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TWO-POINT FORMULAE OF EULER TYPE

M. MATIC1, C. E. M. PEARCE2 and J. PECARIC3

(Received 7 October, 1998)

Abstract

An analysis is made of quadrature via two-point formulae when the integrand is Lipschitz
or of bounded variation. The error estimates are shown to be as good as those found in
recent studies using Simpson (three-point) formulae.

1. Introduction and preliminaries

The simplest quadrature rule of open type is based on the well-known midpoint formula

where a < £ < b (see [3, p. 71]). Another quadrature rule of this type is based on the
two-point formula

where a < rj < b (see [3, p. 70]). Both formulae apply provided/ : [a, b] -> R is in
the class C2[a, b].

For a convex function / € C2[a, b] we have /"(£) > 0, so a simple consequence
of (1.1) for such functions is the Hadamard inequality
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222 M. Matic, C. E. M. Pearce and J. Pecaric [2]

By the same argument, (1.2) yields

for any convex function/ € C2[a, b].
Inequality (1.4) is tighter than (1.3) for/ convex, since

However, we can obtain (1.4) by using (1.3) on subintervals. The latter inequality
provides

/ f(t)dt= f f(t)dt+ I f(t)dt
Ja Ja J(a+b)/2

On the other hand, a convex function/ : [a, b] -*• R satisfies

f(x+z)-f(x)<f(y + z)

whenever x, y and z are such that x, x + z, y, y + z € [a, b] with x < y and z > 0
(see [11, p. 3]). In particular, the choices x = (3a + b)/4, y = (a + 2b)/3 and
z = (b- a)/12 yield

that is,

Combining this with (1.5) supplies (1.4).
Midpoint formulae of Euler type, based on (1.1), were treated recently in [4]. In

this paper we consider similar results related to the two-point formula (1.2).
The fundamental ingredients in our analysis are the same, namely the two identities

b-a
and

Tn(x) + Rl
n(x) (1.6)

= 1T— f f(t)dt+Tn^(x) + R2
n(x), (1.7)

b-a Ja
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which may conveniently be referred to as the extended Euler formulae and which were
established recently in [5]. Here T0(x) = 0 and

Tm(x) = 2_j Bk\j-^j[f (b)-f (a)J (1.8)

form > 1, while

and

We write flab]g(t)d(p(t) here, as throughout the paper, to denote the Riemann-
Stieltjes integral of g with respect to a function <p : [a, b] -* R of bounded variation
and fa g(t)dt for the Riemann integral. The identities (1.6) and (1.7) extend the
well-known formula for the expansion of a function in terms of Bernoulli polynomials
[10, p. 17]. They hold for every function/ : [a, b] -*• R such that/ ("~1) is continuous
and of bounded variation on [a, b] for some n > 1 and for every x € [a, b]. The
functions Bk(t) are the Bernoulli polynomials, Bk — Bk(0) the Bernoulli numbers and
B*k(t) (k > 0) are functions of period 1 related to the Bernoulli polynomials via

B*k(t) = Bk(t), for 0 < t < 1,

B*k(t + 1) = B*k(t), f o r r e R .

The Bernoulli polynomials Bk(t) (k > 0) are uniquely determined by the identities

B'k(t) = *flt_,(0, * > 1
and

Bk(t + I) - Bk(t) = ktk~l, k>0. (1.10)

For further details on the Bernoulli polynomials and the Bernoulli numbers, see for
example [1] or [2]. We have

B0(t) = l, 5,(0 = ^-1/2, B2(t) = t2-t+ 1/6, B,(t) = t3-3t2/2+t/2, (1.11)

so that BQ(') = 1 a n^ B*(t) n a s a jump of —1 at each integer. From (1.10) it follows
that Bk(l) = Bk(0) = Bk for k > 2, so that B*k{t) is continuous for k > 2. Moreover,
using (1.9) we get

B*k' = kB*k_y(t), k > \ (1.12)

and this holds for every / e R when k > 3, and for every / € R \ Z when it = 1,2.
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As in [4], our analysis hangs on detailed properties of the Bernoulli polynomials.
The analysis is effected via two families (Fk)k>i and (Gk)k>i of auxiliary functions.
The basic idea of the two-point approach is outlined in Section 2 and centres on two
two-point formulae. In Section 3 we develop the requisite results for the auxiliary
functions and in Section 4 use these to determine error estimates when integrals are
approximated by our two-point formulae. We consider integrands which are either of
bounded variation or possess a Lipschitz property. We find that the error estimates
for our current two-point procedures are as good as those obtained recently for three-
point (Simpson) procedures (see [6-9]). Finally in Section 5 we make corresponding
estimates when the domain of integration is given a general uniform partition and the
two-point formulae are repeated for quadrature.

2. Generalisations of the two-point formula

For k > 1, define the functions Gk(t) and Fk(t) by

G k ( t ) := B*k(l/3 - t ) + B*k(2/3 - t ) , l e R

a n d

Fk(t) := Gk(t) -Bk, t€ R,

where

Bk := G*(0) = B*(l/3) + B*(2/3), * > 1.

