CORRESPONDENCE.

ON THE INTEGRAL OF GOMPERTZ'S FUNOTION.

To the Editor of the Journal of the Institute of Actuaries.
Sir,-On reperusing my paper in the last Number of the Journal, I observe a slight misdescription of the capabilities of the table appended thereto, which I shall be glad to be allowed the opportunity of correcting.

The characteristic property of the gamma-function, expressed by the equation $\int \epsilon^{-v} v^{m} d v=-\epsilon^{-v} v^{m}+m \int \epsilon^{-v} v^{m-1} d v$, attaches also to the transformed expression $\int 10^{-10^{3}} \epsilon^{-n z} d z$; but in the latter case, the equation, instead of holding between successive integer values of n, or between successive values differing by less than unity (which latter supposition I had, by some means, erroneously entertained), applies to values of n proceeding by differences of $\log _{e} 10(=2 \cdot 302 \ldots)$. Consequently, in order to obtain the power of deducing the integral for all values of n, the tabulated matter must cover an interval equal to $2: 302$. . . -that is to say, to be theoretically complete, the table must be extended in the ratio of 2302 . . . to 1 .

The property in question may be readily demonstrated as follows:-
In $\int d z u \frac{d v}{d z}=u v-\int d z v \frac{d u}{d z}$, the general formula for integration by parts, put

$$
\text { (1) } \ldots u=\left(\frac{1}{10}\right)^{10^{8}} ;
$$

whence

$$
\begin{aligned}
& \frac{d u}{d z}=-\left(\log _{e} 10\right)^{2} \cdot 10^{-16^{z}} \cdot 10^{z}=-\left(\log _{e} 10\right)^{2} 10^{-10^{2}} \epsilon^{\log } 10.8 \\
& (2) \ldots v=-\frac{\epsilon^{-n z}}{n}
\end{aligned}
$$

whence

$$
\epsilon^{-n z}=\frac{d v}{d z} ;
$$

giving,

$$
\int 10^{-10^{2}} e^{-n z} d z=-10^{-10 s^{2}} \frac{e^{-n z}}{n}-\frac{\left(\log _{e} 10\right)^{2}}{n} \int 10^{-10^{8} e^{-\left(n-1 \log _{e^{101}}\right.} . d z . ~ . ~}
$$

I am, Sir,
Your very obedient servant,
London, 12 June 1873.
W. M. MAKEHAM.

Erratum.-In the paper "On the Integral of Gompertz's Function," above referred to, there is a misprint. For the second formula on p. 309,

$$
\log \frac{1}{g^{x^{x}} \epsilon^{-(a+\delta) x}} \int_{x}^{\infty} g^{q^{x}} \epsilon^{-(a+\delta)} . d x
$$

should be read,

$$
\log \frac{1}{g^{q^{x}} \varepsilon^{-\{a+\delta x x}} \int_{x}^{\infty} g_{q^{x}}^{q^{x}} \varepsilon^{-(a+\delta) x} . d x
$$

On the relation beiween the net premiun and the RATE OF INTEREST.

To the Editor of the Journal of the Institute of Actuaries.
Sir,-In the current volume of the Journal, p. 227, I gave a demonstration in reference to the relation between the value of a policy and the rate of interest according to which it is calculated, and in the present letter I propose to examine in a similar way the relation between the net premium and the rate of interest.

$$
\text { We have } \begin{aligned}
\mathrm{P}_{x} & =\frac{1}{1+a_{x}}-(1-v) \\
\therefore \quad \frac{d \mathrm{P}}{d v} & \left.=\frac{-\frac{d a}{d v}}{(1+a)^{2}}+1 \text { (omitting the subscript } x\right), \\
& =\frac{(1+a)^{2}-\frac{d a}{d v}}{(1+a)^{2}}
\end{aligned}
$$

Thus, since P_{x} increases or decreases, when v increases, according as $\frac{d \mathrm{P}}{d v}$ is positive or negative, we have only to examine whether

$$
(1+a)^{2}>\text { or }<\frac{d a}{d v}
$$

Now, $\quad(1+a)^{2}=\left(1+a_{x}\right)+p_{x} v\left(1+a_{x}\right)+{ }_{2} p_{x} v^{2}\left(1+a_{x}\right)+\ldots$.

