
JFP 15 (6): 837–891, 2005. c© 2005 Cambridge University Press

doi:10.1017/S0956796805005666 Printed in the United Kingdom

837

The logic of demand in Haskell

WILLIAM L. HARRISON

Department of Computer Science, University of Missouri, Columbia, MO, USA

(e-mail: HarrisonWL@missouri.edu)

RICHARD B. KIEBURTZ

Pacific Software Research Center, OGI School of Science & Engineering,

Oregon Health & Science University

Abstract

Haskell is a functional programming language whose evaluation is lazy by default. However,

Haskell also provides pattern matching facilities which add a modicum of eagerness to its

otherwise lazy default evaluation. This mixed or “non-strict” semantics can be quite difficult

to reason with. This paper introduces a programming logic, P-logic, which neatly formalizes

the mixed evaluation in Haskell pattern-matching as a logic, thereby simplifying the task

of specifying and verifying Haskell programs. In P-logic, aspects of demand are reflected or

represented within both the predicate language and its model theory, allowing for expressive

and comprehensible program verification.

1 Introduction

Although Haskell is known as a lazy functional language because of its default

evaluation strategy, it contains a number of language constructs that force exceptions

to that strategy. Among these features are pattern-matching, data type strictness

annotations and the seq primitive. The semantics of pattern-matching are further

enriched by irrefutable pattern annotations, which may be embedded within patterns.

The interaction between Haskell’s default lazy evaluation and its pattern-matching is

surprisingly complicated. Although it offers the programmer a facility for fine control

of demand (Harrison et al., 2002), it is perhaps the aspect of the Haskell language

least well understood by its community of users. In this paper, we characterize the

control of demand first in a denotational semantics and then in a verification logic

called “P-logic”.

P-logic1 is a modal logic based upon the familiar Gentzen-style sequent calculus

(Girard, 1989). P-logic is expressive directly over Haskell expressions – the term

language of the logic is Haskell 98. The two modalities of the logic, called weak and

strong, determine whether a predicate is interpreted by a set of normalized values

of its type (the strong interpretation) or by a set of computations of its type, which

1 The name P-logic is taken from the Programatica project (www.cse.ogi.edu/PacSoft/projects/
programatica) at OGI.

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

838 W. L. Harrison and R. B. Kieburtz

may or may not terminate (the weak interpretation). The strong modality is used to

characterize properties of an expression occuring in a strict context of a program,

or of an expression constructed in normal form. The weak modality can be used to

characterize properties of an expression occuring in a non-strict context.

This paper introduces the fragment of P-logic that provides verification conditions

for a core fragment of Haskell, including abstraction, application and case expres-

sions (without guards). It also provides a self-contained description of a typed,

denotational semantics for this Haskell fragment. The semantics for the Haskell

fragment is based on an extension to the type frames semantics of the simply-

typed lambda calculus (Gunter, 1992; Mitchell, 2000) and is closely related to an

earlier treatment (Harrison et al., 2002). This semantics constitutes the core of a

denotational semantics for Haskell 98, the whole of which will be published in sequel

articles.

Because Haskell patterns afford fine control of demand, it is not possible to

give complete verification conditions for patterned abstractions or case expressions

in a finite set of specific rules. In the presentation of P-logic, we give the logical

inference rules for patterns by defining verification condition generators – functions

on the term structure of patterns which construct pattern predicates. A verification

condition for a property of a Haskell case branch is derived by applying a verification

condition generator to its pattern and the list of predicates that its variables are

assumed to satisfy. It generates a predicate characterizing terms that can match the

pattern with its assumed properties. Verification condition generators are written as

Haskell functions in a prototype implementation of P-logic.

The remainder of the paper proceeds as follows. Section 2 gives an overview of the

Haskell fragment we consider here. This fragment contains the language constructs

that most directly make use of pattern-matching. Section 3 contains background

information for our semantic model: type frame semantics and the simple model of

ML polymorphism (Ohori, 1989b; Ohori, 1989a). Section 4 summarizes the formal

semantics of this fragment and section 5 presents the fragment of P-logic that deals

with Haskell’s fine control of demand. Example derivations in P-logic are also given

in section 5. Soundness of the P-logic inference rules is established in section 6

and section 7 discusses some alternative approaches to verification logics. Section 8

summarizes our conclusions.

2 A Haskell fragment and its informal semantics

This section describes the fragment of Haskell we consider in this paper. This frag-

ment, whose syntax is given in Figure 1, is representative of the Haskell constructs

that depend on pattern-matching and strictness annotations. It constitutes a nearly-

complete core language for Haskell expressions, omitting guarded expressions, type

classes and overloaded operators. Section 2.2 gives an informal overview of the

meaning of these constructs and section 2.2.6 discusses how fine control of demand,

as specified in Haskell, entails complex evaluation strategies.

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

The logic of demand in Haskell 839

type Name = String

data LS = Lazy | Strict deriving Eq

data Type = Name | Arrow Type Type | Name [Type]

data P = Pvar Name | Pcondata Name [(LS, P)] | Ptilde P | Ptuple [P]

| Pwildcard

data E = Var Name | Constr Name [(LS, Type)] | Tuple [E]

| Abs Name E | App E E | Case E [(P , E)] | Undefined

Fig. 1. Abstract syntax of a Haskell fragment.

2.1 Data types

A data type declaration serves to define the data constructors of the type, giving the

signature of each constructor as a series of type scheme arguments with optional

strictness annotations. In the abstract syntax representation of a data constructor

(see Fig. 1), strictness or non-strictness in each argument is explicitly designated by a

tag of type LS. The signature of a data type, τ, is a finite set, Στ whose elements are

the abstract syntax terms designating the type signatures of the data constructors of

the type. For example, from a data type declaration

data T α1 · · · αn = · · · | C σ1 · · · σk | · · ·

in which a k-place constructor, C , is declared without any strictness annotations, we

obtain the signature element

Constr C [(Lazy, σ1), . . . , (Lazy, σk)] ∈ ΣT α1···αn

Had any of the type arguments in the constructor declaration been given a strictness

annotation, such as

T α1 · · · αn = · · · | C ! σ1 · · · σk | · · ·
then in the signature element for the constructor, the tag Strict would accompany

each of the listed type(s) that had been annotated in the declaration, i.e.

Constr C [(Strict, σ1), . . . , (Lazy, σk)] ∈ ΣT α1···αn

The abstract syntax presented in Fig. 1 contains no direct representation of

Haskell data type declarations. Instead, such data type declarations are part of

the expression and pattern syntax, being encoded implicitly by the signatures of

their individual constructors. This representation was chosen for its convenience in

defining the semantics and logic of Haskell and could have been derived from a

direct representation of data type declarations.

2.2 Case expressions

Patterns may occur in several different syntactic contexts in Haskell – in case

branches, explicit abstractions, or on the left-hand sides of definitions2. Since the

2 In a local (or let) definition, a pattern may occur as the entire left-hand side of an equation. A pattern
used in this way is implicitly irrefutable, even if it is not prefixed by the character (∼).

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

840 W. L. Harrison and R. B. Kieburtz

roles played by patterns are similar in each of these syntactic contexts, we shall

focus on patterns in case branches.

2.2.1 Evaluating case expressions

A Haskell case expression is an instance of the syntactic schema:

case d of {p1 → e1; · · · pn → en}

in which d is an expression, which we call the case discriminator, and each of the

{pi → ei} is a case branch, consisting of a pattern, pi and an expression, ei, called the

body of the branch.

When a case expression is evaluated, the case discriminator is matched against

the pattern of the first case branch. If the match succeeds, the body of the branch is

evaluated in a context extended with the value bindings of pattern variables made

by the match and returned as the value of the case expression. If the match fails,

succeeding branches are tried until either one of the patterns matches or all branches

have been exhausted. If no branch matches, then evaluation of the case expression

fails with an unrecoverable error (i.e. it denotes bottom).

2.2.2 Pattern matching is a binding operation

A pattern fulfills two roles:

• Control: A case discriminator expression is evaluated to an extent sufficient

to determine whether it matches the pattern of a case branch. If the match

fails, control shifts to try a match with the next alternative branch, if one is

available.

• Binding: When a match succeeds, each variable occurring in the pattern is

bound to a subterm corresponding in position in the (partly evaluated) case

discriminator. Since patterns in Haskell cannot contain repeated occurrences

of a variable, the bindings are unique at any successful match.

2.2.3 Variables and wildcard patterns

A variable used as a pattern never fails to match; it binds to any the value of any

term3. A value need not be normalized to match with a pattern variable.

Haskell designates a so-called wildcard pattern by the underscore character ().

The wildcard pattern, like a variable, never fails to match but it entails no binding.

2.2.4 Constructor patterns: strict and lazy

When a data constructor occurs in a pattern, it must appear in a saturated application

to sub-patterns. That is, a constructor typed as a k-ary function in a data type

declaration must be applied to exactly k sub-patterns when it is used in a pattern.

3 As Haskell is strongly typed, a variable can only be compared with terms of the same type.

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

The logic of demand in Haskell 841

When a constructor occurs as the outermost operator in a pattern, a match can

occur only if the case discriminator evaluates to a term that has the same constructor

as its primary operator. Subterms of the discriminator must match the corresponding

sub-patterns of the constructor pattern or else the entire match fails.

If a constructor is lazy in its ith argument (i.e. its declaration has no strictness

annotation at that argument), the argument is evaluated only if a value is required

to match a corresponding sub-pattern. However, if the constructor is strict in its

ith argument position, a constructor application will evaluate the argument to head

normal form, whether or not a value is required for pattern matching.

2.2.5 Irrefutable patterns defer matching

Matching a constructor pattern against a case discriminator expression evaluates the

discriminator sufficiently to determine whether the pattern match succeeds. Haskell

also contains the pattern annotation (∼) for making pattern-matching lazier. If p is

a pattern, then matching a case discriminator against ∼p is deferred and the focus of

computation proceeds to evaluate the body of the case branch. Annotating a pattern

with (∼) does not disable the binding function of a match, it merely defers binding

until further computation demands a value for one of the variables occurring in

the pattern. When that happens, the focus of computation returns to the deferred

pattern match, which is fully computed in order to bind the variables introduced in

the pattern. Should a deferred pattern match fail, no alternative is tried, as might

have been the case in a normal match failure. Failure of a deferred pattern match

causes an unrecoverable program error. We can say that irrefutable patterns are

control-disabled.

2.2.6 Fine control of demand: an example

For example, with patterns constructed for the data type

data Tree = T Tree Tree | S Tree | L | R

we can construct the following case expressions:

case T L R of {T (S x) y -> y; T x y -> x} evaluates to L

case T L R of {T ∼(S x) y -> y; T x y -> x} evaluates to R

case T L R of {T ∼(S x) y -> x; T x y -> y} evaluates to error

case T L R of {∼(T (S x) y) -> y; T x y -> x} evaluates to error

In the first of the expressions above, the constructor L fails to match the embedded

pattern (S x) in the first case branch. The match failure shifts control to the second

case branch. In the second line, the embedded pattern ∼(S x) is control-disabled.

The term (T L R) thus matches the pattern (T ∼(S x) y), binding R to the variable

y. In the third line, the body of the first case branch demands a value for x, thereby

forcing a deferred match of the subterm L with the pattern ∼(S x). The deferred

match fails, resulting in a program error. The fourth line illustrates that a deferred

match of the term (T L R) against the pattern (T (S x) y) fails, although the match

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

842 W. L. Harrison and R. B. Kieburtz

was evaluated to head normal form in response to a request for a binding for y

alone.

3 Background

The denotational semantics for the Haskell fragment extends the type-frames

semantics of the simply-typed lambda calculus (Gunter, 1992; Mitchell, 2000) to

accomodate polymorphism and the structure required for modeling Haskell pattern-

matching. Section 3.1 reviews type-frame semantics. Section 3.2 gives an overview

of the model of polymorphism adopted here for the Haskell fragment: the simple

model of ML polymorphism (Ohori, 1989b; Ohori, 1989a).

3.1 Type-frame semantics

One may think of a frame model as set-theoretic version of a cartesian closed

category. That is, it provides “objects” (i.e. Dτ for each simple type τ) and axioms of

representability and extensionality characterizing functions from objects to objects

in terms of an application operator, •. In this article, each simple type model Dτ

is presumed to be built from sets with additional structure. We write |Dτ| for the

underlying set of Dτ. We refer to Dτ as a frame object and to |Dτ| as its frame set.

Definition 1

A frame is a pair 〈D, •〉 where

1. D = {Dτ | τ ∈ Type & |Dτ| �= ∅}
2. • is a family of operations •τ1τ2

∈ |D(τ1→τ2)|→|Dτ1
|→|Dτ2

|

Definition 2

The set function φ : |Dτ1
|→|Dτ2

| is representable if

∃ f ∈ |D(τ1→τ2)| s.t. φ(d) = f •τ1τ2
d, ∀d ∈ |Dτ1

|

Definition 3

〈D, •〉 is extensional if, for all d ∈ |Dτ1
|, f, g ∈ |D(τ1→τ2)|,

f •τ1τ2
d = g •τ1τ2

d ⇒ f = g

Definition 4

A value environment ρ is compatible with a (ground) type environment, A, if

∀x. x ∈ dom(ρ) ⇒ ρ x ∈ |Dτ|, where (x : τ) ∈ A

The compatibility relation is designated by A |= ρ. The set of value environments

compatible with A is designated Env(A).

Definition 5

[Environment Model Condition]

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

The logic of demand in Haskell 843

Let 〈D, •〉 be any frame, λ→ be the simply-typed lambda calculus and ρ a value

environment such that A |= ρ. Then, the map D[[−]] ∈ λ→→Env→ (
⋃
|Dτ|) obeys

the environment model condition if the following equations hold:

D[[A � x : τ]]ρ = ρ x

D[[A � λx.M : τ1→τ2]]ρ = f for unique f ∈ |Dτ1→τ2
|

such that f • d = D[[A, x : τ1 �M : τ2]]ρ[x
→ d] for all d ∈ |Dτ1
|

D[[A � (M N) : τ]]ρ = (D[[A �M : τ′→τ]]ρ) • (D[[A � N : τ′]]ρ)

For any extensional frameD, the above equations induce a model of the simply-typed

lambda calculus (Gunter, 1992; Mitchell, 2000).

3.2 A simple model of ML polymorphism

The Girard–Reynolds calculus (alternately referred to as System F (Girard, 1972)

and the polymorphic lambda calculus (Reynolds, 1974)) contains abstraction and

application over types as well as over values. As such, it is sometimes referred to

as a second-order lambda calculus. Denotational models of second-order lambda

calculi exist (e.g., the PER model described in (Girard, 1989)). Such models provide

one technique for specifying Haskell and ML polymorphism. Harper and Mitchell

take this approach (Harper & Mitchell, 1993; Mitchell & Harper, 1988) for the core

of Standard ML called core-ML. They translate a polymorphic core-ML term (i.e.,

one without type abstraction or application) into a second-order core-XML term

(i.e., one with type abstraction or application). A core-ML term is then modeled

by the denotation of its translation in an appropriate model of the second-order

lambda calculus, core-XML.

ML polymorphism4 is considerably more restrictive than the polymorphism

expressible in a second-order lambda calculus; its types are of the form ∀α0 . . . αn.σ

for a quantifier-free type scheme σ. Although outside the scope of this article, it

appears that the Ohori model of polymorphism is adequate to the description of

type classes in Haskell. However, we shall not consider type classes further in this

article as they are not relevant to the issue we focus on here: the fine control of

demand in Haskell.

Because of its restrictiveness relative to the Girard–Reynolds calculus, it is possible

to give a predicative semantics to ML polymorphism (Ohori, 1989b; Ohori, 1989a)

that is a conservative extension to the frame semantics of the simply-typed lambda

calculus outlined in section 3.1. Ohori’s model of ML polymorphism is particularly

appealing because of its simplicity. It explains ML polymorphism in terms of

simpler, less expressive things (such as the frame semantics of the simply-typed

lambda calculus) rather than in terms of inherently richer and more expressive

things (such as the semantics of the second-order lambda calculus).

4 Following Ohori (Ohori, 1989b; Ohori, 1989a), we shall refer to the variety of polymorphism occuring in
Haskell and ML as ML polymorphism. Both languages use varieties of Hindley–Milner polymorphism
(Hindley, 1969; Milner, 1978).

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

844 W. L. Harrison and R. B. Kieburtz

We adopt Ohori’s simple model of ML polymorphism (Ohori, 1989b; Ohori,

1989a) as part of the foundation for the Haskell fragment here. This model defines

the meaning of polymorphic terms as type-indexed denotations of their ground

instances (or typings as Ohori calls them). This approach to polymorphism factors

the language specification into two parts: the specification of polymorphic terms (in

Definition 12) and of their simply-typed instances (in Definitions 13 and 14).

Definition 6

A closed ML-polymorphic type (∀α1 . . . αn.σ) is modeled by the type-indexed set of

frame sets:

{|Dτ| | τ = σ[α1/τ1, . . . , αn/τn], τi ∈ Type, {α1, . . . , αn} = TV(σ)}

where Type is the set of all simple (i.e., ground) types and TV(σ) are the free type

variables of σ.

