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Abstract. If R is a complete discrete valuation ring and M is a reduced, torsion-
free R-module of rank �, where @0 � � < 2@0 , we show that M ffi �@0

R � C for some
R-module C. As a consequence, it must be the case that M ffi M � ð��RÞ, where
� � @0, and EndRM=FinM has rank at least 2@0 , where Fin M denotes the set of
endomorphisms of M with finite rank image.
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Throughout this note we let R denote a complete discrete valuation ring and p
its unique prime and let M be a reduced, torsion-free R-module.

It is well known that if M is countably generated as an R–module, then M is free
(see [3, p. 48]). Examples of modules M with rank �@0 , for any cardinal � � @0, have
been constructed such that M is essentially indecomposable, that is, if M ¼

M1 � M2 is any decomposition of M, then M1 or M2 has finite rank (see [1, p. 462]).
In particular there are modules M of rank 2@0 , where M has no direct summand of
countably infinite rank (see [2]). However it is a general fact that for any module M,
there exists an R-module C0 such that M ffi R � C0. It follows that if the rank of M
is uncountable, then for all n < !, there exists an R-module Cn such that M ffi

�nR � Cn. These results naturally lead us to ask the following question.
If @0 � � < 2@0 and the rank of RM is �, does M have a direct summand with

countably infinite rank, that is, is M ffi �@0
R � C for some R-module C?

In this note we show that M has such a decomposition (Theorem 2). As a con-
sequence of this, we also obtain that

(i) End RM=FinM has rank at least 2@0 , where FinM denotes the ideal of
End RM consisting of endomorphisms with finite rank image (cf. [2, Prop. 1])

(ii) M ffi M � ð��RÞ, where � � @0.
Recall that an R-module M has a basic submodule �e2BRe and that their com-

pletions, with respect to the p-adic topology, are equal. Since �e2BRe is pure inQ
e2B Re, it follows that bMM 


Q
e2B Re, where bMM denotes the p-adic completion of M.
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Thus we can view an element x of bMM as a sequence x ¼ ðreÞe2B (re 2 R) of elements of R
indexed by B. In this context, it makes sense to define the support ½x�B of x 2 bMM with
respect to B as

½x�B ¼ fe 2 B : re 6¼ 0g :

It is clear that if ½x�B is finite, then x 2 M.

Proposition 1. Let M be an R-module with rank �, where @0 � � < 2@0 . If S is a
countably infinite, pure independent subset of M, then there exists a countably infinite

subset X of S such that d�e2XRe�e2XRe
T

M has countably infinite rank.

Proof. Let S be a countably infinite, pure independent subset of M and extend S
to a maximal, pure independent subset B of M, so that �e2BRe is a basic submodule
of M. There exists a family F of 2@0 countably infinite, almost disjoint subsets of S,
that is, if X1;X2 2 F , then X1 \ X2 has finite cardinality. For each X 2 F , consider
the submodule

IX ¼ d�e2XRe�e2XRe \ M :

If each IX has uncountable rank, then for each X 2 F , there exists gX 2 IX such
that ½gX�B is an infinite subset of X. Since the elements of F are almost disjoint, it is
clear that fgX : X 2 Fg is an R-independent subset of M with cardinality 2@0 . This
implies that the rank of M is at least 2@0 , which contradicts our assumption on �.
Thus there exists a countably infinite subset X 
 S such that the rank of IX is
countable. &

Recall that the completion of a direct sum M1 � M2 is the direct sum of their
respective completions. Hence if �e2BRe is a basic submodule of M and Y 
 B, then

d�e2YRe�e2YRe is a direct summand of bMM and the projection

	Y : bMM ! d�e2YRe�e2YRe

is an idempotent of the ring End R
bMM.

Theorem 2. Let RM, S and X be as in Proposition 1. Then there exists a count-
ably infinite subset Y 
 X such that 	YjM 2 End RM. Thus M ffi �@0

R � C, for some
R-module C.

Proof. Consider a family H of 2@0 countably infinite, almost disjoint subsets of
X. For each Y 2 H, define the projections

	Y : bMM ! d�e2YRe�e2YRe :

Suppose that 	YðMÞ 6
 M for all Y 2 H. Then there exists gY 2 M such that
	YðgYÞ 62 M. Note that ½	YðgYÞ�B is an infinite subset of Y, for otherwise 	YðgYÞ

would be an element of M. Thus the sets ½	YðgYÞ�B are almost disjoint subsets of X.
It follows that fgY : Y 2 Hg is an R-independent subset of M with cardinality 2@0 ,
which contradicts the assumption on the rank of M. Therefore there exists Y 2 H

such that 	YðMÞ 
 M, and so 	Y is an idempotent in End RM. Since 	YðMÞ
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 d�e2YRe�e2YRe
T

M, and d�e2XRe�e2XRe
T

M has countable rank by Proposition 1, it follows
that 	YðMÞ ffi �@0

R and so M ffi �@0
R � C, for some R-module C. &

The ideal FinM is defined to be the set of all R-endomorphisms of M with finite
rank image. As a consequence of Theorem 2, we obtain the following corollary (cf.
[2, Proposition 1]).

Corollary 3. If M has rank � and @0 � � < 2@0 , then
(i) the rank of End RM=FinM is at least 2@0 ,
(ii) M ffi M ���R, where � � @0.

Proof. By Theorem 2, there exists a decomposition M ¼ �i<!Rei � C.
(i) If X is an infinite subset of !, define the projection 	X : M ! �i2XRei.

Clearly 	X 2 End RM n FinM. This gives rise to 2@0 R-independent elements of
End RM=FinM.

(ii) Let A ¼ �i<!Rei � ð��RÞ, for some � � @0. Since A ffi �i<!Rei, this iso-
morphism can be extended to an isomorphism of A � C and M by defining it to be
the identity on C. &
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