite, and there exists a unique equi-
librium measure µw ∈ M([a, b]) such that Iw(µw) = Vw. Thus µw minimizes the en-

ergy functional (2.2) in the presence of the external field generated by the weight w.
Furthermore, we have for the potential of µw that

(2.4) Uµw (x) − log w(x) ≥ Fw, x ∈ [a, b],

and

(2.5) Uµw (x) − log w(x) = Fw, x ∈ Sw,

where Uµw (x) := −
∫

log |x − t| dµw(t), Fw := Vw +
∫

log w(t) dµw(t) and Sw :=
supp µw (see [25, Theorems I.1.3 and I.5.1]). The weighted capacity of [a, b] is de-
fined by

(2.6) cap([a, b],w) := e−Vw .

In agreement with the notation of Section 1, we set

cw := cap([0, 1],w).

If w ≡ 1 on [a, b], then we obtain the classical logarithmic capacity cap([a, b], 1) =

(b − a)/4 (cf. [23]).
The support Sw plays a crucial role in determining the equilibrium measure µw

itself, as well as other components of this weighted energy problem. Indeed, if Sw is
known, then µw can be found as a solution of the singular integral equation

∫

log
1

|x − t| dµ(t) − log w(x) = F, x ∈ Sw,

where F is a constant (cf. (2.5) and [25, Ch. IV]). For w given by (2.1) or (1.12), this

equation can be solved by potential theoretical methods, using balayage techniques,
so that µw is expressed as a linear combination of harmonic measures (see Lemma
3.3 and [22]). We follow another path here, via the methods of singular integral
equations, which gives a more explicit solution. This approach for polynomial-type

weights was suggested by Chudnovsky [7] and developed further by Amoroso [1].
For more general weights, one should consult [25, Ch. IV] and the paper of De-
ift, Kreicherbauer and McLaughlin [9]. We give an explicit form of the equilibrium
measure and describe its support in the following result.

Theorem 2.1 Let Z :=
⋃K

i=1{zi} ⊂ [a, b] be the set of zeros for w of (2.1), where

z1 = a < z2 < · · · < zK = b. There exist an integer L, 1 ≤ L ≤ K − 1, a

polynomial P(x) = xK−L−1 + · · · ∈ RK−L−1[x], and L intervals [al, bl] ⊂ [a, b] \ Z,

with a < a1 < b1 < a2 < b2 < · · · < aL < bL < b, such that

(2.7) Sw =

L
⋃

l=1

[al, bl],
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1086 I. E. Pritsker

and the equilibrium measure µw is given by

(2.8) dµw(x) = (−1)L+l+1 (1 + p)
√

|R(x)| P(x)

π
∏K

j=1(x − z j)
dx, x ∈ [al, bl],

where l = 1, . . . , L, p :=
∑K

j=1 p j and R(x) :=
∏L

l=1(x − al)(x − bl).

Furthermore, the polynomial P(x) and the endpoints of Sw satisfy the equations

(2.9) P(z j ) = (−1)L+l
p j

∏

m6= j(z j − zm)

(1 + p)
√

|R(z j)|
, z j ∈ (bl, al+1), j = 1, . . . ,K,

where we set b0 = −∞, aL+1 = +∞, and the equations

(2.10)

∫ al+1

bl

√

|R(x)| P(x)
∏K

j=1(x − z j)
dx = 0, l = 1, . . . , L − 1,

where the integrals are understood as Cauchy principal values.

Recall that we need the quantity − log cap([a, b],w) = Vw for Theorem 1.1. This
can be found from (2.5) as

Vw = Uµw (x) − log w(x) −
∫

log w dµw,

for any x ∈ Sw.
The assumption that the weight w vanishes at the endpoints of [a, b] seems ap-

propriate in this case, due to the role of factors x and 1 − x, for w(x) on [0, 1], in the

work of Nair and Chudnovsky. Other cases of weights (2.1) with real zeros can be
handled similarly, along the lines of this paper. Perhaps a more interesting problem
is to consider weights with complex zeros, when − log w(x) is not piecewise convex
on [a, b].

If the support Sw consists of L = K − 1 intervals, then P(x) ≡ 1 in Theorem 2.1,
and we obtain the following result.

Corollary 2.2 If L = K − 1 in Theorem 2.1, then

(2.11) dµw(x) =
(1 + p)

√

|R(x)|
π
∏K

j=1 |x − z j |
dx, x ∈ Sw.