Each core-ML polymorphic term is defined as the set of denotations of its ground

instances, and these ground instances may be given a frame semantics in precisely

the same manner as a simply-typed lambda calculus. Details of this model will be

spelled out in greater detail in section 4.2.

4 Formal semantics of a Haskell fragment

This section presents the static and denotational semantics of the Haskell fragment.

These are abstracted from the denotational semantics of Haskell (Harrison et al.,

2002) and are, for the most part, entirely conventional. The denotational semantics

for the Haskell fragment is based on an extension to the type frames semantics of

the simply-typed lambda calculus.

Because the focus of this article concerns the consequences of pattern-matching

within the context of the Haskell language, much of this section is devoted to the

necessary structure for modeling patterns. As the semantics developed here is a typed

semantics (i.e., the terms defined denotationally are derivable typing judgments), we

give a type system for patterns. This distinguishes our approach somewhat from

other treatments of Haskell (Peyton Jones, 2003; Jones, 1999; Thompson, 1999;

Hudak, 2000; Faxen, 2002) where patterns are not treated as first-class entities.

The static semantics for patterns associates a pattern with a type of the form

σ→�, where σ is a conventional type scheme (i.e. constructed from type variables,

type constants, +, ×,→, and constructors arising from data type declarations) and

� is a record type. We introduce record types to capture statically the notion that a

pattern produces a finite set of typed variable bindings when successfully matched

against a value. Please note that incorporating record types in the semantic domain

does not imply extending Haskell with record types, expressions, and values.

As noted in section 3.1, frames for the simply-typed lambda calculus consist of

a pair, 〈D, •〉, where D is a set containing the denotations of types and • is an

application operator. The Haskell fragment presented here, being more expressive

than the simply-typed lambda calculus, requires more structure to model with frames.

We extend the notion of a type frame with structure including a partial order on

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

The logic of demand in Haskell 845

the elements of frame sets, pointedness of frame objects, continuous functions that

preserve order and limits, embedding-projection pairs for data types, the Maybe

monad, and currying and uncurrying operations on functions. Formally, for the

Haskell fragment, a frame is the tuple:

〈D, •,�,�,⊥, (−)�, (−)	, c, c−1, cM, Just,Nothing, >>=, return, lift,⊕, �, []〉

Here, �, �, and ⊥ are introduced to impose a pointed cpo structure on each of the

frame objects Dτ ∈ D. Structure for embedding-projection pairs for data types, c

and c−1, represent the constructors introduced in data type declarations as well as

the projections from values in data types. Curry (−)� and uncurry (−)	 operators

are necessary to accomodate the view of “data constructors as functions” in Haskell.

The Maybe monad and related structure are introduced to model pattern-matching;

the structures

cM, Just,Nothing, >>=, return, lift,⊕
are used for this purpose (and are described in detail below). Finally, control

operators for both Kleisli composition (�) and alternation ([]) are introduced to

model patterns and case expressions.

Such structures are the “bricks and mortar” of conventional denotational se-

mantics and, in a domain-theoretic treatment, would be represented within some

concrete domain structure. The frame semantics approach taken here axiomatizes

this additional structure. These extended frames may be thought of as an abstrac-

tion of the cpo semantics of types which is the foundation of the semantics of

functional programming languages (Schmidt, 1986; Gunter, 1992). The type frames

for the Haskell fragment contain abstract operators corresponding to the concrete

constructions (e.g., pointedness, embedding-projection pairs, etc.) that occur within

domain theory, and semantically necessary properties of these abstract operators

(e.g. extensionality, etc.) are characterized axiomatically. Suitable concrete, domain-

theoretic representations of the extra structure in the frame semantics below have

been suggested by several authors (Gunter, 1992; Schmidt, 1986; Mitchell, 2000;

MacQueen et al., 1984; Smyth & Plotkin, 1982).

Section 4.1 presents the type system for the Haskell fragment. Section 4.2 reviews

the necessary definitions for relating polymorphic terms to their ground instances –

these come directly from (Ohori, 1989b; Ohori, 1989a) and our treatment follows

Ohori’s closely. Section 4.2 defines the semantics of the polymorphic part of the

Haskell fragment. The next two sections consider the frame semantics of the ground

instances of the fragment. Section 4.3 presents the necessary extensions to the basic

frame structure from Section 3.1 and Section 4.4 presents the semantic equations

themselves.

4.1 The Haskell fragment

This section presents the type system for the Haskell fragment. The pattern class

P does not include all varieties of Haskell patterns (e.g. “as” patterns or “n + k”

patterns), while E includes case expressions without guards. These features have

been omitted in the present treatment, however, as they are not relevant to Haskell’s

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

846 W. L. Harrison and R. B. Kieburtz

fine control of demand. In this section, we will write terms using Haskell’s concrete

syntax.

In Definitions 7 and 8 below, we formulate a type system for the Haskell fragment.

The type system for this fragment is, except for the treatment of patterns, a

conventional type system for implicit polymorphism. A typing judgment for an

expression e is of the form Γ � e :: σ, where any free variables occurring in the type

scheme σ are implicitly quantified. To give a typed semantics for Haskell patterns,

we must first give formal type rules for patterns. We shall use record types in the

type rules for Haskell patterns. For these, we turn to Standard ML (Milner et al.,

1997) for inspiration. Patterns are given types of the form (σ → �) where � ranges

over record types.

Definition 7

[Type language of the Haskell fragment] Below, b ranges over base types, α ranges

over type variables, and T designates a type constructor assumed to be of arity n.

There are simple types (ranged over by τ and referred to only as types) and type

schemes (ranged over by σ). When a type scheme is used in a judgment, its free type

variables are implicitly quantified.

Simple Types τ ∈ Type ::= b | τ→ τ | T τ . . . τ︸ ︷︷ ︸
n

| ζ

Type Schemes σ ∈ TypSch ::= α | b | σ → σ | T σ . . . σ︸ ︷︷ ︸
n

| �

Simple record types ζ ∈ sty ::= 〈[styrow]〉
Polymorphic record types � ∈ pty ::= 〈[ptyrow]〉
Simple type rows styrow ::= label :: τ [,styrow]

Polymorphic type rows ptyrow ::= label :: σ [,ptyrow]

Two record types are disjoint when they have no labels in common. We define an

operation, ⊗, for combining disjoint record types such that

〈l1::t1, . . . , ln::tn〉 ⊗ 〈m1::t1, . . . , mk::tk〉
= 〈l1::t1, . . . , ln::tn, m1::t1, . . . , mk::tk〉

As we shall see in the type rules for patterns below in Definition 8, all record types

arising in the typings of Haskell patterns are disjoint because Haskell patterns are

linear; that is, Haskell does not allow repeated variables within patterns.

Definition 8

[Type Rules for Haskell Fragment] In the rules below, the notation Γx designates a

type environment derived from Γ by removing any type binding for the variable x,

should such exist in Γ.

Standard Rules

(x::σ) ∈ Γ

Γ � x :: σ

Γ � e1 :: σ2→σ1 Γ � e2 :: σ2

Γ � e1 e2 :: σ1

Γx, x::σ′ � e :: σ

Γ � λx.e :: σ′→σ

Γ � e :: σ′ Γ �pat pi :: σ
′→�i Γ + �i � ei :: σ

Γ � case e of {p1→e1; . . . ; pn→en} :: σ
where

Γ + 〈x1::σ1, . . . , xk::σk〉 = Γx1··· xk ∪ {x1::σ1, . . . , xk::σk}

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

The logic of demand in Haskell 847

Patterns

Γ, x::σ �pat x :: σ → 〈x::σ〉
Γ �pat p :: σ → �

Γ �pat ∼p :: σ → � Γ �pat :: α→ 〈〉

(C::σ1→ . . .→σn→σ) ∈ Γ Γ �pat pi :: σi → �i (1 � i � n)

Γ �pat (C p1 . . . pn) :: σ → (�1 ⊗ . . .⊗ �n)

Γ �pat pi :: σi → �i (1 � i � n)

Γ �pat (p1, . . . , pn) :: (σ1× . . .×σn)→ (�1 ⊗ . . .⊗ �n)

The necessary technical vocabulary concerning type derivations for Ohori’s model

of polymorphism are presented below. An effort has been made to use Ohori’s

original terminology (Ohori, 1989b; Ohori, 1989a) whenever possible. None of these

definitions are particularly surprising, although it is worth noting that, in our

type language, free type variables within type schemes are implicitly quantified.

Definition 9 presents the definition of what Ohori refers to as a typing scheme. This

is, in more standard terminology, just a polymorphic term derivable in the type rules

of Definition 8.

A ground type assignment A is a mapping from a finite set of term variables to

Type. A type scheme assignment Γ is a mapping from a finite set of term variables

to TypSch. A substitution is a function θ from type variables to TypSch s.t. θ α �= α

for only finitely-many type variables α. We designate the natural extension of a

substitution θ to a map from TypSch to TypSch by θ∗. A ground typing is a

judgment, A � e :: τ, derivable in the rules of Definition 8. The Haskell terms

defined by the semantics are precisely the typing schemes defined in Definition 9.

Definition 9

A formula, Γ � e :: σ, is a typing scheme if, for all ground instances (A, τ) of

(Γ, σ), A � e :: τ is a ground typing. Furthermore, a typing scheme, Γ � e :: σ, is

polymorphic if σ contains a type variable.

4.2 Simple model of polymorphism for the Haskell fragment

Ohori’s simple model of ML polymorphism defines the meaning of a polymorphic

expression in terms of the type-indexed sets of denotations of its ground instances.

It is a typed semantics, meaning that the denotations are given for derivable typing

judgments of terms. We adopt this model of polymorphism for the Haskell fragment

considered here.

Before delving into the technical details, we first present an intuitive example

to motivate the approach. Consider the polymorphic term (∅ � λx.x::α→ α). Any

ground instance of this term (e.g. ∅ � λx.x::Int→ Int) has a meaning within an

appropriate frame D. Within such a D, if the elements of |Dτ→τ′ | are actually

functions from |Dτ| to |Dτ′ |, then the meaning of each of these instances is simply

the identity function at its type, idDτ
∈ |Dτ→τ|. According to the simple model of

polymorphism, the meaning of (∅ � λx.x::α→α) is just the set:

{(τ→τ, idDτ
) | τ ∈ Type}

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

848 W. L. Harrison and R. B. Kieburtz

This example illustrates the structure of Ohori’s model: a semantics of the ground

typings of a language is extended conservatively to polymorphic terms. Extending

the semantics of ground terms requires two additional data. Given a polymorphic

term (Γ � e::σ), one must determine the appropriate ground type assignments A
and ground types τ corresponding to Γ and σ, respectively. Definition 10 defines

the set of ground type assignments compatible with a type assignment Γ that may

contain free type variables, while Definition 11 specifies the set of ground types

at which instances of a polymorphic term are defined. Definition 12 conservatively

extends a semantics for the ground typings of the Haskell fragment to a semantics

for polymorphic terms in the fragment.

Definition 10

The set of admissible type assignments under Γ is:

TA(Γ) = {A | ∃ θ : FV (Γ)→Type. A = θ∗ ◦ Γ }

Intuitively, A ∈ TA(Γ) means that bindings in A are ground instances of the

corresponding bindings in Γ. For example, suppose

Γ = (x
→ (α→ Int)), A0(x) = Int→ Int and A1(x) = Char × Int

Then A0 ∈ TA(Γ) but A1 �∈ TA(Γ).

Definition 11

The set of types at which the polymorphic term (Γ � e :: σ) is defined is:

Gr(Γ � e :: σ) ⊆ (dom(Γ)→Type)× Type

Gr(Γ � e :: σ) = {(A, τ) | ∃ θ : FV (Γ)→Type. A = θ∗ ◦ Γ, τ = θ∗σ}

Several facts account for the well-definedness of Definition 12. Firstly, Gr(Γ �
e :: σ) may be considered as a mapping from ground type environments to Type

because, for any derivable Γ � e :: σ, there is a unique substitution θ : FV (Γ)→Type

such that θ∗Γ = A for any A ∈ dom(Gr(Γ � e :: σ)), where dom(−) is simply the

first projection on a set of pairs. If (A, τ), (A, τ′) ∈ Gr(Γ � e :: σ), then τ = θ∗σ = τ′.

Secondly, we note that dom(Gr(Γ � e :: σ)) = TA(Γ). And finally, we note that,

if Γ � e :: σ is derivable, then so is any ground instance of it A � e :: τ (and

(A, τ) ∈ Gr(Γ � e :: σ)).

Definition 12

[Semantics of The Haskell Fragment] Let D be any Haskell frame, (Γ � e :: σ) be

a polymorphic term in the Haskell fragment, A ∈ TA(Γ), and ρ ∈ Env(A), then

the following equation defines the semantics of polymorphic terms of the Haskell

fragment as sets of type-indexed denotations of its ground instances:

D[[Γ � e :: σ]]A ρ = { (τ,D[[A � e :: τ]] ρ) | τ = (Gr(Γ � e :: σ))A}

The denotational definition of ground typings D[[A � e :: τ]] is presented in

section 4.4.

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

The logic of demand in Haskell 849

4.3 Haskell frames

Recall that a frame for the Haskell fragment is a tuple:

〈D, •,�,�,⊥, (−)�, (−)	, c, c−1, cM, Just,Nothing, >>=, return, lift,⊕, �, []〉

together with equations specifying properties of the elements. This section considers

each of these additional structures in turn along with their properties.

4.3.1 CPO structure

The starting point for the frame semantics of Haskell is the cpo semantics of

functional programming languages (Schmidt, 1986; Gunter, 1992; Mitchell, 2000).

We assume that (ground) types are complete partial orders and that programs

are continuous functions between them. A complete partial order (cpo) is a set S

with a least element, ⊥, and a partial order � such that every ascending chain,

{xi ∈ S | xi � xi+1}, possesses a least upper bound in S ,
⊔
xi. A function f between

cpos C and D is continuous if it is monotonic (i.e., x �C y implies fx �D fy, for all

x, y ∈ C) and it preserves least upper bounds of chains (i.e., f(
⊔

ci) =
⊔

(fci)). The

cpo semantics of the typed λ-calculus with recursion are frame models (Mitchell,

2000).

4.3.2 Pointedness in Haskell

Frames corresponding to Haskell types are necessarily pointed (i.e. they have a

distinguished least element ⊥) because of the need to solve recursive equations at all

types. But Haskell’s “lazy” pattern matching and the presence of the seq operator

in the language puts further conditions on the bottom element of each frame. In the

semantics of functional programming languages, the bottom elements in domains

corresponding to constructed types (T τ1 . . . τn) (for type constructor T) are typically

defined in terms of the domains denoting τ1, . . . , τn. That is, rather than introducing

a new element, one constructs the bottom element ⊥(Tτ1 ...τn) from the existing bottom

elements ⊥τ1
, . . . , ⊥τn . For example, logical choices for ⊥ for the arrow, product, and

list type constructors are:

⊥(τ→τ′) = λi. ⊥τ′ ⊥(τ×τ′) = (⊥τ,⊥τ′) ⊥[τ] = (⊥τ:⊥[τ]) (1)

The operator seq::a→b→b, one will recall, is strict in its first argument, so that

(seq e i) will be denoted by ⊥τ′ , if i::τ
′ and e is a Haskell term denoting ⊥τ. Examples

of terms that denote bottom are the Haskell terms undefined, (error " . . . "), and any

non-terminating Haskell expression. Using seq, Haskell programs may distinguish

bottom-denoting terms from the definitions given in (1) above. Examples illustrating

this distinction are presented in Table 1. For this example, we have chosen to typify

any ⊥-denoting Haskell expression by undefined. Evaluating pair1, fun1, and intlist1

will all produce errors, because seq, being strict in its first argument, evaluates the

expression undefined. Evaluating pair2, fun2, and intlist2 all produce the integer 1,

because terms corresponding to (1) – pairBot, funBot, and intlistBot – do not denote

⊥ in their respective types. Since pair1 �= pair2, fun1 �= fun2, and intlist1 �= intlist2,

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

850 W. L. Harrison and R. B. Kieburtz

Table 1. The Haskell programs in the right column correspond to the standard domain-

theoretic constructions of ⊥, while those in the left column use the ⊥-denoting Haskell

term “undefined.” The Haskell seq operator distinguishes the two

— ⊥-denoting Haskell terms

hPairBot :: (Int, Int)

hPairBot = undefined

hFunBot :: Int→Int

hFunBot = undefined

hIntListBot :: [Int]

hIntListBot = undefined

discern x = seq x 1

pair1 = discern hPairBot

pair2 = discern pairBot

— standard constructions of ⊥
pairBot :: (Int, Int)

pairBot = (undefined, undefined)

funBot :: Int→Int

funBot = λx.undefined

intlistBot :: [Int]

intlistBot = undefined : undefined

fun1 = discern hFunBot

fun2 = discern funBot

intlist1 = discern hIntListBot

intlist2 = discern intlistBot

the standard domain constructions of ⊥ given in (1) are untenable for the Haskell

language.

