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TWO-POINT FORMULAE OF EULER TYPE

M. MATIC!, C. E. M. PEARCE? and J. PECARIC3

(Received 7 October, 1998)

Abstract

An analysis is made of quadrature via two-point formulae when the integrand is Lipschitz
or of bounded variation. The error estimates are shown to be as good as those found in
recent studies using Simpson (three-point) formulae.

1. Introduction and preliminaries

The simplest quadrature rule of open type is based on the well-known midpoint formula

b b —
/f(t)dt b -a)f (““’” )+( Y i, (1.1

where a < § < b (see [3, p. 71]). Another quadrature rule of this type is based on the
two-point formula

b _b-a 2a+b a+2b b—a)®
[roa=222r (250)+r (2) [+ 52w an

where a < n < b (see [3, p. 70]). Both formulae apply provided f : [a, b] — Risin
the class C?*[a, b].

For a convex function f € C%[a, b] we have f”(£) > 0, so a simple consequence
of (1.1) for such functions is the Hadamard inequality

——/f(t)dt>f( +b) (1.3)
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By the same argument, (1.2) yields

1 b 1 2a+b a+2b
—b—afaf(')dtzi[f( 3 )+f( 3 )] (14)

for any convex function f € C*{a, b].
Inequality (1.4) is tighter than (1.3) for f convex, since

1 2a+b a+2b 1 2a4+b 1 a+2b a+b
E[f( 3 )*f( 3 )]Zf(i' 3t T3 )=f( 2 )

However, we can obtain (1.4) by using (1.3) on subintervals. The latter inequality

provides
b (a+b)/2 b
/ f(t)dt:/ f(t)dt+/ f)yde

(a+b)/2

b—a 3a+b a+3b
> > [f( 2 )+f( ) )] (1.5)

On the other hand, a convex function f : [a, b] — R satisfies

fE+DD—fOfO+)-fO)

whenever x, y and z are such thatx, x +z,y,y+z€[a,b]lwithx <yandz >0
(see [11, p. 3]). In particular, the choices x = (3a + b)/4, y = (a + 2b)/3 and
z=(b—a)/12yield '

2a+b 3a+b a—+3b a+2b
r(357)-1 (337) = (557) -1 (%57)
2a+b a+2b da+b a+3b
r(3572) e (5) < (B5) 4 (557)

Combining this with (1.5) supplies (1.4).

Midpoint formulae of Euler type, based on (1.1), were treated recently in [4]. In
this paper we consider similar results related to the two-point formula (1.2).

The fundamental ingredients in our analysis are the same, namely the two identities

that is,

f<x>=—/ FOdt+ T + R () (L6)

and

b
FG) = ﬁ / FOdt+ T (6) + RE3), (w7
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which may conveniently be referred to as the extended Euler formulae and which were
established recently in [5]. Here To(x) = 0 and

m Nkl _
T, (x) = Z (7 k?) B, (; — Z) [f (k—l)(b) _f(k—l)(a)] (1.8)
k=1 .

for m > 1, while

— -l _
Rl = - L= f B; (—x ') df V(1)
[a,b]

n! b—-a

2y =@ *(x_t)_ (x_a)] (-1
RIx) = ——— /[a,b][B,, — ) -B(;— )| o

We write f[a,b] g(t) dp(2) here, as throughout the paper, to denote the Riemann-
Stieltjes integral of g with respect to a function ¢ : [a, b] — R of bounded variation
and j; b g(t)dt for the Riemann integral. The identities (1.6) and (1.7) extend the
well-known formula for the expansion of a function in terms of Bernoulli polynomials
[10, p. 17]. They hold for every function f : [a, b] — Rsuch that f "~ is continuous
and of bounded variation on [a, b] for some n > 1 and for every x € [a, b]. The
functions B, (¢) are the Bernoulli polynomials, B, = B, (0) the Bernoulli numbers and
B;(t) (k > 0) are functions of period 1 related to the Bernoulli polynomials via

and

Bi(t) = By(t), for0<t<]l,
B;(t+1)=B;(t), forteR.

The Bernoulli polynomials B, (¢) (k > 0) are uniquely determined by the identities

B,(t) =kBi_(t), k=1; Bo(t) =1 (1.9)
and
Bi(t +1) — Be(t) = kt*', k>0. (1.10)

For further details on the Bernoulli polynomials and the Bernoulli numbers, see for
example [1] or [2]. We have

Bo(t)=1, B\(t)=t—1/2, B,(t)=t*—t+1/6, By(t)=1>—-31*/2+¢/2, (1.11)

so that Bj(¢) = 1 and B;(¢) has a jump of —1 at each integer. From (1.10) it follows
that B, (1) = B,(0) = B, for k = 2, so that B;(¢) is continuous for £ > 2. Moreover,
using (1.9) we get

BY =kB_ (1), k=1 (1.12)

and this holds for every t € R when k > 3, and foreveryz € R\ Z whenk =1, 2.
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As in [4], our analysis hangs on detailed properties of the Bernoulli polynomials.
The analysis is effected via two families (Fi)i>1 and (Gi)i»1 of auxiliary functions.
The basic idea of the two-point approach is outlined in Section 2 and centres on two
two-point formulae. In Section 3 we develop the requisite results for the auxiliary
functions and in Section 4 use these to determine error estimates when integrals are
approximated by our two-point formulae. We consider integrands which are either of
bounded variation or possess a Lipschitz property. We find that the error estimates
for our current two-point procedures are as good as those obtained recently for three-
point (Simpson) procedures (see [6-9]). Finally in Section 5 we make corresponding
estimates when the domain of integration is given a general uniform partition and the
two-point formulae are repeated for quadrature.

2. Generalisations of the two-point formula

For k > 1, define the functions G(¢) and F,(¢) by

Gu(t):=B}(1/3-1+B;2/3~1), teR
and
Fu(t) := Go(t) — By, t€R,
where
By = G(0) = B,(1/3) + B, (2/3), k=>1.