Furthermore, the following equations hold true:

(2.12)
√

|R(z j )| =
p j

1 + p

∏

m6= j

|z j − zm|, j = 1, . . . ,K,

and

(2.13)

∫ al+1

bl

√

|R(x)|
∏K

j=1(x − z j)
dx = 0, l = 1, . . . ,K − 2.
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Remark 2.3 Amoroso [1] studied the weighted energy problem for the weights of
Theorem 2.1 (expressed in slightly different terms). In particular, [1, Theorem 2.2]

states that the equilibrium measure always has the form (2.11), which is not true, as
shown in the next section. The main shortcoming is in the assumption of [1] that the
support Sw always consists of K − 1 intervals, one less than the number of zeros of
w. Also, [1] defines the endpoints of the support as solutions of (2.12)–(2.13), with-

out analyzing that these solutions exist and fall within the needed range. Assuming
that (2.12)–(2.13) hold true, the representation (2.11) is then deduced from those
equations in [1]. We emphasize that the results of [1] on the irrationality measures
of logarithms, stated in Theorems 4.2 and 4.3, are correct. In those applications, the

parameters are selected so that (2.12)–(2.13) are valid, and the support indeed has
K − 1 intervals.

Note that equations (2.9)–(2.10) (correspondingly, (2.12)–(2.13)) may be used
to find the coefficients of P(x) and the endpoints of Sw. Thus we have K − L − 1
coefficients and 2L endpoints to find, which gives K + L − 1 unknowns and the same

number of equations (2.9)–(2.10). For example, if K = 2, i.e., we have the so-called
Jacobi-type weight w on [a, b], then L = 1 and (2.12) gives just two equations for the
endpoints of Sw = [a1, b1]. It is easy to solve them explicitly, and find the well-known
representation for Sw and µw from Corollary 2.2 (see, e.g., [25, Examples IV.1.17 and

IV.5.2]).

Corollary 2.4 Suppose w(x) = xp1 (1 − x)p2 , x ∈ [0, 1], where p1, p2 > 0. Then

(2.14) dµw(x) =
(1 + p1 + p2)

√
(x − a1)(b1 − x)

πx(1 − x)
dx, x ∈ [a1, b1].

The endpoints of the support are

(2.15) a1 =
1 + r2

1 − r2
2 −

√

(1 + r2
1 − r2

2)2 − 4r2
1

2

and

(2.16) b1 =
1 + r2

1 − r2
2 +
√

(1 + r2
1 − r2

2)2 − 4r2
1

2
,

where we set

r1 :=
p1

1 + p1 + p2

and r2 :=
p2

1 + p1 + p2

.

The connection between the potential theory with external fields and this ver-

sion of the Gelfond–Schnirelman method arises in the need for asymptotics of the
weighted Vandermonde determinant (1.10). It is known that

(2.17) lim
n→∞

(

max
x1,...,xn∈[a,b]

|V w
n (x1, . . . , xn)|

)

2
n(n−1)

= cap([a, b],w)
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(see [25, Theorem III.1.3]). The quantity on the left-hand side of (2.17) is called the
weighted transfinite diameter of [a, b]. In the case w ≡ 1, it was introduced by Fekete

[12] for arbitrary compact sets in the plane. Szegő [28] showed that the transfinite
diameter coincides with the logarithmic capacity, so that (2.17) is a generalization of
his result. We quantify the rate of convergence in (2.17).

Lemma 2.5 Let w be as in (2.1). There exist constants d = d(w) > 1 and D =

D(w) > 0 such that

(cap([a, b],w))
n(n−1) ≤ max

[a,b]n
(V w

n )2 ≤ D dn log2 n (cap([a, b],w))
n(n−1) .(2.18)

Equation (2.18) is the only fact from potential theory needed in the proof of Theo-

rem 1.1. It is very likely that log2 n can be replaced by log n, matching the classical
case (see [2, Theorem 1.3.3]). This would give a corresponding improvement in the
error term of (1.13), but we do not pursue this direction.

3 Proofs

Proof of Theorem 1.1 The proof is based on an argument similar to the original
Gelfond–Schnirelman idea (cf. [7, 21]). We consider the integrals of small polyno-

mials with integer coefficients over the cube [0, 1]n, n ∈ N. It is important that the
integrals are non-zero, so that we work with the square of the weighted Vandermonde
determinant (1.10), instead:

(3.1) ∆
w
n (x1, . . . , xn) :=

(

V w
n

)2
=

n
∏

i=1

w2(n−1)(xi)
∏

1≤i< j≤n

(xi − x j)
2.

If w(x) ≡ 1 then ∆
w
n is the classical discriminant. In general, ∆w

n is not a polynomial
in the xi ’s because of the real exponents αi in the weight (1.12). Hence we modify it
further into

(3.2) ∆̃
w
n (x1, . . . , xn) :=

n
∏

j=1

k
∏

i=1

(

Qmi
(x j )
)2⌈αi (n−1)⌉ ∏

1≤i< j≤n

(xi − x j)
2,

where ⌈a⌉ denotes the ceiling function: the smallest integer at least a. It is now clear
that ∆̃

w
n (x1, . . . , xn) is a positive polynomial with integer coefficients that has the

following form

∆̃
w
n (x1, . . . , xn) =

∑

ai1...in
xi1

1 . . . x
in
n .(3.3)

Recall the definition of the classical Vandermonde determinant

Vn :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 . . . xn−1
1

1 x2 . . . xn−1
2

...
...