The functions Gk(t) and Fk(t) are of period 1 and continuous for it > 2 and so are
determined by their behaviour on [0,1]. This we investigate in the next section.

Let / : [a, b] -*• R be such that / ("-1) exists on [a, b] for some n > 1. We
introduce the notation

•-[,(*•»)+,(.•»)].
Further, define

fo(a,b):=O (2.1)

and
2bf< « b~a\Tm(a, b) .= — ]

for 1 < m < n, where Tm(x) is given by (1.8). Then

" " ] ( 2 . 2 )
*=i
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In the theorem below we establish two formulae which we term two-point formulae
of Euler type and which play a key role in this paper.

THEOREM 1. Let f : [a, b] -*• R be such that f{n~l) is continuous and of bounded
variation on [a, b] for some n > 1. Then

f"
/ f(t)dt = M(a,b)-Tn(a,b) + R1

n(a,b), (2.3)
Jawhere

Also

Ja '
where

PROOF. Putx = (2a+b)/3, (a+2b)/3 in (1.6), multiply the two resultant formulae
by (b - a)/2 and add. This produces (2.3). Formula (2.4) is obtained from (1.7) by
the same procedure.

REMARK 1. Suppose that/ : [a, b] -*• R is such that/(n) exists and is integrable
on [a, b] for some n > 1. In this case (2.3) holds with

while (2.4) holds with

'•(£)'"<'>*•
By direct calculation we get B, = 0, B2 - -1 /9 , B3 = 0. This implies, by (2.2),

that

V = —^[f'(b)-f\a)\. (2.5)

Also

-2t, 0 < t < 1/3;

-2r+l , 1/3 < f < 2/3; (2.6)

-2t + 2,
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G2(t) =

2t2 - 1/9, 0 < t < 1/3;

2 f 2 -2 f + 5/9, 1/3 < f < 2/3;

2t2 - At + 17/9, 2 / 3 < f < l ,

2f2, 0 < r < 1/3;

2f2- 2*+ 2/3, 1/3 < f < 2/3;

2 f 2 - 4 / + 2, 2 / 3 < / < l ,

(2.7)

(2.8)

and

F3(0 = G3(0 =
-2t3 + */3, 0 < t < 1/3;

-2?3 + 3/2 - 5t/3 + 1/3, 1/3 <t< 2/3; (2.9)

2f3 + 6t2 - \lt/3 + 5/3, 2/3<t<l.

Applying (2.4) with n = 1, 2 yields the identities

f
Ja

,b) = ̂ - f Fl (^-
2 y[a,j,] \ b - a

df(t)

Similarly, (2.4) with n = 3,4 generates the identities

- M ( a , b) -

aM
48

[aM

3. The auxiliary functions

To proceed to error estimates, we need some properties of the functions Gk(t) and
Fk(t). As noted earlier, it is enough to know these on [0, 1].

The Bernoulli polynomials of even order are symmetric and those of odd order
skew-symmetric about 1/2, that is,

- t ) = ( - l ) k B k ( t ) , 0 < t < l , * > l (3.1)

(see [1, 23.1.8]). Setting t = 1/3 gives fl*(2/3) = (-l)kBk(l/3), so that

Bk = Bk(l/3) + Bk (2/3) = [1 + (-1)*] Bk(l/3) (k > 1),

which implies Z?2*-i = 0, B2k = 2B2k(l/3) (k > 1). Also

B 2 k { \ / 3 ) = - 2 - 1 ( 1 - 3 1 - 2 * ) B 2 k , k > l , (3.2)
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(see [1, 23.1.23]), which gives

fl2t_, = 0 , B2k = - ( 1 - 3 l ~ 2 k ) B 2 k , k > l .

Now by (3.3) we have

and

F2*(0 = G a (0 + (1 - y~2k)B2k, Jfc > 1.

227

(3.3)

(3.4)

(3.5)

Further, the points 0 and 1 are zeros of Fn(t), that is, Fn(0) = Fn(l) = 0 (n > 1). As
we shall see below, they are the only zeros of Fn(t) for n = 2k (k > 1). Also, using
(3.1) again, we get Gn(l/2) = 5,(5/6) + 5,(1/6) = [(-1)" + 115,(1/6) . Hence
forn = 2k - 1 (k > 1) we have F2i_,(l/2) = Ga-i(l/2) = 0.

We shall see that 0, 1/2 and 1 are the only zeros of F2k-l(t) = G2*_i(t) for k > 1.
Also note that for n = 2k (k > 1) we have

G2k (0) = G2k (1) = B2k = - ( 1 - y-2k)B2k. (3.6)

Using [1, 23.1.24] 5M(l/6) = 5a(5/6) = 2"'(1 - 21"2t)(l - V~lk)B2k, k > 1, we
get

G2t (1/2) = 2S2* (1/6) = (1 - 2'-2*)(l - 3l~2k)B2k (k > 1), (3.7)

while Fa(l/2) = Ga(l/2) - 5 ^ = 2(1 - 2~2*)(1 - 3l~2k)B2k, k>l.

LEMMA 1. For n > 2 we /iav€ Gn(l- /) = (-l)"Gn(r) and Fn(l-r) = (-l)"Fn(0,
0<t < 1.