The functions G,(¢) and F,(¢) are of period 1 and continuous for k > 2 and so are
determined by their behaviour on [0, 1]. This we investigate in the next section.

Let f : [a, b] > R be such that f®=D exists on [a, b] for some n > 1. We
introduce the notation

M(a,b) = b—2—a [f <2a;-b)+f (a-;Zb)].

To(a,b) ;=0 2.1

To(a,b) = b;a [Tm <2a;-b) AT (a-l;Zb)]

for 1 < m < n, where T,(x) is given by (1.8). Then

Further, define

and

m Y
Tt =33 CZL B[ ®) - @), @2

k=1
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In the theorem below we establish two formulae which we term two-point formulae

of Euler type and which play a key role in this paper.

THEOREM 1. Let f : [a, b] = R be such that f "~V is continuous and of bounded
variation on [a, b] for some n > 1. Then

/bf(t) dt = M(a, b) — T,(a, b) + R\(a, b), (2.3)
where ’
Ri(a,b) = (bz('n;)" f[ LG ( ,',:Z) df " ().
Also
/bf(t) dt = M(a, b) — T,_,(a, b) + R*(a, b), (2.4)
where ’

-, _(b—a)"/ (t—a) )
R%(a,b) = D [a'b]F,, el LUARRIOF

PROOF. Putx = (2a+b)/3, (a+2b)/3in (1.6), multiply the two resultant formulae
by (b — a)/2 and add. This produces (2.3). Formula (2.4) is obtained from (1.7) by
the same procedure.

REMARK 1. Suppose that f : [a, b] = R is such that f ™ exists and is integrable
on {a, b] for some n > 1. In this case (2.3) holds with

n b _
Ria by = &= f G,.(’ a)f‘"’(t)dt,

2(n!) b—a
while (2.4) holds with
~ (b-a) /" t—a
R*(a, b) = E,[ —— ) F™(@®ds.
@=L Rezg) 0
By direct calculation we get B, = 0, B, = —1/9, By = 0. This implies, by (2.2),
that
T T T T (b_a)Z 7 7
(@, 5)=Ti(a,5)=0, Ty(a,b)="Ta,b)=——x [Fr®o-f'@]. @5
Also
—21, 0<t<1/3
Gt =F@®)=1{-2t+1, 1/3<t<2/3; (2.6)
-2t+2, 2/3<t<1,
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(22— 1/9, 0<t<1/3

Gy(r) = {22 -2t +5/9, 1/3<t<2/3; 2.7
22 -4t +17/9, 2/3<t<1,
22, 0<t=<1/3

F(t)= {22 -2t +2/3, 1/3<t1<2/3; (2.8)
(212 — 41 +2, 2/3<t<1,

and
—-2t3 + /3, 0<t=<1/3
F(t)=Gs(t) = { =28 +32-5t/3+1/3, 1/3<t<2/3; (2.9)

| =283 + 61> - 17¢/3 +5/3, 2/3<t<l.

Applying (2.4) with n = 1, 2 yields the identities

b b—a
/ F(H)dt — M(a, b) = / Fl( )df(r)
a 2 [a,b] b—a

_(b-a) t
T4 -L,ble(b— )df ®.

Similarly, (2.4) withn = 3,4 generates the identities
(b

b .
/ f@®dt—M(a,b) - [f ®) ~ f'(@]

_ (b - a)3 t " (b - 0)4 4 m
= B L,”F<b_ )df = 48 ,/[:,,,,]F(b— )df (1).

3. The auxiliary functions

To proceed to error estimates, we need some properties of the functions G,(¢) and
F, (). As noted earlier, it is enough to know these on [0, 1].

The Bernoulli polynomials of even order are symmetric and those of odd order
skew-symmetric about 1/2, that is,

Bi(l—1) = (=1)*B,(t), O0<t<l1, k>1 3.1)
(see [1, 23.1.8]). Setting ¢ = 1/3 gives B (2/3) = (—1)*By(1/3) , so that
By = Bi(1/3) + Be (2/3) = [1 + (-D!] B.(1/3) (k= D),
which implies By_; = 0, By = 2Bx(1/3) (k > 1). Also
By(1/3) = =2"'(1-3") By, k=1, (3.2)
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(see [1, 23.1.23]), which gives

Buo1=0, By=-(1-3"%By, k=1 (3.3)
Now by (3.3) we have
Fy1(t) = Gy (1), k=1 34)
and
Fu(t) = Gu(®)+ (1 =3""By, k=1 3.5)

Further, the points 0 and 1 are zeros of F,(¢), thatis, F,,(0) = F,(1) =0(n > 1). As
we shall see below, they are the only zeros of F,(t) for n = 2k (k = 1). Also, using
(3.1) again, we get G,(1/2) = B,(5/6) + B,(1/6) = [(—1)" + 1]B,(1/6) . Hence
forn =2k —1(k > 1) we have Fy;_,(1/2) = Gyu-1(1/2) = 0.

We shall see that 0, 1/2 and 1 are the only zeros of Fy,_,(t) = Gy (¢) fork > 1.
Also note that for n = 2k (k > 1) we have

Gu (0) = Gy (1) = Byy = —(1 = 3"%)By,. (3.6)

Using [1, 23.1.24] By (1/6) = B(5/6) = 271(1 = 2'-%)(1 = 3""%)By,, k > 1, we
get

G (1/2) = 2B (1/6) = (1 = 2'"%)(1 =3By, (k2 1), 3.7
while Fou(1/2) = G (1/2) — Egk = 2(1 - 2_2k)(1 — 31-2k)82k, k>1.

LEMMA 1. Forn > 2 we have G,(1—-t) =(—1)"G,(¢) and F,(1—t) = (=1)"F,(¢),
O0<r<l.