...
...

1 xn . . . xn−1
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∏

1≤i< j≤n

(xi − x j).
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Using the standard expansion of Vn, we observe that each term of this expansion is a
(signed) product of all powers of xi ’s from 0 to n− 1. The expression in (3.2) is equal

to V 2
n times the weight part. Thus if we arrange the powers i1, . . . , in in every term of

(3.3) in the increasing order, we have that

i j ≤ n + j − 2 + N, j = 1, . . . , n,(3.4)

where N := 2
∑k

i=1 mi⌈αi(n − 1)⌉ is the contribution of the weight part in (3.2).

Hence

∫ 1

0

. . .

∫ 1

0

∆̃
w
n (x1, . . . , xn) dx1 . . . dxn =

∑ ai1...in

(i1 + 1) . . . (in + 1)
6= 0

is a rational number whose denominator divides
∏2n−1+N

l=n+N lcm(1, . . . , l) by (3.4). It
follows as in (1.5) that

2n−1+N
∏

l=n+N

lcm(1, . . . , l)

∫

[0,1]n

∆̃
w
n ≥ 1.

On taking the logarithm, we obtain that

2n−1+N
∑

l=n+N

ψ(l) ≥ − log

∫

[0,1]n

∆̃
w
n ≥ − log max

[0,1]n
∆̃

w
n .

It is clear from (3.1) and (3.2) that

∆̃
w
n = ∆

w
n

n
∏

j=1

k
∏

i=1

|Qmi
(x j)|2(⌈αi (n−1)⌉−αi (n−1)),

which gives

max
[0,1]n

∆̃
w
n ≤ max

[0,1]n
∆

w
n

k
∏

i=1

(

max(1, ‖Qmi
‖[0,1])

)2n
.

Since ψ(x) is constant between integers, we arrive at the estimate

(3.5)

∫ 2n+N

n+N

ψ(y) dy ≥ − log max
[0,1]n

∆
w
n + O(n) as n → ∞.

We now need the following consequence of Lemma 2.5:

log max
[0,1]n

∆
w
n = n2 log cw + O(n log2 n) as n → ∞.

Applying this in (3.5), we have

∫ 2n+N

n+N

ψ(y) dy ≥ −n2 log cw + O(n log2 n) as n → ∞.
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Note that 2α(n − 1) ≤ N ≤ 2α(n − 1) + 2
∑k

i=1 mi. If we set 2n(α + 1) = x, then

∫ x

2α+1
2α+2

x

ψ(y) dy ≥ − log cw

4(α + 1)2
x2 + O(x log2 x) as x → ∞.(3.6)

Using the substitution x → 2α+1
2α+2

x iteratively and summing up the results, we obtain

∫ x

1

ψ(y) dy ≥ − log cw

4α + 3
x2 + O(x log2 x) as x → ∞.

Proof of Corollary 1.2 Corollary 2.4 gives the weighted equilibrium measureµw for
such weights in (2.14)–(2.16). Hence we have by (2.5) that the numerical value of cw

can be computed from

− log cw = Uµw (a1) − log w(a1) −
∫

log w dµw,

where a1 is defined in (2.15). The same equation yields (1.11), as a consequence of
Theorem 1.1.

We now start preparations for the proof of Theorem 2.1. Recall the function

R(z) =
∏L

l=1(z − al)(z − bl), where a1 < b1 < a2 < b2 < · · · < aL < bL are
real numbers. The branch of

√
R(z) satisfying limz→∞

√
R(z)/zL

= 1 is analytic in
C \ ⋃L

l=1[al, bl]. For further reference, we describe the values of
√

R(z) on the real
line:

(3.7)
√

R(x) =



















√

|R(x)| x ≥ bL,

(−1)L+li
√

|R(x)| al ≤ x ≤ bl, l = 1, . . . , L,

(−1)L+l
√

|R(x)| bl ≤ x ≤ al+1, l = 1, . . . , L − 1,

(−1)L
√

|R(x)| x ≤ a1.

Here and throughout, the values of
√

R(x) for x ∈
⋃L

l=1[al, bl] are understood as the
upper limiting values of

√
R(z), when ℑz → 0+.

Lemma 3.1 Let S :=
⋃L

l=1 [al, bl]. For any TL−1 ∈ RL−1[x], we have

(3.8)
1

πi

∫

S

TL−1(t) dt

(t − z)
√

R(t)
=

{

0 z ∈ S,

TL−1(z)/
√

R(z) z ∈ C \ S.

