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ON HOLOMORPHIC MAPS WITH

ONLY FOLD SINGULARITIES

YOSHIFUMI ANDO1

Dedicated to Professor Takuo Fukuda on his sixtieth birthday

Abstract. Let f : N → P be a holomorphic map between n-dimensional
complex manifolds which has only fold singularities. Such a map is called a
holomorphic fold map. In the complex 2-jet space J2(n, n;C), let Ω10 denote
the space consisting of all 2-jets of regular map germs and fold map germs. In
this paper we prove that Ω10 is homotopy equivalent to SU(n + 1). By using
this result we prove that if the tangent bundles TN and TP are equipped
with SU(n)-structures in addition, then a holomorphic fold map f canonically
determines the homotopy class of an SU(n + 1)-bundle map of TN ⊕ θN to
TP ⊕ θP , where θN and θP are the trivial line bundles.

Introduction

Let N and P be complex manifolds of dimension n. We shall say that

a holomorphic map germ of (N,x) to (P, y) has a fold singularity at x if

it is written as (z1, . . . , zn−1, zn) 7→ (z1, . . . , zn−1, z
2
n) under suitable local

coordinate systems near x and y. Such a germ will be called a fold map

germ. A holomorphic map f : N → P will be called a holomorphic fold

map if f has only fold singularities.

Let Jk(n, n;C) (Jk(n, n) for short) denote the k-jet space of all k-jets

of holomorphic map germs (Cn,0) → (Cn,0). We consider the subspace Ω1

of J1(n, n) consisting of all 1-jets whose kernel rank is either 0 or 1, and the

subspace Ω10 of J2(n, n) consisting of all 2-jets of regular germs and fold

map germs. The purpose of this paper is to determine their homotopy types.

Let J2(N,P ;C) (J2(N,P ) for short) denote the complex 2-jet space, which

is the total space of a fibre bundle over N ×P and Ω10(N,P ;C) (Ω10(N,P )
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for short) denote its subbundle associated with Ω10. The the 2-jet extension

j2f of a holomorphic fold map f : N → P is a section of Ω10(N,P ) over

N . The homotopy type of Ω10 will be important in the study of the space

consisting of all holomorphic fold maps. This paper is partially the complex

version of [A1] and [A2], although the arguments are quite different and

more complicated except for Sections 1 and 2.

Let S2k−1, D2k
r and CPk−1 denote the unit sphere of dimension 2k− 1

in Ck, the disk of radius r and of dimension 2k in Ck, and the complex

projective space of dimension k−1 respectively. Let U(k) and SU(k) denote

the unitary group and the special unitary group of degree k respectively.

Now we explain the homotopy types of Ω1 and Ω10. Let Ia (a ∈ R) be

the diagonal n × n-matrix (n-matrix for short) with diagonal components

(1, . . . , 1, e
√
−1a). Let v be a point of CPn−1 represented by a vector s =

t(s1, s2, . . . , sn) of S2n−1. Then we define the n-matrix G(v, e
√
−1θ) by

G(v, e
√
−1θ) = Iθ(En + (e

√
−1θ − 1)(sis̄j)),

where En is the unit matrix of rank n and (sis̄j) is the n-matrix with (i, j)

component given by sis̄j . It will be shown that G(v, e
√
−1θ) lies in SU(n)

(see (3.3)). Let OC(CPn−1) denote the open cone over CPn−1, that is, the

quotient space CPn−1 × [0, 1)/CPn−1 × 0. Then we define the homeomor-

phism

g : CPn−1 × Int(D2
1/2 \ {0})× SU(n) −→ CPn−1 × (

√
3/2, 1)× S1 × SU(n)

by g(v, be
√
−1θ, U) = (v, (1−b2)1/2, e

√
−1θ, G(v, e

√
−1θ)U). We make the new

space CPn−1 × Int D2
1/2 × SU(n) ∪g OC(CPn−1) × S1 × SU(n) by pasting

the two subspaces by g.

We consider the two actions of SU(n)×SU(n) : one on J2(n, n) through

the source and target spaces (Cn,0), and the other on SU(n + 1) through

SU(n) × (1) from the right and left hand sides. The main theorem of the

present paper is the following.

Theorem 1. (1) There exists a topological embedding of CPn−1 ×
Int D2

1/2 × SU(n) ∪g OC(CPn−1) × S1 × SU(n) into Ω1 whose image is

a deformation retract of Ω1 (n ≥ 2).

(2) There exists an equivariant topological embedding in : SU(n + 1) →
Ω10 with respect to the actions of SU(n) × SU(n) whose image is a defor-

mation retract of Ω10 (n ≥ 1).
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An n-dimensional complex vector bundle with structure group SU(n)

will be called an SU(n)-vector bundle. Let M be a complex manifold of

dimension n. In this paper, an SU(n)-structure of TM refers to a reduction

(E ′, ϕ) of the structure group GL(n,C) of the tangent bundle TM to SU(n),

where E ′ is an SU(n)-vector bundle over M and ϕ : TM → E ′ is a bundle

map. Then (E ′, ϕ) induces a homotopy class of a classifying map of E ′,
M → BSU(n). It is well known that TM has an SU(n)-structure if and only

if the first Chern class of M vanishes.

Let L2(n) be the group of all 2-jets of biholomorphic map germs (Cn,0)

→ (Cn,0). The structure group of the fibre bundle πN × πP : J2(N,P ) →
N × P with fibre J2(n, n) is L2(n) × L2(n). Since GL(n,C) is naturally a

subgroup of L2(n) and the quotient space L2(n)/GL(n;C) is contractible,

the structure group L2(n)×L2(n) of the fibre bundle πN ×πP : J2(N,P ) →
N × P is reduced to GL(n;C) × GL(n;C). If TN and TP have SU(n)-

structures (E,ϕN ) and (F,ϕP ) respectively, then the structure group of

J2(N,P ) is, furthermore, reduced from GL(n;C) × GL(n;C) to SU(n) ×
SU(n). Moreover, we have the subbundle SU(E ⊕ θN , F ⊕ θP ) of Hom(E ⊕
θN , F ⊕ θP ) associated with SU(n + 1), where θN and θP are the trivial

complex line bundles over N and P respectively. We will prove in Section

7 that there exists a fibre map i(N,P ) : SU(E ⊕ θN , F ⊕ θP ) → Ω10(N,P )

associated with the equivariant embedding in : SU(n+1) → Ω10 in Theorem

1 (2). The SU(n)-vector bundles E and F not only have hermitian metrics,

but also enable us to consider the determinant on each fibre of a bundle

map of E to F . A bundle map of E to F will be called an SU(n)-bundle

map if it preserves norms and the determinant on each fibre is equal to 1.

The following theorem will be proved in Section 7.

Theorem 2. Let N and P be complex manifolds of dimension n with

SU(n)-structures (E,ϕN ) and (F,ϕP ) respectively. Then we have the fol-

lowing.

(1) The map i(N,P ) : SU(E ⊕ θN , F ⊕ θP ) → Ω10(N,P ) is a fibre

homotopy equivalence.

(2) If there exists a holomorphic fold map f of N into P , then j2f

determines the homotopy class of an SU(n + 1)-bundle map of E ⊕ θN to

F ⊕ θP covering f through i(N,P ).

The set of all continuous sections of SU(E ⊕ θN , F ⊕ θP ) over N corre-

sponds bijectively to that of all SU(n+1)-bundle maps of E⊕θN to F ⊕θP .
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For a holomorphic fold map f , the section j2f : N → Ω10(N,P ) determines

the homotopy class of the section i(N,P )−1 ◦ j2f of SU(E ⊕ θN , F ⊕ θP ),

where i(N,P )−1 is the homotopy inverse of i(N,P ). This gives the homo-

topy class of an SU(n + 1)-bundle map f̃ : E ⊕ θN → F ⊕ θP covering f in

Theorem 2 (2). Since f̃ is reduced to an SU(n)-bundle map of E to F by

the obstruction theory, we have the following corollary.

Corollary 3. Let N and P be complex manifolds of dimension n

whose first Chern classes vanish. If there is a holomorphic fold map f :

N → P , then there exists a bundle map of TN to TP covering f .

The assertion in the C∞-category corresponding to Theorem 2 is de-

scribed in [A2, Corollary 2] and Corollary 3 can be compared with the

results [E, 3.8, 3.9 and 3.10 Theorem] and [Sa, Lemma 3.1] in the C∞-

category.

In Section 2 we will prepare lemmas in linear algebra. Let Σ1 denote the

subspace of J1(n, n) consisting of all 1-jets with kernel rank 1. We will prove

in Section 3 that Σ1 is homotopy equivalent to CPn−1 × SU(n) (Theorems

3.1 and 3.7). It is known that the normal bundle of Σ1 in Ω1 is the trivial

complex line bundle Hom(K,Q), where K is the kernel bundle and Q is

the cokernel bundle of the first derivative over Σ1. Therefore the tubular

neighbourhood of Σ1 is homotopy equivalent to CPn−1×D2
1/2×SU(n). We

will study how ∂(CPn−1 × D2
1/2 × SU(n)) is pasted to U(n) ∼= S1 × SU(n)

(∼= here refers to a homeomorphism) to prove Theorem 1 (1).

Let Σ10 denote the subspace of J2(n, n) consisting of all 2-jets of fold

map germs. In Section 5 we will see that the fibre bundle Σ10 over Σ1

is homotopy equivalent to the canonical S1-bundle S2n−1 × SU(n) over

CPn−1 × SU(n) and hence the tubular neighbourhood of Σ10 in Ω10 is

homotopy equivalent to S2n−1 ×D2
1/2×SU(n). The tubular neighbourhood

of U(n) ∼= S1 ×SU(n)) in Ω10 is homotopy equivalent to D2n
1 ×S1 ×SU(n).

Then we will see that the pasting map of ∂(S2n−1 × D2
1/2 × SU(n)) to

∂(D2n
1 ×S1 ×SU(n)) is induced from g by considering the S1-bundle above

and that the pasted space becomes the total space of a fibre bundle over

S2n+1 with fibre SU(n). We will prove in Section 5 that there exists a bundle

map from this space to SU(n + 1) by constructing in Section 4 a special

bundle structure of the fibre bundle SU(n + 1) over SU(n + 1)/SU(n) ×
SU(1) ∼= S2n+1.
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Next we will specify the embedding of SU(n + 1) into Ω10 of Theorem

1 (2) in Section 5 and prove in Section 6 that it is equivariant with respect

to the actions of SU(n)× SU(n). In Section 7 we will prove Theorem 2 and

give certain examples of holomorphic fold maps.

§1. Notations

Let Cn denote the n-dimensional complex number space consisting of

all column vectors of n complex numbers. Let {e1, . . . , en} denote the canon-

ical basis of Cn with ei = t(0, . . . , 0,
i
1, 0, . . . , 0). The hermitian inner prod-

uct of vectors v, w is denoted by (v,w) and the norm of v is denoted by

‖v‖. In this paper a linear map Cn → Cn or a quadratic form on Cn is

identified with an n-matrix or an n-symmetric matrix respectively.

The details and further results of this section can be found in [Bo] and

[L] although we work in the complex category. The space of all homomor-

phisms of a vector space V into a vector space W over C will be denoted by

Hom(V,W ). The basis {e1, . . . , en} induces the identifications of J1(n, n)

with Hom(Cn,Cn) and of J2(n, n) with Hom(Cn,Cn)⊕Hom(Cn©Cn,Cn),

where Cn © Cn is the 2-fold symmetric product of Cn. Let Σi denote the

subspace of J1(n, n) consisting of all homomorphisms α : Cn → Cn with

kernel rank i (0 ≤ i ≤ n). We usually denote an element of J2(n, n) as

(α, β) for α : Cn → Cn and β : Cn © Cn → Cn. Consider the com-

position of the restriction β | Ker(α) © Ker(α) and the natural projec-

tion of Cn onto Cok(α). It induces a new homomorphism of Ker(α) into

Hom(Ker(α),Cok(α)) denoted by β̃. Let Σij be the subspace consisting of

all elements (α, β) such that α and β̃ are of kernel ranks i and j respectively.