PROOF. Since B;(t) is of period 1 and continuous for n > 2, we have forn > 2
and 0 <t < 1 that

G.(t)=B:(1/3—t)+ B*(2/3—-1)

B,(1/3—1)+ B.(2/3—-1), 0<t<1/3

={B,4/3-t)+B,(2/3-1), 1/3<1<2/3
B,(4/3—-t)+ B,(5/3 1), 2/3<t<1

and
G.(1 -0 =BX(-2/3+1)+B:(-1/3+1)

B,(1/3+ 1)+ B,(2/3+1), 0<t<1/3

=1B,(1/3+ )+ B.(—1/3+1), 1/3<t<2/3;
B,(=2/3+ 1)+ B,(—1/3+1), 2/3<t<].
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Further, using (3.1) we get

B,(1/3—-t)+B,2/3—1, 0<t<1/3;
G.(1-t)=(-1)"x{B,4/3-)+B,2/3-1), 1/3<t<2/3
B,(4/3-t)+B,(5/3—-1), 2/3<t=<1.
Since G,(¢) is continuous for n > 2, G,(1 —¢t) = (—1)"G,(#), 0 <t < 1, which

proves the first identity. Further, we have F, (t) = G,(t) — G,(0) and (—-1)"G,(0) =
G,(0), since Gy (0) = 0, so that

F,(1=1) = Gu(1 = 1) = G,(0) = (=1)"[Gn (1) ~ Gx(0)] = (=1)"F, (1),
which proves the second identity.

Note that the identities established in Lemma 1 are valid for n = 1 too except at
the points 1/3 and 2/3 of discontinuity of F,(t) = G,(2).

LEMMA 2. For k > 2 the function Gy_,(t) has no zeros in the interval (0,1/2).
The sign of this function is determined by (—1)*Gy_1(t) > 0,0 <t < 1/2.

PROOF. For k = 2, G5(¢t) is given by (2.9) and we have G5(¢) > 0 (0 < t < 1/2),
S0 our assertion is true for k = 2. Now, assume that k > 3. Then 2k — 1 > 5 and
Gy-1(2) is continuous and twice differentiable. Using (1.12) we get

G (1) = —(2k — 1) Gu2 (1)

and
G (1) = (2k = 1)(2k — 2) G35 (2). (3.8)

We know that O and 1/2 are zeros of Gy-((t). Suppose that some & € (0, 1/2)
is also a zero of Gy_1(¢). Then the derivative G),_, () must have at least one zero
B1 € (0, a) and at least one zero B, € (a, 1/2). Therefore G7,_,(t) must have at least
one zero inside (B, B;). Thus, from the assumption that G_,(t) has a zero inside
(0, 1/2), it follows from (3.8) that G;_3(¢) also has a zero inside this interval, and
so by induction G;(¢) has a zero on (0, 1/2), which we have seen not to be the case.
Hence Gy;-(t) cannot have a zero on (0, 1/2).

To determine the sign of G,,(¢), note that

G2-1(1/3) = Ba-1 (0) + Byx-1 (1/3) = Bu-1(1/3).
We have from [1, 23.1.14] that (—1)*By,_,(t) > 0 (0 < ¢t < 1/2), which implies
(=D*Gu1(1/3) = (=1)*By1(1/3) > 0.
Consequently (—1)*Gy_1(f) > 0(0 < t < 1/2).

https://doi.org/10.1017/51446181100013912 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181100013912

9] Two-point formulae 229

COROLLARY 1. For k > 2 the functions (—1)*"'Fy(t) and (—1)*"'Gyu(t) are
strictly increasing on (0, 1/2) and strictly decreasing on (1/2,1). Consequently, 0
and 1 are the only zeros of Fy/(t) in [0, 1] and

max |Fp (1)) = 2(1 = 27%)(1 = 3'"3)|By), k> 2.

1€[0,1]

Also max,cpo,1) |Gy ()] = (1 = 3'7"2%)|Byl, k > 2.

PROOF. Using (1.12) we get [(=1)*~' Fy ()] =[(=1)¥"! G2 ()] =2k (~1)* Gy (2)
and (—1)*Gy_1(t) > O0for 0 < ¢t < 1/2 by Lemma 2. Thus (—1)*"!F5(¢) and
(=1)*"' Gy (t) are strictly increasing on (0, 1/2). Also by Lemma 1, Fy (1 — ¢) =
Fyu(t) and Gy (1 — 1) = Gu(t) (0 < t < 1), which implies that (—1)*~! F5;(t) and
(=D*1Gy(t) are strictly decreasing on (1/2, 1). Further, F5(0) = F(1) = 0,
which implies that | F,(¢)| achieves its maximum at ¢ = 1/2, that is,

g}g’l(] [Far(0)] = | Fau(1/2)| = 2(1 — 2_2k)(1 - 31_2k)|BZk|-

Also
max |G (1) = max {1G(0)], |Gu(1/2)|}

= max {(1 =3By, (1 =271 - 31-2k)|BZk|}
= (1 —3""%)|Byl,

which completes the proof.
COROLLARY 2. Ifk > 2,

1 1
2 _
/ | Foroy (8| At = f |G (D) dt = %(1 -2 -3 2k)|BZk|~
0 0
Also

1
/ \Fu(0dt = Bl = (1 = 3"%)|By|  and
0
1
/ Gar ()] dt < 21Bar] = 2(1 — 32| Buyl.
0
PROOF. Using (1.12) we get
G:n(t) =-mG,_(t), m>3. 3.9

By (3.4) we have [} |Fy—1 ()| dt = [ |Gyi(1)| ds. By Lemmas 1 and 2 and (3.9)

we get
1/2 1
f Gunr(0dt] = 21Gu(1/2) ~ GO,
0

1
/ [Gu1 (D) dt =2
0
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The first assertion follows from (3.7) and (3.6).
From (3.5), (3.9) and the periodicity of G,, for m > 2, we have

1
f Fyu(s)ds = (1= 3""%*)By, = —By, (3.10)
0

by (3.3), which leads to the second assertion. Finally, we use (3.5) again and the
triangle inequality to obtain

1] 1 1
[lczm)ldt:/ |F2k(1)+§2kldt5/ | Fu(O)] dt + | Boe| = 2| B,
0 0 1]

which proves the third assertion.