PROOF. Since #*(/) is of period 1 and continuous for n > 2, we have for n > 2
and 0 < f < 1 that

) + B*n(2/3 - t)

0 + 5,(2/3-0; 0 < / < 1/3;

5,(4/3-0 + 5.(2/3-0. 1/3 </< 2/3;

5,(4/3-0 + 5,(5/3-0, 2/3<t<\
and

G,(l - 0 = 5,*(-2/3 + 0 + 5,*(-l/3 + 0

5,(1/3 + 0 + 5,(2/3 + 0,

5,(1/3+ 0 + 5,(-l/3 + 0,

5,(-2/3 + 0 + 5,(-l/3 +

0 < r < 1/3;

l / 3 < r < 2 / 3 ;

2/3 < / < 1.
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Further, using (3.1) we get

t) + Bn(2/3-t), 0 < r < 1/3;

Bn(4/3-t) + Bn(2/3-t), 1/3 < / < 2/3;

Bn(4/3-t) + Bn ( 5 /3 - f ) ,

Since Gn{t) is continuous for n > 2, Gn(l - t) = (-l)"Gn(f), 0 < t < 1, which
proves the first identity. Further, we have Fn(t) = Gn{t) - Gn(0) and (-l)"Gn(0) =
Gn(0), since G2*-i(0) = 0, so that

Fn(l - /) = Gn(l - t) - Gn(0) = (-l)n[Gn(t) - Gn(0)] = (-l)"Fn(0,

which proves the second identity.

Note that the identities established in Lemma 1 are valid for n = 1 too except at
the points 1/3 and 2/3 of discontinuity of Fi (t) = G, (0-

LEMMA 2. For k > 2 the function G2*-i(0 has no zeros in the interval (0, 1/2).
The sign of this function is determined by (-l)*G2*_i(0 > 0, 0 < t < 1/2.

PROOF. For k — 2, G3(t) is given by (2.9) and we have G3(f) > 0 (0 < t < 1/2),
so our assertion is true for k = 2. Now, assume that fc > 3. Then 2k — 1 > 5 and

is continuous and twice differentiable. Using (1.12) we get

and

G«_,(0 = (2* " D(2* - 2)G2*_3«. (3.8)

We know that 0 and 1/2 are zeros of G2*_i(0- Suppose that some a e (0, 1/2)
is also a zero of Gik-iiO- Then the derivative G2t_[(f) must have at least one zero
&x € (0, a) and at least one zero fi2 6 (a, 1/2). Therefore G'^_x(f) must have at least
one zero inside (Bu B2). Thus, from the assumption that G2k-\{t) has a zero inside
(0, 1/2), it follows from (3.8) that G2*-3(O also has a zero inside this interval, and
so by induction Gi(t) has a zero on (0,1/2), which we have seen not to be the case.
Hence G2k-i(0 cannot have a zero on (0,1/2).

To determine the sign of G2k-i(t), note that

G2*_,(l/3) = B2*_, (0) + Bu-x d/3) = Ba-id/3) .

We have from [1, 23.1.14] that (-l)*B2t_,(0 > 0 (0 < t < 1/2), which implies

(-l)*G2*_,(l/3) = (-l)*Z?2t_,(l/3) > 0.

Consequently (-l)kG2k-dt) > 0 (0 < t < 1/2).
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COROLLARY 1. For k > 2 the Junctions (-1)*"1 F2k(t) and (- l) i"1G2t(0 are
strictly increasing on (0, 1/2) and strictly decreasing on (1/2, 1). Consequently, 0
and 1 are the only zeros of F2k(t) in [0, 1] and

max |F2*(OI = 2(1 - 2"2*)(1 - 3'-2*)|B2i|, k > 2.
'€[0.1]

Also max,€[o,n |G2*(0l = (1 - 3l-2k)\B2k\, k>2.

PROOF. Using(1.12)weget[(-l)*-1F2,(r)]'=[(-l)*-1G2,(0]'=2A:(-l)*G2t_1W
and (-l)kG2k-i(t) > 0 for 0 < t < 1/2 by Lemma 2. Thus (-l)*-'F2t(/) and
(-l)*~'G2t(r) are strictly increasing on (0,1/2). Also by Lemma 1, F2*(l - t) =
F2k(t) and G2k(l - t) = G2k{t) (0 < t < 1), which implies that (-l)*"1F2t(r) and
(-1)*-1 G2k(t) are strictly decreasing on (1/2,1). Further, F2*(0) = F2*(l) = 0,
which implies that |F2*(f)| achieves its maximum at t = 1/2, that is,

max |F2*(f)| - |F2t(l/2)| = 2(1 - 2~2t)(l - 3l~2k)\B2k\.
ie[0.1]

Also
max\G2k(t)\ =max{|G2t(0)|, |G2t(l/2)|}

= max {(1 - 3'-2*)|B2*|, (1 - 2'-2t)(l - 3l~2k)\B2k\}

= (l-3i-2k)\B2k\,

which completes the proof.