Proof A detailed proof of this known fact may be found in [20] (cf. Chapter 11).

We give a sketch of argument based on Cauchy integral formula. Consider a contour
Γ that consists of L simple closed curves around each of the intervals [al, bl], located
close to those intervals. Then

1

2πi

∮

Γ

TL−1(t) dt

(t − z)
√

R(t)
=

{

0 z ∈ S,

TL−1(z)/
√

R(z) z ∈ Ext(Γ).
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Note that the limiting values of
√

R(t) on S, from above and below, are opposite in
sign. Letting the contour Γ shrink to S, we obtain that

lim
Γ→S

1

2πi

∮

Γ

TL−1(t) dt

(t − z)
√

R(t)
=

1

πi

∫

S

TL−1(t) dt

(t − z)
√

R(t)
.

Let ω(z, · ,Ω) be the harmonic measure at z ∈ Ω with respect to a domain Ω ⊂ C,
which is a positive unit Borel measure supported on ∂Ω. The background informa-
tion on harmonic measures may be found in [23, §4.3] and [25, Appendix A.3]. In

particular, ω(z, · ,Ω) is equal to the balayage of the unit point mass δz to ∂Ω.We give
the following explicit representations for these measures.

Lemma 3.2 Let Ω := C \⋃L
l=1 [al, bl]. There exist polynomials T∞ ∈ RL−1[x] and

Tz j
∈ RL−1[x], j = 1, . . . ,K, such that

(3.9) dω(∞, x,Ω) =
T∞(x)dx

πi
√

R(x)
, x ∈

L
⋃

l=1

[al, bl],

and

(3.10) dω(z j , x,Ω) =
Tz j

(x)dx

πi(x − z j)
√

R(x)
, x ∈

L
⋃

l=1

[al, bl],

where z j ∈ Ω \ {∞}, j = 1, . . . ,K.

Proof These formulas are essentially known (see, e.g., [27, Lemma 4.4.1] and [30,

Lemma 2.3]). It is possible to deduce (3.9)–(3.10) from Lemma 3.1, which is done
below.

We select T∞(t) =
∑L−1

j=1 c jt
j ∈ RL−1[t] so that it satisfies the following equa-

tions:

(3.11)

∫ al+1

bl

T∞(t) dt√
R(t)

=

L−1
∑

j=1

c j

∫ al+1

bl

t j dt√
R(t)

= 0, l = 1, . . . , L − 1,

and

(3.12)
1

πi

∫

S

T∞(t) dt√
R(t)

=

L−1
∑

j=1

c j

πi

∫

S

t j dt√
R(t)

= 1,

where S =
⋃L

l=1 [al, bl]. The polynomial T∞(t) is uniquely defined by these equa-

tions, because the corresponding homogeneous system of linear equations (with zero
on the right of (3.12)), in the coefficients c j of T∞(t), has only the trivial solution.
Indeed, let Th(t) be a nontrivial solution of this homogeneous system. Since the
sign of

√
R(t) is constant on each (bl, al+1), by (3.7), Th(t) must change sign on
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each [bl, al+1], l = 1, . . . , L − 1, by (3.11). Hence Th(t) has a simple zero in each
(bl, al+1), l = 1, . . . , L−1, and it alternates sign on the intervals [al, bl], l = 1, . . . , L.
(Note that the same is true for T∞(t).) It follows from (3.7) that Th(t)/(πi

√
R(t))

does not change sign on S, contradicting

1

πi

∫

S

Th(t) dt√
R(t)

= 0.

Thus T∞(t) exists and is unique. In addition, the above argument and (3.12) show
that T∞(t)/(πi

√
R(t)) keeps positive sign on S, i.e., (3.9) actually defines a positive

unit Borel measure on S. Let

h(x) :=
1

πi

∫

S

T∞(t) dt

(t − x)
√

R(t)
, x ∈ R.

We have from (3.8) that h ∈ Lp([a1, bL]), 1 ≤ p < 2, and h ∈ C∞([a1, bL] \
{al, bl}L

l=1). Note that h(x) is the derivative of potential for the measure on the right

of (3.9). The fundamental theorem of calculus gives that

1

πi

∫

S

log
1

|x − t|
T∞(t) dt√

R(t)
=

∫ x

a1

h(t) dt + C, x ∈ [a1, bL],

where C is a constant. Using (3.8) and (3.11), we obtain that

1

πi

∫

S

log
1

|x − t|
T∞(t) dt√

R(t)
= C, x ∈ S.

