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Abstract
We determine all the extremal Gromov-Witten invariants of the Hilbert scheme of 3 points on a smooth projective
complex surface. Our result for the genus-1 case verifies a conjecture that we propose for the genus-1 extremal
Gromov-Witten invariant of the Hilbert scheme of n points with n being arbitrary. The main ideas in the proofs
are to use geometric arguments involving the cosection localization theory of Kiem and J. Li [17, 23], algebraic
manipulations related to the Heisenberg operators of Grojnowski [13] and Nakajima [34], and the virtual localization
formulas of Gromov-Witten theory [12, 20, 30].
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1. Introduction

Hilbert schemes have been studied extensively since the pioneering work of Grothendieck [14]. It
is well known [3, 10, 16] that the Hilbert schemes of points, parametrizing 0-dimensional closed
subschemes, on algebraic surfaces are smooth and irreducible. In fact, these Hilbert schemes are crepant
resolutions of the symmetric products of the corresponding surfaces, via the Hilbert-Chow morphism
which maps a 0-dimensional closed subscheme to its support (counting with multiplicities). Their
extremal Gromov-Witten invariants are defined via the moduli spaces of stable maps whose images
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are contracted by the Hilbert-Chow morphism and are motivated by Ruan’s Cohomological Crepant
Resolution Conjecture [39] which eventually evolves to the Crepant Resolution Conjecture of Bryan
and Graber [4], Coates, Corti, Iritani and Tseng [5], and Coates and Ruan [7]. Their 1-point genus-0
extremal Gromov-Witten invariants are obtained in [27]. Okounkov and Pandharipande [36] studied
the genus-0 equivariant extremal Gromov-Witten theory of the Hilbert schemes of points on the affine
plane C2. Using cosection localization theory [17], J. Li and W-P. Li [23] determined the 2-point
genus-0 extremal Gromov-Witten invariants of the Hilbert schemes of points on surfaces. The structures
of the 3-point genus-0 extremal Gromov-Witten invariants of these Hilbert schemes are analyzed in
[28] where Ruan’s Cohomological Crepant Resolution Conjecture for the Hilbert-Chow morphism is
verified. Higher genus equivariant extremal Gromov-Witten theory of the Hilbert schemes of points on
C2 is investigated by Pandharipande and Tseng [37]. We refer to the survey book [38] for more details
and to [33, 35] for related works.

In this paper, we work out explicitly all the extremal Gromov-Witten invariants of the Hilbert scheme
of 3 points on a smooth projective complex surface X. Let 𝑋 [𝑛] be the Hilbert scheme of n points on X.
For 𝑛 ≥ 2, the extremal k-point genus-g Gromov-Witten invariants of 𝑋 [𝑛] are of the form

〈𝛾1, . . . , 𝛾𝑘〉𝑔,𝑑𝛽𝑛

where 𝑑 ≥ 0, 𝛾1, . . . , 𝛾𝑘 ∈ 𝐻∗(𝑋 [𝑛] ,C), and 𝛽𝑛 is (the homology class of the curve){
𝜉 + 𝑥2 + . . . + 𝑥𝑛−1 ∈ 𝑋 [𝑛] |Supp(𝜉) = {𝑥1}

}
� P1

with 𝑥1, 𝑥2, . . . , 𝑥𝑛−1 being distinct and fixed points in X. By degree reasons, if 𝑔 ≥ 2, all genus-g
extremal Gromov-Witten invariants of 𝑋 [𝑛] are equal to 0.

We begin with genus-0 extremal Gromov-Witten invariants of 𝑋 [3] . By the Fundamental Class Axiom
and the Divisor Axiom, these invariants are reduced to the following 1-point, 2-point and 3-point genus-
0 extremal Gromov-Witten invariants:

〈𝜔̃1〉0,𝑑𝛽3 , 〈𝜔̃1, 𝜔̃2〉0,𝑑𝛽3 , 〈𝜔1, 𝜔2, 𝜔3〉0,𝑑𝛽3

with 𝜔̃1, 𝜔̃2 ∈ 𝐻∗(𝑋 [3] ,C) and 𝜔1, 𝜔2, 𝜔3 ∈ 𝐻4(𝑋 [3] ,C). The invariants 〈𝜔̃1〉0,𝑑𝛽3 and 〈𝜔̃1, 𝜔̃2〉0,𝑑𝛽3

have been computed in [27] and [23], respectively. When 𝑋 = P2, 〈𝜔1, 𝜔2, 𝜔3〉0,𝑑𝛽3 is partially calculated
in [8]. The calculations in the 2003 paper [8] for 𝑋 = P2 are incomplete due to the lack of understanding
of the invariants 〈𝜔̃1, 𝜔̃2〉0,𝑑𝛽3 which appear later in the 2011 paper [23]. To state our result, we fix a
linear basis of 𝐻4 (𝑋 [3] ,C) via the Heisenberg operators of Grojnowski [13] and Nakajima [34]:

𝔞−1 (1𝑋 )2𝔞−1 (𝑥) |0〉, 𝔞−3 (1𝑋 ) |0〉, 𝔞−1 (𝛼𝑖)𝔞−2(1𝑋 ) |0〉,
𝔞−2 (𝛼𝑖)𝔞−1(1𝑋 ) |0〉, 𝔞−1 (𝛼𝑖)𝔞−1(𝛼 𝑗 )𝔞−1(1𝑋 ) |0〉 (1.1)

where {𝛼1, . . . , 𝛼𝑠} is a linear basis of 𝐻2(𝑋,C), 1 ≤ 𝑖, 𝑗 ≤ 𝑠 and 1𝑋 and x stand for the fundamental
classes of X and a point in X, respectively. Let 〈𝛼, 𝛽〉 = 𝛼 · 𝛽 denote the standard pairing for 𝛼, 𝛽 ∈
𝐻∗(𝑋,C).
Theorem 1.1. Let X be a simply connected projective surface. Let 𝔅4 stand for the linear basis of
𝐻4 (𝑋 [3] ,C) from (1.1). Let 𝑑 ≥ 1 and 𝜔1, 𝜔2, 𝜔3 ∈ 𝔅4. Then,