The notation Σi is often used for Σi × Hom(Cn © Cn,Cn) if there is no

confusion.

The space Ω1 denotes the union Σ0 ∪ Σ1 in J1(n, n) and Ω10 denotes

the union Σ0 ∪ Σ10 in J2(n, n). Both spaces are open subsets. We say that

a 2-jet of Σ10 or its singularity at the origin is of fold type.

In this paper maps are basically continuous, but may be holomorphic

or C∞-differentiable if so stated.

§2. Lemmas

In this section we will discuss several results proved by elementary

arguments in linear algebra in the complex category. The diagonal matrix

with diagonal components a = (a1, . . . , an) will be denoted by ∆(a). In
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particular, ∆(1, . . . , 1, e
√
−1 a) of rank n is written as Ia. For an n-matrix

A, tĀ is denoted by A∗.

Lemma 2.1. Let A be an n-matrix. Then A is decomposed as S∆(d)T ,

where S and T are unitary matrices and d1, . . . , dn are nonnegative real

numbers such that (1) d2
1, . . . , d

2
n are the eigen-values of A∗A and (2) d1 ≥

d2 ≥ · · · ≥ dn ≥ 0.

Proof. The hermitian and nonnegative definite matrix A∗A is diago-

nalized by a unitary matrix U as

U∗(A∗A)U = ∆(d2
1, . . . , d

2
n).

Set U∗AU = (a1, . . . ,an). Then (ai,aj) = 0 for i 6= j and (ai,ai) = d2
i .

When ai 6= 0, set fi = ai/‖ai‖. Then we can find an orthonormal basis

f1, . . . , fn by choosing fj for j with aj = 0 appropriately. It follows that

U∗AU = (f1, . . . , fn)∆(‖a1‖, . . . , ‖an‖).

This proves (1).

We can prove that in the decomposition of A two values di and dj are

exchanged by using the matrix Pij = (pij) such that pkk = 1 when k is equal

to neither i nor j and that pij = pji = 1 and pst = 0 otherwise. This follows

from A=SPijPij∆(d)PijPijT and Pij∆(d)Pij =∆(d1, . . . , dj , . . . di, . . . , dn).

If d1 ≥ d2 ≥ · · · ≥ dn ≥ 0 holds, then we say in this paper that the

diagonal components d = (d1, . . . , dn) is decreasing. Let Aj (j = 1, . . . , s)

be square ij-matrices. The new matrix




A1
A2

0
. . .

0 As




will be denoted by A1

·
+ · · ·

·
+ As. Let Ej denote the unit matrix of rank j.

The following lemma is a key tool of this paper.

Lemma 2.2. Let v and w be decreasing diagonal components. Suppose

that S∆(v)T = ∆(w) for S and T of U(n). Then
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(1) v = w. Hence ∆(v) (= ∆(w)) is written as

a1Ei1

·
+ a2Ei2

·
+ · · ·

·
+ asEis ,

where a1, . . . , as are all distinct and n = i1 + · · · + is.

(2) S and T are also matrices of the forms

S = S1

·
+ · · ·

·
+ Ss and T = T1

·
+ · · ·

·
+ Ts

respectively, where both Sj and Tj are of ranks ij (j = 1, . . . , s).

(3) If aj is not zero, then SjTj = Eij .

Proof. We shall prove the lemma by comparing the components of

S∆(v) and ∆(w)T ∗. Set S = (sij) and T ∗ = (tij). Then we have




v1s11 . . . vns1n
...

...

v1sn1 . . . vnsnn


 =




w1t11 . . . wnt1n
...

...

w1tn1 . . . wntnn


 .

By comparing the components of p-th rows and q-th columns of the matrices

above, we obtain the following inequalities.

(2.3.1)

|v1|2 ≥ |v1sp1|2 + |v2sp2|2 + · · · + |vnspn|2

= |wptp1|2 + |wptp2|2 + · · · + |wptpn|2

= |wp|2,

(2.3.2)

|w1|2 ≥ |w1t1q|2 + |w2t2q|2 + · · · + |wntnq|2

= |vqs1q|2 + |vqs2q|2 + · · · + |vqsnq|2

= |vq|2.

Setting p = q = 1, we have v1 = w1.

Now we prove the lemma by induction on n. Assume that the assertion

is true for dimensions less than n. If vn = 0 or wn = 0, then the number of i’s

with vi = 0 coincides with that of j’s with wj = 0. Let is denote this number.

By the unitarity of S and T it follows that spq = tpq = 0 when only one of p

and q is smaller than n−is +1 and the other is not. So let as = 0, Ss and Ts
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denote is-matrices (spq) and (tpq), where n− is + 1 ≤ p, q ≤ n, respectively.

Therefore the assertion for n follows from the induction hypothesis.

Next assume that vi and wj are not zero for all i and j. Suppose that

v1 = v2 = · · · = vi > vi+1 and w1 = w2 = · · · = wi > wj+1

Then we can prove that i = j and spq = tpq = 0 when only one of p and

q is smaller than i + 1 and the other is not. In fact, if p ≤ j, then (2.3.1)

implies |v1|2 ≥ |wp|2 = |w1|2 = |v1|2 and so

|v1|2 = |v1sp1|2 + |v2sp2|2 + · · · + |vnspn|2

= |v1|2(|sp1|2 + |sp2|2 + · · · + |spn|2).

This equality together with vi > vi+1 shows that

sp,i+1 = · · · = spn = 0 for p ≤ j.

If q ≤ i, then (2.3.2) again implies |w1|2 ≥ |vq|2 = |v1|2 = |w1|2 and so

|w1|2 = |w1t1q|2 + |w2t2q|2 + · · · + |wntnq|2

= |w1|2(|t1q|2 + |t2q|2 + · · · + |tnq|2).

Similarly we obtain that

tj+1,q = · · · = tnq = 0 for q ≤ i.

Since the first j row vectors of S and the first i column vectors of T ∗ are

linearly independent, we have i = j, which becomes i1. The assertions (2)

and (3) for S1 and T1 also follow from the unitarity of S and T . Therefore

the lemma follows from the induction on n, since the case of n = 1 is trivial.

The following lemma is a subtle version of Lemma 2.2 and its proof is

technically the same.

Lemma 2.3. Let v be decreasing diagonal components given in Lemma

2.2. For two sequences {Sk} and {T k} of U(n) and a sequence of decreasing

diagonal components {dk}, suppose that the sequence {Sk∆(dk)T k} con-

verges to ∆(v). Then

(1) {dk} converges to v,
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(2) If a pair (p, q) of numbers does not satisfy

i1 + i2 + · · · + ij < p, q ≤ i1 + i2 + · · · + ij+1

for any number j with 0 ≤ j < s, then every sequence {sk
pq} (resp. {tkpq})

made of (p, q) components of Sk (resp. T k) converges to zero.

(3) Let δ(Sk) (resp. δ(T k)) denote the new matrix made from Sk (resp.

T k) by replacing every (p, q) component described in (2) with zero. Thus

δ(Sk) and δ(T k) have the natural decompositions δ(Sk)1
·
+ · · ·

·
+ δ(Sk)s and

δ(T k)1
·
+ · · ·

·
+ δ(T k)s respectively. Then for any number j with aj 6= 0, the

sequence {δ(Sk)jδ(T
k)j} converges to Eij .

Proof. (1) The set of eigen values changes continuously with respect

to matrices ([W, Appendix V.4]). By considering the eigen values of

(Sk∆(dk)T k)∗(Sk∆(dk)T k) we know that {dk} converges to v.

(2) Let (‖A‖ =
∑n

i=1

∑n
j=1 |aij |2)1/2 be the norm of a matrix A = (aij).

It is clear that ‖SA‖ = ‖A‖ = ‖AS‖ for S in U(n). Set dk = (dk
1 , . . . , d

k
n).

We may suppose that v1 is not zero. By the assumption and (1), given any

positive real number ε, there is a number l such that if k > l, then we have

‖Sk∆(dk)T k − ∆(v)‖ < ε or ‖Sk∆(dk) − ∆(v)(T k)∗‖ < ε

and

|dk
i − vi| < ε for 1 ≤ i ≤ n.

Set Sk = (sk
pq) and (T k)∗ = (tkpq). Take a number p with p ≤ i1. Then we

have vp = v1 6= 0 and

|dk
qsk

pq − vpt
k
pq| < ε for 1 ≤ q ≤ n.

It yields

|(dk
q/vp)s

k
pq − tkpq| < ε/vp

and so

|tkpq| < |(dk
q/vp)s

k
pq| + ε/vp.

Hence, we have

1 =

n∑

q=1

|tkpq|2 <

n∑

q=1

(|dk
q/vp)s

k
pq| + ε/vp)

2
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≤
n∑

q=1

(|(vq/v1)s
k
pq| + |(dk

q − vq)/v1)s
k
pq| + ε/v1)

2

<

n∑

q=1

(|(vq/v1)s
k
pq| + 2ε/v1)

2

=

n∑

q=1

(vq/v1)
2|sk

pq|2 + (4ε/v1)
( n∑

q=1

|(vq/v1)s
k
pq|
)

+ 4nε2/v1
2

≤
i1∑

q=1

|sk
pq|2 +

n∑

q=i1+1

(vq/v1)
2|sk

pq|2 + 4nε/v1 + 4nε2/v1
2

= 1 +
n∑

q=i1+1

(−1 + (vq/v1)
2)|sk

pq|2 + 4nε/v1 + 4nε2/v1
2.

This implies

n∑

q=i1+1

(1 − (vq/v1)
2)|sk

pq|2 < 4nε/v1 + 4nε2/v1
2.

Since ε can be any positive real number and |vq/v1| is not bigger than

|vi1+1/v1| < 1 for q > i1, {sk
pq} converges to 0 for p ≤ i1 and q > i1 when

k → ∞. Similarly sk
pq converges to 0 for such numbers p and q. This fact

also holds for T . Hence (2) is proved by induction on n.

(3) It follows from (2) that

∆(v) = lim
k→∞

Sk∆(dk)T k

= lim
k→∞

δ(Sk)∆(v)δ(T k)

= lim
k→∞

∆(v)δ(Sk)δ(T k).

Since v is decreasing, δ(Sk)jδ(T
k)j must converge to Eij for those numbers

j with aj 6= 0.

§3. Homotopy type of Ω1

In this section we shall study the homology types of Ω1 and Σ1 in

Hom(Cn,Cn) for n ≥ 2. Let Ω1
s (resp. Σ1

s) denote the space consisting of

all matrices A = (aij) such that A ∈ Ω1 (resp. A ∈ Σ1) and ‖A‖ = 1.

Clearly it is a deformation retract of Ω1 (resp. Σ1). Hence, we study their

homotopy types.
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Let ∆ denote the contractible space consisting of all decreasing diagonal

components d such that dn−1 > 0 and
∑n

i=1 d2
i = 1. In ∆ we consider the

subspace consisting of all special diagonal components of the form dab =

(a/
√

n − 1, . . . , a/
√

n − 1, b/
√

n), where a and b satisfy a2 +(b2/n) = 1 and

a/
√

n − 1 ≥ b/
√

n. Note that unless b = 1, we have a/
√

n − 1 > b/
√

n. For

a subset B of [0, 1] we define ∆B to be the subset of ∆ consisting of all

diagonal components dab with b ∈ B.