Frostman’s theorem (see [23, Theorem 3.3.4]) and the uniqueness of the equilib-
rium measure (cf. [23, Theorem 3.7.6]) imply that T∞(x) dx/(πi

√
R(x)) is the clas-

sical (not weighted) equilibrium measure for S. The latter is known to be equal to

ω(∞, x,Ω) (see [23, Theorem 4.3.14]), which proves (3.9). Equations (3.10) follow
from (3.9) by using the transformations

f j(z) :=
1

z − z j

, z ∈ C, j = 1, . . . ,K,

and the conformal invariance of harmonic measures (cf. [23, Theorem 4.3.8]). In-
deed, if Ω j := f j(Ω) and S j := f j(S) = ∂Ω j , then

ω(z j , x,Ω) = ω(∞, (x − z j)
−1,Ω j), j = 1, . . . ,K.

We can use (3.9) on the right side of the above equation, because S j is also a union
of L segments of the real line, which gives (3.10).

In [22], we showed that the weighted energy problem discussed in Section 2 can
be solved in terms of a linear combination of harmonic measures.
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Lemma 3.3 Let w(x) be as in (2.1), x ∈ [a, b]. Then Sw ⊂ [a, b] \ {z j}K
j=1, and the

extremal measure for the weighted energy problem (2.2)–(2.3) is given by

(3.13) µw = (1 + p)ω(∞, · ,Ω) −
K
∑

j=1

p jω(z j , · ,Ω),

where Ω := C \ Sw and p =
∑K

j=1 p j .

Proof The existence of a weighted equilibrium measure µw, whose support is a

compact set Sw ⊂ [a, b] \ {z j}K
j=1, follows from [25, Theorem I.1.3]. Let δz be a

unit point mass at z. Observe that

(3.14) log w(z) = log A −U ν(z), z ∈ C,

where U ν is the logarithmic potential of the measure

ν :=

K
∑

j=1

p jδz j
.

It is clear that ν is a positive Borel measure of total mass ν(C) = p. Let ν̂ be the
balayage of ν from Ω onto Sw (see, e.g., [25, §II.4]). Then ν̂ is a positive Borel measure

of the same mass as ν, which is supported on Sw. Furthermore, we can express ν̂ via
harmonic measures

ν̂ =

K
∑

j=1

p jω(z j , · ,Ω)

(cf. [25, Appendix A.3]). The potentials of ν and ν̂ are related by the equation

(3.15) U ν̂(x) = U ν(x) + C1, for q.e. x ∈ Sw,

where C1 is a constant. This equation holds quasi everywhere on Sw, i.e., with the
exception of a set of zero logarithmic capacity (see [25, Theorem II.4.4]). Using

(2.5), (3.14) and (3.15), we obtain for quasi every x ∈ Sw that

Fw = Uµw (x) − log w(x) = Uµw (x) + U ν(x) − log A

= Uµw (x) + U ν̂(x) −C1 − log A.

Recall that the potential Uω(∞, · ,Ω)(x) is constant q.e. on Sw, by Frostman’s theorem.
Thus we have

(3.16) Uµw+ν̂(x) = U (1+p)ω(∞, · ,Ω)(x) + C2, for q.e. x ∈ Sw,

where C2 is another constant. Note that all measures in the above equation have finite
logarithmic energy. Since the mass of µw + ν̂ is equal to that of (1 + p)ω(∞, · ,Ω),
we can apply the Principle of Domination (cf. [25, Theorem II.3.2]) to conclude that
(3.16) holds for every x ∈ C. The Unicity Theorem (see [25, Theorem I.3.3]) now

shows that
µw + ν̂ = (1 + p)ω(∞, · ,Ω).
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Proof of Theorem 2.1 It is clear from (2.5) that Sw ⊂ [a, b] \ Z. Since − log w(x)
is convex on each interval (z j , z j+1), j = 1, . . . ,K − 1, the intersection of Sw with

(z j , z j+1) is either a closed interval or an empty set (cf. [25, Theorem IV.1.10(b)]).

Hence Sw =
⋃L

l=1[al, bl], L ≤ K − 1, where we have at most one interval [al, bl]
between any neighboring zeros z j and z j+1 of w.

Theorem 1.38 of [9] states that for the upper limiting values of

(3.17) F(z) :=

√
R(z)

πi

∫

Sw

−i(log w(t)) ′ dt

π(t − z)
√

R(t)
, z ∈ C \ Sw,

we have

(3.18) dµw(x) = ℜF(x) dx, x ∈ Sw.

We remark that the statement of this theorem in [9] requires log w(x) be real analytic
in a neighborhood of [a, b]. But this is only used to conclude that the support of µw

consists of finitely many intervals, which we already have anyway. For their analysis

leading to (3.17)–(3.18), it is sufficient that log w ∈ C2([a, b]). In fact, (3.17)–(3.18)
are obtained by solving the singular integral equation with Cauchy kernel (by the
methods similar to those of [20, Ch. 11]):

∫

dµ(t)

t − x
= (log w(x)) ′, x ∈ Sw,

which arises via differentiation of (2.5). In order to achieve that log w ∈ C2([a, b]),

we can modify w in the small neighborhoods of zeros, outside the compact set

(3.19) S∗w := {x ∈ [a, b] : Uµw (x) − log w(x) ≤ Fw} ⊂ [a, b] \ Z,

so that the new weight w̃ satisfies

(3.20) Uµw (x) − log w̃(x) > Fw, x ∈ [a, b] \ S∗w.

