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A GENERALIZATION OF HUBERT'S THEOREM 9 4

KATSUYA MIYAKE

§ 1. Introduction

Let k be an algebraic number field of finite degree. We denote the

absolute class field of k by k, and the absolute ideal class group of k by

For an unramified abelian extension Kjk, let Pk(K) be the subgroup

of Cΰ(k) consisting of the all classes the ideals of which become principal

in K, and Sk(K) be the subfield of k corresponding to Pk{K) by class field

theory. The collection

{Sk(K)\K is an intermediate field of k/k.}

stands for the solution for the problem on capitulation of ideals of k. Its

members seem rather special among intermediate fields of k/k, but little

is known about their number theoretical characterization.

Our concern in this paper is the degree [k: Sk(K)] which is equal to

the order \Pk(K)\. The following theorems are classical:

HILBERT'S THEOREM 94. // K/k is an unramified cyclic extension, then

[K: k] divides \Pk(K)\.

THE PRINCIPAL IDEAL THEOREM. Pk(k) = C£(k)9 Sk(k) = k, and \Pk(k)\

This theorem has been generalized as follows (cf. [3, Theorems 5 and 7]):

THEOREM. Let % be the second class field of k, that is, the absolute

class field of k. Let φ be an endomorphism of Gal (R/k), and K(φ) be the

subfield of I corresponding to the subgroup

Gal (k/k).

Then the degree [K(φ)ι k] divides \Pk(K(φ))\.
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Though we have not yet obtained the generality including all of these
theorems, we give a generalization of the first one in this paper. Let us
denote the maximal unramified central extension of K\k by C(Kjk). Then
its genus field coincides with k. Therefore the degree [C(K/k): Sk(K)] is
a multiple of \Pk(K)\ = [k: Sk(K)]. We show

THEOREM 1. The degree [K: k] divides [C(K/k): Sk(K)].

COROLLARY. If C(Kjk) coincides with the genus field k, then [K: k]
divides [k: Sk(K)] = \Pk(K)\.

It is well known that every central extension of a cyclic extension
coincides with its genus field. Therefore the corollary contains Hubert's
Theorem 94 as a special case.

We shall prove a stronger result. For an intermediate field F of
Kfk, define the subfield SF(K) of F as above for the unramified abelian
extension K/F. Then it is not hard to see that SF(K) contains Sk(K).

THEOREM 2. Let F be a cyclic extension of k of the maximal degree
contained in K. Then [K: k] divides

[C{Kjk) Π SF(K).K:Sk(K)].

A number theoretical description of the quotient will be given. (See
Theorem 3 in § 2).

As for the proofs, our basis is Artin [1], by which we reduce the
things to group theoretic investigation of the transfers of the metabelian
group Gal (K/k). The results are then also translated into theorems on
the structure of the idele groups in Section 4 by the same way as in
[3].

§2. The main theorem and its consequences

Let K\k be an unramified abelian extension of algebraic number fields.
In addition to the notation given in the preceding section, let λκ/k: C£(h)
-> CS(K) be the homomorphism induced by lifting ideals of k to the ones
of K naturally. Then Pk(K) is the kernel of λκ/k. We denote the homo-
morphism of C£(K) to CS(h) induced from the norm map of K over k by

Nκ/k:C£(K)->Cβ(k)
Let F be an abelian extension of k contained in K. The field SF(K)

is the subfield of F corresponding to PF(K) = Ker λκfF by class field
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theory. It is obvious by the definition that NF/k(PF(K)) c Pk(K). There-

fore we have

PROPOSITION 1. Sk(K) c SF(K).

PROPOSITION 2. Suppose that F/k is a cyclic extension of the maximal

degree contained in K. Then λF/k(C£(k)) is contained in NK/F(C&(K)).

Proof. Let c be an element of λF/k(C£(k)), and take a e CS(k) so that

c = λF/k(a). Then NF/k(c) = aίF:k\ By the choice of F, the degree [F: k]

coincides with the exponent of the abelian group Cβ(k)INκ/lc(C£(K)) which

is isomorphic to Gal(Kjk). Therefore NF/lc(c) eNκ/k(C£(K)). Take be

C£(K) so that NF/k(c) = Nκ/k(b). Then we have c-N^b)-1 eKer NF/t.