Lemma 2.1 is a motivation for defining the surjection

H : SU(n) × ∆ × S1 × SU(n) −→ Ω1
s

by H(S,d, e
√
−1 θ, U) = S∆(d)I−θU . Here note that given decreasing diag-

onal components d = (d1, . . . , dn), S∆(d)I−θU ∈ Ω1
s if and only if d ∈ ∆.

We denote the image H(SU(n) × ∆B × S1 × SU(n)) by K(B).

Theorem 3.1. Let n ≥ 2. There exists a deformation retraction of Ω1
s

to K([0, 1]) whose restriction to Σ1
s induces a deformation retraction of Σ1

s

to K({0}).

Proof. If n = 2, then it is clear that Ω1
s coincides with K([0, 1]) and

that Σ1
s coincides with K({0}). Thus we may assume that n ≥ 3. Let ∆′ be

the set of all diagonal components f = (f1, . . . , fn−2, 0, 0) with f1 ≥ f2 ≥
· · · ≥ fn−2 ≥ 0 and

∑n−2
i=1 fi

2 = 1. First we shall prove that ∆ is identified

with the space (∆′ ∗∆[0,1])\∆′, where ∆′ ∗∆[0,1] is the join of ∆′ and ∆[0,1]

taken on the unit sphere Sn−1.

For d = (d1, . . . , dn) of ∆ \ ∆[0,1], there exist uniquely determined f ,

dab and t with 1 > t > 0 such that if we set d′ = tf + (1 − t)dab, then

d = d′/‖d′‖. In fact, let tf + (1 − t)dab = c(sf ′ + (1 − s)da′b′) with c > 0.

Then

(1 − t)a = c(1 − s)a′, (1 − t)b = c(1 − s)b′,

(1 − t)2(a2 + (b2/n)) = c2(1 − s)2(a′2 + (b′2/n)).

This yields 1 − t = c(1 − s). Hence a = a′ and b = b′. So we have tf = csf ′

and t = cs. Thus we obtain that t = s, a = a′, b = b′, f = f ′ and c = 1.

Next we show the existence of f , dab and t. By using the equation

d = d′/‖d′‖, we obtain

‖d′‖dn−1 = (1 − t)a/
√

n − 1, ‖d′‖dn = (1 − t)b/
√

n
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and

‖d′‖2((n − 1)d2
n−1 + d2

n) = (1 − t)2(a2 + (b2/n)) = (1 − t)2.

For simplicity, set u = ((n − 1)d2
n−1 + d2

n)1/2 > 0. It must be that a =√
n − 1 dn−1/u and b =

√
n dn/u with a2 + (b2/n) = 1 and a/

√
n − 1 ≥

b/
√

n, and that f and t satisfy the equation

d = (1/‖d′‖)tf + ((1 − t)/‖d′‖)dab = (ut/(1 − t))f + udab.

Therefore, for d of ∆ \ ∆[0,1] we define a and b as above, and f and t so

that they satisfy f = (d − udab)/‖d − udab‖ and ut/(1 − t) = ‖d − udab‖.
By definition, it is easy to see that fn−1 = fn = 0, ‖d − udab‖ > 0 and

0 < t < 1.

In the following we represent d in ∆ as (tf+(1−t)dab)/‖tf+(1−t)dab‖,
where d ∈ ∆[0,1] if and only if t = 0. Now we define the deformation

retraction rλ of ∆ to ∆[0,1] with r = id∆ by

rλ(d) = ((1− λ)(tf + (1− t)dab) + λdab)/‖(1− λ)(tf + (1− t)dab) + λdab‖.

It has the property that if di = dj , then the i-th and the j-th compo-

nents of rλ(d) denoted by dλ
i and dλ

j respectively coincide with each other. In

fact, for the case i ≤ j ≤ n− 1 this follows from f = (d−udab)/‖d−udab‖
and for the case i ≤ n − 1 and j = n, we have di = di+1 = · · · = dn

and so a/
√

n − 1 = b/
√

n. This yields fi = fi+1 = · · · = fn and so

dλ
i = dλ

i+1 = · · · = dλ
n.

Now we define the deformation retraction Rλ of Ω1
s to K([0, 1]), whose

restriction of Σ1
s induces a deformation retraction of Σ1

s to K({0}). We al-

ways consider the representation of a matrix A of Ω1
s as A = S∆(d)I−θU ,

where S, T ∈ SU(n). Then define Rλ by Rλ(A) = S∆(rλ(d))I−θU . This

is well defined and continuous as is seen below. Let A = S ′∆(d)I−θU
′. If

di = dj , then dλ
i = dλ

j . Furthermore, the matrices (S ′)∗S and I−θU(U ′)∗Iθ

belong to SU(n) and satisfy the properties stated in Lemma 2.2, since

(S ′)∗S∆(d)I−θU(U ′)∗Iθ = ∆(d). Hence, it follows that (S ′)∗S∆(rλ(d)) ×
I−θU(U ′)∗Iθ = ∆(rλ(d)). This implies that Rλ(A) does not depend on the

choice of S and U . It is easy to see that Rλ(A) keeps Σ1
s and that R1 maps

Σ1
s onto K({0}).

For the proof of continuity, take a sequence {Ak} of Ω1
s with represen-

tation Ak = Sk∆(dk)I−θk
Uk as in Lemma 2.3 and a sequence {λm} such
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that limk→∞ Ak = A and limm→∞ λm = λ. Then {dk} converges to d by

Lemma 2.3 (1). Since

(3.1.1) lim
k→∞

S∗Sk∆(dk)I−θk
UkU∗Iθ − ∆(d),

it follows that S∗Sk and I−θk
UkU∗Iθ satisfy the properties of Lemma 2.3,

which induce δ(S∗Sk) and δ(I−θk
UkU∗Iθ). Therefore, we have

(3.1.2)

lim
k→∞, m→∞

S∗Sk∆(rλm
(dk))I−θk

UkU∗Iθ

= lim
k→∞, m→∞

δ(S∗Sk)∆(rλm
(dk))δ(I−θk

UkU∗Iθ)

= lim
k→∞, m→∞

∆(rλm
(dk))δ(S∗Sk)δ(I−θk

UkU∗Iθ)

= ∆(rλ(d)).

Thus (3.1.2) proves that limk→∞, m→∞ Rλm
(Ak) = Rλ(A).

In the following we shall prove that K([0, 1]) is the space stated in

Theorem 1 (1) in Introduction.

We begin by proving that the restriction of H to SU(n) × ∆(0,1) ×
S1 × SU(n) onto K((0, 1)) is a fibre bundle. Let H(S,dab, e

√
−1 θ, U) =

H(S ′,dab, e
√
−1 θ, U ′). Then (S ′)∗S∆(dab)I−θU(U ′)∗Iθ = ∆(dab). By

we have that (S ′)∗S and I−θU(U ′)∗Iθ have the decompositions S1

·
+ (z1)

and U1

·
+ (z2) respectively with S1U1 = En−1 and z1z2 = 1. Hence we have

(S ′)∗SI−θU(U ′)∗Iθ = En, that is, SI−θU = S ′I−θU
′ and Sen = S ′(S1

·
+

(z1))en = z1S
′en, where en = t(0, . . . , 0, 1). This observation enables us to

define the surjections,

P : SU(n) × ∆(0,1) × S1 × SU(n) −→ CPn−1 × ∆(0,1) × S1 × SU(n),

H : CPn−1 × ∆(0,1) × S1 × SU(n) −→ K((0, 1))

by P (S,dab, e
√
−1 θ, U) = ([Sen],dab, e

√
−1 θ, IθSI−θU) and H | SU(n)×

∆(0,1) × S1 × SU(n) = H ◦ P , where [∗] refers to the element of CPn−1

represented by ∗. The precise description of H is as follows. Let v be an

element of CPn−1 represented by a vector s with length 1. Find a matrix

S of SU(n) with Sen = s (this notation will be often used below without

stating it explicitly). Then we know that

(3.2) H(v,dab, e
√
−1 θ, U) = S∆(dab)S

∗I−θU.
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In fact, it does not depend on the choice of s and S, because a direct

calculation shows

(3.3) S∆(x, . . . , x, y)S∗ = xEn + (y − x)(sis̄j).

and we have

H ◦ P (S,dab, e
√
−1 θ, U) = H(v,dab, e

√
−1 θ, IθSI−θU)

= S∆(dab)S
∗I−θ(IθSI−θU)

= S∆(dab)I−θU

= H(S,dab, e
√
−1 θ, U).

Here we note that H is naturally extended to the continuous surjection

H̃ of OC(CPn−1)×S1 × SU(n) onto K((0, 1]) by setting H̃(∗, e
√
−1 θ, U) =

(1/
√

n)I−θU , where ∗ is the cone point, since we have

lim
b→1

H(v,dab, e
√
−1 θ, U) = lim

b→1
S∆(dab)S

∗I−θU

= S(1/
√

n)EnS∗I−θU = (1/
√

n)I−θU,

which does not depend on the vector v. Here note that the point (v,dab)

corresponds to the point (v, (1 − b2)1/2) in OC(CPn−1) = CPn−1×
[0, 1)/CPn−1 × 0.

We define the other map

PΣ : SU(n) × ∆(0,1/2) × S1 × SU(n) −→ CPn−1 × ∆(0,1/2) × S1 × SU(n)

by PΣ(S,dab, e
√
−1 θ, U) = ([Sen],dab, e

√
−1 θ,SU). This map induces the

surjection

HΣ : CPn−1 × ∆(0,1/2) × S1 × SU(n) −→ K((0, 1/2))

defined by

(3.4) HΣ(v,dab, e
√
−1 θ, U) = S∆(dab)I−θS

∗U

so that H | SU(n) × ∆(0,1/2) × S1 × SU(n) = HΣ ◦ PΣ, where S is a ma-

trix of SU(n) with [Sen] = v. In fact, this map is well defined, since
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S∆(dab)I−θS
∗U = S∆(dab)S

∗SI−θS
∗U , and S∆(dab)S

∗ and SI−θS
∗ de-

pend only on v by (3.3). Then we have

HΣ ◦ PΣ(S,dab, e
√
−1 θ, U) = HΣ([Sen],dab, e

√
−1 θ,SU)

= S∆(dab)I−θU

= H(S,dab, e
√
−1 θ, U).

Now HΣ is naturally extended to the continuous surjection

H̃Σ : CPn−1 × Int D2
1/2 × SU(n) −→ K([0, 1/2))

defined by H̃Σ(v, be
√
−1 θ, U) = HΣ(v,dab, e

√
−1 θ, U) for 0 < b < 1/2 and

H̃Σ(v,0, U) = S∆(1/
√

n − 1, . . . , 1/
√

n − 1, 0)S∗U , since we have

lim
b→0

HΣ(v,dab, e
√
−1 θ, U) = lim

b→0
S∆(dab)I−θS

∗U

= S∆(1/
√

n − 1, . . . , 1/
√

n − 1, 0)S∗U.

Lemma 3.5. (1) The map H̃ : OC(CPn−1) × S1 × SU(n) → K((0, 1])

is a continuous bijection.

(2) The map H̃Σ : CPn−1 × Int D2
1/2 × SU(n) → K([0, 1/2)) is a con-

tinuous bijection.