4. Two-point formula error estimates

In this section we use the two-point formulae of Euler type established in Theorem 1
to prove a number of inequalities for various classes of functions.

THEOREM 2. Let f : [a, b] — R be such that f "~V is an L-Lipschitzian function
on [a, b] for some n > 1. Then

b —_ n+1
/ f@®dt —M(a, by + T,_(a, b)‘ < G-—a™
a 2(nY)

1
/ |F,(2)|dt - L. “4.1)
0
Also
(b _ a)n+l

1
e /0 |G,(2)|dt - L. 4.2)

b
/ f(&)dt — M(a, b) + T.(a, b)‘ <

PROOF. For any integrable function & : [a, b)] — R we have

b
5/ |®()|de- L, 4.3)

| e
[a.b)
since f @~1 is L-Lipschitzian. Applying (4.3) with ®(¢) = F,((t — a)/(b — a)) gives

b —a)" t—a (1) (b—a)"/‘b (t—a)
2(n!) f[,,,,,,F"(b—a) dFTrm) = 2(nY) J, Fr b—a

b — n+l 1
- (__2—(%/ |E, ()| dt - L.
. 0

de- L

Applying the above inequality, we get (4.1) from (2.4). Similarly, we can apply (4.3)
with ®(t) = G,((t — a)/(b — a)) and then use (2.3) to obtain (4.2).
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COROLLARY 3. Let f :[a,b] > R
Iff is L-Lipschitzian, then | [* f (t)dt — M(a, b)| < (5/36)(b—a)?- L
Iff' is L-Lipschitzian, then | [ f (t)dt — M(a, b)| < (1/36)(b — a)* - L
If f" is L-Lipschitzian, then

: e a)2 .
/ f(6)dt — M(a, b) — (&)~ f'@]| < g1z b~ - L
If f™ is L-Lipschitzian, then
b 2
0d—m@ b - T [0 - @] < s - L

PROOF. Using (2.6) and (2.7) we get [, |F\(#)|dr = 5/18 and f [Fa(r)|dt = 1/9,
respectively. Therefore, using (2.5) and (2.1) and applying (4.1) with n = 1 and
n = 2, we get the first and second inequalities, respectively. By Corollary 2,
[ IF(0)|dr = 13/432 and [ |F,()]d? = 13/405. The third inequality follows
from (4.1) with n = 3 and (2.5), while the fourth follows from (4.1) withn = 4
and (2.5).

REMARK 2. For a function f which is L-Lipschitzian on [a, b],

/f(t)dt [f(a);rf(b) 2f<a+b)] 5

< —(b —a)?

=3 6( a)’ -
(see [7] and [9]). This mequality is related to Simpson’s quadrature formula and gives
an error estimate for an L-Lipschitzian function on [a, b]. This may be compared

with the first inequality
a 2a+b a+2b 2
[ (552) + (52| s oo

b
/f(t)dt—

in Corollary 3. We see that, for this class of function, we have the same error
estimate for the two-point quadrature rule as for Simpson’s rule. However Simpson’s
rule requires the evaluation of f at three points, while the two-point rule requires
evaluation at two points only. Error estimates applying with the repeated use of these
formulae for a finite interval consisting of v subintervals will also agree. In that
context the Simpson scheme will involve evaluations at 2v + 1 points and our present
procedure 2v points.

COROLLARY 4. Let f : [a, b] = R be such that f "~V is L-Lipschitzian on [a, b)
Sfor some n > 2. Set Dy(a, b) := 0 and for any integer r suchthat 1 < r < n/2 define

__1 (b—a)* _l=2iyp. [fQi-Dpy _ £Qi-D
D,(a, b): ZZ R A OR SO R

i=l1
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Ifn =2k —1(k = 2), then

(b _ a)Zk

a0 2(1=272) 1 =3")|Byl - L.

b
/ f(t)dt_M(av b)+Dk—-l(as b)‘ =<

Ifn =2k (k = 2), then

b (b _ a)2k+l o
f f(@®dt —M(a, b) + Di_s(a, b)' < W(l —3") Byl - L
and
(b - a)2k+l

b
f f@)dt — M(a, b) + Di(a, b)‘ <

1 =3Byl L.
20! ( | )| Bl
PROOF. For n = 2k — 1 we have by (4.5) that 7~",,_l(a, b) = D;_y(a, b). Thus the
first inequality follows from Corollary 2 and (4.1). Moreover, for m > 2 we have that

1[”!/2] b—a)*
Tu(a,b) = 5 3 T Bu[f %0 0) - £ )]

k=1

[m/2] (b — a)Zk

=——Z G (=3B [f ) —f @], @)

where [x] denotes the greatest integer less than or equal to x. Hence we have for
n = 2k that T 1(a, b) = Dy_,(a, b) and T (a, b) = D,(a, b). The second inequality
follows from Corollary 2 and (4.1) and the third from Corollary 2 and (4.2).

REMARK 3. Suppose that f : [a, b] = Ris such that f ™ exists and is bounded on
[a, b], for some n > 1. In this case we have for all ¢, s € [a, b] that

lF 2@ = £ < If Plloo - 12 = s,

so that f ®=V is || f ™||,-Lipschitzian on [a, b]. Therefore the inequalities established
in Theorem 2 hold with L = ||f ™||. Consequently, under appropriate assumptions
on f, the inequalities from Corollary 3 hold with L = ||f|le0, lf “flocs If “lloo and
ILf " || o, respectively. A similar observation can be made for the results of Corollary 4.

In the next theorem and subsequently we denote by V?(f) the total variation of f
on [a, b].