Since K is contained in k F — k, we see t h a t NK/F(CS(K)) contains

KerNF/k. Therefore c = λF/k(ά) belongs to NX/F(C£(K)). Q.E.D.

If Fjk satisfies the condition of the proposition, then λκ/k(C£(k)) is

contained in λκ/F o NK/F(C£(K)). Therefore it is a subgroup of

ά= {c e λκ/F o NK/F(CS(K)) \cσ = c for v σ e Gal (K/k)} .

We now state our main theorem, the proof of which will be given

in the next section.

THEOREM 3. Let the notation and the assumptions be as above. Suppose

that F/k is a cyclic extension of the maximal degree contained in K. Then

we have

[C(K/k)Π SF(K) K:Sk(K)]

= [K: ky[{λκ/FoNκ/F{Cβ{K))f^κ^: λκ/k(C£(k))] .

COROLLARY 1. Let the situation be as in the theorem. If C(K/k) Π

SF(K) c k, then [K: k] divides \Pk(K)\.

Since \Pk(K)\ = [k: Sk(K)], this is obvious by the theorem. Theorems

1 and 2 in Section 1 are also immediate consequences of this theorem.

COROLLARY 2. Suppose that there exist subfields F and Fr of K which

satisfy the conditions (1) —(3): (1) Fjk is a cyclic extension of the maximal

degree contained in K; (2) K = FF' and F Π F' = k; (3) F Π F' = k.

Then [K:k] divides \Pk(K)\.

The proof will also be given in the next section.
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§ 3. The proof of Theorem 3

Let K, k and F be as in Theorem 3, and put G = Gal (K/k), A =

Gal (K/K) and H = Gal (K/F). The commutator group [G, G] of G is equal

to Gal (K/k), and contained in A. By the choice of F, we see that G/H

is cyclic. Take ξ e G so that G = <f) if. Note that [F: k] is the exponent

of the abelian group GjA = Gal (K/k). It follows from the definition that

Gal (K/C(Klk)) is equal to

[G,A] = , aeA) .

Let Vβ^Λ: G -+ A and VH^A: H —• A be the transfers of G and 2ϊ to

the abelian subgroup A, respectively. They induce homomorphisms VG^A:

G/[G, G]^A and VH^A: H/[H, H] -> A. The transfer VG^H: G -> ff/[fί, /ί]

of G to i?" also induces a homomorphism VG^H: G/[G, G] ->H/[H, H]. As

is well known, we have VG_+A = V^^^ ° V .̂.̂ .

Denote the Artin maps of class field theory for k, F and K by ak, aF

and αr̂ , respectively. They are isomorphisms of the following groups:

<xk

= G/[G, G]

aF: C£{F) - ^ > Gal (F/F) = H([H, H]

aκ: C£(K) -^^ Gal (KIK) = A.

By Artin [1], we have the commutative diagram,

VG->

Therefore Gal (KISk(K)) = Ker VG^A and Gal (K/SF(K)) = Ker VH^Λ. Hence

we have

LEMMA 1.

[C(Klk) Π SF(K)-K: Sk(K)] = [Ker y G ^ : [G, A]-(A ΓΊ Ker V ^ J ] .

We also have
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and

aκoλκ/FoNκ/F(CS(K)) = V

because aF o Nκ/F o a^(a) = a mod [H, H] for a e A, as is well known by

class field theory. Since A is a normal abelian subgroup of G, the action

of G on A through inner automorphisms defines the structure of (G/A)-

module on A, Then aκ is a (G/A)-isomorphism. Therefore we have

Π Z(G)

where Z(G) is the center of G, and the following lemma.

LEMMA 2.

λκ/k(C£(k))] = WHUA) Π Z(G):

For the completeness, let us show an elementary fact on transfers

which we need.

PROPOSITION 3. Let © and ©i be groups in general, $ a subgroup of

© of finite index and φ: © -> %x a homomorphism. Suppose that

C φ. Then we have φ o y@_$ = V;^^^) ° p zi Λere φ:

ί/ie homomorphism induced by φ.

