Canad. Math. Bull. Vol. 46 (1), 2003 pp. 157-160

Torsion Points on Certain Families of Elliptic Curves

Małgorzata Wieczorek

Abstract. Fix an elliptic curve $y^2 = x^3 + Ax + B$, satisfying $A, B \in \mathbb{Z}, A \ge |B| > 0$. We prove that the \mathbb{Q} -torsion subgroup is one of $(0), \mathbb{Z}/3\mathbb{Z}, \mathbb{Z}/9\mathbb{Z}$. Related numerical calculations are discussed.

1 Introduction

Let $E(A, B) : y^2 = x^3 + Ax + B$ $(A, B \in \mathbb{Z}, 4A^3 + 27B^2 \neq 0)$ be a fixed elliptic curve over \mathbb{Q} . The deep theorem of Mazur [4] tells us that $E(A, B)(\mathbb{Q})_{\text{tors}}$ (the torsion subgroup of the \mathbb{Q} -points) is one of the 15 groups: $\mathbb{Z}/n\mathbb{Z}$ $(n = 1, ..., 10, 12), \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2m\mathbb{Z}$ (m = 1, 2, 3, 4). In any particular case, it is not difficult to determine $E(A, B)(\mathbb{Q})_{\text{tors}}$ explicitly. In some cases we can calculate the torsion part for infinitely many given curves at once [1], [5].

We shall prove that the torsion subgroup of $E(A, B)(\mathbb{Q})$ is, under the assumption $A \ge |B| > 0$, one of (0), $\mathbb{Z}/3\mathbb{Z}$, $\mathbb{Z}/9\mathbb{Z}$ (Proposition 3.2). The proof is based on the parametrisation of torsion structures [3, Table 3]. Numerical calculations suggest that all non-trivial groups $E(A, B)(\mathbb{Q})_{\text{tors}}$ ($0 < |B| \le A$) are isomorphic to $\mathbb{Z}/3\mathbb{Z}$.

2 General Observations

We start with the following elementary observation.

Proposition 2.1 Fix integers A, B satisfying $3 \nmid 4A^3 + 27B^2$.

- (i) Assume $A \equiv 1 \pmod{3}$. Then $E(A, B)(\mathbb{Q})_{\text{tors}}$ is one of (0), $\mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$.
- (ii) Assume $A \equiv 2 \pmod{3}$. Then $B \equiv 2 \pmod{3}$ implies $E(A, B)(\mathbb{Q})_{\text{tors}} = (0)$, $E(A, B)(\mathbb{Q})_{\text{tors}} \subset \mathbb{Z}/7\mathbb{Z}$ if $B \equiv 1 \pmod{3}$, and $E(A, B)(\mathbb{Q})_{\text{tors}}$ is one of (0), $\mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ if 3|B.

Proof Consider the reduction modulo 3 of E(A, B).

Remark One checks that $E(-43, 166)(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/7\mathbb{Z}$ (= {[0:1:0], [11: - 32:1], [11:32:1], [3:-8:1], [-5:-16:1], [-5:16:1]}). This is the only elliptic curve $E(A, B), 0 < |A|, |B| \le 10^4, A \equiv 2 \pmod{3}, B \equiv 1 \pmod{3}$, satisfying $E(A, B)(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/7\mathbb{Z}$.

Received by the editors April 25, 2001.

AMS subject classification: 11G05.

[©]Canadian Mathematical Society 2003.

Remark There are only 29 elliptic curves E(A, B) ($0 < A < 10^4, A \equiv 0 \pmod{3}$, $0 \le |B| \le 10^4$) with \mathbb{Q} -torsion of order 4. All of them are cyclic. Here are all such pairs (A, B):

(6, -7),	(6,6973),	(33, 34),	(33, 5474),	(54, 189),
(54, 4185),	(69, 470),	(69, 3094),	(78, 889),	(78, 2189),
(81, 1458),	(96, -448),	(213, -3674),	(213, -434),	(324, 0),
(429, 866),	(486, -5103),	(528, 2176),	(621, 3942),	(708, 6176),
(753, -5614),	(789, 8890),	(1014, -5195),	(1269, -3834),	(1518, -1519),
(1761, 1762),	(1998, 6021),	(4749, -9506),	(5184, 0).	