THEOREM 3. Let f : [a, b] — R be such that f "~V is continuous and of bounded
variation on [a, b] for some n > 1. Then

b-a)y

b £ (n-1)
2(n!) e [o 1] ax |F,(0)] - Vo' (f ) (4.6)

b
/f(t)dt—M(a,b)+77.-|(a.b) <
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and

n

) b (n-1)
20 rer%g)lillG(t)l V@) @D

ff(t)dt M(a, b) + T,(a, b)]

PROOF. If ® : [a, b] — R is bounded on [a, b] and the Riemann-Stieltjes integral
f[a_ » PO Af =1 () exists, then

< max |®(1)| - V2(F V). (4.8)
tela,b)

/ (1) df V(1)
[a.b]
We apply the estimate (4.8) to ®(¢) = F,((t — a)/(b — a)) to obtain

(b—a) t =D (t—— )
2(nh) /[,f (b— ) A - L

_ b- a)"+l b g (n=1)
= 20 E{%IF(I)I Vo).

(b—a)

Vb(f (n— 1))

We now use the above inequality and (2.4) to obtain (4.6). In the same way, we apply
the estimate (4.8) to ®(¢) = G,((¢t — a)/(b — a)), and then use (2.3) to obtain (4.7).

COROLLARY S. Let f : [a,b] = R.
If f is continuous and of bounded variation on [a, b), then

< b—Ta Vab(f).

(t)dt — M(a, b)

If f' is continuous and of bounded variation on |a, b), then

b
f@)dt — M(a,b)

1
< —({b-a)- V().
< 18( j a) -V, (f)
If f” is continuous and of bounded variation on [a, b), then

(b a)2

f brgen
S@(b Y- V).

b
f f@)dt —M(a,b)—

[f'®) ~ f'@)]

If f" is continuous and of bounded variation on [a, b), then

b (b— )2
_/af(t)dt—M(a,b)— 36

’ 1 _ 4 b m
[F'®) - f()]{_——w%g(b a)* - V(™).
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PROOF. From the explicit expressions (2.6), (2.8) and (2.9), we get

max |F\ ()| = —F(1/3) = 2/3, max |F>(1)| = F2(1/3) = 2/9

1€[0,1) t€[0,1]
and

1 ) V2

3v2) 27
respectively. Therefore, using (2.5) and applying (4.6) with n = 1,2, 3, we get
respectively the first, second and third inequalities. Further, by Corollary 1,

max |F3(1)| = F; (
r€(0,1]

{el}g)l(] |F4(t)] = 13/216.
The fourth inequality follows from (4.6) with n = 4 and (2.5).

REMARK 4. It has been established in [8] (see also [9]) that

[f(a)+f(b) 2 (a+b)]' _b-a .

2 3

This inequality is related to Simpson’s quadrature formula and gives the error estimate
for a function of bounded variation on [a, b]. This may be compared with the first

inequality
l:f (2a3+b> +f (a-i;2b):| - b—a

ff(t)d <23

in Corollary 5. The comparison in Remark 2 also applies here.

)

COROLLARY 6. Let f : [a, b] = Rbesuchthat f "~V is continuous and of bounded
variation on [a, b] for some n > 2. Define D,(a,b) (r > 0) as in Corollary 4. If
n=2k—1(k>2) then

)2k—l

212k — N by £ 2k=2)
= 2[k—1)] re[g)ﬁl ua (- V' (f ).

/ f(@)ydt — M(a, b) + Di_(a, b)l

Ifn =2k (k > 2), then

y (b—a)*
(1)dt—M(a, b)+ Dy, (a, b)‘ < a0 (1-2"2)(1 —31_2k)|32k|'v,,b(f(2k—1))
and
(t)dt — M(a, b) + Di(a, b)' u—)i( 1 — 3%y By - VA(f %D)
) = 2[@0)] a '
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PROOF. The argument is similar to that used in the proof of Corollary 4. We apply
Theorem 3 and use the formulae established in Corollary 1.

REMARK 5. Suppose that f : [a, b] — R is such that f ™ € L,[a, b] for some
n > 1. In this case f ®~V is continuous and of bounded variation on [a, b] and we
have V2(f D) = [ "If ™) dt = |If @|l,. Therefore the inequalities established
in Theorem 3 hold with [|f ||, in place of V?(f *~V). A similar observation can be
made for the results of Corollaries 5 and 6.

THEOREM 4. Suppose (p, q) is a pair of conjugate exponents, which we may specify
asl <p,qg<oowithp'+q'=1orp=00,q=1,andlet f : [a,b] > R be
such that f ® € L,[a, b} for some n > 1. Then

b
/ f@0ydt —M(a, by + T,_1(a, b)| < K(n, p)(b—a)"™ 9 - |f @], (49

where K (n, p) = (1/2(m)( fy |F, ()19 dr)""?. Also

b
/ f@dt— M, b) + T(a, b)‘ < K*(n,p)(b—a)y"™* - |f PN, (4.10)

where K*(n, p) = (1/2(n)( fy 1G1(1)|7 dr)"".

PROOF. By the Holder inequality, we have
b —a)" /"F t—a FOy
2 J, "\b-a
n b
L b-a / F, t—a
- 2nYH a b—a

(b _ a)n+l/q 1 1/q .
= 2()’1') [f IFn(t)Iq dt:l "f(") "p = K(n, p)(b — a)"‘“/q"f(")”p'
‘ 0

q l/q
al e,

From this inequality, we get the estimate (4.6) from (2.4) and Remark 1. In the same
way we get the estimate (4.10) from (2.3).