〈𝜔1, 𝜔2, 𝜔3〉0,𝑑𝛽3 = 0

if the unordered triple (𝜔1, 𝜔2, 𝜔3) is not one of the following cases:

(i)
(
𝔞−2 (1𝑋 )𝔞−1(𝛼𝑖) |0〉, 𝔞−2 (1𝑋 )𝔞−1(𝛼 𝑗 ) |0〉, 𝔞−1 (1𝑋 )𝔞−2(𝛼𝑘 ) |0〉

)
;

(ii) 𝜔1 = 𝜔2 = 𝔞−3 (1𝑋 ) |0〉, and 𝜔3 = 𝔞−2 (1𝑋 )𝔞−1(𝛼𝑖) |0〉 or 𝔞−1 (1𝑋 )𝔞−2(𝛼𝑖) |0〉;
(iii) 𝜔1 = 𝜔2 = 𝜔3 = 𝔞−3(1𝑋 ) |0〉.
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Moreover, 〈𝜔1, 𝜔2, 𝜔3〉0,𝑑𝛽3 = 8〈𝛼𝑖 , 𝛼 𝑗〉 〈𝐾𝑋 , 𝛼𝑘〉 in case (i), and

〈𝜔1, 𝜔2, 𝜔3〉0,𝑑𝛽3 = −2 〈𝐾𝑋 , 𝛼𝑖〉 𝑑𝑐3,𝑑

in case (ii), where 𝑐3,𝑑 is the universal constant from (3.16). In case (iii),

〈𝜔1, 𝜔2, 𝜔3〉0,𝑑𝛽3 =

(
− 18 + 5𝑑𝑐3,𝑑 − 2

𝑑−1∑
𝑖=1
𝑖𝑐3,𝑖 +

1
3

𝑑−1∑
𝑖=1
𝑖𝑐3,𝑖 (𝑑 − 𝑖)𝑐3,𝑑−𝑖

)
𝐾2
𝑋 .

The universal constants 𝑐3,𝑑 appearing in Theorem 1.1 come from (3.16) which governs the
2-point genus-0 extremal Gromov-Witten invariants of 𝑋 [𝑛] via (3.15). The assumption that X is sim-
ply connected is intended only to shorten the statement of Theorem 1.1. The proof of Theorem 1.1
uses geometric arguments involving applications of cosection localization theory [17, 23] and algebraic
manipulations involving the composition law of Gromov-Witten theory and the Heisenberg algebra of
Grojnowski [13] and Nakajima [34].

As an application of Theorem 1.1, we obtain a direct proof of Ruan’s Cohomological Crepant
Resolution Conjecture for the Hilbert-Chow morphism 𝜌3 : 𝑋 [3] → 𝑋 (3) (we remark that Ruan’s
Cohomological Crepant Resolution Conjecture for the Hilbert-Chow morphism 𝜌𝑛 : 𝑋 [𝑛] → 𝑋 (𝑛) has
been proved in [28] for all 𝑛 ≥ 1 via a representation theoretic approach).

Corollary 1.2. Let X be a simply connected smooth projective surface. Then Ruan’s Cohomological
Crepant Resolution Conjecture for the Hilbert-Chow morphism 𝜌3 : 𝑋 [3] → 𝑋 (3) holds (i.e., the Chen-
Ruan cohomology ring of 𝑋 (3) is isomorphic to the quantum corrected cohomology ring of 𝑋 [3]).

We refer to the proof of Corollary 4.11 (= Corollary 1.2) for the precise statement of Ruan’s
Cohomological Crepant Resolution Conjecture for the Hilbert-Chow morphism 𝜌𝑛 : 𝑋 [𝑛] → 𝑋 (𝑛) .

Next, we consider the genus-1 extremal Gromov-Witten invariants of 𝑋 [3] . To put our result in
perspective, note that all the genus-1 extremal Gromov-Witten invariants of 𝑋 [𝑛] with 𝑛 ≥ 2 can be
reduced to 〈〉1,𝑑𝛽𝑛 . Let 𝜒(𝑋) be the Euler characteristic of X. We propose the following conjecture for
the invariants 〈〉1,𝑑𝛽𝑛 .

Conjecture 1.3. Let X be a smooth projective surface. Let 𝑛 ≥ 2 and 𝑑 ≥ 1. Then there exists a universal
polynomial 𝑝𝑛,𝑑 (𝑠, 𝑡), independent of X, in variables s and t such that 𝑝𝑛,𝑑 (𝑠2, 𝑡) · 𝑠2 has degree n in s
and t, and

〈〉1,𝑑𝛽𝑛 = 𝑝𝑛,𝑑
(
𝐾2
𝑋 , 𝜒(𝑋)

)
· 𝐾2

𝑋 .

Indeed, by [15, Theorem 1.2], Conjecture 1.3 holds for 𝑛 = 2:

〈〉1,𝑑𝛽2 =
1

12𝑑
· 𝐾2

𝑋

(i.e., 𝑝2,𝑑 (𝑠, 𝑡) is the constant polynomial 1/(12𝑑)). When 𝑋 = C2, [37, (0.8)] presents a formula for
〈〉1,𝑑𝛽2 in the equivariant setting. We prove that Conjecture 1.3 holds for 𝑛 = 3 and 𝑑 ≥ 1 as well (see
Lemma 5.1):

〈〉1,𝑑𝛽3 = (𝑎𝑑 + 𝑏𝑑 · 𝜒(𝑋)) · 𝐾2
𝑋 (1.2)

where 𝑎𝑑 and 𝑏𝑑 are universal constants depending only on d. A major part of our paper is to determine
the universal constants 𝑎𝑑 and 𝑏𝑑 .

