
Canad. Math. Bull. Vol. 46 (1), 2003 pp. 157–160

Torsion Points on Certain Families of
Elliptic Curves

Małgorzata Wieczorek

Abstract. Fix an elliptic curve y2
= x3 + Ax + B, satisfying A, B ∈ Z, A ≥ |B| > 0. We prove that the

Q-torsion subgroup is one of (0), Z/3Z, Z/9Z. Related numerical calculations are discussed.

1 Introduction

Let E(A, B) : y2
= x3 +Ax+B (A, B ∈ Z, 4A3 +27B2 6= 0) be a fixed elliptic curve over

Q . The deep theorem of Mazur [4] tells us that E(A, B)(Q)tors (the torsion subgroup

of the Q-points) is one of the 15 groups: Z/nZ (n = 1, . . . , 10, 12), Z/2Z ⊕ Z/2mZ

(m = 1, 2, 3, 4). In any particular case, it is not difficult to determine E(A, B)(Q)tors

explicitly. In some cases we can calculate the torsion part for infinitely many given

curves at once [1], [5].

We shall prove that the torsion subgroup of E(A, B)(Q) is, under the assumption

A ≥ |B| > 0, one of (0), Z/3Z, Z/9Z (Proposition 3.2). The proof is based on the

parametrisation of torsion structures [3, Table 3]. Numerical calculations suggest

that all non-trivial groups E(A, B)(Q)tors (0 < |B| ≤ A) are isomorphic to Z/3Z.

2 General Observations

We start with the following elementary observation.

Proposition 2.1 Fix integers A, B satisfying 3 - 4A3 + 27B2.

(i) Assume A ≡ 1 (mod 3). Then E(A, B)(Q)tors is one of (0), Z/2Z, Z/4Z,

Z/2Z ⊕ Z/2Z.

(ii) Assume A ≡ 2 (mod 3). Then B ≡ 2 (mod 3) implies E(A, B)(Q)tors = (0),

E(A, B)(Q)tors ⊂ Z/7Z if B ≡ 1 (mod 3), and E(A, B)(Q)tors is one of (0), Z/2Z,

Z/4Z, Z/2Z ⊕ Z/2Z if 3|B.

Proof Consider the reduction modulo 3 of E(A, B).

Remark One checks that E(−43, 166)(Q)tors ' Z/7Z (= {[0 : 1 : 0], [11 : − 32 : 1],
[11 : 32 : 1], [3 : − 8 : 1], [3 : 8 : 1], [−5 : − 16 : 1], [−5 : 16 : 1]}). This is the only el-

liptic curve E(A, B), 0 < |A|, |B| ≤ 104, A ≡ 2 (mod 3), B ≡ 1 (mod 3), satisfying

E(A, B)(Q)tors ' Z/7Z.
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Remark There are only 29 elliptic curves E(A, B) (0 < A < 104, A ≡ 0 (mod 3),

0 ≤ |B| ≤ 104) with Q-torsion of order 4. All of them are cyclic. Here are all such

pairs (A, B):

(6,−7), (6, 6973), (33, 34), (33, 5474), (54, 189),
(54, 4185), (69, 470), (69, 3094), (78, 889), (78, 2189),
(81, 1458), (96,−448), (213,−3674), (213,−434), (324, 0),
(429, 866), (486,−5103), (528, 2176), (621, 3942), (708, 6176),

(753,−5614), (789, 8890), (1014,−5195), (1269,−3834), (1518,−1519),
(1761, 1762), (1998, 6021), (4749,−9506), (5184, 0).

Now consider an algebraic curve E(A) : y2
= x3 − 27x − 54(32A − 1). Note that

E(A) is an elliptic curve if and only if A 6= 0. Let us recall the following criterion [2,

Proposition 1.1.2].

Proposition 2.2 Assume A ∈ Z \ {0}. Then E(A)(Q) = (0) implies that the torsion

subgroup E(A, B)(Q)tors is one of (0), Z/2Z, Z/3Z, Z/2Z ⊕ Z/2Z.

We have used an executable version of the program from Cremona’s ftp server to

tabulate all the integers A (0 < |A| < 1065) such that E(A)(Q) = (0). Here are all

such A’s with 0 < |A| ≤ 50:

−50, −49, −46, −43, −40, −38, −36, −32, −31, −26,
−24, −22, −18, −15, −14, −13, −11, −10, −9, −6,
−5, −4, −2, 2, 3, 4, 5, 13, 16, 18,
19, 20, 21, 22, 23, 24, 25, 29, 36, 37,
39, 47, 48, 50.