Proof. (1) Let A be a matrix of K((0, 1]), which is represented as

S∆(dab)I−θU with S,U ∈ SU(n). We show that the inverse H1 of H̃ is

given by

H1(A) = ([Sen],dab, e
√
−1 θ, IθSI−θU) for 0 < b < 1,

H1(A) = (∗, e
√
−1 θ, IθSI−θU) for b = 1.

First we see that H1 is well defined. By Lemma 2.1, dab is determined by A.

Let S ′∆(dab)I−θU
′ be another representation. Then it follows from Lemma

2.2 that SI−θU = S ′I−θU
′, and [Sen] = [S ′en] for 0 < b < 1. Let us see

that it is actually the inverse of H̃. In fact, for 0 < b < 1, we have

H̃ ◦ H1(A) = H̃([Sen],dab, e
√
−1 θ, IθSI−θU)

= S∆(dab)S
∗I−θIθSI−θU

= A,
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and for b = 1, we have

H̃ ◦ H1(A) = H̃(∗, e
√
−1 θ, IθSI−θU)

= (1/
√

n)I−θIθSI−θU

= S(1/
√

n)EnI−θU

= A.

We have, inversely, for 0 < b < 1

H1 ◦ H̃(v,dab, e
√
−1 θ, U) = H1(S∆(dab)S

∗I−θU)

= H1(S∆(dab)I−θIθS
∗I−θU)

= ([Sen],dab, e
√
−1 θ, IθSI−θIθS

∗I−θU)

= ([Sen],dab, e
√
−1 θ, U).

Similarly, for b = 1, we see that H1 ◦ H̃(∗, e
√
−1 θ, U) = (∗, e

√
−1 θ, U).

(2) A matrix A of K([0, 1/2)) is represented as S∆(dab)I−θU as above

and the inverse (HΣ)1 of H̃Σ is given by

(HΣ)1(A) = ([Sen]), be
√
−1 θ,SU).

It follows from Lemma 2.2 that this is well defined. In fact, let

A = S ′∆(dab)I−θ′U
′ be another representation of A. Then we have

S∗S ′∆(dab)I−θ′U
′U∗Iθ = ∆(dab). We can represent as S∗S ′ = S1

·
+ (z1)

and I−θ′U
′U∗Iθ = U1

·
+ (z2), that is, U ′U∗ = U1

·
+ (z2) with S1U1 = En−1,

and z1z2 = 1 by Lemma 2.2 for b > 0 and by z1 detS1 = z2 detS2 = 1

for b = 0. Hence, we have S∗S ′U ′U∗ = En and so SU = S ′U ′. (HΣ)1 is

actually the inverse of H̃Σ, since we have

H̃Σ ◦ (HΣ)1(A) = H̃Σ([Sen], be
√
−1 θ, SU)

= S∆(dab)I−θS
∗SU

= A

and

(HΣ)1 ◦ H̃Σ(v, be
√
−1 θ, U) = (HΣ)1(S∆(dab)I−θS

∗U)

= ([Sen], be
√
−1 θ, U).
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Consequently we have two bijections of CPn−1 ×∆(0,1/2) ×S1 × SU(n)

onto K((0, 1/2)) by H and HΣ. Here recall the matrix G(v, e
√
−1 θ) =

Iθ(En + (e−
√
−1 θ − 1)(sis̄j)) in Introduction, which is equal to IθSI−θS

∗

by (3.3) for all S with [Sen] = v. Let us determine the map H−1 ◦ HΣ by

using (3.2), (3.4) and Lemma 3.5. We have

H−1 ◦ HΣ(v,dab, e
√
−1 θ, U) = H−1(S∆(dab)I−θS

∗U)(3.6)

= (v,dab, e
√
−1 θ, IθSI−θS

∗U)

= (v,dab, e
√
−1 θ, G(v, e

√
−1 θ)U).

It is easy to see that H−1 ◦HΣ |CPn−1 ×∆(0,1/2) × S1 × SU(n) is a home-

omorphism.

Theorem 3.7. Let n ≥ 2. Under the notation in Introduction, the

space K([0, 1]) is homeomorphic to CPn−1×Int D2
1/2×SU(n)∪gOC(CPn−1)

×S1 × SU(n) and the space K({0}) is homeomorphic to CPn−1 × {0} ×
SU(n).

Proof. We define the map jn : CPn−1×Int D2
1/2×SU(n)∪gOC(CPn−1)

× S1 × SU(n) → K([0, 1]) by jn(v, be
√
−1 θ, U) = H̃Σ(v, be

√
−1 θ, U) for 0 ≤

b < 1/2 and jn(v, (1 − b2)1/2, e
√
−1 θ, U) = H̃(v,dab, e

√
−1 θ, U) for 0 < b ≤

1. It follows from Lemma 3.5 and (3.6) that jn is well defined and is a

continuous bijection. Since CPn−1 × Int D2
1/2 × SU(n) ∪g OC(CPn−1) ×

S1×SU(n) is compact, we have that jn is a homeomorphism. Furthermore,

jn maps CPn−1 × 0 × SU(n) onto K({0}).

Proof of Theorem 1 (1). The assertion follows from Theorems 3.1 and

3.7.

Remark 3.8. Let v = [Sen] as above. The kernel of H̃Σ(v,0, U) is gen-

erated by U∗Sen and the orthogonal complement of its image is generated

by Sen.

§4. Structure of the fibre bundle SU(n + 1) over SU(n + 1)/SU(n)

In this section let n ≥ 1. In contrast to the canonical basis {e1, . . . , en}
of Cn, we write the canonical basis of Cn+1 by {e′1, . . . , e′n+1}. Let En+1

be the unit matrix of rank n + 1. We shall consider the fibre bundle π :

SU(n + 1) → SU(n + 1)/SU(n) × (1) ∼= S2n+1 and specify its structure. In
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this paper a point of S2n+1 will be written as z = t(x1, . . . , xn, zn+1) with

x = t(x1, . . . , xn) ∈ Cn and zn+1 = be
√
−1 θ. Let SR and SΣ be the subsets

of S2n+1 consisting of all points z such that 0 < b ≤ 1 and 0 ≤ b < 1/2

respectively.

For a point z of SR with 0 < b ≤ 1, we define the matrix r(z) of

SU(n + 1) so that

(4.1-(i)) r(z)(e′n+1) = e−
√
−1 θz,

(4.1-(ii)) r(z)(z − zn+1e
′
n+1) = bz − e

√
−1 θe′n+1,

(4.1-(iii)) if 0 < b < 1, then r(z) is the identity on the orthogonal comple-

ment of the subspace generated by the two vectors e′n+1 and z− zn+1 e′n+1

over C and if b = 1, then r(z) = En+1.

For a point z of SΣ with 0 ≤ b < 1/2, we define the matrix rΣ(z) of

SU(n + 1) so that

(4.2-(i)) rΣ(z)(e′n+1) = z,

(4.2-(ii)) rΣ(z)(z − zn+1e
′
n+1) = z̄n+1z− e′n+1,

(4.2-(iii)) rΣ(z) is the identity on the orthogonal complement of the sub-

space generated by the two vectors e′n+1 and z − zn+1e
′
n+1 over C.

The explicit formulas of the matrices r(z) and rΣ(z) are as follows:

r(z) =

(
R(z) e−

√
−1 θx

−e
√
−1 θ(tx̄) b

)
and rΣ(z) =

(
RΣ(x) x

−tx̄ be
√
−1 θ

)
,

where the (i, j) components of R(z) and RΣ(z) are δij − xix̄j/(1 + b) and

δij − xix̄j((1 − be−
√
−1 θ)/(1 − b2)) respectively.

Lemma 4.3. The determinants of r(z) and rΣ(z) are equal to 1.
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Proof. First we show det(r(z)) = 1. For b 6= 1, let f1, . . . , fn−1 denote

vectors such that (f1, . . . , fn−1, e
′
n+1, (z−zn+1e

′
n+1)/‖x‖) is an orthonormal

basis. Then by definition we have

r(z)(f1, . . . , fn−1, e
′
n+1, (z − zn+1e

′
n+1)/‖x‖)

= (f1, . . . , fn−1, e
−
√
−1 θz, (bz − e

√
−1 θe′n+1)/‖x‖).

Hence,

‖x‖2 det(r(z))

= det((f1, . . . , fn−1, e
′
n+1, z − zn+1e

′
n+1)

∗

×(f1, . . . , fn−1, e
−
√
−1 θz, bz − e

√
−1 θe′n+1))

= det(En−1

·
+ (t(e′n+1, z − zn+1e

′
n+1)(e

−
√
−1 θz, bz − e

√
−1 θe′n+1)))

= det(t(e′n+1, z − zn+1e
′
n+1)(e

−
√
−1 θz, bz − e

√
−1 θe′n+1))

= det

(
b (−‖x‖2)e

√
−1 θ

‖x‖2e−
√
−1 θ b‖x‖2

)

= ‖x‖2(b2 + ‖x‖2)

= ‖x‖2.

Next let us show that det(rΣ(z)) = 1. Take an orthonormal basis

(f1, . . . , fn−1, e
′
n+1, (z − zn+1e

′
n+1)/‖x‖). Then by definition we have

rΣ(z)(f1, . . . , fn−1, e
′
n+1, (z − zn+1e

′
n+1)/‖x‖)

= (f1, . . . , fn−1, z, (z̄n+1z− e′n+1)/‖x‖).

Hence,

‖x‖2 det(rΣ(z))

= det((f1, . . . , fn−1, e
′
n+1, z − zn+1e

′
n+1)

∗

×(f1, . . . , fn−1, z, z̄n+1z − e′n+1))

= det(En−1

·
+ (t(e′n+1, z − zn+1e

′
n+1)(z, z̄n+1z − e′n+1)))
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= det(t(e′n+1, z − zn+1e
′
n+1)(z, z̄n+1z − e′n+1))

= det

(
be

√
−1 θ −‖x‖2

‖x‖2 be−
√
−1 θ‖x‖2

)

= ‖x‖2.

Lemma 4.4. For a point z = t(x1, . . . , xn), be
√
−1 θ) of S2n+1 with 0 <

b < 1/2, set s = x/‖x‖ and let S be a matrix of SU(n) with Sen = s. Then

we have

r(z)−1rΣ(z) = SI−θS
∗ ·

+ (e
√
−1 θ).

Proof. Let T be the matrix (S
·
+ (1))∗r(z)−1rΣ(z)(S

·
+ (1))(Iθ

·
+ (1)).

Then we have

(1) T (e′n+1) = e
√
−1 θe′n+1,

(2) T (‖x‖e′n) = (S
·
+ (1))∗r(z)−1rΣ(z)(S

·
+ (1))(‖x‖e

√
−1 θe′n)

= (S
·
+ (1))∗r(z)−1rΣ(z)(e

√
−1 θ(z − zn+1e

′
n+1))

= (S
·
+ (1))∗r(z)−1(bz − e

√
−1 θe′n+1)

= (S
·
+ (1))∗(z − zn+1e

′
n+1)

= ‖x‖e′n.

Since (S
·
+ (1))e′i (i = 1, . . . , n − 1) belong to the orthogonal complement

of the space generated by e′n+1 and z − zn+1e
′
n+1, we obtain by (4.1-(iii))

and (4.2-(iii) that

(3) Te′i = e′i (i = 1, . . . , n − 1).

Therefore, it follows that T = En

·
+ (e

√
−1 θ).

