Torsion Points on Certain Families of Elliptic Curves

Małgorzata Wieczorek

Abstract. Fix an elliptic curve $y^{2}=x^{3}+A x+B$, satisfying $A, B \in \mathbb{Z}, A \geq|B|>0$. We prove that the $(\mathbb{O}$-torsion subgroup is one of $(0), \mathbb{Z} / 3 \mathbb{Z}, \mathbb{Z} / 9 \mathbb{Z}$. Related numerical calculations are discussed.

1 Introduction

Let $E(A, B): y^{2}=x^{3}+A x+B\left(A, B \in \mathbb{Z}, 4 A^{3}+27 B^{2} \neq 0\right)$ be a fixed elliptic curve over (O). The deep theorem of Mazur [4] tells us that $E(A, B)(\mathbb{O}))_{\text {tors }}$ (the torsion subgroup of the (\mathbb{O})-points) is one of the 15 groups: $\mathbb{Z} / n \mathbb{Z}(n=1, \ldots, 10,12), \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 m \mathbb{Z}$ ($m=1,2,3,4$). In any particular case, it is not difficult to determine $E(A, B)(\mathbb{O})_{\text {tors }}$ explicitly. In some cases we can calculate the torsion part for infinitely many given curves at once [1], [5].

We shall prove that the torsion subgroup of $E(A, B)(\mathbb{O})$ is, under the assumption $A \geq|B|>0$, one of $(0), \mathbb{Z} / 3 \mathbb{Z}, \mathbb{Z} / 9 \mathbb{Z}$ (Proposition 3.2). The proof is based on the parametrisation of torsion structures [3, Table 3]. Numerical calculations suggest that all non-trivial groups $E(A, B)(\mathbb{O}))_{\text {tors }}(0<|B| \leq A)$ are isomorphic to $\mathbb{Z} / 3 \mathbb{Z}$.

2 General Observations

We start with the following elementary observation.
Proposition 2.1 Fix integers A, B satisfying $3 \nmid 4 A^{3}+27 B^{2}$.
(i) Assume $A \equiv 1(\bmod 3)$. Then $E(A, B)(\mathbb{O})_{\text {tors }}$ is one of $(0), \mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z} / 4 \mathbb{Z}$, $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$.
(ii) Assume $A \equiv 2(\bmod 3)$. Then $B \equiv 2(\bmod 3)$ implies $E(A, B)(\mathbb{O})_{\text {tors }}=(0)$, $E(A, B)(\mathbb{O})_{\text {tors }} \subset \mathbb{Z} / 7 \mathbb{Z}$ if $B \equiv 1(\bmod 3)$, and $\left.E(A, B)(\mathbb{O})\right)_{\text {tors }}$ is one of $(0), \mathbb{Z} / 2 \mathbb{Z}$, $\mathbb{Z} / 4 \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ if $3 \mid B$.

Proof Consider the reduction modulo 3 of $E(A, B)$.
Remark One checks that $E(-43,166)(\mathbb{O})_{\text {tors }} \simeq \mathbb{Z} / 7 \mathbb{Z}(=\{[0: 1: 0],[11:-32: 1]$, $[11: 32: 1],[3:-8: 1],[3: 8: 1],[-5:-16: 1],[-5: 16: 1]\})$. This is the only elliptic curve $E(A, B), 0<|A|,|B| \leq 10^{4}, A \equiv 2(\bmod 3), B \equiv 1(\bmod 3)$, satisfying $E(A, B)(\mathbb{O})_{\text {tors }} \simeq \mathbb{Z} / 7 \mathbb{Z}$.

[^0]Remark There are only 29 elliptic curves $E(A, B)\left(0<A<10^{4}, A \equiv 0(\bmod 3)\right.$, $0 \leq|B| \leq 10^{4}$) with $(\mathbb{O}$-torsion of order 4 . All of them are cyclic. Here are all such pairs (A, B) :

$(6,-7)$,	$(6,6973)$,	$(33,34)$,	$(33,5474)$,	$(54,189)$,
$(54,4185)$,	$(69,470)$,	$(69,3094)$,	$(78,889)$,	$(78,2189)$,
$(81,1458)$,	$(96,-448)$,	$(213,-3674)$,	$(213,-434)$,	$(324,0)$,
$(429,866)$,	$(486,-5103)$,	$(528,2176)$,	$(621,3942)$,	$(708,6176)$,
$(753,-5614)$,	$(789,8890)$,	$(1014,-5195)$,	$(1269,-3834)$,	$(1518,-1519)$,
$(1761,1762)$,	$(1998,6021)$,	$(4749,-9506)$,	$(5184,0)$.	