A consequence of the inclusion of seq in Haskell is that we must provide axioms

specifying the difference between the constructions of (1) and the bottom element in

|Dτ|. In particular, each of the standard constructions in (1) must be strictly above

the bottom element in its frame:

⊥(τ×τ′) � (⊥τ,⊥τ′)

⊥(τ→τ′) � λx. ⊥τ′

⊥[τ] � (⊥τ:⊥[τ])

Furthermore, there must be no elements “in between”:

x � (⊥τ,⊥τ′) ⇒ (x =⊥(τ×τ′)) ∨ (x = (⊥τ,⊥τ′)), for all x ∈ |D(τ×τ′)|
x � λx. ⊥τ′ ⇒ (x =⊥(τ→τ′)) ∨ (x = λx. ⊥τ′), for all x ∈ |D(τ→τ′)|
x � (⊥τ:⊥[τ]) ⇒ (x =⊥[τ]) ∨ (x = (⊥τ:⊥[τ])), for all x ∈ |D[τ]|

4.3.3 Currying and uncurrying

We assume the existence of operators curry and uncurry:

()� ∈ |D(τ1×...×τn→τ)→(τ1→...→τn→τ)|
()	 ∈ |D(τ1→...→τn→τ)→(τ1×...×τn→τ)|

The curry and uncurry operators in each frame obey the following equations:

(f)� = f, for f ∈ |Dτ1→...→τn→τ|
(g�)	 = g, for g ∈ |Dτ1×...×τn→τ|

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

The logic of demand in Haskell 851

Only the curry operator is used explicitly in this article (to define Haskell constructors

as curried functions), but the uncurry operator (−)	 is needed for the axiomatization

of (−)�.

4.3.4 Haskell data types

Data types in Haskell may be recursive and this, combined with Haskell’s laziness,

allows for the construction of infinite data values. Pattern-matching in Haskell,

however, is based upon only a finite portion of a structured value in a data type.

While the semantic framework presented in this section allows for solution of the

recursive domain equations associated with data type declarations the issue of

infinite data values is not germane to pattern-matching. To meet the goals of the

present article, we do not need to illustrate a model of recursive data types and have

therefore chosen to omit it.

In a Haskell data type declaration, a programmer can write strictness annotations

on the type arguments to constructors. For example, the data type declared by:

data Foo = S !Int Bool

has a single binary constructor that has a strictness annotation on its first argument.

The function denoted by the constructor S is semantically equivalent to the

abstraction:

λx.λy.seq x (S x y)

Note that many Haskell programmers might call this function “strict in its first

argument” meaning that the saturated application (S e1 e2) will denote ⊥ if e1 denotes

⊥. However, the use of the word “strict” to describe the constructor S conflicts with

the usual meaning of the term in denotational semantics (Gunter, 1992; Mitchell,

2000). Considered as a function, S being strict in its first argument would mean that

the following equation holds: S ⊥Int =⊥(Bool→Foo). Note however that (S ⊥Int) is

semantically equivalent to the abstraction, (λy.seq undefined (S undefined y)), which

is not denoted by ⊥(Bool→Foo) as noted in section 4.3.2. The two notions of strictness

could not be distinguished if Haskell lacked the seq operator. We will refer to

a function f ∈ |Dτ1→...→τn→b| (where type b is a base type) as saturation strict (or

“sat-strict” for short) in its i-th argument, if (f • v1 . . . • vn) =⊥b whenever vi =⊥τi .

4.3.5 Type frames for data constructors

Consider the Haskell data type declaration:

data T α1 . . . αn = . . . | (Ci σi,1 . . . σi,ki) | . . . (2)

where
⋃

FV (σi,j) ⊆ {α1, . . . , αn} . Following Definition 6, the denotation of this type is

a set of frame objects of the form D(T τ1 ...τn). What is the structure of these D(T τ1 ...τn)?

For each constructor Ci, we introduce the following family of functions into the

frame model:

ci ∈ |D(τi,1×...×τi,ki)→(T τ1 ...τn)|
c−1
i ∈ |D(Tτ1 ...τn)→(τi,1×...×τi,ki)|

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

852 W. L. Harrison and R. B. Kieburtz

Note that a Haskell constructor is a curried function corresponding to c
�
i . Equations

(3) and (4) specify that ci and c−1
i form an embedding-projection pair (Gunter, 1992;

Mitchell, 2000):

c−1
i ◦ ci = idDτ1×...×τn

(3)

ci ◦ c−1
i � idDT

(4)

c−1
i • (cj •�v) = ⊥τ1×...×τn for i �= j (5)

In Equation (5), Cj is a T constructor distinct from Ci and cj is its corresponding

frame function. Let Si be the set of indices of arguments for constructor Ci that are

declared with the strictness annotation “!”. Then,

⊥T � ci • (vi,1, . . . , vi,ki) where vi,l ∈ |Dτi,l | and (vl =⊥τi,l⇔ l �∈ Si) (6)

⊥T = ci • (vi,1, . . . , vi,ki) where, for at least one l ∈ Si, vl =⊥τi,l (7)

These equations determine when the bottom element in the data type T is separated

from the bottom elements of arguments of a constructor application and when

the bottom elements are coalesced. Note that, if Ci is declared without strictness

annotations, which is the default in a Haskell program, then (6) and (7) simplify to:

⊥T� ci • (⊥τi,1 , . . . ,⊥τi,ki
)

4.3.6 Representing the Maybe monad in D

The semantics of Haskell pattern-matching will be presented as a computation in

the Maybe monad (Harrison et al., 2002). We must consider the representation of

such a monadic computation in the frame semantics. A computation in the Maybe

monad is coded in the data type whose Haskell declaration is:

data Maybe α = Just α | Nothing

Following section 3.2, this polymorphic type is denoted by the following set:

{D(Maybe τ) | τ ∈ Type}

Furthermore, there are the families of functions corresponding to the Maybe

constructors:

Justτ ∈ |Dτ→Maybe τ|
Just−1

τ ∈ |DMaybe τ→τ|
Nothingτ ∈ |DMaybe τ|

Because it is an essential part of the semantics of pattern-matching, we coin the

name purifyτ for Just−1
τ . It is so named because it projects a computation into a

pure value. The actions of purify are given by equations (3) and (5) above:

purifyτ • (Justτ • v) = v for any v ∈ |Dτ|
purifyτ •Nothingτ = ⊥τ

Functions for the unit and bind of the Maybe monad – written as return and

(>>=) in concrete Haskell syntax – are also added. The syntax for the Maybe monad

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

The logic of demand in Haskell 853

within the Haskell frame mirrors the concrete syntax of Haskell, but the reader

should distinguish the two.

returnτ ∈ |Dτ→Maybe τ|
returnτ = Justτ

>>=τ,τ′ ∈ |DMaybe τ→(τ→Maybe τ′)→Maybe τ′ |
(Justτ v) >>=τ,τ′ f = f • v
Nothingτ >>=τ,τ′ f = Nothingτ′

The following three equations express the laws required of a monad. The particular

formulation we use is sometimes refered to as the Kleisli formulation of monads

(Barr & Wells, 1990). The third equation specifies the transitivity of the bind

operation:

(>>=τ,τ′ f) ◦ returnτ = f

(>>=τ,τ returnτ) = idMaybe τ

(>>=τ1 ,τ2
g) ◦ (>>=τ0 ,τ1

f) = >>=τ0 ,τ1
((>>=τ1 ,τ2

g) ◦ f)

Here, (>>=τ,τ′ f) is a right section of the binary infix operator, >>=.

Furthermore, for a data type T , defined as above in (2), the projections associated

with its constructors may be factored through a computational version of the

projection cMi :

cMi ∈ |D(Tτ1 ...τn)→Maybe(τi,1×...×τi,kn)|
cMi • ⊥(Tτ1 ...τn) = ⊥Maybe(τi,1×...×τi,kn)

cMi • (ci • (vi,1, . . . , vi,ki)) = Just • (vi,1, . . . , vi,ki) for ci • (vi,1, . . . , vi,ki) �=⊥
cMi • (cj • (vj,1, . . . , v1,kj)) = Nothing (i �= j)

c−1
i = purify ◦ cMi

4.3.7 Frame semantics of records

Records have a constructed bottom just as other data types do (see section 4.3.2)

according to the pointwise ordering. We refer to the constructed bottom of ζ,

〈m0 =⊥t0 , . . . , mn=⊥tn〉, as 〈⊥〉ζ . We then define a function, liftζ , which plays a crucial

rôle in defining the meaning of the irrefutable pattern:

liftζ : |D(Maybe ζ)|→|D(Maybe ζ)|
liftζ Nothingζ = Justζ 〈⊥〉ζ
liftζ (Justζ r) = Justζ r

liftζ ⊥(Maybe ζ) = ⊥(Maybe ζ)

We require an operator to combine a tuple of records computed in the Maybe

monad into a computation of a single record. For every tuple of record types,

ζ1, . . . , ζn, with non-overlapping field names, we define the following operation.

Subscripts may be omitted when clear from context.

⊕ζ1×...×ζn : |D(Maybeζ1×...×Maybeζn)|→|DMaybe(ζ1⊗...⊗ζn)|

⊕ (m1, . . . , mn) =

{
Nothing(ζ1⊗...⊗ζn) if ∃i ∈ [1..n]. mi = Nothingζi
Just(ζ1⊗...⊗ζn)r if ∀i ∈ [1..n]. mi = Justζi ri

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

854 W. L. Harrison and R. B. Kieburtz

where r is the record whose fields are: f = v ∈ r ⇔ ∃i ∈ [1..n]. f = v ∈ ri. When

applied to a tuple of record-typed computations in the Maybe monad, the operator

⊕ returns Nothing when any of the tuple components is Nothing.

4.3.8 Control operators: Diagrammatic Kleisli (�) and Alternation ([])

For any simple types τ, τ1, τ2, and τ3, we have the operators (�) and ([]):

(�) : |D(τ1→Maybe τ2)|→|D(τ2→Maybe τ3)|→|D(τ1→Maybe τ3)|
([]) ∈ |D(Maybe τ)→(Maybe τ)→(Maybe τ)|

These operators are defined by the following equations:

f � g = λx.(f x) >>= g Nothingτ [] y = y

(Justτ v) [] y = Justτ v

⊥(Maybe τ) [] y = ⊥(Maybe τ)

4.4 Typed semantics for the simply-typed Haskell fragment

As noted in section 4.2, the denotations of polymorphic terms we have chosen for

the Haskell fragment is a conservative extension of the semantics of ground terms.

This section presents a frame semantics for ground typings of the Haskell fragment.

Definitions 12, 13, and 14 constitute the semantics of the Haskell fragment. Please

note that we drop the “D” from the semantic function for [[−]] in the remainder of

the article.

Definition 13 (Typed Semantics for Patterns)

Let A �pat p :: τ→ζ be a derivable typing of pattern p, then the typed semantics for

the pattern fragment is:

[[A �pat p :: τ→ζ]] ∈ |Dτ→Maybe ζ |

Equations5 defining [[A �pat p :: τ→ ζ]] are:

[[A �pat x :: τ→ ζ]] = return 〈x = −〉
where 〈x = −〉 ∈ |Dτ→〈x::τ〉|

〈x = −〉 • v = 〈x = v〉
[[A �pat :: τ→ ζ]] = return 〈−〉

where 〈−〉 ∈ |Dτ→〈〉|
〈−〉 • v = 〈〉

[[A �pat (C p1 . . . pn)::τ→ζ]] = cM � (return ◦ (m1×. . .×mn)) � ⊕
[[A �pat (p1, . . . , pn)::τ→ζ]] = (return ◦ (m1×. . .×mn)) � ⊕

where f1×. . .×fn = λ(x1, . . . , xn).(f1 x1, . . . , fn xn)

mi = [[A �pat pi::τi→ζi]]

[[A �pat ∼p :: τ→ ζ]] = liftζ ◦ [[A �pat p :: τ→ ζ]]

5 We remind the reader that Kleisli composition (�) is written diagrammatic order, while function
composition (◦) is in applicative order.

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

The logic of demand in Haskell 855

Definition 14 (Typed Semantics of Ground Typings)

LetA � e :: τ be a derivable ground typing and ρ be a value environment compatible

with A; then the typed semantics for the expression fragment is:

[[A � e :: τ]]ρ ∈ |Dτ|

The equations defining [[A � e :: τ]] are:

[[A � λx.e :: τ→τ′]]ρ = f

where f • v = [[A, x::τ � e :: τ′]]ρ[x
→ v], for all v ∈ |Dτ|

[[A � e1 e2 :: τ]]ρ = ([[A � e1 :: τ′→τ]]ρ) • ([[A � e2 :: τ′]]ρ)

[[A � case e of {p1→e1; . . . ; pn→en} :: τ]]ρ = purify • ((m1 • ε) [] . . . [] (mn • ε))
where

ε = [[A � e :: τ′]]ρ

mi = [[A �pat pi :: τi→ζi]] � (λr. return([[A+ ζi � ei :: τi]](ρ + r)))

ρ + 〈x1 =v1, . . . , xk =vk〉 = ρ[x1
→ v1, . . . , xk
→ vk]

A+ 〈x1::τ1, . . . , xk::τk〉 =A∪ {x1::τ1, . . . , xk::τk}

[[A � undefined :: τ]]ρ = ⊥τ

5 Logic for the Haskell fragment

While the denotational semantics defines a meaning for expressions in terms of

an abstract model, a verification logic expresses static assertions about semantic

properties of expressions. An assertion in P-logic takes the form of an n-ary predicate

applied to n terms. There is a distinguished predicate symbol (===) that denotes

semantic equality of terms. Reasoning in the logic is based upon a set of proof

rules, each relating a consequent assertion to a set of possibly simpler antecedents,

called the verification conditions for the consequent. If a rule is sound, the truth of

its verification conditions is a logically sufficient condition to assure the truth of its

consequent.

P-logic is useful both for equational reasoning about expressions in a Haskell

program and for reasoning about properties other than equality. Examples of such

properties are that an expression denotes a non-bottom value in its type, or that a

list-typed expression denotes a finite list, or that an Integer-typed expression denotes

a non-zero value.

In this section, our principal goal will be to give meaning to formulas of P-logic

by relating them to the formal semantics of the Haskell fragment. In particular, we

shall prove the soundness of some basic proof rules of P-logic by showing that the

logical implications stated by these rules are valid when formulas of the logic are

interpreted in a frame semantics for the Haskell fragment.

Formalizing the semantics of all of P-logic and proving soundness of its inference

rules is a formidable task, far too much to describe in a single journal article, and one

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

856 W. L. Harrison and R. B. Kieburtz

we have not yet completed. P-logic has many predicate forms, including recursively-

defined predicates, predicates that express properties of monadic computations and

predicates derived from sections of boolean operators, that are not mentioned here.

Here, we have focused on formalizing an essential core of P-logic, limiting the scope

to predicates that assert elementary properties of expressions in the core Haskell

fragment.

We describe here only unary predicates in P-logic. The treatment of multi-place

predicates (including equality) presents no fundamental difficulty but the formal

notation needed to express the semantics of multi-place predicates is necessarily

heavier.

A unary predicate P :: Pred τ characterizes a set of terms of type τ. A slogan to

keep in mind is that unary predicates refine types. The typing of a predicate formula

in a simple typing environment, A, is derived from the typings of term constants

and data constructors that occur in the formula. Predicates, like terms, may be

polymorphically typed. In particular, the predicate constant, Univ, has the universal

type Pred α, where α is a free type variable.

Informally, a well-typed term satisfies a compatibly-typed predicate if the denota-

tion of the term belongs to the set denoted by the predicate. We shall formalize this

notion in section 5.7. We write e :: τ ::: P for the assertion that a term e satisfies

predicate P at type τ. Often, explicit typing will be omitted when stating rules of

P-logic, as suitable, generic types can be inferred from contexts.

Because function and data constructor applications are non-strict by default

in Haskell’s evaluation semantics, two notions of the strength of a predicate are

sensible. The interpretation of a predicate may be explicitly restricted by prefixing

it with the modal operator ($), to designate the strong modality of P-logic. A strong

predicate, $P :: Pred τ, is satisfied by a term, e :: τ, in value environment ρ if both e

satisfies P and in addition, the denotation of e with respect to ρ is not the bottom

element in Dτ. By convention, a predicate is interpreted in the weak modality if it is

not explicitly strengthened.

In this section we give a brief introduction to the fragment of P-logic that is

relevant to pattern-matching in Haskell. The rules have been expressed in terms

of Haskell’s surface syntax insofar as possible. However, to express logical rules

involving patterns we shall employ some algorithms that are more clearly written

using abstract syntax for Haskell expressions. In particular, strictness annotations

that may accompany the declaration of a data constructor are not apparent in

the concrete syntax of a constructor application. The abstract syntax for a data

constructor (see Fig. 1) manifests its strictness properties.