REMARK 6. For p = 00 we have

1 1 . 1 1
K(n,oo):i(;!—)/0 |F,(t)l d¢ and K*(n,o00) = m/(; |G.(2)] dt.
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The results established in Theorem 4 for p = oo coincide with those of Theorem 2
with L = ||f ®||,.. Moreover, by Remark 3 and Corollary 3, we have forn = 1, 2 that
| fabf(t) dr — M(a, b)| < K(n, 00)(b — a)"*'|| f ™|, while for n = 3, 4 we have

(b—a)?
36

where K (1, 00)=5/36, K(2, 00)=1/36, K (3, 00)=13/5184, K(4, 00)=13/19440.
Further, by Remark 3 and Corollary 4, we have for k > 2 that

b
/f (1)dt—M(a, b) - [f'®=f'@)]| < K@, 00)(b—a)"*MIf ®lleos

b
f F ()t — M(a, b) + Der(a, b)| < K@k — 1,00)(b — a)* - | *D.,

b
f F () dt — M(a, ) + Der(a, b)| < K2k, 00) (b — @)™ - [If |l

and
b
/ f(0)dt — M(a, b) + Dy(a, b)| < K*(2k, 00)(b — a)™*' - || f O,
where
2(1 _ 2—2k) (1 - 31—2k)
KQRk-1, = By,
( ' 00) 20! [ Byl
_al-2% _21-2%
K (2k, = —————|B d K*(2k, < ———— |Byl.
(2k, 00) 2[20Y [Bx| an (2k, 00) < 2k)! | Byl
REMARK 7. For p = 1 define
K(n,1):= 200 g}g}f}an(t)l and K*(n,1):= 20 g}%lGn(t)I-

Then, using Remark 5 and Theorem 3, we can extend the results established in
Theorem 4 to the pair p = 1, ¢ = oco. Thus if we set 1/g = 0, then (4.9) and (4.10)
hold for p = 1. Also, by Remark 5 and Corollary 5, we have for n = 1,2 that
| [2f @) de — M(a, b)| < K(n, 1)(b = a)"||f @1, while for n = 3,4 we have

(b—a)?
36

< K(n, )b -a)If i,

b
f f@)dt — M(a, b) —

[f'®) - f'(@)]

where K(1,1) = 1/3, K(2,1) = 1/18, K(3,1) = ~/2/324, K(4, 1) = 31/10368.
Further, by Remark 5 and Corollary 6, for k > 2 we have

b
/ f () dt — M(a, b) + Dy_y(a, b)| < K(2k — 1, 1)(b — a)*7'|| f &V,
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b
/ f () dt — M(a, b) + Di_1(a, b)’ < K(2k, 1)(b — a)*||f ®®|I,

and
fbf(t) dt — M(a, b) 4 Di(a, b)| < K*(2k, 1)(b — &)*[If ||\,
where
KQk—1,1) = m‘dg]lm 101,
K@k 1= _2-221(:)! 3T 2k)|192,‘| and K*(2k, 1) = 12[_(2—3;)_:]k|32k|.

REMARK 8. For 1 < p < 00 we can easily determine

29+l 4
Kihp)= [3( :1)] ’

so that for n = 1 Theorem 4 yields

[roa-552lr (352) s (57)]

294! + 1
[3( :1)] b=a)"* "l

This may be compared with the similar inequality proved in [6] (see also [9]), related

to Simpson’s rule
()dr — [f(a)+f(b)+2f (a+b)]|

2 2
24+l + 1
6 [3(q 1)

The comparison in Remark 2 also applies here. -

q
] b=a)"™*"f'l,.

5. Quadrature formulae error estimates

Let us divide the interval [a, b] into v subintervals of equal length & = (b — a)/v.
Assume that f : [a, b] = Ris such that f #~V is continuous and of bounded variation
on [a, b], for some n > 1. We consider the repeated two-point quadrature formula

b
/ FOdt = M) = 0 (F) + 0a () 5.0)
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and the repeated modified two-point quadrature formula

b
/ f@®dt =M,(f) —a.(f) + pu(f), (5.2

where

M,(f) =) M(a+(i—h,a+ih)

i=1

h v
=32 @+ -2/H)+f@+-1/3h)]
i=1

and 0,,(f) = Yo, Tu(@a+ (i — Dh,a +ik), m = 0.
Because of (2.5) we have

o(f) =01(f) =0, (5.3)

while for m > 2, we get using (4.5) that

v [m/2]

2j
on(f) = ZIZ(;J),' [f % Va + ih) — £ 4D (a + (i — D))

1[M/2] R : v
=5 (21), By; Z fa’ D@a+ih) — f(2j—1>(a+ (i — l)h)]
i=1
1{mm X _ ' .
“ T2z =3By [P0 - Y0 @]. (5.4)
j=

The remainders p,(f) and g,(f ) can be written as
v v
pnf) =Y puf30)s Bu(f) =) ulf30), (5.5)
i=1 i=1
where, fori =1, ..., v,

a+ih
on(f30) =f f@®dte—M@+ (G—-Dh,a+ih) + 7~",._1(a+(i —Dh,a+ih)

a+(i—1)h
and
a+ih .
Pn(f 1) = [ f@Wdt—M@+ (i -1)h,a+ih)+ T,(a+ (i — 1)h,a + ih).
’ a+(i—1)h

We shall apply results from the preceding section to obtain some estimates for the
remainders p,(f ) and p,(f ). Before doing this, note that for n = 2k — 1 (k > 2), we
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have

k—1 2

ou2(f) =ou(f) = Z 2!

(1 =3"9)By; [f¥O(b) — f ¥V (a)].

Thus py—i (f ) = a1 (f ), so that (5.1) and (5.2) coincide in this case. This shows
that (5.2) is interesting only when n = 2k (k > 2). In this case we have

Pu(f) = pu(f) + ou(f) — o1 (f)

2k
= r(F) = Frn - 3By [f *7V () — £ *V(a)].

