Note on Mental Division by Large Numbers.

By J. Taylor, M.A.
Since $\frac{A}{B}=\frac{n A}{n B}$, it is possible to divide mentally by many numbers, integral or fractional.

$$
\begin{array}{ll}
\text { Examples : } & \frac{3275}{125}=\frac{8.3275}{8.125}=\frac{26200}{1000}=26.2 ; \\
& \frac{4579}{14_{5}^{2}}=\frac{7.4579}{7.14 \%}=\frac{32053}{100}=320 \cdot 53 .
\end{array}
$$

In 1901, when I was drawing up notes on Mental Arithmetic, I looked into many text-books in search of a simple method for dividing by such numbers as $19,29,99,87$, etc., but found none. The following method, viz., that of using a multiple of ten as divisor instead of a given divisor, was then discovered by me, and I think it simple enough to be learned and practised by any one.

If it be required to divide A by D, let the quotient at any step be Q, then the product at that step will be $D Q$, and the remainder, $R=\mathbf{A}-\mathrm{DQ}$, where R cannot exceed D nor be less than zero.

Instead of working with D as divisor, take as divisor d, that multiple of ten which is nearest to D, and if, at each step, care be taken with Q, so that R never exceeds D nor is less than zero, the required quotient Q will be obtained.
Dividing by d, the remainder at any step is $r=\mathrm{A}-d \mathrm{Q}$,
and since $\quad R=A-D Q$, and $r=A-d Q_{i}$
$\mathrm{R}=r+(d-\mathrm{D}) \mathrm{Q}$.
Thus R, the remainder which would have been obtained on dividing by D , is obtained at every step by adding $(d-\mathrm{D}) \mathrm{Q}$ to r, the remainder obtained on dividing by d. The importance of obtaining \mathbf{R} correctly at each step is so great that I would suggest that the method of obtaining it in each sum be made the key-vord of that sum.

For example: In dividing by $19,29,39,49$, or 99 , the divisor used is $20,30,40,50$, or 100 , where $d-\mathrm{D}=1$, so that $R=r+Q$, and the key-word in such examples would be : Add once Q.

141

In dividing by 67,87 or 97 , the divisor used is 70,90 or 100 , where $d-\mathrm{D}=3$, and $\mathrm{R}=r+3 \mathrm{Q}$, and the key-word would be: $A d d$ three times Q.

Again, in dividing by 31,61 or 71 the divisor used would be 30,60 or 70 , where $d-\mathrm{D}=-1$, and $\mathrm{R}=r-\mathrm{Q}$, and the key-word would be: Subtract once Q.

In 43, 53,73 or 83 the key-word would be : Subtract three times Q.
The divisors used in working the following examples are printed in heavier type.

$70 \quad 67 \frac{4462182}{66599 \frac{19}{67}}$ Key-word: Add three times Q.

Divide by 70	Quot.	$r+3 Q=R$	
446	6	$26+18$	44
442	6	$22+18$	40
401	5	$51+15$	66
668	9	$38+27$	65
652	9	$22+27$	49

60	57 - 312633		100	$97 \mid 236582$	
		5484雱			24389
90	87	5628435	400	397	2847928
		$64694 \frac{5}{87}$			7173

Key-word: Subtract once Q, $\mathbf{R}=r-\mathrm{Q}$.
$1011 \frac{37636876}{3421534 \frac{2}{1 \mathrm{~T}}}$
$3031 \frac{285670357}{9215172 \frac{25}{1} 5}$

Key-word: Subtract three times $Q ; R=r-3 Q$.
$70 \quad 73 \frac{6249683}{85612 \frac{7}{63}}$
$5053 \frac{1286494}{24273 \frac{25}{53}}$.

In the following examples, the figures in large type show where special care has to be taken with Q, so that the remainder R may neither exceed the divisor D nor be less than zero.

It is evident that sums in Long Division may be much simplitied by the adoption of this method. The remainder $\mathbf{R}=r+(d-D) Q$ may be obtained mentally

$$
\begin{aligned}
& \left.\begin{array}{l}
397 \\
400
\end{array}\right) \underset{2800}{284792857}\left(717362 \frac{143}{517}\right. \\
& 689 \\
& \left.\begin{array}{ll}
\frac{400}{2923} & 479 \\
\frac{2800}{1438} & 500
\end{array}\right) \begin{array}{l}
\frac{1500}{1848479} \\
\frac{1200}{2475}
\end{array}
\end{aligned}
$$