5.1 Predicates in P-logic

Atomic, unary predicates include the predicate constants, Univ and UnDef , which

are respectively satisfied by all terms and by only those terms whose denotation is

bottom.

There are four principal ways that compound predicates are formed in P-logic.

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

The logic of demand in Haskell 857

� Univ :: Pred σ � UnDef :: Pred σ

� P1 :: Pred σ1 · · · � Pk :: Pred σk
C (k) :: σ1 → · · · → σk → σ � C (k) P1 · · ·Pk :: Pred σ

� P1 :: Pred σ1 · · · � Pk :: Pred σk
� (P1, . . . , Pk) :: Pred (σ1, . . . , σk)

� P :: Pred σ1 � Q :: Pred σ2
� P → Q :: Pred (σ1 → σ2)

� P :: Pred σ
� ¬P :: Pred σ

� P :: Pred σ
� $P :: Pred σ

Fig. 2. Predicate typing rules.

data Pr = Univ {- the Universal predicate -}
| UnDef {- the Undefined predicate -}
| ConPred Name [Pr] {- pattern predicate -}
| Strong Pr {- strengthened predicate -}
| PredVar Name {- predicate variable -}
| PArrow Pr Pr {- arrow predicates -}
| TupleP red [Pr] {- tuple predicate -}
| Pneg Pr {- negated predicate -}

Fig. 3. Abstract syntax of predicates as a Haskell data type.

1. As predicates refine types, a type constructor may be implicitly lifted to act

as a predicate constructor. For example, given a predicate P :: Pred τ, we can

form a new predicate Maybe P :: Pred (Maybe τ).

2. An N-tuple of predicates forms a predicate which is satisfied by a tuple of N

Haskell expressions that satisfy the tupled predicates, pointwise.

3. The data constructors declared for data types in a Haskell program are

implicitly “lifted” to act as predicate constructors in P-logic. For example, in

the context of a program, the list constructor (:) combines an expression h of

type a and an expression t of type [a] into a new expression (h : t) of type

[a]. In the context of a formula, the same constructor combines a predicate

P and a predicate Q into a new predicate, (P : Q). This predicate is satisfied

by a Haskell expression that normalizes to a term of the form (h : t) and

whose component expressions satisfy the assertions h ::: P and t ::: Q. The

default mode of interpretation of the component predicates is weak because

the semantics of the data constructor (:) does not require evaluation of its

arguments. A nullary data constructor, such as [], is lifted to a predicate

constant.

4. The “arrow” predicate constructor is used to compose predicates that express

properties of functions. An arrow predicate P → Q is satisfied by a function-

typed expression, e, if given any argument expression e′ that satisfies P , the

application (e e′) satisfies Q. We refer to P as the domain predicate and Q as

the codomain predicate of the arrow predicate, P → Q.

Figure 2 gives typing rules for predicates. Figure 3 contains a Haskell definition

of the abstract syntax for the P-logic predicate language.

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

858 W. L. Harrison and R. B. Kieburtz

5.2 Judgment forms

A judgment form in P-logic is a relation of three components:

• a typing environment, Γ;

• a list of zero or more assertions, Π, whose conjunction is an assumption

supporting the judgment;

• a list of zero or more assertions, ∆, whose disjunction constitutes the conclusion

of the judgment.

A judgment form is written in sequent notation as Γ; Π �P ∆. When the typing en-

vironment is superfluous, as when unambiguous types of expressions and predicates

can be inferred from their structure, we shall omit the typing environment from the

sequent notation, writing just Π �P ∆.

For example, we can express a property of the function map, defined in Haskell’s

standard prelude, with the sequent

f ::: P → Q �P map f ::: $($[P] → $[Q])

In this sequent, the function symbol, f, denotes a partial function from arguments

with property P to results with property Q. (Recall from Figure 1 that the bottom

element of an arrow type in Haskell’s semantics is distinct from the standard

construction of bottom as a function.) The conclusion of the sequent asserts that

map f also denotes a function which, when applied to a normal6 list whose elements

have the property P , yields a normal list whose elements have the property Q.

A judgment formed with unary predicates resembles a typing judgment; as noted,

unary predicates refine types.

5.3 Inference rules for properties of the Haskell fragment

Inference rules of P-logic are written as relations among judgment forms. A rule is

a relation between zero or more antecedents and a single consequent judgment. In

sequent calculus style, each term-specific rule introduces a property associated with

a particular term construction into the consequent judgment. A rule may introduce

such a property either on the left or on the right of the entailment symbol (�P) in

the consequent. A right introduction rule concludes a property of the constructed

term, while a left introduction rule supports a conclusion drawn from assumptions

about the specified term construction. Left introduction rules in sequent calculus are

used to draw inferences similar to those made with so-called elimination rules of a

natural deduction style logic.

5.3.1 Abstraction and function application

A predicate P → Q is satisfied by a function-typed term whose application to an

argument with property P gives a result with property Q. The following rule asserts

6 We say that the denotation of an expression is normal if it is not the bottom element in its type.

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

The logic of demand in Haskell 859

an arrow property of a Haskell term formed by explicit abstraction:

Γ[x :: τ1]; Π, x ::: P �P e :: τ2 ::: Q

Γ; Π �P (λx -> e) :: (τ1 → τ2) ::: $(P → Q)
(8)

The typing of terms in this rule has been shown explicitly.

As an illustration, we might apply Rule (8) to verify a property of an abstraction

that gives a successor function at type Integer. An instance of the rule (in informal

notation) would be

x :: Integer; x � 0 �P (1 + x) > 0

�P (λ(x :: Integer) -> 1 + x) ::: $(!(� 0) → !(> 0))

where !(> 0) denotes a right section predicate constructed from the binary inequality

operator, (>). The antecedent clause in this example is a verification condition

that might be discharged by applying a rule that expresses a property of integer

arithmetic. We have not stated any such theory-specific rules in this paper.

Rule (8) accommodates the strictness properties of abstractions as they are

defined in Haskell. An unstrengthened domain predicate, P , does not assert that the

argument of an abstraction has a normal value. A property $(P → Q) may therefore

be satisfied by an abstraction that is not strict in its argument. To express a stronger

property, one appropriate to an abstraction whose body is strict in the abstracted

variable, we could assume an explicitly strengthened domain predicate, $P ′. In that

case, the consequent property of the strict abstraction would become $($P ′ → Q). If,

in addition, we wanted to assert that the function defined by the abstraction is total

when applied to an argument satisfying $P ′, the codomain predicate in the arrow

property would also be strengthened, as in $($P ′ → $Q′).

A rule for left introduction of an arrow property of a Haskell term is:

Π �P e′ ::: P e e′ ::: Q �P ∆

Π, e ::: $(P → Q) �P ∆
(9)

Notice that the assumption in the consequent clause cannot be weakened to e :::

P → Q, as the rule would then be unsound in the case that Q was substituted by a

strengthened predicate.

5.3.2 Application

Rule (10) is a right-introduction rule for properties of function application. Notice

that the conclusion of a strong arrow property for e1 in the first antecedent is

necessary. If the arrow property had only been weakly asserted in the conclusion of

the first antecedent, then the rule would not be valid if the predicate variable Q was

substituted by a strong property.

Π �P e1 ::: $(P → Q) Π �P e2 ::: P

Π �P e1 e2 ::: Q
(10)

A left introduction rule for application is:

e ::: P → $Q �P ∆

x ::: P , e x ::: $Q �P ∆
(11)

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

860 W. L. Harrison and R. B. Kieburtz

where x is a term variable having no free occurrence in e. In this rule, which is dual

to Rule (8), the restriction of the argument term, x, to a variable ensures that the

property assumed of the application in the consequent is valid for any argument

that satisfies the domain predicate, P .

5.3.3 Tuple predicates

A tuple predicate characterizes a property of a Haskell tuple expression. A right

introduction rule allows one to conclude such a property:

Π �P e1 ::: P1 · · · Π �P ek ::: Pk

Π �P (e1, . . . , ek) ::: $(P1, . . . , Pk)
(12)

A dual rule for left introduction applies when a property of a tupled expression is

assumed:
Π, e1 ::: P1, · · · , ek ::: Pk �P ∆

Π, (e1, . . . , ek) ::: (P1, . . . , Pk) �P ∆
(13)

5.3.4 Negated predicates

P-logic is a classical logic; however, the strength modality must be accounted for

in formulating closure axioms for predicate negation. Predicate negation is an

operation defined in terms of propositional negation of an assertion of a strengthened

predicate,

x ::: ¬P ⇔ ¬(x ::: $P)

and therefore, the proposition ⊥ ::: ¬P is true at every type.

Closure axioms for negated predicates are:

Γ �P x ::: $P , x ::: ¬P (14)

x ::: $P , x ::: ¬P �P ∆
(15)

5.3.5 Constructor application

Rules for constructor application are derived from a Haskell data type declaration. A

constructor application is lifted to a predicate constructor application by the function

conPred, given in Figure 4, where ts is a list of strictness-type pairs. Each listed pair

gives the sat-strictness of the constructor (either Lazy or Strict) and the type expected

in the corresponding argument position. When a predicate constructor lifted from

a data constructor is applied to a predicate argument, the resulting predicate is

strong if and only if at every argument position declared sat-strict for the data

constructor, a strong argument predicate is given. If the declaration of the data

constructor did not specify sat-strictness in any argument position, then by default

the lifted predicate is strong. A strong predicate formula, $C P1 . . . Pk , where C is a

data constructor of arity k, is satisfied by a term with a normal form C e1 . . . ek if

each of the ej satisfies the corresponding predicate Pj .

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

The logic of demand in Haskell 861

conPred :: E → [Pr]→ Pr

conPred (Constr n ts) prs =

let prs′ = take (length ts) prs

s = and (map (\(pr, l)→ isStrong pr || l == Lazy)

(zip prs′ (map fst ts)))

where isStrong (Strong) = True

isStrong = False

in if s then Strong (ConPred n prs′)

else ConPred n prs′

Fig. 4. Lifting constructor applications to predicates.

Rule schemes for properties of saturated applications of data constructors are

given below. Suppose Constr C [(s1, σ1), . . . , (sk, σk)] ∈ ΣT α1 ...αn . A rule scheme that

specifies properties of expressions constructed with C is:

Π �P e1 ::: P1 · · · Π �P ek ::: Pk

Π �P C e1 . . . ek ::: conPred (Constr C [(s1, σ1), . . . , (sk, σk)]) [P1 . . . Pk]
(16)

Here, 0 � k and the predicate form in the consequent of the rule is given by an

application of the function, conPred, which is defined in Figure 4. The first argument

in this application is expressed in the abstract syntax representation of a constructor

because the surface syntax does not carry the sat-strictness and arity attributes

of the constructor that are extracted from its declaration. Although we have tried

to present rules informally in terms of the surface syntax of terms and predicates

whenever possible, the formal expression of rule (16) requires abstract syntax.

Notice from its definition that conPred calculates whether a constructed property

is or is not strong. Its strength depends upon the sat-strictness attributes declared

for a data constructor, C , and whether properties of its non-sat-strict arguments are

asserted strongly.

A second rule satisfied by terms constructed with C is that for each data

constructor, B, which is distinct from C in the same data type,

Π �P C e1 . . . ek ::: ¬B Univ . . .Univ︸ ︷︷ ︸
arity of B

(17)

Rule (17) asserts that terms constructed with different data constructors are se-

mantically distinct.

There is a dual to rule (16) that expresses properties entailed by an assumed

property of a constructed term. As before, assume C to be a k-place data constructor.

Then,

Π, e1 ::: P1 · · · ek ::: Pk �P ∆

Π, C e1 . . . ek ::: $C P1 · · ·Pk �P ∆
(0 � k) (18)

This rule tells us that any conclusion supported by properties assumed of terms

e1, . . . , ek is also supported by assuming the constructor property of the constructed

term, C e1 · · · ek ::: $C P1 · · ·Pk . In fact, the assumption made in the consequent

of rule (18) is stronger than the conjoined assumptions given in the antecedent.

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

862 W. L. Harrison and R. B. Kieburtz

Consider the circumstance that the constructor, C , is sat-strict in its ith argument,

but the corresponding argument property, ei ::: Pi, is only weakly asserted in the

assumptions of the antecedent.

Rules (16) and (18) together reflect the embedding-projection property of data

constructors expressed by equations (3)–(4).

5.4 Pattern matching

Pattern-matching, as a language feature, has the attractive aspect that it offers

an intuitive interpretation of its surface syntax. However, formal reasoning about

patterns is complicated by the fact that control and binding aspects occur together,

and binding may encompass several variables at once. This section develops

algorithms for deriving predicates from Haskell patterns. The derivation associates

predicate arguments with the variables that occur in a pattern, so that a derived

pattern predicate characterizes both the control aspect of a pattern and required

properties of subterms of a matching term.

5.4.1 Pattern predicates

Because patterns may be nested to arbitrary depths, it is inconvenient to use the

syntax of patterns directly in formulating proof rules. Instead, we shall define an

algorithmic calculation of a syntactically flattened representation for patterns to

support a presentation of pattern predicates in rule schemes. This will make it easier

to account for predicate components associated with particular pattern variables

bound in a nested pattern.

Definition 15 (Pattern predicate)

The pattern predicate formed by instantiating a pattern relative to a predicate

environment is calculated by the inductively-defined Haskell function pi 7 given in

Figure 5. We use the notation π(p) in Rules (19)–(22) as shorthand for pi p to

designate a “flattened” pattern predicate constructor. A rule scheme specified with

π can be directly implemented as a rule generator, yielding a distinct rule for each

instance of a pattern or patterns in terms to which it is applied.

Intuitively, π is a function that interprets an abstract syntax term that represents

a pattern, substituting a predicate for each binding occurrence of a variable in the

pattern. The predicates to be substituted are drawn from a list given as the second

argument to π. The calculation yields a new predicate, which we refer to as a

pattern predicate. However, calculation of a pattern predicate from a pattern is not

simply a matter of substituting predicates for term variables. To obtain a predicate

that characterizes terms matching the pattern, it is also necessary to interpret

irrefutable patterns and the strictness annotations embedded in the signatures of

data constructors.

7 To make legal Haskell of the definitions in Fig. 5, the State type should be declared a newtype with a
redundant data constructor. We have omitted the data constructor from the definitions given in the
paper to economize on notational clutter.

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

The logic of demand in Haskell 863

— the pattern predicate

pi :: P → [Pred] → Pred

pi p predlist = fst (patPred p predlist)

patPred :: P → [Pred] → (Pred, [Pred])

patPred (Pvar x) preds = (pred, preds)

patPred Pwildcard preds = (Univ, preds)

patPred (Ptilde p) preds = let

l = length (fringe p)

prs = take l preds

isUniv Univ = True

isUniv = False
in

if and (map isUniv prs) then

(Univ , drop l preds)

else

patPred p preds

patPred (Ptuple pats) preds = let

(prs , preds ′) = mapS patPred pats preds

in

(Strong (TuplePred prs), preds ′)

patPred (Pcondata n lspats) preds =

let

(ss , pats) = unzip lspats

(prs , preds ′) = mapS patPred pats preds

ifStrict (Strong p) = Strong p

ifStrict Strict p = Strong p

ifStrict Lazy p = p
in

(Strong (ConPred n (zipWith ifStrict ss prs)), preds ′)

mapS f [] s = ([], s)

mapS f (x : xs) s = let (r , s ′) = f x s in mapS f xs s ′

fringe :: P → [Name]

fringe (Pvar x) = [x]

fringe (Ptuple ps) = concat (map fringe ps)

fringe (Pcondata ps) = concat (map (fringe . snd) ps)

fringe Pwildcard = []

fringe (Ptilde p) = fringe p

Fig. 5. Calculation of pattern predicates. The functions fst, snd, take, drop and zipWith are

defined in the Haskell standard prelude.

When an irrefutable pattern occurs as the first argument of π and every member

of the list of predicates that would replace variables in the pattern’s fringe (see Defn.

16) is Univ, the pattern predicate returned is Univ, regardless of the substructure

of the irrefutable pattern. Otherwise, the “skeleton” of each subpattern is fully

elaborated by π (p). In consequence, if an instance of rule (19) has non-universal

predicates among its hypotheses, then the pattern predicate in its conclusion will

characterize a normal pattern match.

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

864 W. L. Harrison and R. B. Kieburtz

As an illustration, three pattern predicates that may be calculated from the

patterns given as examples of Section 2.2.6 are shown below. For easier readability,

the patterns and the resulting pattern predicates are shown in concrete, rather than

abstract syntax representations.

π(T (S x) y) Univ Univ = $(T $(S Univ) Univ)

π(T ∼(S x) y) Univ Univ = $(T Univ Univ)

π(T ∼(S x) y) $Univ Univ = $(T $(S $Univ) Univ)

Let us focus attention on the predicates given as arguments to the pattern constructor

in the left-hand side of each of the equations above. In the first equation, both

argument predicates are Univ, which is satisfied by any term (including the term

undefined) that might be bound to the variables x and y in a pattern match.

