Summer Meeting, 4–6 July 2011, 70th Anniversary: From plough through practice to policy

Morus alba L. extracts inhibit adipocyte differentiation but stimulate lipolysis in 3T3-L1cells

G. H. Kim and H. S. Park

Plant Resources Reserach Institute, Duksung Women's University, Korea

Fruits of mulberry (*Morus alba* L.) belonging to the Moraceae family have been widely used for therapeutic purposes in Asian countries for centuries. Adipocyte differentiation has often been a target of anti-obesity strategies because obesity is caused not only by hypertrophy of adipocytes, but also by adipocyte hyperplasia⁽¹⁾. The 3T3-L1 cell line is commonly used as an adipocyte differentiation model system for investigation of molecular mechanisms that regulate adipogenesis⁽²⁾. This study was performed to investigate the effects of ethanol extract and fractions of *M. alba* L. on adipocyte differentiation in 3T3-L1cells. The anti-adipogenic effect of *M. alba* L. extracts was examined for its effect on the anti-adipocyte differentiation of 3T3-L1 cells by Oil red O staining assay. The lipolysis effect of *M. alba* L. was measured by glycerol releases assay.

A						В					
(Fraction) (µg/ml) (Intracellular TG accumulation (% of control)	Treatment Contents (Fraction) (µg/ml) MDI		Intracellular TG accumulation (% of control) 100 ± 12.2	Treatment Contents Glycerol released to medium (Fraction) (pg/ml) (pg/ml)			Treatment Contents Glycerol released to mediat (Fraction) (µg/ml) (µg/ml)		
		100 ± 12.2				MDI		6.56 ± 0.23	MDI		5.61 ± 0.14
EtoH	10	113.5 ± 0.98	EA	10	103.3 ± 11.2	EtoII	10	6.50±0.43	EA	10	5.66±0.13
	25	112.7 ± 4.79		25	107.3 ± 0.8		25	6.75±0.44		25	5.49±0.12
	50	85.6 ± 1.88**		50	111.8 ± 14.4		50	6.82±0.17		50	5.33±0.05*
	100	89.3 ± 10.0**		100	$61.5 \pm 4.4 **$		100	6.56±0.77		100	5.53±0.22
Hexan	10	124.5 ± 6.9	BuoH	10	103.5 ± 11.2	Hesan	10	5.46±0.91	BuoH	10	5.58±0.10
	25	113.6 ± 5.3		25	113.1 ± 1.0		25	4.55±0.20*		25	5.43 ± 0.07
	50	119.7 ± 7.6		50	120.5 ± 7.1		50	4.97±0.53**		50	5.10±0.92
	100	78.4 ± 6.1*		100	91.8 ± 6.3		100	3.63±0.36**		100	5.15±0.45
ciici.3	10	123.9 ± 8.6	1120	10	105.4 ± 5.2	CHCL3	10	5.22±0.93	1120	10	5.30±0.15
	25	125.6 ± 0.5		25	114.1 ± 0.6		25	3.91±0.43**		25	5.34±0.31
	50	128.0 ± 12.8		50	113.8 ± 6.9		50	4.19±1.11**		50	5.60 ± 0.46
	100	76.1 ± 9.3*		100	110.0 ± 6.0		100	4.41±0.20**		100	5.60±0.25

Values are means for three independent experiments. Mean values were significantly different from those for MDI group (ANOVA, followed by Duncan test): *P < 0.05, $\dagger P < 0.01$.

Treatment of 3T3-L1 cells with ethanolic extracts of *M. alba* decreased adipocyte differentiation in a dose-dependent manner (A). Most of the tested fractions exhibited anti-adipogenic effects except for butanol and water-soluble fractions. The ethylacetate-soluble fraction was found to have the greatest inhibitory effect, as indicated by suppression of the lipid accumulation by 38.5% in response to treatment with 100 µg/ml.

On other hands, glycerol secretion decreased in treated-concentration of hexan and chloroform-soluble fraction. The low secretion level of glycerol is not an expected result because it was thought that adipocyte reducing effects are caused by lipolysis. The results indicate that *M. alba* L. is a possible candidate for regulating lipid accumulation in obesity.

1. Caro JF, Dohm LG, Pories WJ et al. (1989) Diab Metab Rev 5, 665-689.

2. Jae Eun K & Jie C (2004) Diabetes 53, 2748-2756.