Now consider an algebraic curve E(A): $y^2 = x^3 - 27x - 54(32A - 1)$. Note that E(A) is an elliptic curve if and only if $A \neq 0$. Let us recall the following criterion [2, Proposition 1.1.2].

Proposition 2.2 Assume $A \in \mathbb{Z} \setminus \{0\}$. Then $E(A)(\mathbb{Q}) = (0)$ implies that the torsion subgroup $E(A, B)(\mathbb{Q})_{\text{tors}}$ is one of $(0), \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/3\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$.

We have used an executable version of the program from Cremona's ftp server to tabulate all the integers A (0 < |A| < 1065) such that $E(A)(\mathbb{Q}) = (0)$. Here are all such A's with $0 < |A| \le 50$:

-50,	-49,	-46,	-43,	-40,	-38,	-36,	-32,	-31,	-26,
-24,	-22,	-18,	-15,	-14,	-13,	-11,	-10,	-9,	-6,
-5,	-4,	-2,	2,	3,	4,	5,	13,	16,	18,
19,	20,	21,	22,	23,	24,	25,	29,	36,	37,
39,	47,	48,	50.						

3 The Case $0 < |B| \le A$

Lemma 3.1 Fix integers A, B, satisfying $A \ge |B| > 0$. Then $E(A, B)(\mathbb{Q})_{\text{tors}}$ is not isomorphic to $\mathbb{Z}/2\mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, and contains no point of order 5 or 7.

Proof Combine Propositions 2 and 3 in [1].

Proposition 3.2 Fix integers A, B, satisfying $A \ge |B| > 0$. Then $E(A, B)(\mathbb{Q})_{\text{tors}}$ is one of (0), $\mathbb{Z}/3\mathbb{Z}$, $\mathbb{Z}/9\mathbb{Z}$.

Proof Elliptic curve *E* with $E(\mathbb{Q})_{\text{tors}} \supset \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ may be assumed to have the equation $y^2 = x(x + M)(x + N)$ ($M, N \in \mathbb{Z}$), or equivalently

$$y^{2} = x^{3} + 3^{3}(MN - M^{2} - N^{2})x + 3^{3}(M + N)(2M^{2} + 2N^{2} - 5MN).$$

Now $MN - M^2 - N^2 < 0$, hence $E(A, B)(\mathbb{Q})_{\text{tors}}$ $(A \ge |B| > 0)$ is cyclic.

From the theorem of Mazur it follows that $E(A, B)(\mathbb{Q})_{\text{tors}}$ is cyclic with even order if and only if $E(A, B)(\mathbb{Q})$ has just one non-trivial rational point of order 2. It means that E(A, B) can be defined by the equation

$$y^2 = x(x+M)(x+N),$$

158

Torsion Points on Elliptic Curves

or equivalently,

(*)
$$y^2 = x^3 - 3^3(m^2 + 3Dn^2)x - 3^32m(m^2 - 9Dn^2),$$

where $M = m + n\sqrt{D}$, $N = m - n\sqrt{D}$, D, m, n are square-free integers, $D \neq 1$, $n \neq 0$.

We shall need the following lemma [6, Theorem 1].

Lemma 3.3 Let E denote the elliptic curve defined by (*).

- (i) $E(\mathbb{Q})_{\text{tors}} \supset \mathbb{Z}/4\mathbb{Z}$ if and only if $m = a^2 + b^2D$, n = 2ab, where $a, b \in \mathbb{Z}$ are relatively prime and non-zero.
- (ii) $E(\mathbb{Q})_{\text{tors}} \supset \mathbb{Z}/6\mathbb{Z}$ if and only if

$$m = a^{2} + 2ac + b^{2}D, \quad n = 2b(a + c), \quad a^{2} - b^{2}D = c^{2},$$

where $a, b, c \in \mathbb{Z}$ are relatively prime and non-zero.