Nevertheless, the fact that the sub-pattern S x has a data constructor at its head

mandates that in any term on which a match is to succeed, the first argument of the

data constructor T must have a normal value. Hence, the pattern predicate embeds

a strong pattern as the first argument of the (lifted) constructor, T.

Although the argument predicates are the same in the second equation as in

the first, (∼) at the front of the sub-pattern indicates that matching of this sub-

pattern will not be effective unless a value is demanded for the variable, x. Since

demand for a variable cannot be determined from a pattern (it depends upon

the evaluation context), the pattern predicate in the first argument position of the

constructor, T is Univ. The predicate derived from the pattern cannot be made more

precise.

In the third equation, the strengthed predicate $Univ is asserted of a term bound

to the variable x in a pattern match. This asserts that any value bound to x

must be non-bottom. Consequently, the second argument of the constructor T in

the pattern predicate is asserted to have a normal value matching S x, in spite

of the (∼) prefix of the pattern. The assertion that x has a strong property is, in

essence, an assertion that an actual value for x might be demanded in an evaluation

context.

Definition 16

[Fringe of a pattern] The fringe of a pattern p is the list of (distinct) variables

occurring in p, in left-to-right order. It is formally defined on the abstract syntax of

patterns by the Haskell function fringe given in Fig. 5.

The fringe of a pattern p is closely related to the record type of its codomain, as

defined in Definition 8. Specifically, if p :: τ→ ζ and ζ = {x1 : σ1, . . . , xn : σn}, then

fringe(p) is a list (without repetitions) of the variables x1, ..., xn, arranged in order of

their left-to-right occurrence within p.

5.4.2 The domain of a pattern

We define the domain of a pattern with a predicate characterizing the set of terms

matching the pattern in a non-deferred match.

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

The logic of demand in Haskell 865

Definition 17

[Pattern Domain Predicate] The domain predicate of pattern p, called Dom(p), is the

predicate defined by applying the predicate pattern constructor derived from p to a

list of Univ predicates.

Dom(p) =def π(p) Univ · · ·Univ

Notice that Dom(p) is either Univ (in case the pattern is a variable, is the wildcard

pattern, or is irrefutable) or it is a strong predicate.

The formula ¬Dom(p) asserts that a term fails to match p or is undefined. Thus,

a strengthened domain predicate disjoined with its strong complement is, in effect,

a partial definedness predicate. A term that satisfies either $Dom(p) or $¬Dom(p)

must have a normal value at every subterm necessary to evaluate a control-enabled

match with the pattern p.

5.4.3 Properties of case branches

There are two rule schemes for case branches. We write a case branch as {p → e},
where the meta-variable p represents the pattern, and e the expression in a case

branch. One rule characterizes the function of a case branch when it is tried in a

case expression whose discriminator matches its pattern:

Π, x1 ::: P1, · · · , xn ::: Pn �P e ::: Q

Π �P {p -> e} ::: π(p) P1 · · ·Pn → $Just Q
(19)

where [x1, . . . , xn] = fringe p, and a second rule characterizes its behavior when

pattern-matching fails:

Π �P {p -> e} ::: $¬Dom(p) → $Nothing (20)

Individual branches of a case expression are logically characterized by arrow

predicates, where data constructors of the Maybe data type occur in the codomain

predicate to code the success or failure of a match on the pattern of a case branch.

5.4.4 Properties of case expressions

Recall from Section 5.4 that predicates associated with the case branches of a case

expression have the form Just P, for some predicate P , or else Nothing. We refer

to such predicates as Maybe predicates. The intuition behind the Maybe predicate,

Nothing, is that no specific property can be inferred from it. It characterizes a case

expression whose result is undefined, or whose attempted evaluation results in a

run-time error.

Rules for a case expression are defined inductively, based upon a rule for a single

case branch. The base for induction is given in terms of a pseudo case expression

in the rules below. The keyword caseM does not actually belong to the Haskell

language, but is used in these rules to designate a pseudo-expression form whose

properties are expressed by Maybe predicates.

Π �P d ::: π(p) P1 · · ·Pk Π �P match ::: π(p) P1 · · ·Pk → $Just Q

Π �P caseM d of {match} ::: $Just Q
(21)

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

866 W. L. Harrison and R. B. Kieburtz

Π �P d ::: $¬Dom(p)

Π �P caseM d of {p -> e} ::: $Nothing
(22)

Notice that for an irrefutable pattern, Dom(∼p′) = Univ and thus, $¬Dom(∼p′) =

$UnDef , which is unsatisfiable. Thus the antecedent of rule (22) cannot be discharged

when p is an irrefutable pattern, as it might be if p were an ordinary constructor

pattern.

The following rules account for a Haskell case expression, without guards8.

Π �P caseM d of {match} ::: $Nothing Π �P case d of {matches} ::: Q

Π �P case d of {match; matches} ::: Q
(23)

Π �P caseM d of {match} ::: $Just P

Π �P case d of {match; matches} ::: P
(24)

where matches is a sequence of zero or more case branches.

5.5 Using P-logic

In this section, we provide three concrete examples illustrating the use of P-logic

in the specification and verification of demand-oriented Haskell programs. The

first two such examples, presented in section 5.5.1, demonstrate how pattern-match

success and failure are manifested in the logic. Section 5.5.2 presents a second,

extended example concerning the verification of a property of the client-server model

presented in the on-line Haskell tutorial (Hudak et al., 2000). This example illustrates

the formulation of a useful property along with its verification; the verification

highlights the calculation of pattern predicates and their rôle in the inference rules

of P-logic. These examples demonstrate how P-logic explains complicated demand-

related behavior in Haskell.

5.5.1 Example: pattern-matching success and failure in P-logic

Below are two sample derivations demonstrating how P-logic distinguishes pattern-

matching success and failure. The first derives a strong property of a case expression

in which there is a pattern matching the case discriminator.

� L ::: Univ � R ::: $R
(16)

� (T L R) ::: $(TUniv $R)
(16)

x ::: Univ, y ::: $R � y ::: $R

� {(T~(S x) y) -> y} ::: $(TUniv $R)→$Just $R
(19)

� caseM (T L R) of { (T~(S x) y) -> y } ::: $Just $R
(21)

� case (T L R) of { (T~(S x) y) -> y } ::: $R
(24)

The pattern property at the application of rule (21) above, which is calculated by

the function patPred given in Fig. 5, is

π(T ~(S x) y) Univ $R = $(TUniv $R)

8 It is straightforward to extend P-logic to account for case branches with guards, by using Maybe
predicates. Guards have not been included in the Haskell fragment on which this paper is based
because they add nothing essential to the exposition.

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

The logic of demand in Haskell 867

A second derivation involves a case branch that generates a pattern match failure.

The conclusion of such a derivation provides one of the antecedents needed for an

application of rule (23), which accounts for a case expression in which failure of a

pattern match causes a branch to be bypassed.

� (T L R) ::: $¬(S Univ)
(17)

� caseM (T L R) of {(S x) -> x} ::: $Nothing
(22)

It is important to note how provability in P-logic explains pattern-match failure –

there is no way of “getting rid of” the caseM construct in the conclusion. It is clear

from Rules (23) and (24) that, if the above branch is not part of some larger case

expression, then nothing further may be derived about this match failure.

5.5.2 Example: the client-server model

The example of section 5.5.1 relies upon a pattern predicate for the case match,

but the calculation of this predicate was not highlighted in either sequent proof

presented there. The next example illustrates a pattern predicate calculation.

The on-line Haskell tutorial (Hudak et al., 2000) illustrates deferred pattern-

matching with a simple client-server model. The interaction of client and server

processes is modeled by streams of requests issued by the client with responses

returned by the server. An irrefutable pattern in the definition of the client

function specifies deferred pattern matching, which makes the mutually-recursive

definitions of request and response streams well-founded.

reqs = client init resps

resps = server reqs

where

client = λ init resps ->

case resps of

∼(resp : resps ′) -> init : client (next resp) resps ′

server = λ reqs ->

case reqs of

(req : reqs ′) -> process req : server reqs ′

For simplicity, the requests and responses are both modeled as Integer-typed values

generated by the primitives

init = 0

next resp = resp

process req = req + 1

The definitions of client and server given in the tutorial have been “desugared”

here in order to put their right-hand sides into the form of an abstraction over a

case expression. Most Haskell compilers perform syntactic desugaring to reduce

the number of distinct abstract syntax constructors that must be analyzed, and a

theorem proving assistant can be expected to provide this service as well.

A client process is expected to start the interaction by issuing an initial request –

init in the example. However, the function declared above as client will return

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

868 W. L. Harrison and R. B. Kieburtz

the construction of a list only if the pattern-match on its second argument succeeds.

When the client and server processes are first started, no computation has yet been

done, and the list of responses that client expects as its second argument has not

yet been constructed. The recursion scheme shows that the list of responses will not

be constructed until the (initial) construction of a list of requests is available for

pattern-matching by the server function. Thus the pattern given in the definition

of client has been declared irrefutable, to allow an actual match to be deferred.

Had this pattern not been given the (∼) annotation, the recursive definition of reqs

and resps would be unfounded, and an expression calling for an initial prefix of

either of these lists would fail to evaluate.

The crucial property (well-foundedness) is easy to formalize in P-logic with the

assertion of the strong property that reqs evaluates to a constructed list:

reqs ::: $(Univ : Univ)

Let’s examine a few critical steps in a proof of this assertion. The definitions of

constants client, server, reqs and resps, taken directly from the program text,

are assumed as equalities in the logical context, Π, of a sequent representing the

assertion. In addition, Π may contain trivial assumptions of the form e ::: Univ,

where e is any Haskell expression. Usually, we take trivial assumptions to be implicit.

After using the assumed equalities to replace occurrences of reqs and sub-

sequently, client by their definitions in the asserted conclusion and applying rules

(10) and (8), the verification condition for the sequent representing the assertion

becomes:

Π �P {case x1 of ∼(x2 : x3) -> x0 : client (next x2) x3} ::: $(Univ : Univ) (25)

where the variables bound in the definition of client and its case match have been

renamed to fresh variables x0, x1, x2 and x3 by alpha-conversion.

Further application of rules (24) and (21) yields the following verification condition

for the case branch,

Π �P {∼(x2 : x3) -> x0 : client (next x2) x3} ::: Univ→ $Just ($(Univ : Univ)) (26)

As no nontrivial property of the case discriminator is assumed, the predicate to the

left of the arrow constructor in the verification condition above is Univ, which is the

trivial property implicitly assumed of the discriminator. A necessary condition to

discharge (26) is that under the (trivial) assumptions x2 ::: Univ and x3 ::: Univ, the

pattern property calculated of ∼(x2 : x3) is implied by Univ. This pattern property is

computed by:

patPred (Ptilde (Pcondata “: ” [(Lazy,Pvar x2), (Lazy,Pvar x3)])) [Univ,Univ] (27)

Note that, using the rules in Figure 5, the above pattern property does indeed reduce

to Univ, as every member of the list of predicate arguments is Univ and the Haskell

list constructor is lazy in both its arguments.

It is important to note how P-logic explains the use of ∼ here. Had the pattern

not been annotated with ∼, the computation of

patPred (Pcondata “: ” [(Lazy,Pvar x2), (Lazy,Pvar x3)]) [Univ,Univ]

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

The logic of demand in Haskell 869

would have yielded $(Univ : Univ) as the predicate appearing to the left of the arrow

constructor in sequent (26). Since this property is stronger than can be assumed of

an unevaluated case discriminator (x1 in sequent (25) above), an attempted proof of

the strong property of reqs would fail.

Since the pattern predicate in (27) conforms to that which is expected, rule (19)

applies to sequent (26), yielding as the final verification condition,

Π �P x0 : client (next x2) x3 ::: $(Univ : Univ) (28)

The context, Π, implicitly contains x0 ::: Univ and client (next x2) x3 ::: Univ,

thus we are left to check the logical congruence induced by the list constructor “: ”.

This data constructor inherits from its declaration in Haskell’s standard prelude

the abstract syntax representation Constr “: ” [(Lazy, a), (Lazy, [a])]. The logical

congruence, calculated by the function conPred given in Figure 4, yields

conPred (Constr “: ” [(Lazy, a), (Lazy, [a])]) [Univ,Univ]

= Strong (ConPred “: ” [Univ,Univ])

which in concrete syntax, is the asserted property $(Univ : Univ), discharging (28).

5.6 A semantic interpretation of P-logic

A model for P-logic extends a Haskell frame model by providing interpretations for

predicate constants and predicate constructors. The meanings of predicates refine

the meanings of types. The meaning of a simply typed predicate in P-logic is defined

as a characteristic predicate over the set underlying a frame that interprets the

corresponding Haskell term type, τ.

Let D[[]]τ :: Term→ Env→ |Dτ| be a meaning function that maps every τ-typed

Haskell expression to its denotation in the underlying set of a frame object, Dτ,

where Env = Var → |D|. When the model is evident from context, as when we are

only talking about a single model, the model identifier will be omitted from the

meaning function.

We shall overload the meaning-brackets notation to express the semantics of

predicate formulas at a type, τ, [[–]]τ :: Predicate → PredEnv→ Powerset |Dτ|, where

PredEnv is the type of a predicate environment that gives meanings to predicate

variables. We need predicate environments because the rules of P-logic contain

predicate variables that range over formulas.

Definition 18
A predicate assignment, ξ, is a type-indexed set of maps from predicate identifiers

to sets of denotations in the type given by the index. The type of a predicate

assignment is PredEnv ::
⋃

τ∈Type{Name → Powerset |Dτ| }. A predicate assignment

gives meanings to predicate variables in its domain at every type.

5.6.1 Strong predicates

Formulas are interpreted as characteristic predicates of sets (posets) in a type frame.

Given that the meaning of a predicate formula P of type Pred τ is a subset of the

τ-type frame, [[P]]τ ξ ⊆ |Dτ|, the interpretation of a strong predicate is

[[Strong P]]τ ξ = [[P]]τ ξ \ {⊥τ}

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

870 W. L. Harrison and R. B. Kieburtz

5.6.2 Universal predicates

The predicate constants Univ and UnDef represent the universal predicate and

the predicate satisfied only by the bottom element, in each type frame. The

interpretations of these predicates are:

[[Univ]]τ ξ = |Dτ| [[UnDef]]τ ξ = {⊥τ}
[[$Univ]]τ ξ = |Dτ|\ {⊥τ} [[$UnDef]]τ ξ = { }

5.6.3 Predicate variables

The meaning assigned to a predicate variable at a specified type is given by applying

the predicate environment map at that type to the name of the variable:

[[PredVar n]]τ ξ = ξτ n

5.6.4 Data-induced congruence predicates

The meaning of a predicate formed with a k-ary data constructor, C , at a ground

instance of a Haskell data type, T , is given by the following:

If Constr C [(s1, τ1), . . . , (sk, τk)] ∈ ΣT then

[[Conpred C [P1 · · ·Pk]]]T ξ =

{c • (t1, . . . , tk) | t1 ∈ [[P ′1]]τ1
ξ ∧ . . . ∧ tk ∈ [[P ′k]]τk ξ} ∪ {⊥}

where P ′i =

{
$Pi if si = Strict

Pi if si = Lazy

and c� ∈ |Dτ1→···→τk→T | is the semantic embedding of C

5.6.5 Arrow predicates

An arrow predicate characterizes a property of a function-typed term. We can read a

proposition such as e ::: P → Q as the assertion “when e is applied to an argument

that has property P , the application has property Q”.

[[Parrow P Q]]τ1→τ2
ξ =

{f ∈ |Dτ1→τ2
| | ∀x. x ∈ [[P]]τ1

ξ ⇒ f • x ∈ [[Q]]τ2
ξ} ∪ {⊥(τ1→τ2)}

where the function space is that of continuous functions from |Dτ1
| to |Dτ2

|.

5.6.6 Negated predicates

The meaning of a negated predicate is the complement of the meaning of the positive

predicate with respect to the frame set of its type, to which the bottom element of

the type frame is appended.

[[Pneg P]]τ ξ = (|Dτ| \ [[P]]τ ξ) ∪ {⊥τ}

5.6.7 Polymorphic predicates

The meaning of a polymorphic predicate is not given directly. Rather, a polymorph-

ically typed term is said to satisfy a compatibly typed predicate if and only if every

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

The logic of demand in Haskell 871

ground-typed instance of the term satisfies the corresponding ground-typed instance

of the predicate.

Definition 19

A well-typed predicate, P , is polymorphic in a type variable, α, if it has a typing

Γ � P :: Pred σ, where α ∈ FV (σ).

5.7 Satisfiability and validity of a sequent

This section will formalize the notion of what it means for a well-typed term to

satisfy a compatibly typed predicate, stating it in the setting of type frame semantics.

Definition 20

[Ground proposition]

Let A be a ground type environment and τ ∈ Type. If a term e and predicate

symbol P satisfy the typing judgments A � e::τ and � P ::Pred τ, where τ is the

(ground) type derived for e in A, then, A � e::τ ::: P is a ground proposition in A.