Theorem 1.4. Let X be a smooth projective surface. Let 𝑑 ≥ 1, and let 𝑓𝑑 be the constant defined in
Lemma 5.10. Then, 〈〉1,𝑑𝛽3 is equal to

https://doi.org/10.1017/fms.2023.17 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.17


4 J. Hu and Z. Qin(
𝑓𝑑 −

(
−𝑑2 + 𝑑 + 16

96𝑑
+ 𝑑

48

𝑑−1∑
𝑑1=1

1
𝑑1

− 1
48

∑
𝛿	𝑑

𝑑2 − 𝑑1𝑑2
𝑑1𝑑2 · |Aut(𝛿) |

)
+ 1

12𝑑
· 𝜒(𝑋)

)
· 𝐾2

𝑋

where 𝛿 = (𝑑1, 𝑑2) 	 𝑑 denotes a length-2 partition of d.

Using the definition of 𝑓𝑑 in Lemma 5.10, one easily computes that 𝑓1 = 7/24 (see also Example
5.11). However, for a general 𝑑 ≥ 1, it is unclear how to simplify the definition of 𝑓𝑑 presented in
Lemma 5.10. Note from (1.2) that to prove Theorem 1.4, it suffices to calculate 𝑎𝑑 and 𝑏𝑑 when X is a
smooth projective toric surface. When X is a smooth projective toric surface, the torus

T = (C∗)2

acts on X with finitely many fixed points 𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝜒(𝑋), which are the origins of the local affine charts
𝑈𝑖 � C2, 1 ≤ 𝑖 ≤ 𝜒(𝑋). The induced T-action on 𝑋 [3] has finitely many fixed points and finitely many
T-invariant curves contracted by the Hilbert-Chow morphism. We then utilize the virtual localization
formulas of Gromov-Witten theory ([12, 20] for the general setting and [8, 30] for our present setting
of 𝑋 [3]). In the end, we reduce the computation of 〈〉1,𝑑𝛽3 to a certain summation

∑
Γ∈T𝑑,𝑖

−
∑

Γ∈S𝑑,𝑖,𝑖

over the local chart 𝑈𝑖 , in terms of stable graphs Γ. To make our introduction here shorter, we refter
to (5.13), (5.19) and (5.20) for notations and details. Next, we prove a reduction lemma (Lemma 5.4)
which asserts that

∑
Γ∈T𝑑,𝑖

−
∑

Γ∈S𝑑,𝑖,𝑖
over the local chart𝑈𝑖 � C2 is of the form

𝑎𝑑 · (𝑤𝑖 + 𝑧𝑖)2

𝑤𝑖𝑧𝑖
(1.3)

where 𝑤𝑖 and 𝑧𝑖 are the weights for the torus action on 𝑈𝑖 , and 𝑎𝑑 ∈ Q is independent of i and X and
depends only on d. This key reduction lemma implies that when evaluating

∑
Γ∈T𝑑,𝑖

−
∑

Γ∈S𝑑,𝑖,𝑖
, we can

ignore the stable graphs Γ ∈ S𝑑,𝑖,𝑖 with more than 2 edges (see Lemma 5.6) and the stable graphs
Γ ∈ T𝑑,𝑖 with more than 5 edges (see Lemma 5.9 for precise statements).

We remark that our reduction lemma (Lemma 5.4) may not be valid if one is only interested in
calculating the analogous summation

∑
Γ∈T𝑑

, in the equivariant setting, for the Hilbert scheme (C2) [𝑛] .
The reason is that in this new setting, the analogous summation

∑
Γ∈S𝑑,𝑖,𝑖

does not arise, and thus
∑

Γ∈T𝑑

cannot partially cancel with
∑

Γ∈S𝑑,𝑖,𝑖
to simplify the computations. We refer to the related discussions

on [37, p. 8] following [37, Theorem 5].
As for Conjecture 1.3 with 𝑛 > 3, there are two possible approaches. The first one is to use the

standard decomposition 𝜑 = (𝜑1, . . . , 𝜑ℓ) from [23] (see (3.13)) associated to a genus-1 extremal stable
map 𝜑 : 𝐶 → 𝑋 [𝑛] , as in the proof of Lemma 5.1 which is only for 𝑋 [3] . Intuitively, the standard
decomposition splits the Hilbert scheme 𝑋 [𝑛] and the extremal stable map 𝜑 : 𝐶 → 𝑋 [𝑛] according to
the support of 𝜑(𝐶). However, complication arises when at least two of the maps 𝜑1, . . . , 𝜑ℓ are not
constant. The second approach to Conjecture 1.3 is to utilize the standard versus reduced method of
Zinger, Vakil and Zinger, J. Li and Zinger, and Coates and Manolache (see [6, 26, 40, 41, 42] and the
references therein), which transfers the computation of the standard Gromov-Witten invariants 〈〉1,𝑑𝛽𝑛 to
those of the reduced Gromov-Witten invariants. Roughly speaking, this approach splits the moduli space
of genus-1 extremal stable maps into the main component (which gives rise to the reduced Gromov-
Witten invariants) and the ‘ghost’ components (which are related to the genus-0 extremal Gromov-Witten
invariants). A starting point might be to try the cases when both 𝑛 > 3 and 𝑑 ≥ 1 are small.