COROLLARY 2. Ifk > 2,

I
J0

Also

= (l-31~2k)\B2k\ and

rto
PROOF. Using (1.12) we get

G'm(t) = - m G m _ , ( O , m>3. (3.9)

By (3.4) we have /0' \F2k^{t)\ dt = /„' |G2t_,(f)l dr. By Lemmas 1 and 2 and (3.9)
we get

f
Jo

= i|G2t(l/2)-G2t(0)|.
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The first assertion follows from (3.7) and (3.6).
From (3.5), (3.9) and the periodicity of Gm for m > 2, we have

jf (3.10)

by (3.3), which leads to the second assertion. Finally, we use (3.5) again and the
triangle inequality to obtain

f \G2k(t)\dt = / \F2k(t) + B2k\dt< f \F2k(t)\dt + \B2k\=2\B2k\,
Jo Jo Jo

\G2k(t)\ dt

which proves the third assertion.

4. Two-point formula error estimates

In this section we use the two-point formulae of Euler type established in Theorem 1
to prove a number of inequalities for various classes of functions.

THEOREM 2. Let f : [a, b] -y R be such thatf{n~X) is an L-Lipschitzian function
on [a, b] for some n > 1. Then

f(t)dt-M(a,b)+fn^(a,b) < ( * " a ) f \Fn(t)\dt-L. (4.1)
2(n!) Jo

Also

I fit) At-
J a

fm(a,b)

-a)n+l

- a)n+l

2(n!) r \Gn(t)\dt-L. (4.2)

(4.3)

PROOF. For any integrable function 4>: [a, b] —y R we have

I /• / _» r"
/ <&(') d/ '(0 < / |4>(?)| df • Z,,

I J[a,b) Ja
since/*""0 is L-Lipschitzian. Applying(4.3) with <t>(0 = Fn((t — a)/(b — a)) gives

< I Fn ( I dt • L
2(«!) Ja \b — a/\

- / \Fn(t)\dt-L.
Jo

Applying the above inequality, we get (4.1) from (2.4). Similarly, we can apply (4.3)
with <I>(0 = Gn((r - a)/(b — a)) and then use (2.3) to obtain (4.2).
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r COROLLARY 3. Letf : [a, b] -*• R.
Iff is L-Lipschitzian, then | / / / ( t ) &t - M(a, b)\ < (5/36)(6 - a)2 • L.
Iff is L-Lipschitzian, then \ J* f (/) At - M(a, b)\ < (l/36)(ft - a)3 • L.
Iff" is L-Lipschitzian, then

j' f (0 dt - M(a, b) - ^-^- [fib) - / ' (a)]
13

5184
{b-af L.

Iff" is L-Lipschitzian, then

/ •
Ja

f (t)dt - M(a, b) - ^—^[f(b) - /'(a)]
36

13
19440

(b-a)5 L.

PROOF. Using (2.6) and (2.7) we get /„' |F,(f)l dr = 5/18 and /„ |F2(OI dt = 1/9,
respectively. Therefore, using (2.5) and (2.1) and applying (4.1) with n = 1 and
n = 2, we get the first and second inequalities, respectively. By Corollary 2,
/„' |F3(f)|dr = 13/432 and /0' |F4(/)|df = 13/405. The third inequality follows
from (4.1) with n = 3 and (2.5), while the fourth follows from (4.1) with n = 4
and (2.5).

REMARK 2. For a function / which is L-Lipschitzian on [a, b],

5 ,
' — (b — a) • L
' 36

(see [7] and [9]). This inequality is related to Simpson's quadrature formula and gives
an error estimate for an L-Lipschitzian function on [a, b]. This may be compared
with the first inequality

in Corollary 3. We see that, for this class of function, we have the same error
estimate for the two-point quadrature rule as for Simpson's rule. However Simpson's
rule requires the evaluation of / at three points, while the two-point rule requires
evaluation at two points only. Error estimates applying with the repeated use of these
formulae for a finite interval consisting of v subintervals will also agree. In that
context the Simpson scheme will involve evaluations at 2v + 1 points and our present
procedure 2v points.

COROLLARY 4. Let f : [a, b] -> Rbe such thatf(n~l) is L-Lipschitzian on [a, b]
for some n > 2. Set D0(a, b) := 0 and for any integer r such that 1 < r < n/2 define

DM, b) := - I J2 (-^r<1 ~ 3'~">*» [/(21"1}W -/"'""(a)] • (4-4)

https://doi.org/10.1017/S1446181100013912 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013912


232 M. Matic, C. E. M. Pearce and J. Pecaric [12]

Ifn = 2k-l(k> 2), then

Ifn = 2k(k> 2), then

and v:f(t)dt-M(a,b)
{b - a)2k+l

(2k)\
(l-31-2k)\B2k\-L.

PROOF. For n = 2k - 1 we have by (4.5) that 7n_,(a, b) = Dk^(a, b). Thus the
first inequality follows from Corollary 2 and (4.1). Moreover, for m > 2 we have that

I""/2! \ 2 *

~ a)2*

(2*)!
(4.5)

where [x] denotes the greatest integer less than or equal to x. Hence we have for
n = 2k that Tn.\{a, b) = Dk-i(a, b) and Tn(a, b) = Dk(a, b). The second inequality
follows from Corollary 2 and (4.1) and the third from Corollary 2 and (4.2).