A set of propositions, Π, is ground in A (which we write as A � Π) if every π ∈ Π

is a ground proposition in A.

Definition 21

[Truth of a ground proposition in a frame model]

Let D be a Haskell frame as defined in section 4 and let A be a ground type

environment. Suppose term e and predicate symbol P satisfy the typing judgments

A � e::τ and � P ::Pred τ, respectively. Further, let ρ be an A-compatible value

assignment and ξ be a predicate assignment. We say that the ground proposition

A � e::τ ::: P is true in frame D under assignments ρ and ξ iff D[[A � e::τ]]ρ ∈
D[[P]]τ ξ. We write A;D, ρ, ξ |= Pr to express that a proposition Pr, well-typed in

A, is true in a specific frame model and environment.

Definition 22

[Ground sequent]

Let A be a ground type environment. A sequent A; Π �P ∆ is ground in A if both

A � Π and A � ∆.

Definition 23

[Polymorphic sequent]

Let Γ be a type environment containing free occurrences of type variables. A sequent

Γ; Π �P ∆ is polymorphic in FV (Γ) if for all A in TA(Γ), the sequent A; Π �P ∆ is

ground in A.

Definition 24

[Validity of a ground sequent]

Let D be a Haskell frame and A a ground type environment. A ground sequent

A; Π �P ∆ is valid for D under predicate assignment ξ if, for every A-compatible

value assignment, ρ, the following implication is true:

(∀Pr ∈ Π. A;D, ρ, ξ |= Pr) ⇒ ∃Pr ′ ∈ ∆. A;D, ρ, ξ |= Pr ′

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

872 W. L. Harrison and R. B. Kieburtz

Definition 25

[Validity of a polymorphic sequent]

Let D be a Haskell frame and Γ be a non-ground type environment. A polymorphic

sequent Γ; Π �P ∆ is valid for D under predicate assignment ξ if forall A in TA(Γ),

A; Π �P ∆ is valid for D under ξ. We write D, ξ |= ϕ to express that a polymorphic

sequent, ϕ is valid for D under ξ.

5.7.1 Satisfiability of polymorphic predicates

The typing discipline ensures that the meaning of a predicate that is polymorphic in a

type variable α cannot depend upon the structure of terms of type α. If a polymorph-

ically typed expression is specialized by a value assignment to a (polymorphically

typed) term variable and satisfies a predicate under a ground type assignment, A,

then it also satisfies the predicate when specialized by a value assignment under

another type assignment, A′. We formalize this assertion in the following lemma.

Some notation is introduced in the statement of the lemma. If e is a Haskell

term, the restriction of ρ to free variables of e is expressed as ρ ↓FV(e). Also, let

+> :: (Vars → D) × (Vars → D) → (Vars → D) be the environment-extending

function specified by the equation (ρ+> ρ′) x = if x ∈ dom(ρ′) then ρ′ x else ρ x.

Lemma 1

[Polymorphic Predicates]

Let Γ be a typing environment, σ a type scheme and suppose e :: σ is a term

well-typed in Γ and P :: Pred σ is a unary predicate.

∀A1, A2 ∈ TA(Γ).

∃!θ1. A1 = θ∗1 ◦ Γ⇒
∃!θ2. A2 = θ∗2 ◦ Γ⇒
∀ρ, ρ1, ρ2 :: Vars→ D \ {⊥}.
∀ξ :: PredEnv.

Dom(ρ1) = Dom(ρ2) = {x ∈ Vars | TV(Γ x) �= ∅} ⇒
Γ |= ρ↓FV(e) ∧ A1 |= ρ1 ↓FV(e) ∧ A2 |= ρ2 ↓FV(e)⇒

[[A1 � e :: θ∗1 σ]] (ρ+> ρ1) ∈ [[� P]]θ∗1 σ ξ

⇐⇒
[[A2 � e :: θ∗2 σ]] (ρ+> ρ2) ∈ [[� P]]θ∗2 σ ξ

The lemma asserts that satisfaction of a strong predicate by a term in any

type-respecting interpretation is independent of the value assignment made to

polymorphically typed term variables. The polymorphic typing condition on a

variable, x, is TV(Γ x) �= ∅. The type compatibility condition Γ |= ρ↓FV(e) provides

for variables that occur free in e but which are not polymorphically typed in Γ; any

such variable will have a value assigned in ρ and this assignment must be compatible

with the typing given by Γ. The restriction of value assignments ρ1 and ρ2 to non-

bottom values eliminates the possibility that one of these assignments produces

bottom while the other does not. As bottom is an element of every type, this

restriction does not limit the scope of assigned values that might distinguish types.

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

The logic of demand in Haskell 873

Proof

We consider explicitly only atomic predicates; the proof extends to formulas

constructed with predicate negation, conjunction and disjunction by an obvious

induction. For atomic predicates we shall use coinduction on the structure of

evaluation contexts that observe values manifesting the type scheme, σ.

Case σ = α: If P is satisfiable at an arbitrary type instance, it must be that

P = Univ. Thus for any type instance [τ/α] and any type-compatible valuation

assignment ρ and predicate assignment ξ, [[Γ � e :: τ]] ρ ∈ [[Γ � Univ]]τ ξ, from

which the conclusion of the lemma follows immediately.

Case σ = T α1 · · · αn = · · · |Cjσj,1 . . . σj,kj | · · · where j ∈ [1..m]. If P is satisfiable, either

P = Univ or P has the form Cj Pj,1 · · ·Pj,kj for some j ∈ [1..m]. Consider the latter

case. An expression e :: σ is observed by a case expression. Individual components

of a value constructed with a data constructor Cj are projected by expressions

case e of {Cj x1 . . . xkj → xp} for p ∈ [1..kj]. As hypotheses for coinduction, assume

the conclusion of the lemma for each of the typed assertions,

Γ � case e of {Cj x1 . . . xkj → xp} :: σp ::: Pj,p (j ∈ [1..m], p ∈ [1..kj])

As the assumed instances cover all projections from a term of the polymorphic

data type, these hypotheses support the conclusion of the lemma for any well-typed

proposition in the data type.

Case σ = σ1 → σ2: If P is satisfiable, either P = Univ or P has the form P1 → P2,

where P1 :: Pred σ1 and P2 :: Pred σ2. The former case is immediate; so consider

the latter. A value of an arrow type is observed by its applications to compatibly

typed arguments. For any term, e′, which satisfies the typing Γ � e′ :: σ1, choose type

environments A1 and A2 to instantiate the type scheme. Assume as hypotheses that

the conclusion of the lemma holds (with the same choice of type environments, A1

and A2) for both the assertions Γ � e′ :: σ1 ::: P1 and Γ � e e′ :: σ2 ::: P2. Now,

using the type frame equation at each instance of the polymorphic types gives

∀ρ, ρ1, ρ2 :: Vars→ D\{⊥}.
∀ξ :: PredEnv.

Dom(ρ1) = Dom(ρ2) = {x ∈ Vars | α ∈ TV(Γ x)} ⇒
(∀d ∈ [[� P1]]θ∗1 σ1

ξ.

[[A1 � e :: θ∗1 σ1 → θ∗1 σ2]](ρ+> ρ1) • d ∈ [[� P2]]θ∗1 σ2
ξ)

⇐⇒
(∀d ∈ [[� P1]]θ∗2 σ1

ξ.

[[A2 � e :: θ∗2 σ1 → θ∗2 σ2]](ρ+> ρ1) • d ∈ [[� P2]]θ∗2 σ2
ξ)

Since the arrow (→) is a free predicate constructor the following equality

is justified,

∀θ :: Vars→ Type. θ∗ σ1 → θ∗ σ2 = θ∗ (σ1 → σ2)

from which the semantic definition of an arrow predicate yields the conclusion of

the lemma.

Case σ = τ, where τ is a ground type. Then the conclusion holds trivially.

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

874 W. L. Harrison and R. B. Kieburtz

We conclude by coinduction that the conclusion of the lemma holds for all typed

assertions. �

Corollary 1

If a proposition e :: σ ::: P is validated by extending a value assignment, ρ, at some

ground type specialization (A, τ) ∈ Gr(Γ � e :: σ) then it is validated for ρ extended

at every such specialization.

Proof

The corollary is an immediate consequence of Lemma 1 and the enumerability of

types. �

6 Soundness of P-logic

Soundness of a logic means that all of its inference rules are coherent with its

semantics. An inference rule asserts a propositional implication of a consequent

judgment from zero or more antecedent judgment forms.

6.1 Soundness of inference rules

An inference rule is sound if the implication it states is valid for a model of the logic.

An implication is valid if it is true of a model under all type-compatible assignments

to variables.

In this section, we offer a formal definition of soundness for inference rules, then

proceed in section 6.2 to develop a reference frame model for the Haskell fragment,

against which the soundness of rules can be checked. The reference frame model is

itself specified by a Haskell module and is thus computable. Corollary 2 below will

justify the choice of an arbitrary ground typing in this model, thereby reducing the

problem of checking soundness of rules (8)–(18) to a finite, symbolic model checking

problem, which is described in subsequent sections of the paper.

Definition 26

[Rule soundness]

Let Γ be a type environment which assigns a unique type variable to each term

variable in its domain. A polymorphic rule of P-logic,

Γ; Π1 �P ∆1 · · ·Γ; Πn �P ∆n

Γ; Π �P ∆

is sound if there is a frame model, D, such that under every predicate assignment, ξ

D, ξ |= (Π1 ⇒ ∆1)⇒ · · · ⇒ (Πn ⇒ ∆n)⇒ Π ⇒ ∆

�

A rule may contain free term variables, which are implicitly universally quantified

over the scope of the entire rule. In addition, the properties asserted in a rule

are often represented by free predicate variables, also subject to implicit universal

quantification over the rule.

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

The logic of demand in Haskell 875

Many rules of P-logic, in particular those characterizing the applicative structures

and free term algebras of Haskell, are polymorphic, i.e. the types of terms and

predicates in the rule contain at least one free type variable. Corollary 1 tells us that

a polymorphic property can be observed at any type instance of a polymorphic type.

In view of Definition 26, we also have the following as a corollary to Lemma 1.

Corollary 2

The soundness of a polymorphic rule of P-logic can be observed at any ground

instance of its typing.

�

Not only does polymorphism allow the soundness of inference rules to be checked

at an arbitrarily chosen type instance, but as a consequence of model-independence

(see Lemma 8.2.5, (Mitchell, 2000)), soundness can be checked relative to any

particular frame model.

6.2 A reference frame model

The model described here is an interpreter for the Haskell fragment whose semantics

is given in Section 4. Although the semantic metalanguage used in defining the

intepreter is Haskell, care has been taken to use notation which will be recognizable

by any functional programmer. However, unlike many functional languages, Haskell

has explicit monads (Wadler, 1992). The interpreter relies on the Maybe monad

which was introduced in section 4.3.6 to model control flow among alternate match

clauses.

Figure 6 contains a description of the underlying representation of value domains

in the interpreter for the Haskell fragment considered in this paper. The interpreta-

tion function for expressions, mE, maps a typed expression and an environment to

an untyped value in the domain V. The domain V is structured as a disjoint union

of a distinguished element, Bottom, a set of tagged tuples (represented as finite lists)

of values that model elements of data types, and a set of lists of value pairs that

encode a trace representation of functions. The domain is partially ordered by a

relation (�), in which Bottom is a unique least element, strictly below every other

element of V. The partial order extends pointwise to a partial ordering on tagged

tuples. All of the interpreter functions are monotonic with respect to this order.

A list of pairs9, tc, is the trace of a function if it satisfies the constraint

∀(x1, y1), (x2, y2) ∈ tc. x1 = x2 ⇒ y1 = y2

The partial order (�) extends to traces as follows:

FT (xs) � FT (xs′)⇔ ∀x, y ∈ V. (x, y) ∈ xs⇒ (y = Bottom ∨ (x, y) ∈ xs′)

A trace is monotone if ∀x, x′ ∈ V .x � x′ ⇒ f x � f x′. On finite domains, monotone

functions preserve all limits and hence are continuous.

9 Ordinarily, a trace would be defined as a set of ordered pairs. However, a list data structure, without
repeated elements, is used in the interpreter to code a set.

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

876 W. L. Harrison and R. B. Kieburtz

— Semantic Functions for E and P

mE :: E → Env→ V

mP :: P → V → Maybe[V]

— Environments

type Name = String

type Env = Name→ V

— Domain of Values

data V = FT (V × V) {- trace represenation of function values -}
| Tagged Name [V] {- structured data -}
| Bottom {- bottom element in a pointed domain -}

— Projection out of the Maybe monad

purify :: Maybe a→ a

purify (Just x) = x

purify Nothing = Bottom

— Alternation

([]) :: (a→ Maybe b)→ (a→ Maybe b)→ (a→ Maybe b)

(f [] g) x = case f x of

Nothing → g x

Just v → Just v

Fig. 6. Semantic operators used in the reference frame model.

Note that purify is analogous to the function fromJust defined in Haskell’s standard prelude. However,

when applied to the constructor Nothing, purify returns the symbolic value Bottom, a constructor in the

data type V, whereas fromJust returns the semantic bottom of the data type.

The application operator (•) in this frame model is

(•) :: (V , V) → V

FT (tc) • v = purify (lookup v tc)

where lookup :: Eq a⇒ [(a, b)] → Maybe b is defined in Haskell’s standard Prelude

and purify is defined in Fig. 6.

6.2.1 Frame sets for Haskell types

Figure 7 gives the underlying sets of type frames for the types modeled in the

interpreter. The function mT calculates the frame set for a type. The second argument

of mT is a “strictness value” used to indicate whether a frame set is pointed (noted

by the argument value Lazy) or unpointed (noted by the argument value Strict).

The frame set for a data type is a set of representations of the saturated

applications of its data constructors to elements of the frame sets of their argument

types. These frame sets are either pointed or unpointed according to the strictness

annotation, si,j declared for each (jth) argument of a data constructor Ci. Meanings

of data constructors are given in Fig. 9.

The frame set of a finitary arrow type, τ1 → τ2 is specified in terms of monotone

traces, where traces τ1 τ2 ⊂ Powerset (|Dτ1
| × |Dτ2

|) is the relation satisfying both the

functionality and monotonicity constraints10.

10 The trace representation can also be extended to accommodate infinitary arrow types by adding the
constraint that limits of directed sets are preserved, but as the Haskell fragment considered in this
paper does not require infinitary types, the additional constraint has been omitted.

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

The logic of demand in Haskell 877

mT :: T → LS→ [V]

mT Triv Strict = [()]

mT (T τ1 · · · τp) Strict =⋃n
i=1{Tagged (name Ci) [ti,1, . . . , ti,ki] | ti,j ← mT σi,j[τ1/α1, . . . , τp/αp] si,j

for (1 � j � ki) }
where Constr Ci [(si,1, σi,1) · · · (si,ki , σi,ki)] ∈ ΣT α1 ,...,αp for (1 � i � n)

mT (τ1 → τ2) Strict = {FT tc | tc← traces τ1 τ2}
where ∀tc :: [(V , V)]. tc ∈ traces τ1 τ2 ⇔

(∀t1 ∈ (mT τ1 Lazy). ∃t2 ∈ (mT τ2 Lazy). (t1, t2) ∈ tc) ∧
∀(t1, t2), (t′1, t

′
2) ∈ tc. (t1 � t′1 ⇒ t2 � t′2) ∧ (t1 = t′1 ⇒ t2 = t′2)

mT τ Lazy = {Bottom} ∪ (mT τ Strict)

Fig. 7. Frame model for a Haskell fragment: Type frame sets. (To compute type frame sets,

a Haskell implementation represents sets by lists without repeated elements.)

6.2.2 Interpreting patterns

The semantics function mP interprets patterns, as computations in the Maybe monad.

The data constructor Nothing in the codomain type designates failure of an attempt

to match the pattern with an argument value; the data constructor Just injects a list

of the component values extracted from an argument when it is deconstructed in a

successful match.

Figure 6 also displays two combinators integral to modeling case expressions and

patterns, called “fatbar” ([]) and purify. If m1 and m2 have type (V → Maybe V),

then

(m1 []m2) v =

{
(m1 v) if (m1 v) = Just v′

(m2 v) otherwise.

This is precisely the sequencing behavior necessary for modeling case expressions.

The purify operator converts a Maybe-computation into a value, sending a Nothing

to Bottom. Post-composing with purify signifies that expressions whose evaluation

produces certain pattern-match failures (e.g. exhaustion of the branches of a case

expression) ultimately denote Bottom.

Figures 8 and 9 display the semantics for patterns and expressions, mP and mE,

respectively. These semantics specialize the abstract semantics of section 4 to the

concrete representations given by the interpreter.

To confirm the assertion that the interpreter is a frame model, let’s check the

components specified in section 4.

– D, a collection of typed frame objects, is comprised of the images of ground

types under the mapping λτ ->mT τ Lazy, and subject to the partial order on

the domain V , as defined in section 6.2.

– The application operation, •, is defined in section 6.2.