Finally, the paper is organized as follows. Section 2 contains a brief introduction to Gromov-Witten
theory. Section 3 presents some background materials of the Hilbert schemes of points on surfaces,
including the Heisenberg algebra of Grojnowski [13] and Nakajima [34], Lehn’s boundary operator
[21], and their 1-point and 2-point genus-0 extremal Gromov-Witten invariants [23, 27]. Theorem 1.1
and Theorem 1.4 are proved in Section 4 and Section 5, respectively.
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2. Stable maps and Gromov-Witten invariants

Let Y be a smooth projective variety. A k-pointed stable map to Y consists of a complete nodal curve
D with k distinct ordered smooth points 𝑝1, . . . , 𝑝𝑘 and a morphism 𝜇 : 𝐷 → 𝑌 such that the data
(𝜇, 𝐷, 𝑝1, . . . , 𝑝𝑘 ) has only finitely many automorphisms. In this case, the stable map is denoted by
[𝜇 : (𝐷; 𝑝1, . . . , 𝑝𝑘 ) → 𝑌 ]. For a fixed homology class 𝛽 ∈ 𝐻2 (𝑌,Z), let 𝔐𝑔,𝑘 (𝑌, 𝛽) be the coarse
moduli space parameterizing all the stable maps [𝜇 : (𝐷; 𝑝1, . . . , 𝑝𝑘 ) → 𝑌 ] such that 𝜇∗ [𝐷] = 𝛽 and
the arithmetic genus of D is g. Then, we have the i-th evaluation map:

ev𝑖 : 𝔐𝑔,𝑘 (𝑌, 𝛽) → 𝑌 (2.1)

defined by ev𝑖 ([𝜇 : (𝐷; 𝑝1, . . . , 𝑝𝑘 ) → 𝑌 ]) = 𝜇(𝑝𝑖) ∈ 𝑌 . It is known [1, 2, 11, 24, 25] that the
coarse moduli space 𝔐𝑔,𝑘 (𝑌, 𝛽) is projective and has a virtual fundamental class [𝔐𝑔,𝑘 (𝑌, 𝛽)]vir ∈
𝐴𝑑 (𝔐𝑔,𝑘 (𝑌, 𝛽)) where

𝑑 = −(𝐾𝑌 · 𝛽) + (dim(𝑌 ) − 3) (1 − 𝑔) + 𝑘 (2.2)

is the expected complex dimension of 𝔐𝑔,𝑘 (𝑌, 𝛽), and 𝐴𝑑 (𝔐𝑔,𝑘 (𝑌, 𝛽)) is the Chow group of d-
dimensional cycles in the moduli space 𝔐𝑔,𝑘 (𝑌, 𝛽).

The Gromov-Witten invariants are defined by using the virtual fundamental class [𝔐𝑔,𝑘 (𝑌, 𝛽)]vir.
Recall that an element

𝛾 ∈ 𝐻∗(𝑌,C) def
=

2 dimC (𝑌 )⊕
𝑗=0

𝐻 𝑗 (𝑌,C)

is homogeneous if 𝛾 ∈ 𝐻 𝑗 (𝑌,C) for some j; in this case, we take |𝛾 | = 𝑗 . Let 𝛾1, . . . , 𝛾𝑘 ∈ 𝐻∗(𝑌,C)
such that every 𝛾𝑖 is homogeneous and

𝑘∑
𝑖=1

|𝛾𝑖 | = 2𝑑. (2.3)

Then, we have the k-point Gromov-Witten invariant defined by:

〈𝛾1, . . . , 𝛾𝑘〉𝑔,𝛽 =
∫
[𝔐𝑔,𝑘 (𝑌 ,𝛽) ]vir

(ev1 × · · · × ev𝑘 )∗(𝛾1 ⊗ . . . ⊗ 𝛾𝑘 ). (2.4)

The Fundamental Class Axiom of the Gromov-Witten theory asserts that

〈𝛾1, . . . , 𝛾𝑘−1, 1𝑌 〉𝑔,𝛽 = 0 (2.5)

if either 𝑘 + 2𝑔 ≥ 4 or 𝛽 ≠ 0 and 𝑘 ≥ 1. The Divisor Axiom states that

〈𝛾1, . . . , 𝛾𝑘−1, 𝛾𝑘〉𝑔,𝛽 =
∫
𝛽
𝛾𝑘 · 〈𝛾1, . . . , 𝛾𝑘−1〉𝑔,𝛽 (2.6)

if 𝛾𝑘 ∈ 𝐻2 (𝑌,C) and if either 𝑘 + 2𝑔 ≥ 4 or 𝛽 ≠ 0 and 𝑘 ≥ 1. A special case of the Composition Law
(see the formulas (3.3) and (3.6) in [20]) states that

〈𝛾1𝛾2, 𝛾3, 𝛾4〉0,𝛽 + 〈𝛾1, 𝛾2, 𝛾3𝛾4〉0,𝛽

+
∑

𝛽1+𝛽2=𝛽, 𝛽1 ,𝛽2≠0

∑
𝑎

〈𝛾1, 𝛾2,Δ𝑎〉0,𝛽1 · 〈Δ𝑎, 𝛾3, 𝛾4〉0,𝛽2

https://doi.org/10.1017/fms.2023.17 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.17


6 J. Hu and Z. Qin

=〈𝛾1𝛾3, 𝛾2, 𝛾4〉0,𝛽 + 〈𝛾1, 𝛾3, 𝛾2𝛾4〉0,𝛽

+
∑

𝛽1+𝛽2=𝛽, 𝛽1 ,𝛽2≠0

∑
𝑎

〈𝛾1, 𝛾3,Δ𝑎〉0,𝛽1 · 〈Δ𝑎, 𝛾2, 𝛾4〉0,𝛽2 (2.7)

where 𝛾1, 𝛾2, 𝛾3, 𝛾4 ∈ 𝐻∗(𝑌,C) are cohomology classes of even degrees, {Δ𝑎}𝑎 denotes a homogeneous
linear basis of 𝐻∗(𝑌,C) and {Δ𝑎}𝑎 is the linear basis of 𝐻∗(𝑌,C) dual to {Δ𝑎}𝑎 with respect to the
standard pairing on 𝐻∗(𝑌,C) (in the sense that 〈Δ𝑎,Δ𝑏〉 = 𝛿𝑎,𝑏 for all a and b).