Proof. Take a set of representatives {Rt\i = 1, , [©: $]} of the

cosets of © mod φ, i.e. @ = U ί Φ ^ i (disjoint). Since Ker φ C φ, we have

(̂@) = | j < p(§). ̂ (i?.) (disjoint). Furthermore we see that RrG = Ht(G) i^,

with Ht(G)e^ if and only if φiR^ φiG) = φiH^G)) - φ(Rίf) with φiH^G)) e

φ($Q) for each G e ©. Then we see the proposition at once by Huppert

[2, 1.4, b)].

COROLLARY. Let % be a group and 2ί a normal abelian subgroup of

© of finite index. Then Vβ_*(@) c Z(@).

Proof. For x e ® , let ?̂: © >̂ © be the inner automorphism of ©

defined by x. Since 21 is normal in © and abelian, we have, for g e ©,

Vβ^«(g) Ve^a(x) = Vβ-*(g). This is true for every x e © . Therefore,

K ^ ( ^ ) belongs to Z(@). Q.E.D.

It has already been proved as a part of Lemma 2 that VG_A{G) lies

in V^^CA) Π Z(G). We have just shown group theoretically that VG^A(G)
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C Z(G). We also give a group theoretic proof to the fact that VG^A(G)

<̂  VH^Λ(A). This fact corresponds to Proposition 2 in the preceding

section.

PROPOSITION 4. Let G Z) H z> A be as above. Namely, H and A are

normal subgroups of G, A is abelian containing [G, G], and [G: H] coin-

cίdes with the exponent of the abelian group G\A. Then VG_A(G) c VH_Λ(A).

Proof. For g e G, we have VG^A(g) = VH_A o VG^H(g). By Huppert

[2, IV, 1.7] for example, we easily see that VG^H(g) = gίG:H^[H, H] mod [G, G].

Since [G:if] is the exponent of G/A, we see VG^H(g) e A/[H, H], Hence

we have V0_Λ(g) e VH_A(A) = VH_A(A/[H, H]). Q.E.D.

Let us continue the proof of Theorem 3. Put

a =
[G: A] • ΪVri^A(A) Π Z(G):

Then by Lemmas 1 and 2, it is sufficient to show that q = 1 since [if: £]

= [G: A]. Multiplying both of the numerator and the denominator of q

by I Vβ^(G)| = [G: Ker V β ,J, we have

[G:[G,A] (
[ G : A ] | y

Since G = <f> H and y^ A (Λ) c Z(H), we have VB^(A) Π Z(G) = VH

Π C^(f) where CΛ(ξ) is the centralizer of ξ in A.

LEMMA 3. The map φ: A -> A defined by φ(a) = [f, α] = f-'α^'fα /or

a e A ίs an endomorphism of A with Ker φ = C4(£).

Proof. For a, b e A, we have

[£, α 6] = [£,&]•[£, α]»

= [f,6] [f,α] [[f,o],6].

Since A is normal in G and abelian, we have [[ξ, a], b] = 1, and

This shows that φ: A—*- A is a well denned homomorphism. It is obvious

that Ker φ = CΛ(ξ). Q.E.D.
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LEMMA 4. [G, A] = [ξ, A] [H, A] = φ(A) [fl, A].

Proo/. For x, y e G and aeA, we have

[x y, a] = [x, αp-Lv, α]

= [x, α] [[x, a], y] [y, α]

= [*,α] [y, [*, αll^ ty, α]

because A is normal in G and abelian. Since G = (ξ> if, we have the
desired result.

Put ψ = VH_A\A: A—> A. Then this is an endomorphism of A with
Ker | = AΠ Ker VH^A, Since Ker ψ contains [H, A], we have

= [A: Imff Ker ψ]
| I ψ Π Ker φ\

[A: Im φ]
\Ίmψ Π Ker φ\ -[Im^ Ker ψ:

Since [A:Im^] = |Ker^ | and [Ker^>: Imψfl Kerφ] = [Imψ Ker^: Imψ],
we finally obtain

_ [Imψ Ker φ: Imψ]
[Im φ - Ker ψ : Im φ]

LEMMA 5. We have φoψ = ψo^. Therefore q = 1.