For a matrix M ∈ SU(n+1), let Me′n+1 be written as z = t(x1, . . . , xn,

zn+1) with x(M) = t(x1, . . . , xn) and zn+1 = be
√
−1 θ. If 0 < b ≤ 1,

then r(z)−1Me′n+1 = r(z)−1z = e
√
−1 θe′n+1 and r(z)−1M is written as

I−θU(M)
·
+ (e

√
−1 θ) by some matrix U(M) of SU(n). If 0 ≤ b < 1/2, then

rΣ(z)−1Me′n+1 = rΣ(z)−1z = e′n+1 and rΣ(z)−1M is written as UΣ(M)
·
+
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(1) by some matrix UΣ(M) of SU(n). If ‖x(M)‖ is not 0, then set s(M) =

x(M)/‖x(M)‖. We define the trivializations

tR : π−1(SR) −→ Int D2n
1 × S1 × SU(n) and(4.5)

tΣ : π−1(SΣ) −→ S2n−1 × Int D2
1/2 × SU(n)

of π−1(SR) and π−1(SΣ) by tR(M) = (x(M), e
√
−1 θ, U(M)) and tΣ(M) =

(s(M), be
√
−1 θ, UΣ(M)) respectively. It is not difficult to see that they are

really trivializations. From now on, when a vector s representing [s] is speci-

fied, the matrix IθSI−θS
∗ is denoted by G(s,e

√
−1 θ) in place of G([s],e

√
−1 θ).

Proposition 4.6. If 0 < b < 1/2 then we have

tR ◦ tΣ
−1(s, be

√
−1 θ, UΣ) = ((1 − b2)1/2s, e

√
−1 θ, G(s, e

√
−1 θ)UΣ).

Proof. There exists a matrix M of SU(n + 1) such that s = s(M),

UΣ = UΣ(M) and tz = t(Me′n+1) = (tx(M), be
√
−1 θ). By definition, we

have tΣ
−1(s(M), be

√
−1 θ, UΣ(M)) = M = rΣ(z)(UΣ(M)

·
+ (1)). Again by

definition of U(M), we have

I−θU(M)
·
+ (e

√
−1 θ) = r(z)−1M = r(z)−1rΣ(z)(UΣ(M)

·
+ (1))

and so

U(M)
·
+ (1) = (Iθ

·
+ (e−

√
−1 θ))r(z)−1rΣ(z)(UΣ(M)

·
+ (1)).

By Lemma 4.4 this is equal to

(Iθ

·
+ (e−

√
−1 θ))(SI−θS

∗ ·
+ (e

√
−1 θ))(UΣ(M)

·
+ (1))

= (IθSI−θS
∗UΣ(M))

·
+ (1)

= G(s(M), e
√
−1 θ)UΣ(M)

·
+ (1).

Hence, tR(M) = (x(M), e
√
−1 θ, G(s(M), e

√
−1 θ)UΣ(M)) with x(M) =

(1 − b2)1/2s(M).

Let g̃ be the diffeomorphism

g̃ : S2n−1 × Int(D2
1/2 \ {0}) × SU(n)(4.7)

−→ Int(D2n
1 \ D2n√

3/2
) × S1 × SU(n)
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defined by g̃(s, be
√
−1 θ, UΣ) = ((1−b2)1/2s, e

√
−1 θ, G(s, e

√
−1 θ)UΣ) (0 < b <

1/2). Let S2n−1×Int D2
1/2×SU(n)∪

g̃
Int D2n

1 ×S1×SU(n) denote the space

obtained by pasting the two spaces written above by g̃. Then we can define

the diffeomorphism k : SU(n + 1) → S2n−1 × Int D2
1/2 × SU(n)∪

g̃
Int D2n

1 ×
S1 × SU(n) by

k(M) =

{
(x(M), e

√
−1 θ, U(M)) for 0 < b ≤ 1,

(s(M), be
√
−1 θ, UΣ(M)) for 0 ≤ b < 1/2.

(4.8)

The map π′ : S2n−1 × Int D2
1/2 × SU(n) ∪

g̃
Int D2n

1 × S1 × SU(n) → S2n+1

defined by π′(x, e
√
−1 θ, U) = (x, (1 − ‖x‖2)1/2e

√
−1 θ) for 0 < b ≤ 1 and

π′(s, be
√
−1 θ, UΣ) = ((1 − b2)1/2s, be

√
−1 θ) for 0 ≤ b < 1/2 becomes a prin-

cipal bundle with fibre SU(n). Then the following proposition follows from

the arguments above.

Proposition 4.9. Let n ≥ 1. The map k above gives a C∞ bundle map

of the principal bundle π : SU(n + 1) → SU(n + 1)/SU(n)× (1) ∼= S2n+1 to

the principal bundle π′ : S2n−1×IntD2
1/2×SU(n)∪

g̃
Int D2n

1 ×S1×SU(n) →
S2n+1.

§5. Homotopy type of Ω10

We first review the homotopy type of Σ10 in the context of Sections

3 and 4. Let π2
1 be the canonical forgetting map of J2(n, n) onto J1(n, n).

Now we see what fibre bundle the restriction π2
1 |Σ10 : Σ10 → Σ1 is. When

(π2
1)

−1(Σ1) is identified with Σ1 × Hom(Cn ◦ Cn,Cn), we have two line

bundles K and Q over Σ1 defined by

K = {(α,k) |α ∈ Σ1, k ∈ Ker α}

and

Q = {(α,v) |α ∈ Σ1, v ∈ Cokα}
respectively. Then we have the following exact sequence of vector bundles

over Σ1 :

0 −→ K −→ Σ1 × Cn h−→ Σ1 × Cn −→ Q −→ 0,

where h is the fibrewise homomorphism defined by h(α,x) = (α,α(x)).

Consider the map C : Σ1 → CPn−1defined as C(α) being the line orthog-

onal to Im(α) in Cn. Then C1(K) = C1(Q) = C∗(c1), where c1 is the
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first Chern class of the canonical line bundle over CPn−1. It is known that

the normal bundle of Σ1 in J1(n, n) is equivalent to Hom(K,Q) (see [L,

p.11, 2. Proof of Proposition 2] and [Bo, p.50, Lemma 7.13 and Theorem

7.14]). Since C1(Hom(K,Q)) = C1(Q) − C1(K) = 0, this normal bun-

dle is trivial. Restricting the map H̃Σ to CPn−1 × 0 × SU(n) in Section

3, we have an embedding of CPn−1 × 0 × SU(n) into Σ1 inducing a ho-

motopy equivalence. The composition of C and H̃Σ |CPn−1 × 0 × SU(n)

coincides with the canonical projection of CPn−1×0×SU(n) onto CPn−1,

since C ◦ H̃Σ(v,0, UΣ) = C(S∆(d10)S
∗UΣ) = [Sen] = v. This implies

(H̃Σ |CPn−1 × 0 × SU(n))∗(C1(Q)) = c1 × 1. We define the fibrewise ho-

momorphism r of Σ1 × Hom(Cn ©Cn,Cn) onto Hom(K©K,Q) over Σ1

by r(α, β) = pr ◦β | Ker(α) © Ker(α), where pr denotes the projection of

Cn onto Cok(α). Let R be the subspace of Hom(K © K,Q) consisting

of all isomorphisms. By the definition of Σ10 we know that Σ10 coincides

with r−1(R). Since C1(Hom(K©K,Q)) = −2C1(K) + C1(Q) = −C1(K),

Hom(K©K,Q) is equivalent to Hom(K,C) as vector bundles, and there is

an orientation reversing bundle map between the associated sphere bundles

S(Hom(K,C)) and S(K). Hence the fibre bundle Σ10 over Σ1 is homotopy

equivalent to the S1-bundle S2n−1 × 0 × SU(n) over CPn−1 × 0 × SU(n)

induced from the S1-bundle of S2n−1 over CPn−1 associated with c1 of

H2(CPn−1;Z). Furthermore Σ10 has S2n−1 ×0× SU(n) as its deformation

retract.

In Ω10, Σ0×Hom(Cn©,Cn,Cn) over Σ0 has a contractible fibre. Hence

by the arguments above, Ω10 has, as its deformation retract, the subspace

which is the total space of the above S1-bundle over CPn−1 × Int D2
1/2 ×

SU(n)∪g OC(CPn−1)×S1 × SU(n) except for over {∗}× S1 × SU(n) with

∗ being the cone point of OC(CPn−1). It is nothing but S2n−1 × Int D2
1/2 ×

SU(n)∪
g̃
Int D2n

1 ×S1×SU(n). Hence it follows from Proposition 4.9 that Ω10

is homotopy equivalent to SU(n + 1). This is an intuitive proof of Theorem

1 (2).

Now we shall specify the embedding

h : S2n−1 × Int D2
1/2 × SU(n)

⋃

g̃

Int D2n
1 × S1 × SU(n) −→ Ω10.

For a point (x, e
√
−1 θ, U) of Int D2n

1 × S1 × SU(n), we define the map

β(x, e
√
−1 θ, U) : Cn © Cn → Cn by

β(x, e
√
−1 θ, U)(a,b)(5.1)
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= {tat(G(s, e
√
−1 θ)∗U)S̄∆(0, . . . , 0, ‖x‖)S∗(G(s, e

√
−1 θ)∗U)b}s

for x 6= 0 and

β(0, e
√
−1 θ, U)(a,b) = 0,

where if ‖x‖ 6= 0, then s = x/‖x‖ and Sen = s. The matrix

t(G(s, e
√
−1 θ)∗U)S̄∆(0, . . . , 0, ‖x‖)S∗(G(s, e

√
−1 θ)∗U)

is equal to

tUI−θS̄Iθ
tSS̄∆(0, . . . , 0, ‖x‖)S∗SIθS

∗I−θU

= tUI−θS̄Iθ∆(0, . . . , 0, ‖x‖)IθS
∗I−θU

= tUI−θ(e
2
√
−1 θ‖x‖(s̄is̄j))I−θU.

For a point (s, be
√
−1 θ, UΣ) of S2n−1 × Int D2

1/2 × SU(n), we define the map

βΣ(s, be
√
−1 θ, UΣ) : Cn © Cn → Cn by

βΣ(s, be
√
−1 θ, UΣ)(a,b) = {tatUΣS̄∆(0, . . . , 0, (1 − b2)1/2)S∗UΣb}s,(5.2)

which is equal to

{tatUΣ((1 − b2)1/2(s̄is̄j))UΣb}s.

If 0 < b < 1/2, then we have that β(x, e
√
−1 θ, U) = βΣ(s, be

√
−1 θ, UΣ), since

U = G(s, e
√
−1 θ)UΣ = IθSI−θS

∗UΣ, where ‖x‖ = (1 − b2)1/2 by definition.

Hence, β and βΣ define the well-defined map of S2n−1× Int D2
1/2×SU(n)∪

g̃

Int D2n
1 × S1 × SU(n) to Hom(Cn © Cn,Cn).

The motivation for the definition above is the facts that when b = 0,

we have H̃Σ([s],0, UΣ) = S∆(d10)I−θS
∗UΣ = S∆(d10)S

∗UΣ and that its

kernel vector is UΣ
∗Sen and its cokernel vector is s. Hence, if b = 0, then

we should have that βΣ(s,0, UΣ)(UΣ
∗Sen, UΣ

∗Sen) = s. If b = 1, then

H̃(0, e
√
−1 θ, U) = (1/

√
n)I−θU and we must require β(0, e

√
−1 θ, U) to be

the null-homomorphism.