3. Hilbert schemes of points on surfaces

In this section, we will review Hilbert schemes of points on surfaces, the Heisenberg algebra actions
on the cohomology of these Hilbert schemes constructed by Grojnowski [13] and Nakajima [34], and
Lehn’s boundary operator [21]. Moreover, we will recall the 1-point and 2-point genus-0 extremal
Gromov-Witten invariants of these Hilbert schemes from [23, 27].

3.1. Hilbert schemes of points and Heisenberg algebra actions

Let X be a smooth projective complex surface, and let 𝑋 [𝑛] be the Hilbert scheme of points in X. An
element in 𝑋 [𝑛] is represented by a length-𝑛 0-dimensional closed subscheme 𝜉 of X. For 𝜉 ∈ 𝑋 [𝑛] , let
𝐼𝜉 and O𝜉 be the corresponding sheaf of ideals and structure sheaf, respectively. It is known [10, 16]
that 𝑋 [𝑛] is a smooth irreducible variety of dimension 2𝑛. The boundary of 𝑋 [𝑛] is defined to be

𝐵𝑛 =
{
𝜉 ∈ 𝑋 [𝑛] | |Supp(𝜉) | < 𝑛

}
.

For fixed distinct points 𝑥1, . . . , 𝑥𝑛−1 ∈ 𝑋 , define the curve

𝛽𝑛 =
{
𝜉 + 𝑥2 + . . . + 𝑥𝑛−1 ∈ 𝑋 [𝑛] |Supp(𝜉) = {𝑥1}

}
� P1. (3.1)

We also regard 𝛽𝑛 as a homology class in 𝐻2 (𝑋 [𝑛] ,Z). For a subset 𝑌 ⊂ 𝑋 , define

𝑀𝑛 (𝑌 ) = {𝜉 ∈ 𝑋 [𝑛] | Supp(𝜉) is a point in 𝑌 }.

Sending an element in 𝑋 [𝑛] to its support (counting with multiplicities) in the n-th symmetric product
𝑋 (𝑛) of X, we obtain the Hilbert-Chow morphism

𝜌𝑛 : 𝑋 [𝑛] → 𝑋 (𝑛)

which is a crepant resolution of singularities. A curve in 𝑋 [𝑛] is contracted by 𝜌𝑛 if and only if it is
homologous to 𝑑𝛽𝑛 for some positive integer d.

Grojnowski [13] and Nakajima [34] geometrically constructed a Heisenberg algebra action on the
cohomology of the Hilbert schemes 𝑋 [𝑛] . Denote the Heisenberg operators by 𝔞𝑚 (𝛼) where 𝑚 ∈ Z and
𝛼 ∈ 𝐻∗(𝑋,C). Put

H𝑋 =
+∞⊕
𝑛=0

𝐻∗(𝑋 [𝑛] ,C).

The operators 𝔞𝑚 (𝛼) ∈ End(H𝑋 ) satisfy the following commutation relation:

[𝔞𝑚 (𝛼), 𝔞𝑛 (𝛽)] = −𝑚 · 𝛿𝑚,−𝑛 · 〈𝛼, 𝛽〉 · IdH𝑋 (3.2)

where we have used 𝛿𝑚,−𝑛 to denote 1 if 𝑚 = −𝑛 and 0 otherwise. The space H𝑋 is an irreducible
representation of the Heisenberg algebra generated by the operators 𝔞𝑚 (𝛼) with the highest weight
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vector being |0〉 = 1 ∈ 𝐻∗(𝑋 [0] ,C) = C. In particular, 𝐻∗(𝑋 [𝑛] ,C) is the linear span of Heisenberg
monomial classes

𝔞−𝑛1 (𝛼1) · · · 𝔞−𝑛𝑘 (𝛼𝑘 ) |0〉 (3.3)

where 𝑘 ≥ 0, 𝑛1, . . . , 𝑛𝑘 > 0 and 𝛼1, . . . , 𝛼𝑘 ∈ 𝐻∗(𝑋,C).
Fix closed real cycles 𝑋1, . . . , 𝑋𝑘 of the surface X in general position in the sense that any subset of

the 𝑋𝑖’s meet transversally in the expected dimension. Define

𝑊 (𝑛1, 𝑋1; . . . ; 𝑛𝑘 , 𝑋𝑘 ) ⊂ 𝑋 [𝑛]

to be the closed subset consisting of all 𝜉 ∈ 𝑋 [𝑛] which admit filtrations

𝜉 = 𝜉𝑘 ⊃ . . . ⊃ 𝜉1 ⊃ 𝜉0 = ∅

with ℓ(𝜉𝑖) = ℓ(𝜉𝑖−1) + 𝑛𝑖 and

Supp(𝐼𝜉𝑖−1/𝐼𝜉𝑖 ) = 𝑥𝑖 ∈ 𝑋𝑖 (3.4)

for 1 ≤ 𝑖 ≤ 𝑘 . Let𝑊 (𝑛1, 𝑋1; . . . ; 𝑛𝑘 , 𝑋𝑘 )0 ⊂ 𝑊 (𝑛1, 𝑋1; . . . ; 𝑛𝑘 , 𝑋𝑘 ) be the open subset consisting of all
𝜉 ∈ 𝑊 (𝑛1, 𝑋1; . . . ; 𝑛𝑘 , 𝑋𝑘 ) such that the points 𝑥1, . . . , 𝑥𝑘 in (3.4) are distinct.