REMARK 3. Suppose that/ : [a, b] -*• R is such that/(n) exists and is bounded on
[a, b], for some n > 1. In this case we have for all t, s € [a, b] that

so that/ ("~1) is | |/ (n) Hoo-Lipschitzian on [a, b\. Therefore the inequalities established
in Theorem 2 hold with L = ||/(n)||oo. Consequently, under appropriate assumptions
on / , the inequalities from Corollary 3 hold with L = II/'IU, ||/"||oo, 11/"loo and
11/ ""II oo, respectively. A similar observation can be made for the results of Corollary 4.

In the next theorem and subsequently we denote by Vf(f) the total variation of/
on [a, b\.

THEOREM 3.Letf : [a, b]-+Rbe such thatf("-l) is continuous and of bounded
variation on [a, b] for some n > 1. Then

\i:f{t)At-M{a,b)+Tn-X{a,b) (ft - a)H

2(n!)
max | FB(01 (4-6)
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and

f
Ja

f(t)dt- -M(a, b) + 'i

Two-point formulae

^{b- a)"

- 2(n!)

233

max|G n (O|

PROOF. If O : [a, b] -*• R is bounded on [a, fc] and the Riemann-Stieltjes integral
f[ab] <t>(t) d/<"-»(0 exists, then

U[a,6]
< max |O(0l (4.8)

We apply the estimate (4.8) to <t>(t) = Fn((t - a)/{b - a)) to obtain

(b - a)"
< max

2(«0 Jia.b) \b-a 2(n!)
b - a)"+l

We now use the above inequality and (2.4) to obtain (4.6). In the same way, we apply
the estimate (4.8) to 4>(0 = Gn((t - a)/(b - a)), and then use (2.3) to obtain (4.7).

COROLLARY 5. Letf : [a, b] -*• R.
Iff is continuous and of bounded variation on [a, b], then

If f(t)dt-M(a,b)

Iff is continuous and of bounded variation on [a, b], then

\[ f(t)dt-M(a,b) <-(b-a)2-Va
b(f).

Iff" is continuous and of bounded variation on [a, b], then

f(t)dt-M(a,b)-(b U)

36
V2
324

Iff'" is continuous and of bounded variation on [a, b], then

J f(t)dt-M(a,b)-
13

Va
b(f").

10368
(b - a)4
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PROOF. From the explicit expressions (2.6), (2.8) and (2.9), we get

[14]

max |F,(01 = -F,(l/3) = 2/3,
'£[0,1]

max |F 2 « | = F2(l/3) = 2/9
(€[0,1]

and

respectively. Therefore, using (2.5) and applying (4.6) with n = 1,2, 3, we get
respectively the first, second and third inequalities. Further, by Corollary 1,

max |F4(0| = 13/216.

The fourth inequality follows from (4.6) with n = 4 and (2.5).

REMARK 4. It has been established in [8] (see also [9]) that

b — a .

This inequality is related to Simpson's quadrature formula and gives the error estimate
for a function of bounded variation on [a,b]. This may be compared with the first
inequality

b — a ,

in Corollary 5. The comparison in Remark 2 also applies here.

COROLLARY 6. Letf : [a,b] -> R be such that f{n~l) is continuous and oj bounded
variation on [a, b]for some n > 2. Define Dr(a, b) (r > 0) as in Corollary 4. If
n = 2k-l(k>2), then

f"
/ f(t)dt-

Ja
Ifn = 2k(k> 2), then

f
Ja

M(a, b) + Dt_, (a, b)
(b-a) 2 * - l

max|F2i_,(r)|

and

f(t)dt-M(a, b)

(b-a)2k ,
(2k)\

Ab-*P
- 2 [(2*)!]
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PROOF. The argument is similar to that used in the proof of Corollary 4. We apply
Theorem 3 and use the formulae established in Corollary 1.

REMARK5. Suppose t ha t / : [a, b] -+ R is such that / ( n ) € Lx[a, b] for some
n > 1. In this case f(n~n is continuous and of bounded variation on [a, b] and we
have V£(fl"-l)) = )b

a \f
(n)(t)\dt = | | / ( n ) | | i . Therefore the inequalities established

in Theorem 3 hold with \\f(n) || i in place of Va
b(f (n~l)). A similar observation can be

made for the results of Corollaries 5 and 6.

THEOREM 4. Suppose (p,q) is a pair of conjugate exponents, which we may specify
as 1 < p , q < oo with p ' 1 + q~l = 1 or p = oo, q = 1, and let f : [a, b] -> R be
such thatf(n) e Lp[a, b] for some n > 1. Then

f
J a

f(t)dt-M(a,b)+fn^(a,b) <K(n,p)(b-ay+y">-\\fw\\p, (4.9)

where K(n,p) = (l/2(n!))(/0' |Fn(/)l*df)'/?. Also

I f(t)dt-M(a,b)+fn(a,b)
Ja

< K*(n, \\f(n)\\p, (4.10)

where K*(n,p) = (l/2(n!))(/0' \Gn(t)\" dt)Vq.