From now on,we often use the notation H̃(x,e
√
−1 θ,U) (resp.H̃(0,e

√
−1 θ,

U)) in place of H([s],dab, e
√
−1 θ, U) (resp. (1/

√
n)I−θU) for 0 < b < 1 (resp.

b = 1) and H̃Σ(s, be
√
−1 θ, UΣ) in place of H̃Σ([s], be

√
−1 θ, UΣ) for simplicity,

when a vector x or s representing [x] or [s] is specified respectively. Then

https://doi.org/10.1017/S0027763000008084 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008084


HOLOMORPHIC MAPS WITH ONLY FOLD SINGULARITIES 171

the map h is defined by

(h | Int D2n
1 × S1 × SU(n))(x, e

√
−1 θ, U)(5.3)

= (H̃(x, e
√
−1 θ, U), β(x, e

√
−1 θ, U)) (0 < b ≤ 1),

(h |S2n−1 × Int D2
1/2 × SU(n))(s, be

√
−1 θ, UΣ)

= (H̃Σ(s, be
√
−1 θ, UΣ), βΣ(s, be

√
−1 θ, UΣ)) (0 ≤ b < 1/2).

We have the following proposition by the definition of h together with

the observation above.

Proposition 5.4. The map h is a topological embedding (n ≥ 2).

We define the topological embedding in : SU(n + 1) → Ω10 as follows.

For n = 1, in(M) = (be
√
−1 θ, x̄),

for n ≥ 2,

in(M) = h ◦ k(M)

=





(H̃(x(M), e
√
−1 θ, U(M)), β(x(M), e

√
−1 θ, U(M)))

(0 < b ≤ 1)

(H̃Σ(s(M), be
√
−1 θ, UΣ(M)), βΣ(s(M), be

√
−1 θ, UΣ(M)))

(0 ≤ b < 1/2).

Theorem 5.5. The map in is a topological embedding and the image

of in is a deformation retract of Ω10.

Proof. We only need to prove the second assertion. The case n = 1

is easy to prove. Hence, we assume n ≥ 2. By Proposition 4.9 and the

definition of in, the image of in coincides with that of h. By Theorem 3.1,

it is enough to construct a deformation retraction of (π2
1 |Ω10)−1(K([0, 1]))

to the image of h. We identify an element β of Hom(Cn © Cn,Cn) with

the n-tuple (B1, . . . , Bn) of symmetric n-matrices. Then the norm ‖β‖ is

defined to be
∑n

i=1 ‖Bi‖.
We first consider the homotopy hλ of (π2

1 |Ω10)−1(K([0, 1])) defined as

follows. For an element (α, β) of (π2
1 |Ω10)−1(K({b})), we set

hλ(α, β)

https://doi.org/10.1017/S0027763000008084 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008084


172 Y. ANDO

=





(α, ((1 − λ)+λ(1 − b2)1/2)(‖β‖−2(1 − b2)1/2)(β/‖β‖)
+2(1 − b2)1/2(β/‖β‖)) if ‖β‖ ≥ 2(1 − b2)1/2 and ‖β‖ 6= 0,

(α, β) if ‖β‖ ≤ 2(1 − b2)1/2.

It is easy to see that the image of h1 coincides with (π2
1 |Ω10)−1(K([0, 1)))∪

K({1}) × {0}.
Next we construct a deformation retraction Rλ of (π2

1 |Ω10)−1(K([0,1)))

∪ K({1}) × {0} to the image of h. Take an element (α, β) of (π2
1 |Ω10)−1(

K({b})) such that α is written as H̃([x],dab, e
√
−1 θ, U) with ‖x‖ =

(1 − b2)1/2 for 0 < b < 1 or H̃Σ([s], be
√
−1 θ, UΣ) for 0 ≤ b < 1/2. Let K̃α be

the subspace generated by U∗G(s, e
√
−1 θ)x for 0 < b < 1 and the subspace

generated by U∗
Σs for 0 ≤ b < 1/2. Let Q̃α be the subspace generated by x or

s for 0 ≤ b < 1. Let K̃ and Q̃ be the complex line bundles over K([0, 1)) de-

fined by K̃(α,β) = K̃α and Q̃(α,β) = Q̃α respectively. By definition, we have

K |K({0}) = K and Q̃ |K({0}) is identified with Q by Remark 3.8. Then we

have a canonical isomorphism K([0, 1))×C → Hom(K̃, Q̃) such that α×1 is

mapped to the isomorphism sending U∗G(s, e
√
−1 θ)x to x for 0 < b < 1 and

sending U∗
Σs to s for 0 ≤ b < 1/2, which does not depend on the choice of x

or s representing [x] or [s] respectively and is uniquely determined by α. Let

us recall the following R-linear bundle map of Hom(K̃,C) to K̃. Define the

hermitian form h
K̃

on K̃ by h
K̃

(z1v, z2v) = z1z̄2‖v‖2 = z1z̄2, where v is any

vector of length 1 in K̃α. Then we have the orientation reversing bundle map

over R, Bh : K̃ → Hom(K̃,C) defined by Bh(zv) = h
K̃

( , zv), where we

note that h
K̃

( , zv) is a C-homomorphism. Then we have Bh(zv) = z̄Bh(v).

These observations induce the map

Ψ : Hom(K̃ © K̃, Q̃) ∼= Hom(K̃,Hom(K̃, Q̃)) ∼= Hom(K̃,C)
B−1

h−→ K̃.

For a non-zero vector x of Cn, let pr(x) denote the orthogonal projec-

tion of Cn onto the subspace of dimension 1 generated by x over C. Since

the element (α, β) induces the map pr(x) ◦ β | K̃α © K̃α : K̃α © K̃α → Q̃,

Ψ determines the vector Ψ(pr(x) ◦ β | K̃α © K̃α) in K̃α. This is written as

u(α, β)k by some real number u(α, β) ≥ 0 and some vector k with length

1 such that [k] = [U∗G(s, e
√
−1 θ)x] for 0 < b < 1 and [k] = [U∗

Σs] for

0 ≤ b < 1/2. We note that k is determined only when u(α, β) > 0. Let

s(α, β) denote G(s, e
√
−1 θ)∗Uk for 0 < b < 1 and UΣk for 0 ≤ b < 1/2. If

u(α, β) > 0, then we have that

pr(s(α, β))(β(k,k)) = u(α, β)s(α, β) for 0 ≤ b < 1.
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Here set ū(α, β) = u(α, β)/(b2 + u(α, β)2)1/2 for 0 ≤ b < 1, where

b2 + u(α, β)2 never vanishes. Now we set x(α, β) = (1 − b2)1/2s(α, β). If

u(α, β) = 0, then x(α, β) or s(α, β) represents any vector of length (1−b2)1/2

or 1 in Q̃α respectively. Furthermore, we set y(α, β) = u(α, β)s(α, β), which

is always defined. The motivation for this notation is the fact that

β(x, e
√
−1 θ, U)(U∗G(s, e

√
−1 θ)Sen, U∗G(s, e

√
−1 θ)Sen) = ‖x‖s

for 0 < b < 1,

βΣ(s, be
√
−1 θ, UΣ)(U∗

ΣSen, U∗
ΣSen) = ‖x‖s for 0 ≤ b < 1/2.

We note that

(1) The vector y(α, β) is continuous on (π2
1 |Ω10)−1(K([0, 1)))∪K({1})×

{0},

(2) If 0 < ‖x(α,β)‖ < 1, equivalently 0 < b < 1, then ‖y(α, β)‖ =

u(α, β)/(b2 + u(α, β)2)1/2 < 1,

(3) u(H̃(x(α, β), e
√
−1 θ, U), β(x(α, β), e

√
−1 θ, U)) = (1 − b2)1/2,

(4) u(H̃Σ(s(α, β), be
√
−1 θ, UΣ), βΣ(s(α, β), be

√
−1 θ, UΣ)) = (1 − b2)1/2 and

(5) Consider the case where b2 + u(α, β)2 = 1, which is, in particular,

satisfied for (α, β) in Im(h). Then we have u(α, β) = ū(α, β) and

x(α, β) = y(α, β).

For an element (α, β) of (π2
1 |Ω10)−1(K({b})) given above, we define

Rλ(α, β) to be





(H̃((1−λ) x(α, β) + λy(α, β), e
√
−1 θ, U),

(1 − λ)β + λβ(y(α, β), e
√
−1 θ, U)) for 0 < b < 1,

(α,0) for b = 1 and β = 0,

(H̃Σ(s(α, β),0, UΣ), (1 − λ)β + λβΣ(s(α, β),0, UΣ)) for b = 0,

where if u(α, β) = 0, then H̃((1 − λ)x(α, β), e
√
−1 θ, U) refers to

H̃([(1 − λ)x(α, β)],da′b′ , e
√
−1 θ, U) with b′ = (1 − (1 − λ)2(1 − b2))1/2.

Let us see that Rλ is well defined and continuous. Set bλ(α, β) =

{1 − ‖(1 − λ)x(α, β) + λy(α, β)‖2}1/2. If 0 ≤ bλ(α, β) < 1/2 and 0 ≤
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1 − ‖y(α, β)‖2 < 1/2, then we may write Rλ(α, β) as a different form

(H̃Σ(s(α, β), bλ(α, β)e
√
−1 θ, UΣ), (1−λ)β+λβΣ(s(α, β), (1−‖y(α, β)‖2)1/2×

e
√
−1 θ, UΣ)) by (3.6), (5.1) and (5.2). In particular, if u(α, β) = 0, then 0 <

b < 1,y(α, β) = 0 and β(y(α, β), e
√
−1 θ, U = 0. If b = 0, then u(α, β) > 0

and (1−λ)x(α, β)+λy(α, β) = (1−λ)x(α, β)+λx(α, β) = x(α, β) = s(α, β).

Therefore, Rλ is well defined and continuous.

We see that Rλ maps (π2
1 |Ω10)−1(K((0, 1))) into (π2

1 |Ω10)−1(K((0, 1)))

∪ K({1}) × {0}. If 0 < ‖x(α,β)‖ < 1, or equivalently 0 < b < 1, then

‖(1−λ)x(α, β)+λy(α, β)‖ is less than 1 and is equal to 0 only when λ = 1

and u(α, β) = 0. Furthermore, if λ = 1, ū(α, β) = 0 and 0 < ‖x(α,β)‖ < 1,

then R1(α, β) = (H̃(0, e
√
−1 θ, U),0), since β(0, e

√
−1 θ, U) = 0.

We see that Rλ maps (π2
1 |Ω10)−1(K({0})) into (π2

1 |Ω10)−1(K({0})).
By definition, we have that pr(s(α, β)))((1 − λ)β + λβΣ(s(α, β),0, UΣ))(

U∗
Σs(α, β), U∗

Σs(α, β)) = ((1 − λ)u(α, β) + λ)s(α, β). Since (α, β) ∈ Σ10, we

have u(α, β) > 0 and so (1 − λ)u(α, β) + λ > 0.

By definition, the image of R1 is contained in Im(h). It is easy to see

that R0 = id. It follows from (3), (4) and (5) that Rλ | Im(h) is constantly

equal to idIm(h).

§6. SU(n) × SU(n) action

In this section the unit vector e′n+1 of Cn+1 in Section 4 is written as

en+1 to avoid confusion. We consider the following action of SU(n)×SU(n)

on J2(n, n). An element (O′, O∗) of SU(n) × SU(n) acts on each element

(α, β) of J2(n, n) by

((O′, O∗) · (α, β))(a,b, c) = (O′α(Oa), O′β(Ob, Oc))

and also acts on each element M of SU(n + 1) by

(O′, O∗) · M = (O′ ·
+ (1))M(O

·
+ (1)).

Note that Ω10 is invariant with respect to this action. We will prove that

in is equivariant with respect to these actions of SU(n) × SU(n). Its proof

needs a complicated observation about the embedding in. First we prepare

two lemmas.

Lemma 6.1. Let Men+1 be written as z = t(x1, . . . , xn, zn+1) with

zn+1 = be
√
−1 θ as above. Let w be (O′ ·

+ (1))z for an element O′ of SU(n).