– Given f :: (τ1 × τ2)→ τ3,

f� = FT {(a,FT tc) | a← mT(τ1), tc← traces τ2 τ3,

∀b ∈ mT(τ2).mE f [] • (a, b) = FT tc • b}

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

878 W. L. Harrison and R. B. Kieburtz

mP :: P → V → Maybe[V]

mP (Pvar x) v = Just[v]

mP (Pcondata n ps) (Tagged t vs) = if (n == t)

then (stuple (map (mP . snd) ps) vs)

else Nothing

mP (Pcondata n ps) Bottom = Just Bottom

mP Pwildcard v = Just []

mP (Ptilde p) v = Just (case (mP p v) of

Nothing →
take (length (fringe p)) (repeat Bottom)

Just z → z)

stuple :: [V → Maybe[V]]→ [V]→ Maybe[V]

stuple [] [] = Just []

stuple (q : qs) (v : vs) = do v′ ← q v

vs′ ← stuple qs vs

return (v′ ++ vs′)

Fig. 8. Frame model for a Haskell Fragment: Patterns.

mE :: E → Env→ V

mE (Var x) ρ = ρ x

mE (Constr n ts) ρ = constrFun n ts []

mE (Case e ms) ρ = mcase ρ ms (mE e ρ)

mE (Abs (x :: τ) e ρ = FT [(v, mE e ρ[x
→ v]) | v ← mT τ Lazy]

mE (App e1 e2 ρ) = let FT tc = mE e1 ρ

in purify (lookup (mE e2 ρ) tc)

mE Undefined ρ = Bottom

constrFun n [] vs = Tagged n vs

constrFun n ((s, τ) : ts) vs = FT [(x, y) | x← mT τ s,

y ← constrFun n ts (vs ++[x])]

match :: Env→ (P , E)→ V → Maybe V

match ρ (p, e) = (mP p) � (Just ◦ (\vs→ mE e (extL ρ xs vs)))

where xs = fringe p

extL ρ [] [] = ρ

extL ρ (x : xs) (v : vs) = extL (ρ[x
→v]) xs vs

mcase :: Env→ [(P , E)]→ V → V

mcase ρ ms = purify ◦ (fatbarL (map (match ρ) ms))

fatbarL :: [V → Maybe V]→ V → Maybe V

fatbarL ms = foldr ([]) (\ → Just Bottom) ms

Fig. 9. Semantics of a Haskell Fragment: Expressions.

– Given g :: τ1 → τ2 → τ3,

g	 = FT {((a, b), c) | a← mT(τ1), b← mT(τ2), c = (mE g [] • a) • b}

– For a data constructor, Cn, the interpreting semantic function is cn = mE Cn [].

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

The logic of demand in Haskell 879

– The pattern function for a data constructor, Cn is cMn = mP ◦ (Pcondata n).

– c−1
n = purify • cMn

– The interpreter uses the monadic operators defined for the Maybe monad in

Haskell.

– The operator ⊕ is interpeted by the function stuple, which is defined in Fig. 8.

Tuples of computations typed in the Maybe monad are represented as lists. The

Kleisli composition (�) and alternation operators are programmed analogously

to their definitions in section 4.

6.3 Finite models for Haskell types

In this section, we consider the type constructions of the Haskell fragment, to show

how each type or type construction can be represented by a finite type in which to

model some rule of P-logic.

In checking any rule, the principle followed is to choose the simplest ground type

possible to instantiate each type variable of a polymorphically typed term. Thus,

for instance, to check rule (8) for abstraction introduction, notice that the rule is

polymorphic in each of the two type meta-variables, τ1 and τ2, that are combined to

form the arrow type. Thus we can choose to check the rule at the type Triv→ Triv,

in which each type meta-variable has been instantiated to Triv, forming the simplest

instance of an arrow type.

Notice that we do not require a recursive datatype constructor, such as List,

to check soundness of the rules given in this paper. It is not necessary to choose

a recursively defined type because none of the basic rules of P-logic concludes

assertions that depend explicitly or implicitly on fixed-points. In particular, terms

specific to data types occur only in rules (16)–(19). The terms in these rules contain

no explicitly nested occurrences of data constructors and thus, soundness of these

rules can be checked at a ground instance of the type

data StrictOption a = Cstrict ! a | Clazy a

which includes both a data constructor sat-strict in its argument and a non-sat-strict

constructor. We return in section 6.5.1 to take up the soundness of rule (19), in

which patterns may implicitly be nested.

6.4 Modeling predicates

When a ground type instance of the terms in a rule has been chosen, the typing

of every predicate in the rule is also determined. To check soundness of the rule,

we simulate all type-compatible value assignments to term variables and predicate

assignments to the predicate variables that occur in the rule.

At every type we have the predicates Univ, $Univ, UnDef and $UnDef . Notice

however, that no information can be gotten from the assignment of Univ, as this

predicate contains every element of the corresponding type’s frame set, nor from the

assignment of $UnDef , which is unsatisfied by any element of the frame set.

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

880 W. L. Harrison and R. B. Kieburtz

In addition to the interpretations of $Univ and UnDef , interpretations are required

for predicates at a particular type. For instance, for the arrow type, Triv→ Triv, the

needed predicate interpretations are:

$($Univ → $Univ) = {FT [((), ())]}
$($Univ → Univ) = {FT [((),Bottom)], FT [((), ())]}
$(Univ→ $Univ) = {FT [(Bottom), ()), ((), ())]}
$(Univ→ Univ) = {FT [(Bottom,Bottom), ((),Bottom)],

FT [(Bottom,Bottom), ((), ())], FT [(Bottom, ()), ((), ())]}

Notice that the non-monotonic function trace FT [(Bottom, ()), ((),Bottom)] is not

generated as a member of any predicate interpretation.

The interpretation of $Univ at the type Triv → Triv is the union of the strong,

arrow-specific interpretations listed above. The interpretation of any weak predicate

is just the union of its strong interpretation with the singleton set, {Bottom}.

6.5 Automated model checking of inference rules

The interpreter given in section 6.2 provides a machine-executable frame model for

the Haskell fragment. Using the types described in section 6.3, it is straightforward

to calculate the elements of each type frame set. In this section, we describe how this

executable model has been used to check the soundness of polymorphic inference

rules by calculation.

An initial step in model-checking a polymorphic rule is the choice of a type

instance, justified by Corollary 2. Instantiating each type variable at the type Triv

meets this requirement. This is sufficient for rules (8)–(11). For rules (16)–(20), we

choose the data type StrictOption Triv.

A valuation assignment for the free term variables occurring in a rule simply

binds each variable to an element of the frame set corresponding to the type of the

variable. Universal quantification over valuation assignments is realized by iterating

through all possible value assignments, for each variable independently, at the finite

type in which the rule is to be checked.

Similarly, a predicate assignment binds a subset of the type frame set to each pre-

dicate variable that occurs free in a rule. Quantification over predicate assignments

is realized by iterating over all type-compatible predicate assignments.

At each valuation and each predicate assignment to the free variables occurring in

a rule, the truth of the propositional implication realized by that particular instance

of the rule is checked. A proposed rule is sound if all such checks succeed at the

selected type; unsound if any such rule instance is false.

For example, recall the polymorphic rule (9):

Π �P e′ ::: P e e′ ::: Q �P ∆

Π, e ::: $(P → Q) �P ∆

It can be checked under the typing assignment e′ :: Triv, e :: Triv → Triv, P , Q ::

Pred Triv. For each particular valuation assignment and predicate assignment, we

calculate the weakest context assumption, Π, and the strongest entailment, ∆, for

which both of the rule’s antecedent clauses are true. Then, using these assignments

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

The logic of demand in Haskell 881

and the calculated context assumption and entailment propositions, the truth of

the rule’s consequent is checked, using the interpretations provided by the reference

frame model to evaluate Haskell terms. The process described here is fully automated

by a Haskell program.

In checking rule (9), the assumption calculated to validate the antecedents provides

a binding for a term (the meta-variable, e′) to which e is applied in an assumption of

the second antecedent. Even though this application is not explicit in the hypothesis

of the consequent, the assumed binding is present in the valuation of Π, and

provides support for the calculated entailment. This succeeds under each valuation

and predicate assignment for which the antecedents of the rule could be validated;

thus the rule is deemed sound.

However, when the hypothesis in the consequent of the rule is weakened, as in

(Unsound)
Π �P e′ ::: P e e′ ::: Q �P ∆

Π, e ::: (P → Q) �P ∆

the rule is found to be false under the valuation assignment [(e′,Triv), (e,Bottom)]

and the predicate assignment [P = Univ, Q = $Triv]. Under these assignments,

we calculate from the antecedents a weakest context constraint (e′, ()) ∈ Π and

a strongest entailment constraint (e e′, ()) ∈ ∆. These constraints are not both

satisfiable in the consequent, under the semantics of application. Thus, had the

modified rule been proposed as a rule of P-logic, it would have been found unsound

by automated model checking and rejected.

6.5.1 Soundness of rule (19)

Rule scheme (19), which is repeated below, is polymorphic in the types of the

variables in the pattern of a case branch.

Π, x1 ::: P1, · · · , xn ::: Pn �P t ::: Q

Π �P {p -> t} ::: π(p) P1 · · ·Pn → $Just Q

It is not polymorphic in the type of a pattern itself, however, and thus soundness

of the rule cannot be checked at an arbitrarily chosen, “small” type. Since the rule

scheme accommodates nested patterns, we shall prove it sound by inducting on the

structure of a pattern. At base cases for the induction, and also for the induction

steps, the proof will make use of model-checking to verify that these cases are

valid under all well-typed value assignments to pattern variables and to predicate

variables. Model-checking can be done at a set of “small” type instances that are

assumed for the variables occurring in the pattern’s fringe.

Recall that the predicate associated with a pattern is calculated by:

π(p) preds = fst (patPred p preds)

The following lemma relates the sequence of predicate arguments consumed by

the application patPred p preds to the sequence of variables bound in a pattern,

fringe p.

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

882 W. L. Harrison and R. B. Kieburtz

Lemma 2

[Associating predicates with the fringe of a pattern]

Let p be a pattern and preds = [P1, P2, . . .] be a sequence of predicate formulas such

that length preds � length (fringe p). Then

patPred p preds =

(fst (patPred p (take (length (fringe p)) preds)), drop (length (fringe p)) preds)

The proof of Lemma 2 is by induction on the structure of a pattern. Details of the

proof are given in the Appendix.

Definition 27

[Implication ordering of predicates]

Let () ⊆ Pred × Pred be the smallest relation transitively closed under the

following:

P Univ

$UnDef P

$P P

P Q⇒ $P $Q

P1 Q1 ⇒ · · · ⇒ Pk Qk ⇒ C (k) P1 · · ·Pk C (k) Q1 · · ·Qk

A ramification of the implication ordering is that in every ground type assignment,

A, and for all A-compatible assumptions, Π, if t :: τ is a well-typed term and P

and Q are ()-related predicates of type Pred τ, then

P Q⇒ Π �P t ::: P ⇒ Π �P t ::: Q

Definition 28

[Substitution of predicates for pattern variables]

subst :: Pattern→ [(Var,Pred)]→ Pred

x ‘subst‘ [(x, P)] = P

‘subst‘ prs = Univ

∼p ‘subst‘ [(x1,Univ), . . . , (xk,Univ)] = Univ where [x1, . . . , xk] = fringe p

∼p ‘subst‘ prs = p ‘subst‘ prs

Cn ‘subst‘ prs = Cn

Cn p1 · · · pk ‘subst‘ prs =

let P1 = p1 ‘subst‘ (take (length (fringe p1)) prs)

Cn P2 · · ·Pk = Cn p2 · · · pk ‘subst‘ (drop (length (fringe p1)) prs)

in Cn P1 P2 · · ·Pk

Lemma 3

[Binding of predicates for pattern variables]

Let p be a pattern and preds = [P1, P2, . . .] be a sequence of predicate formulas such

that length preds � length (fringe p). Since fringe p can contain no repeated occur-

rences of variables, the association list, zip (fringe p) (take (length (fringe p)) preds),

can be interpreted as a substitution of predicates for variables. The following

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

The logic of demand in Haskell 883

predicate relation holds for all predicate-derived patterns:

π(p) preds p ‘subst‘ zip (fringe p) (take (length (fringe p)) preds) (29)

Proof

By induction on the structure of a pattern. Details of the proof are given in the

Appendix. �

When the terms of a sequent have types restricted to Triv and the arrow types

that can be formed with Triv as a base type, all frame models that distinguish the

bottom element from the non-bottom element of Triv are equivalent. When data

types are allowed, however, the choice of a frame set having a finite cardinality at

its base types may affect the validity or satisfiablity of a sequent with respect to

that model. Note, however, that recursive data types are not required in the languge

fragment we have considered, so a data type has only finite cardinality. And as the

consequent of rule (19) doesn’t specify the arity of constructors that may occur in a

pattern, we might imagine that a data type of bounded size (number and arity of

constructors) could suffice to establish its validity or satisfiablility. That is, should

there be a counterexample to the validity (or satisfiability) of this sequent, there

must be such in a data type of bounded size.

In fact, we can choose as a prototypical data type StrictOption Triv. This type has

enough constructors to discriminate matching and non-matching patterns in a case

expression and it includes constructors both strict and non-strict in an argument

position.

Lemma 4

The following rule scheme, which is a modification of rule scheme (19), is sound.

Π, x1 ::: P1, · · · , xk ::: Pk �P t ::: Q

Π �P {p -> t} ::: p ‘subst‘ zip (fringe p) [P1 · · ·Pk] → $Just Q

where [x1, . . . , xk] = fringe p.

Proof

This rule is model-checked at the type StrictOption Triv→ MaybeTriv. Sat-strictness

or non-sat-strictness of the data constructors has no effect on the substituted

predicate pattern. �

Theorem 1

Rule scheme (19) is sound.

Proof

The conclusion follows directly from Lemma 2 and Lemma 4. As a consequence of

the predicate ordering π(p) P1 · · ·Pk p ‘subst‘ zip (fringe p) [P1 · · ·Pk], under a

predicate interpretation and value assignment for which the consequent of (19) is

valid, the consequent of the modified rule of lemma 4 is also valid. Thus soundness

of the modified rule implies soundness of rule (19). �

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

884 W. L. Harrison and R. B. Kieburtz

7 Related work

As part of the Programatica project at the Pacific Software Research Center, we

are developing both a formal basis for reasoning about Haskell programs, and

automated tools for mechanizing such reasoning.

Simon Thompson’s early effort to give a verification logic (Thompson, 1995) for

Miranda (a lazy, functional language that was a predecessor to Haskell) exposed

many of the difficulties inherent in adapting a first-order predicate calculus for use

as a verification logic. The logic for Miranda employs quantification operators that

bind variables to range only over defined terms, or over finite structures of a data

type. The meanings of such quantifiers are extra-logical; they cannot be defined in

the logic itself.

Sparkle (de Mol et al., 2001) is a verification tool for Clean (Plasmeijer &

van Eekelen, 1999), a lazy functional programming language. Sparkle is a tactical

theorem prover for a first-order logic, specialized to verifying properties of functional

programs. Expressions of the term language, Core-Clean, can be embedded in

propositions, including logical variables bound by universal or existential quantifiers.

The Sparkle logic has a notation to express an undefined value but does not provide

modalities.

In formulating P-logic, we are interested in characterizing properties of unbounded

terms of a specific abstract syntax. From the Stratego language11 we learned of data

constructor congruences, whereby the initial-algebra property of a freely constructed

data type is used to lift strategies for rewriting the arguments of a particular

construction into a homomorphic strategy for rewriting the construction itself. In

P-logic, constructor congruences are used in a similar way to synthesize predicates

satisfied by constructed terms out of predicates that characterize subterms.

A different kind of modality is used in P-logic to characterize normalization of

terms by differentiating strong and weak satisfaction criteria. The introduction of

this modality was inspired by a three-valued propositional logic, WS-logic (Owe,

1993), which conservatively extends classical propositional logic, with the notable

exception that the trivial sequent, P � P is not sound.

A modality analogous to the weak–strong modality of P-logic was introduced by

Larsen (Larsen, 1990) to discriminate must and may transitions in a process algebra.

He observed that conventional process models specify only may, or nondeterministic,

transitions and therefore, only safety properties can be stated of such a model.

By introducing must, or required transitions, it is also possible to assert liveness

properties.

Huth, Jagadeesan and Schmidt (Huth et al., 2001) generalized Larsen’s analysis

and provided a semantic interpretation of the modality in a more general framework.

Their semantic interpretation of a predicate is a pair of power-domain elements,

(P⊥, P!), where P⊥ is downward-closed and P! is upward-dense. These interpret-

ations are used in modeling may and must properties, respectively. This general

11 For more information, please refer to the Stratego homepage: www.stratego-language.org.

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

The logic of demand in Haskell 885

characterization of predicate interpretations also applies to the weak and strong

notions of predicate satisfaction that we have used in P-logic.

All programming logics must confront the issue of undefinedness because all

programming languages admit programs which are undefined for some inputs.