PROOF. By the Holder inequality, we have

- a ) n f" ft-a\ , ,
~K~ / F " ( l )f (

"0 A \b-aj
2(r,

2(»!) LA
(b-a)

b-a
d/J
1/9

\\fW\\P.

From this inequality, we get the estimate (4.6) from (2.4) and Remark 1. In the same
way we get the estimate (4.10) from (2.3).

REMARK 6. For p = oo we have

K(n, oo) = - i — [ \Fn(t)\ dt and K*(n, oo) = - J - / |Gn(OI dt.
2(n!) y0 2(AZ!) JO

https://doi.org/10.1017/S1446181100013912 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013912


236 M. Matic, C. E. M. Pearce and J. Pecaric [16]

The results established in Theorem 4 for p = 0 0 coincide with those of Theorem 2
with L = ||/(n) Hoo. Moreover, by Remark 3 and Corollary 3, we have for n = 1, 2 that
I f*f(t)dt - M(a, b)\ < K(n, oo)(b - ay+'ll/^lloo, while for« = 3,4 we have

(b-a)2

I f(t)dt-M(a,b)-
36

[f'(b)-f '(a)]

where AT(1, oo)=5/36, K(2, oo)=l/36, K(3, oo)=13/5184, K(4, oo)=13/19440.
Further, by Remark 3 and Corollary 4, we have for k > 2 that

f
Ja

/ f(t)dt-M(a,b) + Dk(a,,
Ja

<K(2k,oo){b-a)2k+l-\\f(2k)\\c

where

2(1 - 2-2*) (1 - 31-2*)
K(lk - 1, oo) = - i -£• \B2k\,

)
a n d

REMARK 7. For p = 1 define

K(n, 1) :=
2(n\)

max \Fn(t)\ and K*(n, 1) :=
2(n!)

max \GH(t)\.

Then, using Remark 5 and Theorem 3, we can extend the results established in
Theorem 4 to the pair p = 1, q = oo. Thus if we set \/q = 0, then (4.9) and (4.10)
hold for p = 1. Also, by Remark 5 and Corollary 5, we have for n = 1,2 that
\f*f(t)dt-M(a,b)\ < K(n, \)(b - f l ) " | | / w | | i , while forn = 3,4 we have

f.f(t)dt-M(a,b)-(b g )

Jo
<K(n,l)(b-ay\\fMh,

where AT(1, 1) = 1/3, K(2, 1) = 1/18, K(3, 1) = N/2/324, AT(4, 1) = 31/10368.
Further, by Remark 5 and Corollary 6, for k > 2 we have

<K(2k-l,l)(b-a)2k-l\\fak-l)h,

https://doi.org/10.1017/S1446181100013912 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013912


[17]

and

where

Two-point formulae

<K(2k, \)(b-a?k\\f{

237

Ja
f(t)dt-M(a,b)

K(2k,l) =

K(2k- 1,1) = -

(1 _ 2 - " ) ( l - 3'~2t)

(2*)!
and AT*(2fc, 1) =

1 - 31-2*
2[(2*)!]

REMARK 8. For 1 < p < oo we can easily determine

so that for n = 1 Theorem 4 yields

This may be compared with the similar inequality proved in [6] (see also [9]), related
to Simpson's rule

. /a

l r?9+1 + n

The comparison in Remark 2 also applies here.

5. Quadrature formulae error estimates

Let us divide the interval [a, b] into v subintervals of equal length h = (b — a)/v.
Assume that/ : [a, b] -*• R is such that/ ("~" is continuous and of bounded variation
on [a, b], for some n > 1. We consider the repeated two-point quadrature formula

Ja
f (t)dt = Mv(f) - an_, (5.1)
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and the repeated modified two-point quadrature formula

f
Ja
f pn(f), (5.2)

where
v

Mv(f) = J2M(a + (« - W. a + »*)

and am(/) = £J=1 E,(a + (i - l)ft, a + ih), m > 0.
Because of (2.5) we have

<T0(f)=<Tl(f) = 0, (5.3)

while for m > 2, we get using (4.5) that

v 1 [m/2] 2 ;

1 I""/2! h2j

E ^ E1/w"°(fl + '"*) -/w-1>(« + 0" " 1)*)]2 (5/)

The remainders p n ( / ) and p n ( / ) can be written as

V

£.(/;0, (5-5)
< = 1 1 = 1

where, for i = 1 , . . . , v,

pa+ih

Pn(fU)= f 0) dt - M(a + (/ - l)ft, a + ih) + fB_,(fl + (i - l)h, a + ih)
Ja+(i-l)h

and

/

a+ih
f(t)dt - M(a + (i - l)h, a + ih) + fH(a + (i - 1)A, a + ih).

+(i-l)A

We shall apply results from the preceding section to obtain some estimates for the
remainders pn(f) and pn(f). Before doing this, note that for n = 2k — 1 (k > 2), we
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t - 1

Thus P2k-i(f) = P2t-i(/)» so that (5.1) and (5.2) coincide in this case. This shows
that (5.2) is interesting only when n = 2k (k > 2). In this case we have

= Pikif) -
2 [(2*)!]