Then we have
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(1) r(w)−1(O′ ·
+ (1)) = (O′ ·

+ (1))r(z)−1 for 0 < b ≤ 1,

(2) rΣ(w)−1(O′ ·
+ (1)) = (O′ ·

+ (1))rΣ(z)−1 for 0 ≤ b < 1/2,

Proof. (1) It is enough to prove (O′ ·
+ (1))r(z)(O′ ·

+ (1))∗ = r(w). By

the property (4.1) of r(w) we have

r(w)(en+1) = e−
√
−1 θw = e−

√
−1 θ(O′ ·

+ (1))z,

r(w)(w − be
√
−1 θen+1) = bw − e

√
−1 θen+1

= b(O′ ·
+ (1))z − e

√
−1 θen+1 and

r(w)f = f if f is orthogonal to en+1 and w − be
√
−1 θen+1.

On the other hand, we have

(O′ ·
+ (1))r(z)(O′ ·

+ (1))∗(en+1)

= (O′ ·
+ (1))r(z)(en+1)

= (O′ ·
+ (1))e−

√
−1 θz

= e−
√
−1 θ(O′ ·

+ (1))z,

(O′ ·
+ (1))r(z)(O′ ·

+ (1))∗(w − be
√
−1 θen+1)

= (O′ ·
+ (1))r(z)(O′ ·

+ (1))∗(O′ ·
+ (1))(z − zn+1en+1)

= (O′ ·
+ (1))r(z)(z − zn+1en+1)

= (O′ ·
+ (1))(bz − e

√
−1 θen+1)

= b(O′ ·
+ (1))z − e

√
−1 θen+1.

Since f satisfies (f , en+1) = (f , (O′ ·
+ (1))(z − zn+1en+1)) = 0, we have

((O′ ·
+ (1))∗f , en+1) = ((O′ ·

+ (1))∗f , z− zn+1en+1) = 0. It follows from the

property (4.1-(iii)) of r(z) that

(O′ ·
+ (1))r(z)(O′ ·

+ (1))∗f = (O′ ·
+ (1))(O′ ·

+ (1))∗f = f .

Thus we obtain

r(w) = (O′ ·
+ (1))r(z)(O′ ·

+ (1))∗.

(2) The proof is similar. By definition we have
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rΣ(w)(en+1) = w = (O′ ·
+ (1))z,

rΣ(w)(w − be
√
−1 θen+1) = be

√
−1 θw − en+1

= be−
√
−1 θ(O′ ·

+ (1))z − en+1 and

rΣ(w)f = f if f is orthogonal to en+1 and w − be
√
−1 θen+1.

On the other hand, we have

(O′ ·
+ (1))rΣ(z)(O′ ·

+ (1))∗(en+1)

= (O′ ·
+ (1))rΣ(z)(en+1)

= (O′ ·
+ (1))(z),

(O′ ·
+ (1))rΣ(z)(O′ ·

+ (1))∗(O′ ·
+ (1))(z− zn+1en+1)

= (O′ ·
+ (1))rΣ(z)(z − zn+1en+1)

= (O′ ·
+ (1))(z̄n+1z − en+1)

= z̄n+1(O
′ ·
+ (1))z − en+1.

Similarly we have that ((O′ ·
+ (1))∗f , en+1) = ((O′ ·

+ (1))∗f , z−zn+1en+1) =

0. It follows from the property (4.2-(iii)) of rΣ(z) that

(O′ ·
+ (1))rΣ(z)(O′ ·

+ (1))∗f = (O′ ·
+ (1))(O′ ·

+ (1))∗f = f .

Thus we obtain

rΣ(w) = (O′ ·
+ (1))rΣ(z)(O′ ·

+ (1))∗.

Lemma 6.2. Set M ′ = (O′ ·
+ (1))M(O

·
+ (1)) for O and O′ in SU(n).

Then we have

(1) U(M ′) = IθO
′I−θU(M)O for 0 < b ≤ 1,

(2) UΣ(M ′) = O′UΣ(M)O for 0 ≤ b < 1/2.

Proof. It follows from Lemma 6.1 that

(1) r(w)−1M ′ = r(w)−1(O′ ·
+ (1))M(O

·
+ (1))
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= (O′ ·
+ (1))r(z)−1M(O

·
+ (1))

= (O′ ·
+ (1))(I−θU(M)

·
+ (e

√
−1 θ))(O

·
+ (1))

= O′I−θU(M)O
·
+ (e

√
−1 θ)

= I−θ(IθO
′I−θU(M)O)

·
+ (e

√
−1 θ),

(2) rΣ(w)−1M ′ = rΣ(w)−1(O′ ·
+ (1))M(O

·
+ (1))

= (O′ ·
+ (1))rΣ(z)−1M(O

·
+ (1))

= (O′ ·
+ (1))(UΣ(M)

·
+ (1))(O

·
+ (1))

= O′UΣ(M)O
·
+ (1).

Thus (1) and (2) follow from the definitions of U(M ′) and UΣ(M ′) respec-

tively.

We are ready to prove the following.

Proposition 6.3. The embedding in is equivariant with respect to the

actions of SU(n) × SU(n) on SU(n + 1) and J2(n, n).

Proof. We use the notations given in the definition of in and let M ,

O′, O and M ′ with w = M ′en+1 and z = Men+1 be as above. We have

that if b < 1, then s(M ′) = O′s(M). Then we obtain the following.

If 0 < b < 1, then

H̃(x(M ′), e
√
−1 θ, U(M ′)) = O′S∆(dab)S

∗O′∗I−θU(M ′)

= O′S∆(dab)S
∗O′∗I−θIθO

′I−θU(M)O

= O′S∆(dab)S
∗I−θU(M)O

= O′H̃(x(M), e
√
−1 θ, U(M))O.

If b = 1, then

H̃(0, e
√
−1 θ, U(M ′)) = (1/

√
n)I−θU(M ′)

= O′(1/
√

n)I−θU(M)O

= O′H̃(0, e
√
−1 θ, U(M))O.
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Let 0 < b < 1. Since

G(s(M ′), e
√
−1 θ)∗U(M ′) = O′SIθS

∗O′∗I−θIθO
′I−θU(M)O

= O′SIθS
∗I−θU(M)O,

we have

β(x(M ′), e
√
−1 θ, U(M ′))(a,b)

= {tat(G(s(M ′), e
√
−1 θ)∗U(M ′))Ō′S̄

×∆(0, . . . , 0, ‖x(M ′)‖S∗O′∗G(s(M ′), e
√
−1 θ)∗U(M ′)b}s(M ′)

= {tatOtU(M)I−θS̄Iθ
tSS̄

×∆(0, . . . , 0, ‖x(M)‖)S∗SIθS
∗I−θU(M)Ob}O′s(M)

= {t(Oa)t(G(s(M), e
√
−1 θ)∗U(M))S̄

×∆(0, . . . , 0, ‖x(M)‖)S∗G(s(M), e
√
−1 θ)∗U(M)Ob}O′s(M)

= O′β(x(M), e
√
−1 θ, U(M))(Oa, Ob).

This equality also holds in the case of b = 1.

If 0 ≤ b < 1/2, then

H̃Σ(s(M ′), be
√
−1 θ, UΣ(M ′)) = O′S∆(dab)I−θS

∗O′∗UΣ(M ′)

= O′S∆(dab)I−θS
∗O′∗O′UΣ(M)O

= O′S∆(dab)I−θS
∗UΣ(M)O

= O′H̃Σ(s(M), be
√
−1 θ, UΣ(M))O

and

βΣ(s(M ′), be
√
−1 θ, UΣ(M ′))(a,b)

= {tatUΣ(M ′)Ō′S̄∆(0, . . . , 0, ‖x(M ′)‖)S∗O′∗UΣ(M ′)b}s(M ′)

= {tatOtUΣ(M)tO′Ō′S̄∆(0, . . . , 0, ‖x(M)‖)S∗O′∗O′UΣ(M)Ob}O′s(M)

= {t(Oa)tUΣ(M)S̄∆(0, . . . , 0, ‖x(M)‖)S∗UΣ(M)Ob}O′s(M)

= O′βΣ(s(M), be
√
−1 θ, UΣ(M))(Oa, Ob).

This proves that in is equivariant with respect to the actions of SU(n) ×
SU(n).

Proof of Theorem 1 (2). The assertion follows from Theorem 5.5 and

Proposition 6.3.
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§7. Holomorphic fold maps

Let J2(N,P ) be the complex 2-jet space of complex manifolds N and

P . Let πN and πP be the projections mapping a jet to its source and target

respectively. Let L2(n) be the group of 2-jets of all biholomorphic map

germs (Cn, 0) → (Cn, 0). The map πN × πP : J2(N,P ) → N × P gives the

structure of a fibre bundle with fibre J2(n, n) having the structure group

L2(n) × L2(n). Let Hom(TN ⊕ (TN © TN), TP ) be the vector bundle

over N ×P with structure group GL(n;C)×GL(n;C), which is the union

of all spaces Hom(TxN ⊕ (TxN © TxN), TyP ) for (x, y) of N × P , where

TxN ©TxN denotes the 2-fold symmetric product of TxN . If a basis of Cn

is fixed, then we have the canonical C-linear isomorphism j : J2(n, n) →
Hom(Cn ⊕ (Cn © Cn),Cn) by considering Taylor expansions. It is clear

that j is equivariant with respect to the actions of GL(n;C) × GL(n;C)

on both spaces J2(n, n) and Hom(Cn ⊕ (Cn © Cn),Cn). Since GL(n;C)

is naturally a subgroup of L2(n) and the quotient space L2(n)/GL(n;C) is

contractible, the structure group L2(n)×L2(n) of the fibre bundle πN ×πP :

J2(N,P ) → N × P is reduced to GL(n;C) × GL(n;C). Hence it follows

from [St, 12.6 Corollary] that we obtain a bundle map

J : J2(N,P ) −→ Hom(TN ⊕ (TN © TN), TP ),

which is uniquely determined up to homotopy.

Let z = j2
xf with y = f(x) be a 2-jet in J2

x,y(N,P ), which is the

subset of J2(N,P ) consisting of all 2-jets of germs of (N,x) to (P, y). Set

D = π∗
N (TN) and P = π∗

P (TP ). Then there is a homomorphism d1 : D →
P defined as follows. Let Dz and Pz be the fibres of D and P over z

respectively. Then d1,z : Dz → Pz refers to df : TxN → TyP . We define

Σi(N,P ) to be the set of all jets z with dim(Ker(d1.z)) = i. Then we have

the subbundle K = Ker(d1) and the cokernel bundle Q = Cok(d1) over

Σi(N,P ). In [Bo, p.50, Lemma 7.13 and Theorem 7.14] (see also [Ma, §2])

the second intrinsic derivative d2 : K → Hom(K,Q) has been defined by

using the second derivative of z. We define Σ10(N,P ) to be the set of all

jets z such that dim(Ker(d1,z)) = 1 and d2,z : Kz → Hom(Kz,Qz) is an

isomorphism. Let Ω10(N,P ) be the union of the set of all regular jets and

Σ10(N,P ).

There is a canonical identification of Jk(n, n) with Jk
0,0(C

n,Cn). In

Hom(TN ⊕ (TN ©TN), TP ) we can also define Σ1(N,P )′, Σ10(N,P )′ and

Ω10(N,P )′ associated with Σ1, Σ10 and Ω10 in Section 1 respectively. The
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two constructions above associated with Σ1, Σ10 and Ω10 correspond with

each other by J . Then Ω10(N,P ) and Ω10(N.P )′ are the subbundles of

J2(N,P ) and Hom(TN ⊕ (TN ©TN), TP ) respectively. Then J induces a

bundle map of Ω10(N,P ) to Ω10(N,P )′.