We return to the proof of Proposition 3.2. Write

$$A = -3^{3}(m^{2} + 3Dn^{2}), \quad B = -3^{3}2m(m^{2} - 9Dn^{2})$$

If D > 1, then, of course A < 0. Now assume D < 0. If $E(A, B)(\mathbb{Q})_{\text{tors}}$ contains $\mathbb{Z}/4\mathbb{Z}$ or $\mathbb{Z}/6\mathbb{Z}$, then Lemma 3.3 implies $m \neq 0$, and we obtain A < |B|.

We conclude that $E(A, B)(\mathbb{Q})$ $(A \ge |B| > 0)$ contains no point of even order. Now let us mention Lemma 3.1. The assertion follows.

It is plain to check that the *x*-coordinate of a point of order 3 on E(A, B) satisfies $3x^4 + 6Ax^2 + 12Bx - A^2 = 0$. In particular 3|A, and 2|A implies 4|A. Also note that, fixed $A \in \mathbb{Z} \setminus \{0\}$, there exist at most finitely many $B \in \mathbb{Z}$ satisfying $E(A, B)(\mathbb{Q}) \supset \mathbb{Z}/3\mathbb{Z}$.

Numerical calculations show that all non-trivial $E(A, B)(\mathbb{Q})_{\text{tors}}$ $(0 < |B| \le A \le 10^4)$ are isomorphic to $\mathbb{Z}/3\mathbb{Z}$. Here are all such pairs (A, B):

(27, -27),	(33, -26),	(39, -23),	(45, -18),	(51, -11),
(57, -2),	(63,9),	(69, 22),	(75, 37),	(81, 54),
(87,73),	(804, -767),	(816, -704),	(828, -639),	(840, -572),
(852, -503),	(864, -432),	(876, -359),	(888, -284),	(900, -207),
(912, -128),	(924, -47),	(936, 36),	(948, 121),	(960, 208),
(972, 297),	(984, 388),	(996, 481),	(1008, 576),	(1020, 673),
(1032, 772),	(1044, 873),	(1056, 976),	(4419, -4307),	(4437, -4058),
(4455, -3807),	(4473, -3554),	(4491, -3299),	(4509, -3042),	(4527, -2783),
(4545, -2522),	(4563, -2259),	(4581, -1994),	(4599, -1727),	(4617, -1458),
(4635, -1187),	(4653, -914),	(4671, -639),	(4689, -362),	(4707, -83),
(4725, 198),	(4743, 481),	(4761, 766),	(4779, 1053),	(4797, 1342),
(4815, 1633),	(4833, 1926),	(4851, 2221),	(4869, 2518),	(4887, 2817),
(4905, 3118),	(4923, 3421),	(4941, 3726),	(4959, 4033),	(4977, 4342),
(4995, 4653),	(5013, 4966).			

Question Assume $0 < |B| \le A$. Is it true that $E(A, B)(\mathbb{Q})_{\text{tors}} \subset \{(0), \mathbb{Z}/3\mathbb{Z}\}$?

https://doi.org/10.4153/CMB-2003-016-6 Published online by Cambridge University Press

Małgorzata Wieczorek

References

- [1] A. Dąbrowski and M. Wieczorek, *Families of elliptic curves with trivial Mordell-Weil group*. Bull. Austral. Math. Soc. **62**(2000), 303–306.
- [2] _____, Arithmetic on certain families of elliptic curves. Bull. Austral. Math. Soc. 61(2000), 319–327.
- [3] D. S. Kubert, *Universal bounds on the torsion of elliptic curves*. Proc. London Math. Soc. **33**(1976), 193–237.
- [4] B. Mazur, Rational isogenies of prime degree. Invent. Math. 44(1978), 129–162.
- [5] L. D. Olson, Points of finite order on elliptic curves with complex multiplication. Manuscripta Math. 14(1974), 195–205.
 [6] D. Oli, J. Zhao, T. J. Kataka, and J. Kataka,
- [6] D. Qiu and X. Zhang, *Explicit classification for torsion subgroups of rational points of elliptic curves*. Preprint No 131 (Algebraic number theory archives, September 3, 1998).

University of Szczecin Institute of Mathematics ul. Wielkopolska 15 70-451 Szczecin Poland email: wieczorek@wmf.univ.szczecin.pl

160