Now consider an algebraic curve $E(A): y^{2}=x^{3}-27 x-54(32 A-1)$. Note that $E(A)$ is an elliptic curve if and only if $A \neq 0$. Let us recall the following criterion [2, Proposition 1.1.2].

Proposition 2.2 Assume $A \in \mathbb{Z} \backslash\{0\}$. Then $E(A)(\mathbb{O})=(0)$ implies that the torsion subgroup $E(A, B)(\mathbb{O}))_{\text {tors }}$ is one of $(0), \mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z} / 3 \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$.

We have used an executable version of the program from Cremona's ftp server to tabulate all the integers $A(0<|A|<1065)$ such that $E(A)(\mathbb{O})=(0)$. Here are all such A 's with $0<|A| \leq 50$:

$$
\begin{array}{rrrrrrrrrr}
-50, & -49, & -46, & -43, & -40, & -38, & -36, & -32, & -31, & -26, \\
-24, & -22, & -18, & -15, & -14, & -13, & -11, & -10, & -9, & -6, \\
-5, & -4, & -2, & 2, & 3, & 4, & 5, & 13, & 16, & 18, \\
19, & 20, & 21, & 22, & 23, & 24, & 25, & 29, & 36, & 37, \\
39, & 47, & 48, & 50 . & & & & & &
\end{array}
$$

3 The Case $0<|B| \leq A$

Lemma 3.1 Fix integers A, B, satisfying $A \geq|B|>0$. Then $E(A, B)(\mathbb{O})_{\text {tors }}$ is not isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$ or $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$, and contains no point of order 5 or 7 .

Proof Combine Propositions 2 and 3 in [1].
Proposition 3.2 Fix integers A, B, satisfying $A \geq|B|>0$. Then $E(A, B)(\mathbb{O}))_{\text {tors }}$ is one of $(0), \mathbb{Z} / 3 \mathbb{Z}, \mathbb{Z} / 9 \mathbb{Z}$.

Proof Elliptic curve E with $E(\mathbb{O})_{\text {tors }} \supset \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ may be assumed to have the equation $y^{2}=x(x+M)(x+N)(M, N \in \mathbb{Z})$, or equivalently

$$
y^{2}=x^{3}+3^{3}\left(M N-M^{2}-N^{2}\right) x+3^{3}(M+N)\left(2 M^{2}+2 N^{2}-5 M N\right) .
$$

Now $M N-M^{2}-N^{2}<0$, hence $E(A, B)(\mathbb{O})_{\text {tors }}(A \geq|B|>0)$ is cyclic.
From the theorem of Mazur it follows that $E(A, B)(\mathbb{O})_{\text {tors }}$ is cyclic with even order if and only if $E(A, B)(\mathbb{O})$ has just one non-trivial rational point of order 2. It means that $E(A, B)$ can be defined by the equation

$$
y^{2}=x(x+M)(x+N)
$$

or equivalently,

$$
\begin{equation*}
y^{2}=x^{3}-3^{3}\left(m^{2}+3 D n^{2}\right) x-3^{3} 2 m\left(m^{2}-9 D n^{2}\right) \tag{*}
\end{equation*}
$$

where $M=m+n \sqrt{D}, N=m-n \sqrt{D}, D, m, n$ are square-free integers, $D \neq 1$, $n \neq 0$.

We shall need the following lemma [6, Theorem 1].
Lemma 3.3 Let E denote the elliptic curve defined by (*).
(i) $E(\mathbb{O})_{\text {tors }} \supset \mathbb{Z} / 4 \mathbb{Z}$ if and only if $m=a^{2}+b^{2} D, n=2 a b$, where $a, b \in \mathbb{Z}$ are relatively prime and non-zero.
(ii) $E(\mathbb{O})_{\text {tors }} \supset \mathbb{Z} / 6 \mathbb{Z}$ if and only if

$$
m=a^{2}+2 a c+b^{2} D, \quad n=2 b(a+c), \quad a^{2}-b^{2} D=c^{2}
$$

where $a, b, c \in \mathbb{Z}$ are relatively prime and non-zero.
We return to the proof of Proposition 3.2. Write

$$
A=-3^{3}\left(m^{2}+3 D n^{2}\right), \quad B=-3^{3} 2 m\left(m^{2}-9 D n^{2}\right)
$$

If $D>1$, then, of course $A<0$. Now assume $D<0$. If $E(A, B)(\mathbb{O}))_{\text {tors }}$ contains $\mathbb{Z} / 4 \mathbb{Z}$ or $\mathbb{Z} / 6 \mathbb{Z}$, then Lemma 3.3 implies $m \neq 0$, and we obtain $A<|B|$.