Lemma 3.1 [38, Proposition 3.16]. Let ℓ, 𝑘 ≥ 0, 𝑠𝑖 ≥ 0 (1 ≤ 𝑖 ≤ ℓ), 𝑛𝑖 > 0 (1 ≤ 𝑖 ≤ 𝑘). Let

𝛼1, . . . , 𝛼𝑘 ∈
4⊕
𝑖=1

𝐻𝑖 (𝑋,C) be represented by the cycles 𝑋1, . . . , 𝑋𝑘 ⊂ 𝑋 , respectively, such that

𝑋1, . . . , 𝑋𝑘 are in general position. Then,(
ℓ∏
𝑖=1

𝔞−𝑖 (1𝑋 )𝑠𝑖
𝑠𝑖!

) (
𝑘∏
𝑖=1

𝔞−𝑛𝑖 (𝛼𝑖)
)
|0〉

is represented by the closure of

𝑊 (1, 𝑋; . . . ; 1, 𝑋︸�����������︷︷�����������︸
𝑠1 times

; . . . ; ℓ, 𝑋; . . . ; ℓ, 𝑋︸�����������︷︷�����������︸
𝑠ℓ times

; 𝑛1, 𝑋1; . . . ; 𝑛𝑘 , 𝑋𝑘 )0. (3.5)

It follows that 1𝑋 [𝑛] = 1/𝑛! · 𝔞−1 (1𝑋 )𝑛 |0〉 ∈ 𝐻0 (𝑋 [𝑛] ,C), where 1𝑋 denotes the fundamental
cohomology class of the surface X, and

𝛽𝑛 = 𝔞−2 (𝑥)𝔞−1 (𝑥)𝑛−2 |0〉, (3.6)

𝐵𝑛 =
1

(𝑛 − 2)!𝔞−1 (1𝑋 )𝑛−2𝔞−2 (1𝑋 ) |0〉, (3.7)

where x denotes the fundamental cohomology class of a point 𝑥 ∈ 𝑋 . For simplicity, we do not distinguish
a homology class and its Poincaré dual.

Let 𝜏2 : 𝑋 → 𝑋2 be the diagonal embedding and 𝜏2∗ : 𝐻∗(𝑋,C) → 𝐻∗(𝑋2,C) be the induced map.
For 𝛼 ∈ 𝐻∗(𝑋,C) and 𝑚1, 𝑚2 ∈ Z, define

𝔞𝑚1𝔞𝑚2 (𝜏2∗𝛼) =
∑
𝑖

𝔞𝑚1 (𝛼𝑖,1)𝔞𝑚2 (𝛼𝑖,2)
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if 𝜏2∗𝛼 =
∑

𝑖 𝛼𝑖,1 ⊗ 𝛼𝑖,2 under the Künneth decomposition of 𝐻∗(𝑋2,C). For 𝑛 ∈ Z and 𝛼 ∈ 𝐻∗(𝑋,C),
define the linear operator 𝔏𝑛 (𝛼) ∈ End(H𝑋 ) by

𝔏𝑛 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1

2
·
∑
𝑚∈Z

𝔞𝑚𝔞𝑛−𝑚𝜏2∗, if 𝑛 ≠ 0,

−
∑
𝑚>0

𝔞−𝑚𝔞𝑚𝜏2∗, if 𝑛 = 0.
(3.8)

We have the commutation relation

[𝔏𝑚 (𝛼), 𝔞𝑛 (𝛽)] = −𝑛 · 𝔞𝑚+𝑛 (𝛼𝛽). (3.9)

Lehn [21] defined the boundary operator 𝔡 ∈ End(H𝑋 ) by putting

𝔡 · 𝛾𝑛 = −1
2
𝐵𝑛 ∪ 𝛾𝑛 (3.10)

for 𝛾𝑛 ∈ 𝐻∗(𝑋 [𝑛] ,C). For a linear operator 𝔣 ∈ End(H𝑋 ), define its derivative 𝔣′ by

𝔣′ = [𝔡, 𝔣] .

A fundamental result proved in [21] states that

𝔞′𝑛 (𝛼) = 𝑛 · 𝔏𝑛 (𝛼) −
𝑛(|𝑛| − 1)

2
· 𝔞𝑛 (𝐾𝑋𝛼). (3.11)

3.2. 1-point and 2-point genus-0 extremal Gromov-Witten invariants

In this subsection, let X be a simply connected smooth projective surface. We start with the 1-point
genus-0 extremal Gromov-Witten invariants of 𝑋 [𝑛] .

Lemma 3.2 [27, Theorem 3.5]. Let X be a simply connected smooth projective surface. Let 𝑛 ≥ 2,
𝑑 ≥ 1 and 𝛾 ∈ 𝐻∗(𝑋 [𝑛] ,C) be a Heisenberg monomial class (3.3). Then, 〈𝛾〉0,𝑑𝛽𝑛 = 0 unless
𝛾 = 𝔞−2 (𝛼)𝔞−1(𝑥)𝑛−2 |0〉 for some 𝛼 ∈ 𝐻2(𝑋,C). Moreover, if 𝛾 = 𝔞−2 (𝛼)𝔞−1(𝑥)𝑛−2 |0〉 for some
𝛼 ∈ 𝐻2(𝑋,C), then

〈𝛾〉0,𝑑𝛽𝑛 =
2
𝑑2 · 〈𝐾𝑋 , 𝛼〉.