3 The Case 0 < |B| ≤ A

Lemma 3.1 Fix integers A, B, satisfying A ≥ |B| > 0. Then E(A, B)(Q)tors is not

isomorphic to Z/2Z or Z/2Z ⊕ Z/2Z, and contains no point of order 5 or 7.

Proof Combine Propositions 2 and 3 in [1].

Proposition 3.2 Fix integers A, B, satisfying A ≥ |B| > 0. Then E(A, B)(Q)tors is one

of (0), Z/3Z, Z/9Z.

Proof Elliptic curve E with E(Q)tors ⊃ Z/2Z ⊕ Z/2Z may be assumed to have the

equation y2
= x(x + M)(x + N) (M, N ∈ Z), or equivalently

y2
= x3 + 33(MN − M2 − N2)x + 33(M + N)(2M2 + 2N2 − 5MN).

Now MN − M2 − N2 < 0, hence E(A, B)(Q)tors (A ≥ |B| > 0) is cyclic.

From the theorem of Mazur it follows that E(A, B)(Q)tors is cyclic with even order

if and only if E(A, B)(Q) has just one non-trivial rational point of order 2. It means

that E(A, B) can be defined by the equation

y2
= x(x + M)(x + N),
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or equivalently,

(∗) y2
= x3 − 33(m2 + 3Dn2)x − 332m(m2 − 9Dn2),

where M = m + n
√

D, N = m − n
√

D, D, m, n are square-free integers, D 6= 1,

n 6= 0.

We shall need the following lemma [6, Theorem 1].

Lemma 3.3 Let E denote the elliptic curve defined by (∗).

(i) E(Q)tors ⊃ Z/4Z if and only if m = a2 + b2D, n = 2ab, where a, b ∈ Z are

relatively prime and non-zero.

(ii) E(Q)tors ⊃ Z/6Z if and only if

m = a2 + 2ac + b2D, n = 2b(a + c), a2 − b2D = c2,

where a, b, c ∈ Z are relatively prime and non-zero.

We return to the proof of Proposition 3.2. Write

A = −33(m2 + 3Dn2), B = −332m(m2 − 9Dn2).

If D > 1, then, of course A < 0. Now assume D < 0. If E(A, B)(Q)tors contains Z/4Z

or Z/6Z, then Lemma 3.3 implies m 6= 0, and we obtain A < |B|.
We conclude that E(A, B)(Q) (A ≥ |B| > 0) contains no point of even order. Now

let us mention Lemma 3.1. The assertion follows.

It is plain to check that the x-coordinate of a point of order 3 on E(A, B) satisfies

3x4 + 6Ax2 + 12Bx − A2
= 0. In particular 3|A, and 2|A implies 4|A. Also note that,

fixed A ∈ Z \ {0}, there exist at most finitely many B ∈ Z satisfying E(A, B)(Q) ⊃
Z/3Z.

Numerical calculations show that all non-trivial E(A, B)(Q)tors (0 < |B| ≤ A

≤ 104) are isomorphic to Z/3Z. Here are all such pairs (A, B):

(27,−27), (33,−26), (39,−23), (45,−18), (51,−11),
(57,−2), (63, 9), (69, 22), (75, 37), (81, 54),
(87, 73), (804,−767), (816,−704), (828,−639), (840,−572),

(852,−503), (864,−432), (876,−359), (888,−284), (900,−207),
(912,−128), (924,−47), (936, 36), (948, 121), (960, 208),
(972, 297), (984, 388), (996, 481), (1008, 576), (1020, 673),

(1032, 772), (1044, 873), (1056, 976), (4419,−4307), (4437,−4058),
(4455,−3807), (4473,−3554), (4491,−3299), (4509,−3042), (4527,−2783),
(4545,−2522), (4563,−2259), (4581,−1994), (4599,−1727), (4617,−1458),
(4635,−1187), (4653,−914), (4671,−639), (4689,−362), (4707,−83),

(4725, 198), (4743, 481), (4761, 766), (4779, 1053), (4797, 1342),
(4815, 1633), (4833, 1926), (4851, 2221), (4869, 2518), (4887, 2817),
(4905, 3118), (4923, 3421), (4941, 3726), (4959, 4033), (4977, 4342),
(4995, 4653), (5013, 4966).

Question Assume 0 < |B| ≤ A. Is it true that E(A, B)(Q)tors ⊂ {(0), Z/3Z}?
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