We conclude that $E(A, B)(\mathbb{O})(A \geq|B|>0)$ contains no point of even order. Now let us mention Lemma 3.1. The assertion follows.

It is plain to check that the x-coordinate of a point of order 3 on $E(A, B)$ satisfies $3 x^{4}+6 A x^{2}+12 B x-A^{2}=0$. In particular $3 \mid A$, and $2 \mid A$ implies $4 \mid A$. Also note that, fixed $A \in \mathbb{Z} \backslash\{0\}$, there exist at most finitely many $B \in \mathbb{Z}$ satisfying $E(A, B)(\mathbb{O}) \supset$ $\mathbb{Z} / 3 \mathbb{Z}$.

Numerical calculations show that all non-trivial $E(A, B)(\mathbb{O}))_{\text {tors }} \quad(0<|B| \leq A$ $\left.\leq 10^{4}\right)$ are isomorphic to $\mathbb{Z} / 3 \mathbb{Z}$. Here are all such pairs (A, B) :

$(27,-27)$,	$(33,-26)$,	$(39,-23)$,	$(45,-18)$,	$(51,-11)$,
$(57,-2)$,	$(63,9)$,	$(69,22)$,	$(75,37)$,	$(81,54)$,
$(87,73)$,	$(804,-767)$,	$(816,-704)$,	$(828,-639)$,	$(840,-572)$,
$(852,-503)$,	$(864,-432)$,	$(876,-359)$,	$(888,-284)$,	$(900,-207)$,
$(912,-128)$,	$(924,-47)$,	$(936,36)$,	$(948,121)$,	$(960,208)$,
$(972,297)$,	$(984,388)$,	$(996,481)$,	$(1008,576)$,	$(1020,673)$,
$(1032,772)$,	$(1044,873)$,	$(1056,976)$,	$(4419,-4307)$,	$(4437,-4058)$,
$(4455,-3807)$,	$(4473,-3554)$,	$(4491,-3299)$,	$(4509,-3042)$,	$(4527,-2783)$,
$(4545,-2522)$,	$(4563,-2259)$,	$(4581,-1994)$,	$(4599,-1727)$,	$(4617,-1458)$,
$(4635,-1187)$,	$(4653,-914)$,	$(4671,-639)$,	$(4689,-362)$,	$(4707,-83)$,
$(4725,198)$,	$(4743,481)$,	$(4761,766)$,	$(4779,1053)$,	$(4797,1342)$,
$(4815,1633)$,	$(4833,1926)$,	$(4851,2221)$,	$(4869,2518)$,	$(4887,2817)$,
$(4905,3118)$,	$(4923,3421)$,	$(4941,3726)$,	$(4959,4033)$,	$(4977,4342)$,
$(4995,4653)$,	$(5013,4966)$.			

Question Assume $0<|B| \leq A$. Is it true that $E(A, B)(\mathbb{O})_{\text {tors }} \subset\{(0), \mathbb{Z} / 3 \mathbb{Z}\}$?

References

[1] A. Dạbrowski and M. Wieczorek, Families of elliptic curves with trivial Mordell-Weil group. Bull. Austral. Math. Soc. 62(2000), 303-306.
[2] , Arithmetic on certain families of elliptic curves. Bull. Austral. Math. Soc. 61(2000), 319-327.
[3] D. S. Kubert, Universal bounds on the torsion of elliptic curves. Proc. London Math. Soc. 33(1976), 193-237.
[4] B. Mazur, Rational isogenies of prime degree. Invent. Math. 44(1978), 129-162.
[5] L. D. Olson, Points of finite order on elliptic curves with complex multiplication. Manuscripta Math. 14(1974), 195-205.
[6] D. Qiu and X. Zhang, Explicit classification for torsion subgroups of rational points of elliptic curves. Preprint No 131 (Algebraic number theory archives, September 3, 1998).

University of Szczecin
Institute of Mathematics
ul. Wielkopolska 15
70-451 Szczecin
Poland
email: wieczorek@wmf.univ.szczecin.pl

[^0]: Received by the editors April 25, 2001.
 AMS subject classification: 11G05.
 (C)Canadian Mathematical Society 2003.