Proo/. For αe A, we have ( r ψ)(α) = [£, V^^α)] = f"1- V^^o-1)-?-
^JT-A(^) Since H is a normal subgroup of G, the inner automorphism
of G defined by ξ induces an automorphism of H, which maps A onto
itself. Therefore we have ξ'1- VH^A(a~ι)-ξ = VH^J^~xa~1^) by Proposition
3 for © = H and $ = A. Hence we have

(φoψ)(a) = V ^ ί f - V Έ ) y ^ ( α )

Thus we have shown that ^oψ = | o ^ .
Now put B = Im (φ o ψ) = Im (ψ o ̂ ?). Then ^(S) c J3 and ψ(β) c J3.

Therefore ?̂ and ψ induce endomorphisms of A = A/J5, which we denote
by φ and ψ respectively. Then ψoψ =z ψoψ = trivial. By Herbrand's
lemma (see Huppert [2, III, 19.4]), we have

[Ker φ: Im ψ] = [Ker ψ: Im φ] .
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Let us show that Ker φ = (Ker ψ Im ψ)/J3. In fact, suppose that φ(ά) e B

for aeA. Take be A so that φ(a) = ^(ψ(6)). Then α ψ(δ)-1 e Ker p.

Therefore α = (α ψ(fr)"1) ψ(6) € Ker ^ Im ψ. It is obvious that φ maps

Ker 9? Im ψ into JB. Thus we have Ker φ = (Ker φ Im ψ)/B. By the same

way, we also have Ker ψ = (Ker ψ Im <p)/B. Since both of Im φ and Im ψ

contain B, we have g = 1 by the above equality. Q.E.D.

The proof of Theorem 3 is also completed.

Proof of Corollary 2 to Theorem 3. Suppose that F and F ' are given

as in the corollary. Using the same notation as above, we may assume

that H = Gal (K/F) and <£> A = Gal (K/F'). Then [H, H] = Gal (£/F)

and [<£>A, <£>A] = Gal OKΓ/F7). Since A is abelian, we have [<£> A, <£>A]

= [£, A]. Therefore Gal (JSΓ/F ΓΊ F 0 - [f, A] [F, i ϊ ] . By the assumption

(3), we have [G, G] = [£, A] [fl, H]. Since Ker F^.,^ contains [H, H], we

see [G, G] lie in [G, A] (A Π Ker VH_A) = Gsl(K/C(Klk) Π SF(K)'K). This

shows that A contains C(X/A) Π SF(K)-K. Therefore Corollary 2 follows

from Corollary 1 to Theorem 3. The proof is completed.

§4. The adelic version

Let k% be the idele group of k, k*+ the connected component of the

unity of the Archimedian part of k% and k* the closure of kx - k*+ in k%.

Let K be an abelian extension of k of finite degree. (K/k is not neces-

sarily unramified.) Put g = Gal (K/k), and let KΔ^ be the closed subgroup

of the idele group K% of K defined by

Let JVjp/fc: K%-+k% be the norm map. We consider k\ a subgroup of K%

naturally.

Suppose that we are given a subfield F of K such that F is cyclic

over k of the maximal degree. The idele group F^ is also considered a

subgroup of K%. Let Nκ/F: K% —• F^ be the norm map of if over F.

THEOREM 4. Lei the notation and the assumptions be as above. Let

U be an open subgroup of K%, and suppose that U 3 Kx -K*+ and that

Uσ = U for each a e g.

= {ceNκ/F(Ki) U/U\c° =c for vσ e g} .

Then we have
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n u: k*-Nκlk{Kϊ) n u]-[N-κ%(ki n uy. K%-N-K)F(F*A n u)]

= [K: k] • [{NK/F(KX)• U/UY: kl • U/U] .

Proof. Let kΆh, KΆh and F a b be the maximal abelian extensions of k,

K and F, respectively, in the algebraic closure of k. The Artin maps of

k, K and F are open continuous surjective homomorphisms

aκ: Kl >Gal(KJK),

and

αF: Fϊ >Gzl(FJF),

respectively, the kernels of which are k*, K* and F#. Let K be the subfield

of KΆh corresponding to the open subgroup ocκ{U) of Gal(ifab/^) Then

K is normal over k. Put G = Gal (K/k), A = Gal (K/K) and H = Gal (f/F).