For an n-dimensional complex manifold M , let us recall that an SU(n)-

structure of TM is a reduction (E,ϕ) of the structure group GL(n;C) to

SU(n), where E is an n-dimensional SU(n)-vector bundle over M and ϕ :

TM → E is a bundle map covering idM (see [St, 9.2]). Two SU(n)-structures

(E1, ϕ1) and (E2, ϕ2) of TM are equivalent if there exists an SU(n)-bundle

map B : E1 → E2 such that ϕ2 = B ◦ϕ1. Consider the spherical fibre space

p′ : BSU(n) → BU(n) with fibre S1 induced from the inclusion of SU(n)

into U(n). Let cTM : M → BU(n) be the classifying map of TM . It is

well known that equivalence classes of SU(n)-structures of TM correspond

bijectively to homotopy classes of continuous maps c : M → BSU(n) with

p′ ◦ c = cTM .

Suppose that SU(n)-structures (E,ϕN ) and (F,ϕP ) of TN and TP are

given respectively. Then we can define the canonical bundle map

Φ : Hom(TN ⊕ (TN © TN), TP ) −→ Hom(E ⊕ (E © E), F )

by using ϕN and ϕP . The map Φ ◦ J induces a biholomorphic map be-

tween fibres J2
x,y(N,P ) and Hom(Ex ⊕ (Ex©Ex), Fy) (however, Φ may not

be biholomorphic in general). On the other hand, we have the subbundle

SU(E ⊕ θN , F ⊕ θP ) of Hom(E ⊕ θN , F ⊕ θP ) associated with SU(n + 1).

We shall apply the embedding in : SU(n + 1) → Ω10 (⊂ Hom(Cn ⊕
(Cn © Cn),Cn)) to SU(E ⊕ θN , F ⊕ θP ) and Hom(E ⊕ (E © E), F ). Let

i(N,P )′ be the map of SU(E ⊕ θN , F ⊕ θP ) to Φ(Ω10(N,P )′) associated

with in. Then we obtain a subspace homeomorphic to SU(n + 1) denoted

by SUx,y(E,F ) in Hom(Ex ⊕ (Ex © Ex), Fy). This space is well defined by

Proposition 6.3. The space SU(E,F ) is defined to be the union of all spaces

SUx,y(E,F ) in Φ(Ω10(N,P )′), where (x, y) varies all over N×P . It becomes

a subbundle with structure group SU(n) × SU(n) coming from those of E

and F . It is clear that the image of i(N,P )′ coincides with SU(E,F ) and

is homotopy equivalent to Φ(Ω10(N,P )′) by Theorem 1 (2). Now we define

the map i(N,P ) to be

(Φ ◦ J |Ω10(N,P ))−1 ◦ i(N,P )′ : SU(E ⊕ θN , F ⊕ θP ) −→ Ω10(N,P ).
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Proof of Theorem 2. (1) The map i(N,P ) gives a homotopy equiva-

lence of fibre bundles, since Φ ◦ J |Ω10(N,P ) is a bundle map and i(N,P )′

is a fibre homotopy equivalence.

(2) Let i(N,P )−1 : Ω10(N,P ) → SU(E ⊕ θN , F ⊕ θP ) be the homotopy

inverse of i(N,P ). For a holomorphic fold map f , the section j2f determines

the homotopy class of a section i(N,P )−1 ◦j2f of SU(E⊕θN , F ⊕θP ). This

gives the homotopy class of an SU(n+1)-bundle map f̃ : E⊕ θN → F ⊕ θP

covering f in Theorem 2 (2).

Proof of Corollary 3. Since the first Chern classes of N and P van-

ish, there exist SU(n)-structures (E,ϕN ) and (F,ϕP ) of TN and TP re-

spectively. Consider the spherical fibre space p : BSU(n) → BSU(n + 1)

with fibre S2n+1 induced from the inclusion of SU(n) into SU(n + 1). Let

cN : N → BSU(n) and cP : P → BSU(n) denote the classifying maps

of E and F respectively. Then p ◦ cN and p ◦ cP ◦ f are the classifying

maps of TN ⊕ θ1
N and f∗(TP ) ⊕ θ1

N respectively. By Theorem 2 (2), there

is a homotopy c : N × I → BSU(n + 1) between p ◦ cN and p ◦ cP ◦ f .

Let c∗(p) : c∗(BSU(n)) → N × I be the induced fibre space. By apply-

ing the obstruction theorem ([St]), the obstructions to extending the in-

duced sections c∗(cN ) and c∗(cP ◦ f) to a section defined on N × I lie in

H i(N×I,N ×{0, 1};πi−1(S
2n+1)) (i = 0, . . . , 2n+1), which vanish for all i.

Hence, there exists a section c′ : N×I → c∗(BSU(n)) with c′ |N×0 = c∗(cN )

and c′ |N × 1 = c∗(cP ◦ f). This implies that there exists an SU(n)-bundle

map of E to f∗(F ), which yields an SU(n)-bundle map B : E → F . Thus

we obtain a bundle map ϕ−1
P ◦ B ◦ ϕN : TN → TP covering f .

Remark 7.1. Theorem 2 does not hold for general complex manifolds.

The holomorphic fold map f : CP1 → CP1 defined by f([z]) = [z2] has

the property that f∗(C1(CP1)) = 2C1(CP1). Hence T (CP1) is not even

stably equivalent to f∗(T (CP1)).

Example 7.2. (1) We consider the following Hopf manifolds (cf. [K,

Example 2.9]). Let G be the infinite cyclic group generated by the auto-

morphism g of Cn \ {0} defined by g(z1, . . . , zn) = (α1z1, . . . , αnzn), where

α1, . . . , αn are constants with |αi| > 1 (i = 1, . . . , n). Then M(α1, . . . , αn)

is defined to be the quotient manifold Cn \ {0}/G, which is diffeomor-

phic to S1 × S2n−1. Hence, its first Chern class vanishes (cf. [H]). There

is a holomorphic fold map f : M(α1, . . . , αn−1, αn) → M(α1, . . . , αn−1, α
2
n)

defined by f([z1, . . . , zn−1, zn]) = [z1, . . . , zn−1, z
2
n], where [∗] refers to the
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element represented by ∗. The singularity submanifold of f is identified with

M(α1, . . . , αn−1), which consists of the points of the form [z1, . . . , zn−1, 0].

(2) Given integers a1, . . . , an ≥ 2, consider the Brieskorn polynomial

p(z) = za1

1 + · · · + zan
n (n ≥ 2) and the hypersurface p−1(0). Let r be a

real number greater than 1 and α1, . . . , αn be n complex numbers with

αai

i = r (i = 1, . . . , n). Then the group G in (1) acts on p−1(0) \ {0}. Let

B(a1, . . . , an;α1, . . . , αn) denote the quotient space (p−1(0) \ {0})/G. Since

G is properly discontinuous (see [K, Theorem 2.2]), it is a compact complex

n − 1 dimensional submanifold of M(α1, . . . , αn). Let K(a1, . . . , an) be the

Brieskorn manifolds p−1(0) ∩ S2n−1
ε , where ε is a sufficiently small positive

real number (see [Br] and [Mi]). We can prove that B(a1, . . . , an;α1, . . . , αn)

is C∞-diffeomorphic to S1 × K(a1, . . . , an). We give a sketch of the proof,

which is analogous to the arguments found in [K, Example 2.9].

For a real number u and (z1, . . . , zn) 6= 0, define the function G(u, z1,

. . . , zn) = |z1|2 |α1|−2u + · · ·+ |zn|2 |αn|−2u. Since limu→∞ G(u, z1, . . . , zn) =

0, limu→−∞ G(u, z1, . . . , zn) = ∞ and G(u, z1, . . . , zn) is strictly decreasing

with respect to u, the equation G(u, z1, . . . , zn) = ε2 induces the unique

implicit function u(z) = u(z1, . . . , zn). Consider the two C∞-maps,

Φ : R × K(a1, . . . , an) −→ p−1(0) \ {0},

Φ1 : p−1(0) \ {0} −→ R× K(a1, . . . , an)

defined by Φ(u, ζ1, . . . , ζn) = (αu
1ζ1, . . . , α

u
nζn) and Φ1(z1, . . . , zn) = (u(z),

α
−u(z)
1 z1, . . . , α

−u(z)
n zn) respectively. Since G(u, αu

1ζ1, . . . , α
u
nζn) = |ζ1|2 +

· · · + |ζn|2 = ε2, they satisfy that Φ1 ◦ Φ(u, ζ1, . . . , ζn) = (u, ζ1, . . . , ζn)

and Φ ◦ Φ1(z1, . . . , zn) = (z1, . . . , zn). Furthermore, we have the following

commutative diagram:

p−1(0) \ {0}
Φ1−−−→ R × K(a1, . . . , an)

ygm

ym̃

p−1(0) \ {0}
Φ1−−−→ R× K(a1, . . . , an),

where gm(z1, . . . , zn) = (αm
1 z1, . . . , α

m
n zn) and m̃(u, ζ) = (u + m, ζ). This is

what we want.

Note that the first Chern class of B(a1, . . . , an;α1, . . . , αn) vanishes

at least for n ≥ 4 and n = 2, since K(a1, . . . , an) is simply connected
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for n ≥ 4 ([Mi, Theorem 5.2]) and dim K(a1, . . . , an) = 1 for n = 2.

Furthermore grad(p(z)) is equal to t(a1z
a1−1
1 , . . . , anzan−1

n ), which cannot

be orthogonal to all of the vectors e1, . . . , en−1. Hence, for any point z

of p−1(0) \ {0}, there exists a number j with 1 ≤ j ≤ n − 1 such that

(z1, . . . , zj−1, zj+1, . . . , zn) is a local coordinate system both for p−1(0)\{0}
near z and for B(a1, . . . , an;α1, . . . , αn) near [z].

Let β be a complex number with β2 = αn. Then we have the fold map

f :B(a1, . . . , an−1, 2an;α1, . . . , αn−1, β) → B(a1, . . . , an−1, an;α1, . . . , αn−1,

αn) defined by f([z1, . . . , zn−1, zn]) = ([z1, . . . , zn−1, z
2
n]). The singularity

submanifold of f is identified with B(a1, . . . , an−1;α1, . . . , αn−1), which con-

sists of the points of the form [z1, . . . , zn−1, 0] with za1

1 + · · · + z
an−1

n−1 = 0.

In a forthcoming paper we will deal with a complex analogy of the re-

sults in [An2, §4]. Let Fm
k denote the space consisting of all continuous maps

(Sk−1, ∗) → (Sk−1, ∗) of degree m, where Sk−1 is the unit sphere of dimen-

sion k−1 and ∗ is the base point. Let Fm denote the space limk→∞ Fm
k . Let

N and P be compact complex manifolds of dimension n and P be, in addi-

tion, connected. Then we will show that a holomorphic fold map f : N → P

of degree m determines a homotopy class of [P,Fm], which depends only

on a certain equivalence class of f .

References

[A1] Y. Ando, The homotopy type of the space consisting of regular jets and folding jets

in J2(n, n), Japan. J. Math., 24 (1998), 169–181.

[A2] , Folding maps and the surgery theory on manifolds, J. Math. Soc. Japan,

53 (2001), 357–382.

[Bo] J. M. Boardman, Singularities of smooth mappings, Publ. Math. I.H.E.S., 33

(1967), 21–57.

[Br] E. Brieskorn, Beispiele zur Differentialtopologie von Singularitäten, Invent. Math.,
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