Theorem I.3.3 of [25] and (3.19)–(3.20) then give that the equilibrium measure µw̃ =

µw. Hence the result (3.17)–(3.18) of [9, Theorem 1.38] is valid in our case.
With the help of Lemma 3.1, we obtain for z ∈ C \ Sw that

F(z) =

√
R(z)

πi

K
∑

j=1

p j

πi

∫

Sw

dt

(t − z j)(t − z)
√

R(t)

=

√
R(z)

πi

K
∑

j=1

p j

πi(z − z j)

∫

Sw

( 1

t − z
− 1

t − z j

) dt√
R(t)

=

√
R(z)

πi

K
∑

j=1

p j

πi(z − z j)

(

∫

Sw

dt

(t − z)
√

R(t)
−
∫

Sw

dt

(t − z j)
√

R(t)

)
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=

√
R(z)

πi

K
∑

j=1

(

p j

(z − z j)
√

R(z)
− p j

(z − z j)
√

R(z j)

)

=
1

πi

K
∑

j=1

p j

z − z j

−
√

R(z)

πi

K
∑

j=1

p j

(z − z j)
√

R(z j )
.

Recall that
√

R(x) is pure imaginary for x ∈ Sw, and
√

R(z j) is real, j = 1, . . . ,K, by

(3.7). Thus we have that

ℜF(x) = −
√

R(x)

πi

K
∑

j=1

p j

(x − z j)
√

R(z j)
, x ∈ Sw.

If we set

(3.21) P(x) :=
1

1 + p

K
∑

j=1

p j
√

R(z j)

∏

l 6= j

(x − zl),

then

dµw(x) = − (1 + p)
√

R(x) P(x)

πi
∏K

j=1(x − z j)
dx, x ∈ Sw,(3.22)

by (3.18). Equation (2.8) now follows from (3.7). Also, (3.21) and (3.7) give

(3.23) P(z j ) =
p j

∏

m6= j(z j − zm)

(1 + p)
√

R(z j )
= (−1)L+l

p j

∏

m6= j(z j − zm)

(1 + p)
√

|R(z j)|
,

where z j ∈ (bl, al+1), j = 1, . . . ,K, which proves (2.9). On the other hand, Lemmas

3.2 and 3.3 yield another representation for µw, of the form

dµw(x) =
T(x) dx

πi
√

R(x)
∏K

j=1(x − z j)
, x ∈ Sw,

where T ∈ RK+L−1[x]. Comparing this with (3.22), we conclude that

−(1 + p)R(x)P(x) = T(x)

and 2L + deg(P) = deg(T) ≤ K + L − 1. Thus the actual degree of P satisfies

deg(P) ≤ K − L − 1.

We now prove that P has leading coefficient 1, by using the following identity:

lim
x→∞

(−x)

∫

Sw

dµw(t)

t − x
= µw(C) = 1.(3.24)
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Observe that
√

R(t)P(t)/
(

(t − x)
∏K

j=1(t − z j)
)

is an analytic function of t in C\ Sw,
except for the simple poles at x and z j , j = 1, . . . ,K. Applying Cauchy’s integral

theorem, we have for a small r > 0:
∫

Sw

dµw(t)

t − x
= −1 + p

πi

∫

Sw

√
R(t) P(t) dt

(t − x)
∏K

j=1(t − z j)

= −1 + p

2πi

∮

Sw

√
R(t) P(t) dt

(t − x)
∏K

j=1(t − z j)

= −1 + p

2πi

(

∮

|t−x|=r

+

K
∑

l=1

∮

|t−zl|=r

)

√
R(t) P(t) dt

(t − x)
∏K

j=1(t − z j)

= −(1 + p)

√
R(x) P(x)

∏K
j=1(x − z j)

− (1 + p)

K
∑

l=1

√
R(zl) P(zl)

(zl − x)
∏

j 6=l(zl − z j)
.

Taking into account (3.23), we obtain that

(3.25)

∫

Sw

dµw(t)

t − x
= −(1 + p)

√
R(x) P(x)

∏K
j=1(x − z j)

−
K
∑

l=1

pl

zl − x
, x ∈ C \ (Sw ∪ Z).

If cK−L−1 is the leading coefficient of P, then

lim
x→∞

(−x)

∫

Sw

dµw(t)

t − x
= (1 + p)cK−L−1 −

K
∑

l=1

pl = 1,

by (3.24). Thus (1 + p)cK−L−1 = 1 + p and

cK−L−1 = 1.