Among the sources of such undefinedness are non-termination, pattern-matching

failure, arithmetic errors (e.g., division by zero), etc. Partial logics – logics that

deal with undefinedness – have been studied intensely for years as a basis for

programming logics. A far from complete list includes (Owe, 1993; Gumb &

Lambert, 1996; Gumb & Lambert, 1997; Cheng & Jones, 1991; Farmer, 1995;

Gries & Schneider, 1995; Konikowska et al., 1991). For an excellent overview, the

interested reader should consult Farmer (Farmer, 1995).

8 Conclusions

The language fragment which concerns us here is the part of Haskell 98 that has to do

with demand: pattern-matching. We have presented a two succinct formalisms that

specify the denotational and axiomatic semantics of Haskell pattern-matching, which

is a surprisingly complex aspect of the language. Pattern-matching in ML (Milner

et al., 1997), for example, is comparatively much simpler. The relative complexity

of Haskell’s pattern-matching arises chiefly from Haskell’s default lazy evaluation

and from the possibility that irrefutable patterns may be embedded as sub-patterns.

Pattern-matching is essentially an eager activity, and is thus harmonious with ML’s

eager semantics.

The first part of this paper reports on part of a semantics for the whole of

Haskell 98, some of which has been reported elsewhere (Harrison et al., 2002).

One hurdle to overcome when attempting to write a formal semantics for a large

language is identifying an appropriate semantic framework in which to specify the

entire language. Haskell 98 has a number of features which have been specified at

varying levels of formality operationally, denotationally, or informally: type classes

and overloading, polymorphism, polymorphic recursion, and mixed evaluation to

name just a few. The problem we immediately confronted was: what is a sufficiently

expressive framework in which to specify the whole language? Because we wished to

use this semantics to evaluate the faithfulness of P-logic, we narrowed our selection

to denotational semantics.

However, we still faced many choices. Should we take, for instance, a purely

domain-theoretic approach? It was felt that such an approach, while clearly sufficient

in terms of expressiveness, would lack the desired level of abstraction for a standard

semantics. In other words, domain-theoretic models include considerably more

concrete representation detail than we desired. Indeed, there are many suitable

varieties of domains to model Haskell types, and calling any one of these “standard”

could hardly avoid being seen as an arbitrary choice.

Ultimately, we fastened onto frame semantics as a suitably abstract foundation

for Haskell 98. The underlying representations of frame objects (i.e., what would be

individual cpos in a domain-theoretic model) are left unspecified, constrained only

by the extra structure and their axiomatizations. This representation independence

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

886 W. L. Harrison and R. B. Kieburtz

was extremely useful in the proof of soundness, allowing us to use model-checking

over finite models of types for many rules.

Another virtue of frames as a semantic basis for Haskell 98 is their close

connection to the semantics of ML polymorphism. Ohori (Ohori, 1989b; Ohori,

1989a) demonstrated that frame semantics for simply-typed lambda calculae may

be conservatively extended in a compelling, elegant, and natural way to a semantics

for (first-order) polymorphism – precisely the variety of polymorphism found in

functional programming languages like Haskell or ML. Ohori’s semantics has a

further virtue as a basis for Haskell: the type information within denotations allows

other Haskell features to be captured. Overloading and polymorphic recursion—

both Haskell features in need of illumination—can be neatly expressed in Ohori’s

setting, although we leave this part of Haskell 98’s semantics to a sequel.

P-logic is a verification logic for all of Haskell 98, although we have only shown

here the part essential to expressing Haskell’s fine control of demand. With its two

modalities, one can formulate properties in P-logic more precisely than would be

possible if predicates could be written in only a single modality. Restricting predicates

to the weak modality would result in a partial-correctness logic, as every predicate

would be satisfied by bottom-denoting expressions as well as those denoting normal

values. If all predicates were restricted to the strong modality, only properties of

provably terminating computations could be verified. In P-logic, one can express

that a function is total; yet not every property entails the obligation to prove that a

denotation is non-bottom.

The proof rules of P-logic are sufficiently subtle that their soundness cannot easily

be confirmed by a quick, visual inspection. However, we were able to mechanize the

most detailed parts of a soundness proof by employing an executable frame model

for Haskell’s semantics to systematically check polymorphic proof rules at a simple

type. The meta-theory that supports this automatic soundness checking is one of the

contributions of this paper.

Acknowledgments

The authors wish to thank their colleagues on the Programatica project, particularly

John Matthews, Jim Hook, Mark Jones and Sylvain Conchon for their encourage-

ment and for numerous discussions on aspects of logic and Haskell semantics.

Appendix

This appendix contains proofs of Lemmas 2 and 3. Pattern terms will be presented in

their concrete syntax except when they appear as arguments of the function patPred

in the proof of Lemma 2, where abstract syntax is used.

Lemma 2

Let p be a pattern and preds = [P1, P2, . . .] be a finite sequence of predicate formulas

such that length preds � length (fringe p). Then

patPred p preds =

(fst (patPred p (take (length (fringe p)) preds)), drop (length (fringe p)) preds)

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

The logic of demand in Haskell 887

Proof

By induction on the structure of a pattern. Each equation in the definition of patPred

corresponds to one such case.

Case p = x, an individual pattern variable.

patPred (Pvar x) (P : preds)

= (P , preds)

= (fst (patPred (Pvar x) [P]), drop (length [x]) (P : preds))

Case p = , a wildcard pattern.

patPred (Pwildcard) preds

= (Univ, preds)

= (fst (patPred (Pwildcard) []), drop (length []) preds)

Case p = ∼p′, an irrefutable pattern. Recall that fringe ∼p′ = fringe p′. There are two

subcases: If take (length (fringe p′)) preds = [Univ, . . . ,Univ] then

patPred (Ptilde p′) preds

= (Univ, drop (length (fringe p′)) preds)

= (fst (patPred (Ptilde p′) (take (length (fringe p′)) preds)),

drop (length (fringe p′)) preds)

Otherwise,

patPred (Ptilde p′) preds = patPred p′ preds

for which we assume the assertion holds as a hypothesis of induction.

Case p = Cn p1 . . . pk , a pattern formed of a constructor applied to k arguments.

(The enumeration index, n, is assumed to be unique to the constructor symbol.)

Assume as a hypothesis of induction that the lemma holds for the first sub-

pattern, p1. To prove the assertion of the lemma for constructor patterns, we

appeal to an inner-level induction on the number of arguments, k. Note that

fringe (Cn p1 . . . pk) = foldr (++) [] [fringe p1, . . . , fringe pk].

Subcase k = 0. Then

patPred (Pcondata n []) preds

= (Strong (ConPred n []), preds)

= (fst (patPred (Pcondata n []) []), preds)

= (fst (patPred (Pcondata n (take 0 preds))), drop 0 preds)

Note that this satisfies the lemma.

Subcase k = j + 1. Then

patPred (Pcondata n ((s1, p1) : pats)) preds

= let (pr1, preds1) = patPred p1 preds

(prs, preds′) = patPred (Pcondata n pats) preds1

in (Strong (ConPred n (ifStrict s1 pr1 : extract pr list prs)), preds′)

From the definitions in Figure 5 we note that either ifStrict s1 p1 = p1 or, in case

s1 = Strict and p1 is not already a strong predicate, ifStrict s1 p1 lifts the predicate p1

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

888 W. L. Harrison and R. B. Kieburtz

to the strong modality. In either case, any term that satisfies ifStrict s1 p1 is assured

to satisfy p1.

As a hypothesis of the inner-level induction, assume that the lemma holds for the

pattern Pcondata n pats, where length pats = j. That is,

patPred (Pcondata n pats) preds1 =

(fst (patPred (Pcondata n pats)

(take (length (fringe (Pcondata n pats))) preds1)),

drop (length (fringe (Pcondata n pats))) preds1)

Assume as a hypothesis of the top-level induction that the lemma holds for the first

pattern, p1, giving

patPred p1 preds= (fst (patPred p1 (take (length (fringe p1)) preds),

drop (length (fringe p1)) preds)

= (pr1, preds1)

Observing that

length (fringe (Pcondata n ((s1, p1) : pats))) =

length (fringe p1) + length (fringe (Pcondata n pats))

and using the definition of patPred from Fig. 5, a straightforward algebraic

manipulation shows that the lemma is satisfied for a constructor pattern that has k

arguments. This completes the inner-level induction.

Having discharged the proof for all cases, it follows by induction on the structure

of patterns that the assertion of the lemma holds for all patterns. �

Lemma 3

Let p be a pattern and preds = [P1, P2, . . .] be a finite sequence of predicate formulas

such that length preds � length (fringe p). Since fringe p can contain no repeated

occurrences of variables, the association list, zip (fringe p) (take (length (fringe p))

preds), can be interpreted as a substitution of predicates for variables. The following

predicate relation holds for all predicate-derived patterns:

π(p) preds p ‘subst’ zip (fringe p) (take (length (fringe p)) preds)

Proof

By induction on the structure of a pattern.

Case p = x, a variable. Then fringe p = [x], π(p) [P1, . . .] = P1 and

p ‘subst’ [(x, P1)] = P1. Since P1 P1, Lemma 3 is satisfied.

Case p = , the wildcard pattern. Then π(p) preds = Univ ‘subst’ [], and the

equation in Lemma 3 is satisfied.

Case p = ∼p′, an irrefutable pattern. Then fringe p = fringe p′. There are two cases.

If take (length (fringe p)) preds) = [Univ, . . . ,Univ] then π(p) preds = Univ and the

equation in Lemma 3 is satisfied (trivially). Otherwise, π(p) preds = π(p′) preds. As

a hypothesis of induction, we assume that Lemma 3 holds for for the sub-pattern,

p′. Therefore Lemma 3 holds also for the irrefutable pattern.

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

The logic of demand in Haskell 889

Case p = C (k) p1 · · · pk , a constructor pattern. Then

fringe p = foldr (++) [] [fringe p1, . . . , fringe pk]

To carry out the proof for a constructor pattern, we introduce an inner level of

induction over the number of arguments, k.

Subcase k = 0. π(Cn) [] = $Cn Cn = Cn ‘subst’ []

Subcase k = j + 1 As a hypothesis of the outer level, structural induction, assume

the assertion of the Lemma 3 holds for the first argument pattern,

π(p1) (take (length (fringe p1)) preds)
p1 ‘subst’ zip (fringe p1) (take (length (fringe p1)) preds)

As a hypothesis of the induction on the number of arguments, assume that Lemma 3

holds for the j-argument constructor pattern:

π(Cn p2 · · · pk) (drop (length (fringe p1)) preds)
Cn p2 · · · pk ‘subst’ zip (fringe (Cn p2 · · · pk))

(drop (length (fringe p1)) preds)

A necessary condition for the above partial order is that the predicate relation holds

for the pattern predicated derived from the argument patterns:

π(pi) (take (length (fringe pi))

(drop (sum [length (fringe p1), . . . length (fringe pi−1)]) preds))

pi ‘subst’ zip (fringe pi) (take (length (fringe pi))

(drop (sum [length (fringe p1), . . . length (fringe pi−1)]) preds))

for all i ∈ [2..k]

These conditions, together with the assumed ordering relation for the predicate

derived from pattern p1 is sufficient to establish Lemma 3 for the k-argument

constructor pattern.

Thus the conclusion of the lemma follows by structural induction. �

References

Barr, M. and Wells, C. (1990) Category Theory for Computing Science. Prentice Hall.

Cheng, J. H. and Jones, C. B. (1991) On the usability of logics which handle partial functions.

Proceedings of the Third Refinement Workshop. Springer-Verlag.

de Mol, M., van Eekelen, M. and Plasmeijer, R. (2001) Theorem proving for functional

programmers. Proceedings of the 13th International Workshop on the Implementation of

Functional Programming Languages (IFL’01).

Farmer, W. M. (1995) Reasoning about partial functions. Erkenntnis, 43: 279–294.

Faxen, K.-F. (2002) A static semantics for haskell. J. Funct. Program. 12(4&5): 295–357.

Girard, J.-Y. (1972) Interprétation fonctionnelle et élimination des coupures de l’arithmétique

d’ordre supérieur. Thèse d’état, University of Paris VII.

Girard, J.-Y. (1989) Proofs and Types. Cambridge Tracts in Theoretical Computer Science,

vol. 7. Cambridge University Press.

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

890 W. L. Harrison and R. B. Kieburtz

Gries, D. and Schneider, F. B. (1995) Avoiding the undefined by underspecification. van

Leeuwen, J. (ed.), Computer Science Today: Recent Trends and Developments: Lecture Notes

in Computer Science 1000, pp. 366–373. Springer-Verlag.

Gumb, R. D. and Lambert, K. (1996) A free logical foundation for nonstrict functions.

Proceedings of the CADE-13 Workshop on the Mechanization of Partial Functions, pp. 39–

46.

Gumb, R. D. and Lambert, K. (1997) Definitions in nonstrict positive free logic. Modern

Logic, 7: 25–55.

Gunter, C. A. (1992) Semantics of Programming Languages: Structures and Techniques. MIT

Press.

Harper, R. and Mitchell, J. C. (1993) On the type structure of standard ml. ACM Trans.

Program. Lang. & Syst. (TOPLAS), 15(2): 211–252.

Harrison, W., Sheard, T. and Hook, J. (2002) Fine control of demand in Haskell. 6th

International Conference on the Mathematics of Program Construction (MPC 2002): Lecture

Notes in Computer Science 2386, pp. 68–93. Springer-Verlag.

Hindley, R. J. (1969) The principal type scheme of an object in combinatory logic. Trans. Am.

Math. Soc. 146: 29–60.

Hudak, P. (2000) The Haskell School of Expression: Learning Functional Programming through

Multimedia. Cambridge University Press.

Hudak, P., Peterson, J. and Fasel, J. (2000) A Gentle Introduction to Haskell. Haskell language

tutorial online at www.haskell.org/tutorial.

Huth, M., Jagadeesan, R. and Schmidt, D. (2001) Modal transition systems: A foundation

for three-valued program analysis. Proceedings of the European Symposium on Programming

(ESOP 2001): Lecture Notes in Computer Science 2028. Springer-Verlag.

Jones, M. P. (1999) Typing haskell in haskell. Proceedings of the 1999 Haskell Workshop pp.

68–78. Published in Technical Report UU-CS-1999-28, Department of Computer Science,

University of Utrecht.

Konikowska, B., Tarlecki, A. and Blikle, A. (1991) A three-valued logic for software

specification and validation. Fundamenta Informaticae, XIV: 411–453.

Larsen, K. G. (1990) Modal specifications. Proceedings of the International Workshop on

Automatic Verification Methods for Finite State Systems: Lecture Notes in Computer Science

407, pp. 232–246. Springer-Verlag.

MacQueen, D. B., Plotkin, G. and Sethi, R. (1984) An ideal model for recursive polymorphic

types. Information and Control, 71(1/2).

Milner, R. (1978) A theory of type polymorphism in programming languages. J. Comput. &

Syst. Sci. 17(3): 348–375.

Milner, R., Tofte, M., Harper, R. and MacQueen, D. (1997) The Definition of Standard ML

(Revised). The MIT Press.

Mitchell, J. C. and Harper, R. (1988) The essence of ML. Conference Record of the 15th Annual

ACM Symposium on Principles of Programming Languages (POPL 1988), pp. 28–46.

Mitchell, J. C. (2000) Foundations for Programming Languages. Third edn. MIT Press.

Ohori, A. (1989a) A Simple Semantics for ML Polymorphism. Proceedings of the 4th

International Conference on Functional Programming Languages and Computer Architecture

(FPCA), pp. 281–292.

Ohori, A. (1989b) A Study of Semantics, Types, and Languages for Databases and Object-

oriented Programming. PhD thesis, University of Pennsylvania.

Owe, O. (1993) Partial logics reconsidered: A conservative approach. Formal Aspects of

Computing, 5(3): 208–223.

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

The logic of demand in Haskell 891

Peyton Jones, S. (ed). (2003) Haskell 98 Language and Libraries : The Revised Report.

Cambridge University Press.

Plasmeijer, R. and van Eekelen, M. (1999) Functional programming: Keep it clean: A unique

approach to functional programming. ACM SIGPLAN Notices, 34(6): 23–31.

Reynolds, J. C. (1974) Towards a theory of type structure. Programming Symposium: Lecture

Notes in Computer Science 19, pp. 408–425. Springer-Verlag.

Schmidt, D. A. (1986) Denotational Semantics: A Methodology for Language Development.

Allyn and Bacon.

Smyth, M. B. and Plotkin, G. D. (1982) The category-theoretic solution of recursive domain

equations. SIAM J. Comput. 11(4): 761–783.

Thompson, S. (1995) A logic for miranda, revisited. Formal Aspects of Computing, 7: 412–429.

Thompson, S. (1999) Haskell: The Craft of Functional Programming. Addison-Wesley.

Wadler, P. (1992) The essence of functional programming. Conference Record of the 19th

Annual ACM Symposium on Principles of Programming Languages (POPL 1992), pp. 1–14.

https://doi.org/10.1017/S0956796805005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005666