In fact we have jht-iif) = Pikif) (k > 2).
Therefore for k > 2 we can approximate fa f (t) dr by

t - i

using either (5.1) with n = 2* - 1 or (5.2) with n = 2k - 2. To obtain the error
estimate for this approximation, if we apply (5.1), then we must assume that/(2*~2)

is continuous and of bounded variation on [a, b]. To do this via (5.2), it is enough to
assume that / (2*~3) is continuous and of bounded variation on [a, b]

THEOREM 5. Letf : [a, b]^-Rbe such thatfin~l) is L-Lipschitzian on [a, b]for
some n > 1. For n = 1, 2, 3, 4 we have, respectively,

5
< —l\J fit)dt-Mv(f)

fit)dt-Mvif)-^

rb h2

f(t)dt-Mvif)- —

f
J a

f(t)dt-Mv(f)

J -/'(«)]

< —vh4L,
5184

13
19440

vh5L.

Ifn =z2k-l(k> 2), then

k-l

f(t) fit - Mv(f) - I

vh2k
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Ifn = 2k(k> 2), then

rb i *~' uV

[20]

f(t)dt-Mv(f)--

vh2k+i

2[(2Jfc)!]

PROOF. Applying (4.1) and (4.2) we get for i = 1 , . . . , v, respectively,

\pn(f;i)\<^r [ \Fn(t)\dtL and \pn(f;i)\<^—r-[\Gn(t)\dtL.
2(n!) Jo 2{n\) Jo

Using the above estimates and the triangle inequality, we get from (5.5) that

on(f;i)\<^fr- [ \Fn(t)\dtL
^•\n-) Jo

\Pnif)\ <

and
vhn+i C
2(«!) ./o

The rest of the argument, from (5.3) and (5.4), is as for Corollaries 3 and 4.

REMARK 9. Instead of the assumption that / ' ""0 is L-Lipschitzian on [a, b], we
can use the stronger assumption that / ( n ) exists and is bounded on [a, b], for some
n > 1. In this case Theorem 5 applies with L replaced by \\f(n) ||oo (see Remark 3).

THEOREM 6. Letf : [a,b] -)• R be such that f (n~1) is continuous and of bounded
variation on [a, b] for some n > 1. Forn = I,2,3,Awe have, respectively,

f(t)dt-Mv(f) <\hVa
b(f),

h2

J f(t)dt-Mv(f)-^[f'(b)-f'(a)]

J f (t)dt - Mv(f) - ^[f'(b) - /'(a)] 13
10368

h*Va
b(f'").
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Ifn = 2k-\(k> 2), then

/ *
I J \ - / — v \j / ~

^

max- 2[(2Jk - 1)!] '€[0.1]

Ifn = 2k(k> 2), then

j=\

~ (2k)\
and

-2-2*)(l -V-2k

- Mv(f) - I

PROOF. Applying (4.6) and (4.7) we get for i = 1 , . . . , v respectively that

and

Using the above estimates and the triangle inequality, we get from (5.5) that

\pn(f)\ < ^ I ^

and similarly |pn( /) | < (A"/2(n!))max/6[0.,] |Gn(r)| Va*(/("-1)). We now use (5.3)
and (5.4) and argue as in Corollaries 5 and 6.

REMARK 10. If/ : [a, b] -> R is such that/(n ) € Lx[a, b] for some n > 1, then
Z'""" is continuous and of bounded variation on [a, 6] and V*(f{n~X)) = | | / ( n ) | | i .
Therefore Theorem 6 applies with | |/(n) ||, in place of Vf(f ("-1)) (see Remark 5).
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THEOREM 7. Assume (p, q) is a pair of conjugate exponents. Let f : [a, b] —*• R
be such that fM € Lp[a, b] for some n > 1. Then \pn(f)\ < vK(n, p)hn+1/q\\f(n)\\p

and \pn(f)\ < vK*(n, p)ha+l/<l\\fw\\p, where K(n,p) and K*(n,p) are defined as
in Theorem 4.

PROOF. For i = 1 , . . . , v let #,(/) =fM(t), t e [a + (/ - l)h, a + ih\. Then
llgillp < | |/ (n) ||p, where the norm ||g,-||p is taken over the interval [a + (i-l)h, a + ih],
while the norm ||/(n) \\p is taken over the interval [a, b]. Applying (4.9) and (4.10) and
using the above inequality, we get for i = 1 , . . . , v that

\Pn(f;i)\ < tf(/J,p)/in+1/1s,||p < K(n,p)h»+l"\\f<"%

and

\M\i)\ < K\n,p)hn+yl"\\gi\\p < K\n,p)hn+i/*\\fM\\p.

The result follows from (5.5) by the triangle inequality.