Then A and iJ are normal in G. Furthermore A is abelian and contains

[G, G]. We have the following commutative diagram whose three columns

are exact:

1 1 1

k* Nκ/k(U) - - > F* NK/F{U) =-> [7

i

GI[G,G] z~> H/[H,H]
VG-*H

I
Here α̂ fc, aF and ̂  are the homomorphisms naturally induced from ak,

aF and aκ, respectively. (Cf. [3, Proposition 31 for example.) Therefore

we have homomorphisms

ak: hi Π U/k* Nκ/k(U) - ^ * Ker VG_J[G, G] ,

^ : ^ x Π UIF* NK/F(U) —> Ker VH^/[H, H] .

Furthermore, we have, for x e K%,
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ccF o Nκ/F(x) = aκ{x) • [H, H] , and aF{NKJF(KΪ)) = A/[H, H]

by class field theory. This shows that

MNK/AKΪ)) ^ Nκ/F(Kϊ)-U/U.

Note that these isomorphisms are ones of g-modules for g = Gal {Kjh) =

G/A.

Let us now interpret the equality

_ [Ker Vβ_Λ: [G, A] (A Π Ker V g , J ] _ χ

[G .A].[VH_Λ(A) Π Z(G): Vβ^(G)]

which was proved in the previous section. In the similar way there, we

have [G: A] = [ # : Jfe] and

in the present situation. As for the numerator, it is equal to

[Ker VO^Λ : A ΓΊ Ker Vβ^A] • [A Π Ker Vβ_A: [G, A] • (A Π Ker VH_Λ)] .

We have

, G]]= [Ker VG_A/[G9 G]: (An Ker VG.

= [ki n u: k*. i w ^ ί ) n u]

because the subgroup A/[G, G] of G/[G, G] is equal to ak(Nκ/k(K%)). Fur-

thermore, we also have

ΰκ(Nϊ)*{kϊ (Ί U)) = A Π Ker FG_^ ,

and

'^K{^'K'/F{FA Π £7)) = A Π Ker V^^

because, by class field theory, the following diagrams are commutative:

rτ-y ™ K/k _ * v T^V N K/F _ π γ

aF

G —,.G/[G,G] £Γ —+HI[H,H]
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where the homomorphisms of the last row are the natural projections.
Since aκ(KJJ) = [G, A] and Ni)F(F^ ΠU)ZD U = Ker aκ, we finally have

[A Π Ker VG_Λ: [G, A] (A f] Ker VH_A)\

= [NiWϊ Π U):

The equality, q = 1, now gives the equality of the theorem at once.

COROLLARY. Let Kjk be an abelίan extension of finite degree with g =
Gal(Klk). Let U be an open subgroup of K$ which contains KXKX

+ and
satisfies that Uσ = U for each σeq. If U> KJJ contains Nκ)k{k*), then
[K:k] divides [k%f] U: kx-Nκ/lc(U)].

Proof. We have kx Nκ/k(K%) = U Nκ/k(Kβ and k* Nκ/k(U) =
&'Nx/k(U). If, therefore, t / - ^ contains iVj^(#), we have

Therefore [kl Π Ϊ7: Ax Nκ/1i{K%) Π C/]. [iV;^(J^ Π Ϊ7): i^i8 U] is equal to
[*5 Π U: kx Nκ/k(U)]. Since ifi9- U is a subgroup of K"J-N^/k(F^ Π C7), we
have the corollary from the theorem at once.

Remark 1. If Kjk is unramified and U = OX(KA) — the unit group of
the adele ring KA, then Theorem 4 is equivalent to Theorem 3, and the
corollary to the one to Theorem 1 in Section 1.

Remark 2. Let L be the abelian extension of K corresponding to U
in the corollary. Then the maximal central extension L* of Kjk contained
in L corresponds to UKJJ. Therefore the condition, U-K$D N^k*), is
equivalent to the one that L* is contained in K k&h, i.e. that L* reduces
to its genus field Lf}K-kΆh.
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