In fact we have gy _»(f) = pu(f) (k = 2).
Therefore for k > 2 we can approximate fa i f(¢t)d:t by

k-1 2

1
M,(f)+ = Z(z 5

(1 =308y [fO ") — f¥ (@],

using either (5.1) with n = 2k — 1 or (5.2) with n = 2k — 2. To obtain the error
estimate for this approximation, if we apply (5.1), then we must assume that f %2
is continuous and of bounded variation on [a, b]. To do this via (5.2), it is enough to
assume that f @*=3 js continuous and of bounded variation on [a, b]

THEOREM 5. Let f : [a, b] = R be such that f "~V is L-Lipschitzian on [a, b} for
somen > 1. Forn = 1, 2, 3, 4 we have, respectively,

b
/f(t)dt—Mu(f)ls%vth, /f(t)dt M(f)y<—vh3

abf(t)dt—Mu(f)—%[f’(b) -f (a)] < 51§4vh“L,
[bf(t)dt—MuU)—%[f’(b) fl@]| =< 19440vh5L.
Ifn=2k—1(k>2), then
1SS RY . . .
() dr - M,(f) — Z(z =3By [f %) - £ (@)
2%
< g2 - 27%)(1 — 3%)|By|L.
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Ifn =2k (k > 2), then

k—1 2j

/f(t)dt M,(f) — 12(2 )'(1—3“2")82,-[f‘zf‘”(b)—f""‘"(a)]

vh2k+l
= 5ot~ 3'2) [Bul L
and
de—M,(f) - lzk: o (1-13"- 2j)B [f(21 ”(b) f(zj")(a)]
2
2k+1

< ”(';k)! (1—3""%)|Byl L.

PROOF. Applying (4.1) and (4.2) weget fori = 1, ..., v, respectively,
n+1 1 n+l 1

lo.(f 5 )| < 200 ), |[Fa(®)ldtL and  |p.(f;i)| < 200 ) |G ()| dtL.

Using the above estimates and the triangle inequality, we get from (5.5) that

v prtl 1
1oa(F) < 3 lon(F50)] < 2 fo |Fu(n)ldeL
. i=1

2(nY)
and
d n+1
18 < D 18a(f30)] < 2( 5 |Gn(r)|er.
i=1

The rest of the argument, from (5.3) and (5.4), is as for Corollaries 3 and 4.

REMARK 9. Instead of the assumption that f “~1 is L-Lipschitzian on [a, b], we
can use the stronger assumption that £ exists and is bounded on [a, b], for some
n > 1. In this case Theorem 5 applies with L replaced by ||f || (see Remark 3).

THEOREM 6. Let f : [a, b] — R be such that f "~Y is continuous and of bounded
variation on [a, b] for some n > 1. Forn = 1,2, 3, 4 we have, respectively,

(1) dt — hV"(f), O dt — M, (f)| < Tgh2v”(f)
2
f f@dt—M, (f)——[f b -f'@]| < ;;h;‘V"(f”)
b
_/f(t)dt M(f)——[f ® ~ ' @]| < bV
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Ifn =2k — 1 (k > 2), then

1 k—1 h21 ~ ~
(t)dt M, (f) E (2 )'( 31 ZJ)B [f(2} l)(b)_f(Z] 1)(a)]
p2e-1 ax IF ol Vb(f(Zk 2y,
= 2@k = DY oy A

Ifn =2k (k > 2), then

1S, nY ‘ - -
f f@0ydr—M,(f) - Z ot =3By [f () — ¥ (@)]

2%

= @0

(1 = 27%)(1 = 3" By V2(F V)

and
k

N
ff(t)dt M, (f) - IZ(;")'( =3By [f¥D(b) — f ¥V (a)]

2%k

<
~ 2[R

(1 = 37| By V2 (f D).

PROOF. Applying (4.6) and (4.7) we getfori = 1, ..., v respectively that

n

2(nt) te [0 1]

lea (3 DI < ax | F, ()] Vit pn(F )

and

n

2(n!) « [0 11

16n(f 5 )] < X |G, ()| V;a.:-(‘,h 1)h(f(n_l))-

Using the above estimates and the triangle inequality, we get from (5.5) that

’l

2(nY) re{O 1

n

2(n') [0 l]

a1 < Yl < ax | Fy(0)] Z Ve o)

i=l1

ax | F, (1] V,(f ")

and similarly |5,(f)} < (h"/2(n!)) max,epo 1 |G, (£)]| VE(f @), We now use (5.3)
and (5.4) and argue as in Corollaries 5 and 6.

REMARK 10. If f : [a, b] = Riis such that f ™ € L,[a, b] for some n > 1, then
£ is continuous and of bounded variation on [a, b] and V(f *D) = || f®|,.
Therefore Theorem 6 applies with || f ||, in place of V>(f #~") (see Remark 5).
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THEOREM 7. Assume (p, q) is a pair of conjugate exponents. Let f : [a,b] - R
be such that f ™ € L,[a, b) for some n > 1. Then |p,(f)| < vK(n, p)h"/9| f ™|,
and |p.(f )| < vK*(n, p)h™*'/4| f ™|, where K (n, p) and K*(n, p) are defined as
in Theorem 4.

PROOF. Fori = 1,...,vlet gi(t) = f™ (), t € [a+ (i — 1)h,a + ik). Then
lig:ll, < If ®|,, where the norm || g; ||, is taken over the interval [a+ (i — 1)k, a+ih],
while the norm || f ™|, is taken over the interval [a, b]. Applying (4.9) and (4.10) and
using the above inequality, we get fori =1, ..., v that

loa(f 3 i) < K (n, pYH™ 7 Nlgill, < K (n, pYR"17)|f @,
and

15:(f s DI < K*(n, pYR"* ) gill, < K*(n, pYR™19| £ @ .
The result follows from (5.5) by the triangle inequality.