It only remains to prove (2.10) now. We find from (2.5) that

Uµw (al+1) −Uµw (bl) = log w(al+1) − log w(bl), l = 1, . . . , L − 1.(3.26)

The potential Uµw (x) is continuous in C by [25, Theorem I.4.8], and it is infinitely

differentiable on (bl, al+1). Hence we obtain by the fundamental theorem of calculus
and (3.25) that

Uµw (al+1) −Uµw (bl) =

∫ al+1

bl

d

dx
(Uµw (x)) dx =

∫ al+1

bl

∫

Sw

dµw(t)

t − x
dx

=

∫ al+1

bl

(

−(1 + p)

√
R(x) P(x)

∏K
j=1(x − z j)

+

K
∑

j=1

p j

x − z j

)

dx

= −(1 + p)

∫ al+1

bl

√
R(x) P(x) dx
∏K

j=1(x − z j)

+

K
∑

j=1

p j

(

log |al+1 − z j | − log |bl − z j |
)

,
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where the last equality holds in the principal value sense. Therefore, we have by (3.26)
that

−(1 + p)

∫ al+1

bl

√
R(x) P(x) dx
∏K

j=1(x − z j)
+ log

w(al+1)

w(bl)
= log

w(al+1)

w(bl)
,

which proves (2.10).

Proof of Corollary 2.2 If L = K − 1 then obviously P(x) ≡ 1 and z j ∈ (b j−1, a j),
j = 1, . . . ,K. Hence

K
∏

j=1

(x − z j) = (−1)L+1−l

K
∏

j=1

|x − z j |, x ∈ [al, bl],

and (2.11) follows from (2.8). Also, we have

∏

m6= j

(z j − zm) = (−1)L+1− j
∏

m6= j

|z j − zm|,

which gives (2.12) by (2.9). Equation (2.13) is an immediate consequence of (2.10).

Proof of Remark 2.3 Consider the weight w(x) = (1+x)p1 |x|p2 (1−x)p3 on [−1, 1],
where we take p2 = p3 = 1. We show that the support Sw, for large p1, consists

of only one interval. Assume to the contrary that Sw = [a1, b1] ∪ [a2, b2]. Then
Corollary 2.2 applies here, and (2.12)–(2.13) hold true. Note that these equations
are identical to the equations of Amoroso [1, p. 1184], used to define the endpoints
a1, b1, a2, b2. As it turns out, they do not have a solution for large p1. Indeed, (2.13)

gives

(3.27)

∫ a2

b1

√
(x − a1)(x − b1)(a2 − x)(b2 − x)

x(x2 − 1)
dx = 0,

and (2.12) gives for z1 = −1 that

√

(1 + a1)(1 + b1)(1 + a2)(1 + b2) =
2p1

p1 + 3
.

Since −1 < a1 < b1 < 0 < a2 < b2 < 1, we have from the latter equation that

√

(1 + a2)(1 + b2) >
2p1

p1 + 3
,

and
lim

p1→+∞
a2 = lim

p1→+∞
b2 = 1.

Similarly,

2
√

(1 + a1)(1 + b1) >
2p1

p1 + 3
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implies that

lim
p1→+∞

a1 = lim
p1→+∞

b1 = 0.

Therefore
√

(x − a1)(x − b1)(a2 − x)(b2 − x) is strictly increasing on [b1,−b1], for
all sufficiently large p1, and

∫ −b1

b1

√
(x − a1)(x − b1)(a2 − x)(b2 − x)

x(x2 − 1)
dx < 0.

Coupling this with the obvious inequality

∫ a2

−b1

√
(x − a1)(x − b1)(a2 − x)(b2 − x)

x(x2 − 1)
dx < 0,

we obtain a contradiction to (3.27).

It is possible to show that the number of intervals of the support for µw in Theo-
rem 2.1 can indeed take any value between 1 and K − 1.

Proof of Corollary 2.4 This result follows from Corollary 2.2. The representation
(2.14) for µw is an immediate consequence of (2.11). We also obtain from (2.12) that
the endpoints of the support must satisfy the equations

a1b1 = r2
1 and (1 − a1)(1 − b1) = r2

2.

Solving those equations, we obtain (2.15) and (2.16).

Proof of Lemma 2.5 Consider the weighted Fekete points {ζ(n)
i }n

i=1 ⊂ [a, b],
n ∈ N, that maximize the absolute value of the weighted Vandermonde determi-
nant (1.10). The relation between the problems of minimizing energy (2.2)–(2.3)

and maximizing (1.10) becomes transparent if we consider − 2
n(n−1)

log |V w
n |, which

is essentially a discrete version of the weighted energy functional (2.2). Indeed, the
normalized counting measures

νn :=
1

n

n
∑

i=1

δζ(n)
i

converge weakly to µw, the extremal measure for (2.2)–(2.3), and (2.17) holds true
(cf. [25, §III.1]). Thus the discrete problem is a good approximation of the continu-
ous one.