In the following discussion we assume that / : [a, b] —• R has a continuous
derivative of order n, for some n > 1. In this case we can use (2.4) and the second
formula from Remark 1 to obtain, for i = 1 , . . . , v, that

[
Jo

Therefore we get by (5.5) that

Pn(f) = ^r-z I Fn(s)<t>n(s)ds, (5.6)
2(n!) Jo

where
V

£ < > ( < ! + ( i - l ) * + t o ) , 0 < * < l . (5.7)

Similarly, wegetpn( / ) = (An+1/2(n!))/0
1 Gn(5)<I>n(5)d5. Obviously, <tn(s) is con-

tinuous on [0,1] and

f <t>n(s)ds = h'1 Y] [fin-l)(a + ih) -fin-l\a + (i - l)h)]

(5.8)
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From the discussion at the beginning of this section, the most interesting case is the
repeated two"-point quadrature formula of Euler type (5.1) for n = 2k (k > 2), which
can be rewritten as

T AW) + \ ^

(5.9)

The empty sum for k = 1 is taken as zero.

THEOREM 8. Iff : [a, b] -*• R is such that f(2k) is continuous on [a, b], for some
k > 1, then there exists a point r) e [a, b] such that

h2k+\

PuV) = V 2 [ ( 2 i k ) ! ] ° " 3 l ~ 2 * ( 2 * )

PROOF. Using (5.6), we can rewrite Puif) as

where

Jk= f (-l)k-lF2k(s)<t>2k(s)ds. (5.12)
Jo

If m = min,elatb]f
(2k)(t), M = max.le[a,b]f

(2k)(t), then we get from (5.7) that
vm < <t>2k(s) < vM, 0 < s < 1. On the other hand, (2.8) and Corollary 1 give

which implies vm f*(-l)k~lF^s) ds < Jk < vM f^-l)1"1 F2k(s) ds. Using (3.10)
we have vm(-l)kB2k < Jk < vM(-l)kB2k. By the continuity of f(2k)(s) on [a, b],
it follows that there must exist a point r) € [a, b] such that Jk = v(—l)kB2kf

(2k)(r)).
Combining this with (5.11) and (3.3) gives (5.10).

REMARK 11. The repeated two-point quadrature formula of Euler type (5.9) is a
generalisation of the two-point formula (1.2). Namely, from (5.10) for it = 1 and
v = 1 we get P2(/) = ((b - a)2/36)f"(ri) and (5.9) reduces to (1.2).

THEOREM 9. Iff : [a, b] -> R is such that f(2k) is continuous on [a, b], for some
k > 1, and does not change sign on [a, b], then there exists a point 6 € [0, 1] such
that

h2k

i (5.13)
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PROOF. Suppose that/ (2k)(t) >0,a<t<b. Then from (5.7) we get <P2k(s) > 0,
0 < s < 1. It follows from Corollary 1 that 0 < (-I)*"1 F2k(s) < (-l)*- 'F2 t( l /2),
0 < s < 1. Therefore ifjk is given by (5.12), 0 < Jk < (-l)k~l F2k(\/2) j * <t>2k(s)ds.

Using (5.8), we get

0 < Jk < ( - l ^ - ^ d - 2-")(l - y- [

which means that there must exist a point 0 e [0, 1] such that

Jk = 6(-l)k-l2(\ - 2-2*)(l - S^Buh-1 [f(2k~l)(b) -f(U~l\a)] .

Combining this with (5.11) gives (5.13). When/(2t)(/) < 0(a < t < b) the argument
is the same, since in that case we get

( - D ^ d - 2-2*)(l - 3l-2k)B2kh~l [f{lk-'\b) -f(2k~n(a)] <Jk<0.

REMARK 12. If we approximate f*f(t)dt by

= Mv(f) + I £ £- (1 - V-*) B2j [/«-•>(*) -/«->>(«)],

then the next approximation will be I2k+i(f)- The difference A2k(f) := I2k+2(f) —
hkif) is equal to the last term in the sum in I2k+2(f), that is,

^ 1 - 31"2*) B2k [f«k-»(b) -f^Ha)]. (5.14)

We see that, under the assumptions of Theorem 9, P2k(f) and A2*(/) are of the same
sign. Moreover, we have fhkif) = 26(1 — 2~2k)A2k(f), which yields the simple
estimate \p2k(f)\ < 2|A2*(/)| for the remainder

THEOREM 10. Suppose that f : [a, b] -*• R is such that /(2i+2> is continuous
on [a, b], for some k > 1. If for each x e [a, b], f(2k)(x) and f(2k+2) (x) are either
both nonnegative or both nonpositive, then the remainder P2t(/) has the same sign
as the first neglected term A2k(f) given by (5.14). Moreover, we have the estimate
\P2k(f)\ < |A

PROOF. We have A2k(f) + Pu+zif) = Pikif), that is,

A2k(f) = -P2k+2(f) + fhkif). (5.15)

By (5.6)

2j(2kT
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and

Under the assumptions made o n / we see that for all s e [0,1], <f>2k(s) and
are either both nonnegative or both nonpositive. Also, from (2.8) and Corollary 1 it
follows that for all s e [0,1], (-l)k-1[-F2k+2(s)] > 0 and (-1)*"1 F2k(s) > 0.

We conclude that —pik+iif) and P2k(f) have the same sign. Because of (5.15),
&2k(f) must therefore have the same sign as —P2k+i(f) and fhkif)- Moreover, it
follows that | - P2k+i(f)\ < lAaCHI and \puif) < |A2 i( /) | .
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