In the following discussion we assume that f : [a,b] — R has a continuous
derivative of order n, for some n > 1. In this case we can use (2.4) and the second

formula from Remark 1 to obtain, fori =1, ..., v, that
Rt ot t—a—((—Dh
pa(f 30) = = Fn( )f("’(t)dt
¢ 2(nh a+(i~1)h h
hn+l 1
= Fou(9)f™(@+ (i — Dh + hs)ds.
2("!) 0

Therefore we get by (5.5) that

hn+l 1
P(f) = 200 fo F.(s)®,(s) ds, (5.6)
where
D(s) =) f™a+(—Dh+hs), 0<s<1. (5.7)

Similarly, we get 5,(f) = (h"*!/2(n!)) fol G,(s)P,(s)ds. Obviously, ®,(s) is con-
tinuous on [0, 1] and

1 14
f On(s)ds = k™'Y " [f D@+ ih) — F" @+ (i — h)]

0 i=1

= ! [f(n—l)(b) _f("—l)(a)] . (58)
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From the discussion at the beginning of this section, the most interesting case is the
repeated two-point quadrature formula of Euler type (5.1) for n = 2k (k > 2), which
can be rewritten as

h¥
@i
+ pu(f). (5.9

The empty sum for k = 1 is taken as zero.

1 k-1

b
f,. fFOd=M)+5)]

j=1

('1 _ 31—2j)82j [f (2j—1)(b) _f(2j—l)(a)]

THEOREM 8. If f : [a, b] — R is such that f ®® is continuous on [a, b}, for some
k > 1, then there exists a point n € [a, b) such that

2%+41
— _Rl-2% @k
pu(f) = v2[(2k)!](1 37)BuS (). (5.10
PROOF. Using (5.6), we can rewrite o, (f ) as
(o, hEH
pu(f) = (=1) 20T Jk, (5.11){
where .
1
Jo= [ D Eu©)@uts) ds (5.1
0

If m = minepgyf @), M = max.pgs f ®(t), then we get from (5.7) that
vm < Py (s) < vM,0 < s < 1. On the other hand, (2.8) and Corollary 1 give

(—1)*'Fu(s) >0, 0<s<l,

which implies vm [ (—1)*~* Fy(s) ds < J < vM J; (=1)*"' Fy(s) ds. Using (3.10)
we have vm(—1) By, < J, < vM(—1)*B,. By the continuity of f ®®(s) on [a, b],
it follows that there must exist a point 5 € [a, b] such that J, = v(—1)* §2,J @b (),
Combining this with (5.11) and (3.3) gives (5.10).

REMARK 11. The repeated two-point quadrature formula of Euler type (5.9) is a
generalisation of the two-point formula (1.2). Namely, from (5.10) for k = 1 and
v =1 we get p,(f) = ((b — a)*/36)f "(n) and (5.9) reduces to (1.2).

THEOREM 9. If f : [a, b] — R is such that f ®® is continuous on [a, b), for some
k > 1, and does not change sign on [a, b, then there exists a point 6 € [0, 1] such
that
U

h
pu(f) = 9(2k)!

(1=27MA =3By [f* B - f*P@].  (.13)
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PROOF. Suppose that f ®¥(¢) > 0, a <t < b. Then from (5.7) we get ®5(s) > 0,
0 < 5 < 1. It follows from Corollary 1 that 0 < (—=1)*"' Fy(s) < (=1)* ' Fyu(1/2),
0 < s < 1. Therefore if J; is given by (5.12),0 < J, < (=1)* 1 Fy(1/2) fol @y (s) ds.
Using (5.8), we get

0= Jp < (-D*"2(1 =271 = 3" Byh™' [f *V (@) - f *V(a)],
which means that there must exist a point 8 € [0, 1] such that
Je=0(=DF"2(1 =271 = 3" Byh ! [f *D(B) - £ *V(0)].

Combining this with (5.11) gives (5.13). When f @Y (¢) < 0(a <t < b) the argument
is the same, since in that case we get

(1121 = 27%)(1 = 32 Byh™ [f *D(b) — £ *D(a)] < J <O

REMARK 12. If we approximate [ f (r)dt by

k—1

1 h2j 1-2j 2j-b @2j-1)
IZk(f)=Mv(f)+EZ(2j)' (1=3"%) By [f¥ ) - f¥ @],
j=t '

then the next approximation will be I5.,(f ). The difference Ay (f) 1= Iy (f) —
I (f) is equal to the last term in the sum in I, (f ), that is,

2k
2[(201

We see that, under the assumptions of Theorem 9, 05, (f ) and A (f) are of the same
sign. Moreover, we have pu(f) = 26(1 — 272*) Ay (f), which yields the simple
estimate | o2 (f )| < 2}Ay(f)| for the remainder oo (f ).

Au(f) = (1 =3"*)Bu [f* ) — F* P (@)]. (5.14)

THEOREM 10. Suppose that f : [a,b] — R is such that f ®**? is continuous
on [a, b), for some k > 1. If for each x € [a, b], f ®(x) and f ®*+P(x) are either
both nonnegative or both nonpositive, then the remainder py(f ) has the same sign
as the first neglected term Ay (f ) given by (5.14). Moreover, we have the estimate

o2 (F)] = [An(f)I.
PROOF. We have Ay (f) + par+2(f) = pu(f), that s,

Au(f) = —pua(f) + pu(f). : (5.15)
By (5.6)

h2k+3

1
—pus2(f) = ]/ [ Fors2(5)1Poq2(s) ds
0

2[(2k +2)!
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and

2k+1

pu(f) = 320!

1
/ Fopi2(s) P (s) ds.
0

Under the assumptions made on f we see thatforall s € [0, 1], ©;(s) and D45 (s)
are either both nonnegative or both nonpositive. Also, from (2.8) and Corollary 1 it
follows that for all s € [0, 1], (=1)*~![— Fyu42(s)] = 0 and (—1)*"! Fy(s) > 0.

We conclude that —p,,>(f ) and py(f ) have the same sign. Because of (5.15),
Ay (f ) must therefore have the same sign as —pu2(f) and py(f). Moreover, it

follows that | — pars2(f )| < |An(f)] and [ (f) < |A%(F)].
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