We deduce (2.18) from the results of Götz and Saff [16]. They require that log w(x)
be Hölder continuous on [a, b], which is not true if w of (2.1) has zeros on [a, b]. But
we can modify w in the small neighborhoods of those zeros, outside the compact set

(3.28) S∗w = {x ∈ [a, b] : Uµw (x) − log w(x) ≤ Fw} ⊂ [a, b] \ Z,
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so that the new weight w̃ satisfies

(3.29) Uµw (x) − log w̃(x) > Fw, x ∈ [a, b] \ S∗w,

and log w̃(x) is Hölder continuous on [a, b]. It follows from Theorem I.3.3 of [25]
and (3.28)–(3.29) that the equilibrium measure µw̃ = µw, and from Theorem III.1.2
of [25] and (3.28) that the weighted Fekete points for w̃ are identical to those for w.
Thus all results of [16] are applicable here. Set

Fn(x) :=

n
∏

i=1

(x − ζ(n)
i ), n ∈ N.

Then 1
n

log |Fn(x)| = −U νn (x) and

Uµw (x) +
1

n
log |Fn(x)| ≤ c0

log n

n
, x ∈ C,

where c0 > 0 depends only on w, by [16, Theorem 1]. Hence

(3.30) |Fn(x)| ≤ nc0 e−n U µw (x), x ∈ C.

For a small r > 0, write

F ′
n(x) =

1

2πi

∫

|x−z|=r

Fn(z) dz

(z − x)2
, x ∈ S∗w,

and estimate

wn−1(x)|F ′
n(x)| ≤ wn−1(x)

r
max

|x−z|=r
|Fn(z)| = O(nc0 )

wn(x)

r
max

|x−z|=r
e−nU µw (z),

as n → ∞, by (3.30). Note that Uµw (x) is Hölder continuous in C, because it is a
harmonic function in C \ Sw, with smooth boundary values log w(x) + Fw on Sw (see
[25, Theorem I.4.7] and [16, Lemma 2]). If λ ∈ (0, 1] is the Hölder exponent for
Uµw (x), then we choose r = n−1/λ and obtain

max
|x−z|=n−1/λ

e−n U µw (z)
= O(1)e−nU µw (x), x ∈ S∗w.

Hence

(3.31) wn−1(x)|F ′
n(x)| = O(nc0+1/λ) en(log w(x)−U µw (x))

= O(nc0+1/λ) e−n Fw , x ∈ S∗w,

by (3.28) and (2.4). Recall that the weighted Fekete points are contained in the com-
pact set S∗w ⊂ [a, b] \ Z (cf. [25, Theorem III.1.2]), where log w(x) is continuous.
Therefore, we have from Theorem 3 of [16] that

∫

log w dνn −
∫

log w dµw = O

(

log2 n

n

)

as n → ∞.
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This implies

(3.32)

n
∏

i=1

w(ζ(n)
i ) = O(elog2 n) en

∫

log w dµw as n → ∞.

Observe that

(V w
n (ζ(n)

1 , . . . , ζ(n)
n ))2

=

n
∏

i=1

w2(n−1)(ζ(n)
i )

n
∏

i=1

F ′
n(ζ(n)

i ).

We now use (3.31) and (3.32) to estimate

max
[a,b]n

(V w
n )2

=

n
∏

i=1

wn−1(ζ(n)
i )

n
∏

i=1

wn−1(ζ(n)
i )|F ′

n(ζ(n)
i )|

= O(dn log2 n) en(n−1)(
∫

log w dµw−Fw)

= O(dn log2 n) e−n(n−1)Vw = O(dn log2 n) (cap([a, b],w))
n(n−1) ,

where d > e, as n → ∞. Thus the upper bound in (2.18) is proved. The lower bound
of (2.18) is a well-known consequence of extremal properties for the weighted Fekete

points and Vandermonde determinants, see [25, Theorem III.1.1], which states that

the sequence |V w
n (ζ(n)

1 , . . . , ζ(n)
n )| 2

n(n−1) decreases to cap([a, b],w) as n → ∞.
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gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Zeit. 21(1924), 203–208.
[29] G. Tenenbaum and M. M. France, The Prime Numbers and Their Distribution. Student

Mathematical Library 6, American Mathematical Society, Providence, RI, 2000.
[30] V. Totik, Polynomial inverse images and polynomial inequalities. Acta Math. 187(2001), 139–160.
[31] R. M. Trigub, Approximation of functions with Diophantine conditions by polynomials with integral

coefficients. In: Metric Questions of the Theory of Functions and Mappings, Naukova Dumka,
Kiev, 1971, pp. 267–333. (Russian)
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