The 2-point genus-0 extremal Gromov-Witten invariants of 𝑋 [𝑛] have been studied in [23] via
cosection localizations [17]. By abusing notations, denote

[𝜑 : (𝐶; 𝑝1, . . . , 𝑝𝑘 ) → 𝑋 [𝑛] ] ∈ 𝔐𝑔,𝑘 (𝑋 [𝑛] , 𝑑𝛽𝑛)

by 𝜑. Since 𝜑∗ [𝐶] = 𝑑𝛽𝑛, the composition 𝜌𝑛 ◦ 𝜑 is a constant map. Let

Spt : 𝔐𝑔,𝑘 (𝑋 [𝑛] , 𝑑𝛽𝑛) → 𝑋 (𝑛)

be the induced map. If Spt(𝜑) =
∑ℓ

𝑖=1 𝑛𝑖𝑥𝑖 ∈ 𝑋 (𝑛) where 𝑥1, . . . , 𝑥ℓ are distinct, then the morphism 𝜑
factors through the product of punctual Hilbert schemes:

𝜑 = (𝜑1, . . . , 𝜑ℓ) : 𝐶 →
ℓ∏
𝑖=1
𝑀𝑛𝑖 (𝑥𝑖) ⊂ 𝑋 [𝑛] (3.12)
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where 𝜑𝑖 is a morphism from C to 𝑀𝑛𝑖 (𝑥𝑖). The collection

𝜑 = (𝜑1, . . . , 𝜑ℓ) (3.13)

is defined to be the standard decomposition of 𝜑, and the point 𝑥𝑖 is called the support of 𝜑𝑖 . Note that
the collection {𝜑1, . . . , 𝜑ℓ } is unique up to the ordering of the 𝜑𝑖’s. Fix a meromorphic section 𝜃 of
O𝑋 (𝐾𝑋 ). Let 𝐷0 and 𝐷∞ be the vanishing and pole divisors of 𝜃, respectively.

Lemma 3.3 [23, Proposition 3.3]. Let Λ𝜃 ⊂ 𝔐𝑔,𝑘 (𝑋 [𝑛] , 𝑑𝛽𝑛) be the subset consisting of the stable
maps 𝜑 = (𝜑1, . . . , 𝜑ℓ) ∈ 𝔐𝑔,𝑘 (𝑋 [𝑛] , 𝑑𝛽𝑛) such that for each i, either 𝜑𝑖 is a constant map or the
support 𝑥𝑖 = Spt(𝜑𝑖) lies in 𝐷0 ∪ 𝐷∞. Then the virtual fundamental class [𝔐𝑔,𝑘 (𝑋 [𝑛] , 𝑑𝛽𝑛)]vir is
supported in Λ𝜃 .

Let (𝜇1, 𝜇2, 𝜇3) denote a triple of partitions with |𝜇1 | + |𝜇2 | + |𝜇3 | = 𝑛. Let 𝑟 = ℓ(𝜇1), 𝑠 = ℓ(𝜇2)
and 𝑡 = ℓ(𝜇3) be the lengths. For cohomology classes c1, . . . , c𝑠 ∈ 𝐻2(𝑋,C), define the class 𝐴𝜇

c ∈
𝐻∗(𝑋 [𝑛] ,C) by

𝐴
𝜇
c =

𝑟∏
𝑖=1

𝔞−𝜇1
𝑖
(𝑥) ·

𝑠∏
𝑗=1

𝔞−𝜇2
𝑗
(c 𝑗 ) ·

𝑡∏
𝑘=1

𝔞−𝜇3
𝑘
(1𝑋 ) |0〉. (3.14)

For a part 𝜇2
𝑗 of 𝜇2, let 𝐴

𝜇−𝜇2
𝑗

c be the cohomology class in 𝐻∗(𝑋 [𝑛−𝜇2
𝑗 ] ,C) obtained from 𝐴

𝜇
c with the

factor 𝔞−𝜇2
𝑗
(c 𝑗 ) deleted. We similarly define 𝐴𝜇−𝜇3

𝑖
c .

The following lemma summarizes some of the main results in [23] and computes the 2-point genus-0
extremal Gromov-Witten invariants of 𝑋 [𝑛] .

Lemma 3.4 [23]. Let 𝑑 ≥ 1. Assume that
〈
𝐴𝜆e , 𝐴

𝜇
c
〉

0,𝑑𝛽𝑛
≠ 0. Then,

ℓ(𝜆3) = ℓ(𝜇1) + 𝛿
ℓ(𝜇3) = ℓ(𝜆1) + (1 − 𝛿)

where 𝛿 = 0 or 1. If 𝛿 = 0, then 𝜆3 = 𝜇1, and there exists an integer ℓ = 𝜇3
𝑖 = 𝜆2

𝑗 for some i and j such
that the partition 𝜆1 is obtained from 𝜇3 with ℓ deleted, and the partition 𝜇2 is obtained from 𝜆2 with ℓ
deleted; moreover, 〈

𝐴𝜆e , 𝐴
𝜇
c
〉

0,𝑑𝛽𝑛
=

∑
ℓ=𝜇3

𝑖 =𝜆
2
𝑗

〈
𝐴
𝜆−𝜆2

𝑗
e , 𝐴

𝜇−𝜇3
𝑖

c
〉
· 〈𝐾𝑋 , e 𝑗〉 · 𝑐ℓ,𝑑 (3.15)

where the universal constant 𝑐ℓ,𝑑 is defined by the equation∑
𝑑≥1

𝑑 𝑐ℓ,𝑑 𝑞
𝑑 = (−1)ℓℓ2

(
ℓ(−𝑞)ℓ

(−𝑞)ℓ − 1
− 𝑞

1 + 𝑞

)
. (3.16)

4. Genus-0 extremal Gromov-Witten invariants of 𝑋 [3]

In this section, X is a simply connected smooth projective surface. We will study the genus-0 extremal
Gromov-Witten invariants 〈𝜔1, . . . , 𝜔𝑘〉0,𝑑𝛽3 of 𝑋 [3] . Put

〈𝜔1, . . . , 𝜔𝑘〉0,𝑑 = 〈𝜔1, . . . , 𝜔𝑘〉0,𝑑𝛽3
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for simplicity. In view of the Fundamental Class Axiom (2.5), the Divisor Axiom (2.6) and the dimension
constraint (2.3), the genus-0 extremal Gromov-Witten invariants of 𝑋 [3] are reduced to the invariants

〈𝜔̃1〉0,𝑑 , 〈𝜔̃1, 𝜔̃2〉0,𝑑 , 〈𝜔1, 𝜔2, 𝜔3〉0,𝑑

with 𝜔1, 𝜔2, 𝜔3 ∈ 𝐻4 (𝑋 [3] ,C). The invariants 〈𝜔̃1〉0,𝑑 and 〈𝜔̃1, 𝜔̃2〉0,𝑑 have been dealt with by
Lemma 3.2 and Lemma 3.4, respectively. Therefore, it remains to calculate the 3-point invariants
〈𝜔1, 𝜔2, 𝜔3〉0,𝑑 with 𝜔1, 𝜔2, 𝜔3 ∈ 𝐻4 (𝑋 [3] ,C).

To begin with, we fix a linear basis of 𝐻∗(𝑋 [3] ,C) which allows us to apply the composition law
(2.7). Let {𝛼1, . . . , 𝛼𝑠} be a linear basis of 𝐻2(𝑋,C). By (3.3), a linear basis 𝔅2 of 𝐻2 (𝑋 [3] ,C) consists
of the cohomology classes

𝐵3,
1
2
𝔞−1 (𝛼𝑖)𝔞−1(1𝑋 )2 |0〉 (4.1)

where 1 ≤ 𝑖 ≤ 𝑠, a linear basis 𝔅10 of 𝐻10 (𝑋 [3] ,C) consists of

𝛽3, 𝔞−1 (𝛼𝑖)𝔞−1(𝑥)2 |0〉 (4.2)

where 1 ≤ 𝑖 ≤ 𝑠, and a linear basis 𝔅8 of 𝐻8(𝑋 [3] ,C) consists of the classes

𝔞−1 (1𝑋 )𝔞−1(𝑥)2 |0〉, 𝔞−3 (𝑥) |0〉, 𝔞−1 (𝛼𝑖)𝔞−2(𝑥) |0〉,
𝔞−2 (𝛼𝑖)𝔞−1(𝑥) |0〉, 𝔞−1 (𝛼𝑖)𝔞−1(𝛼 𝑗 )𝔞−1(𝑥) |0〉 (4.3)

where 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑠. A linear basis 𝔅4 of 𝐻4 (𝑋 [3] ,C) consists of the classes

𝔞−1 (1𝑋 )2𝔞−1 (𝑥) |0〉, 𝔞−3 (1𝑋 ) |0〉, 𝔞−1 (𝛼𝑖)𝔞−2(1𝑋 ) |0〉,
𝔞−2 (𝛼𝑖)𝔞−1(1𝑋 ) |0〉, 𝔞−1 (𝛼𝑖)𝔞−1(𝛼 𝑗 )𝔞−1(1𝑋 ) |0〉 (4.4)

where 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑠, and a linear basis 𝔅6 of 𝐻6(𝑋 [3] ,C) consists of

𝔞−2 (1𝑋 )𝔞−1(𝑥) |0〉, 𝔞−1 (1𝑋 )𝔞−2(𝑥) |0〉, 𝔞−1 (1𝑋 )𝔞−1(𝛼𝑖)𝔞−1(𝑥) |0〉,
𝔞−3(𝛼𝑖) |0〉, 𝔞−2 (𝛼𝑖)𝔞−1(𝛼 𝑗′ ) |0〉, 𝔞−1 (𝛼𝑖)𝔞−1(𝛼 𝑗 )𝔞−1(𝛼𝑘 ) |0〉 (4.5)

where 1 ≤ 𝑖, 𝑗 ′ ≤ 𝑗 ≤ 𝑘 ≤ 𝑠. The point class in 𝐻12 (𝑋 [3] ,C) is 𝔞−1 (𝑥)3 |0〉.

Definition 4.1. Let X be a simply connected smooth projective surface. Let {𝛼1, . . . , 𝛼𝑠} be a linear
basis of 𝐻2 (𝑋,C). Define {Δ𝑎} to be the linear basis of the total cohomology 𝐻∗(𝑋 [3] ,C) that
consists of

𝔞−1 (𝑥)3 |0〉, 𝔅𝑖 (𝑖 = 2, 4, 6, 8, 10), 1𝑋 [3] . (4.6)

Let𝜔1, 𝜔2, 𝜔3 ∈ 𝔅4 ⊂ 𝐻4 (𝑋 [3] ,C). The next lemma identifies all the unordered triples (𝜔1, 𝜔2, 𝜔3)
such that 〈𝜔1, 𝜔2, 𝜔3〉0,𝑑 may not be 0. The idea is to use geometric argument involving the reduction
Lemma 3.3. In order to apply Lemma 3.3, we fix a meromorphic section 𝜃 of the canonical line bundle
O𝑋 (𝐾𝑋 ) and let 𝐷0 and 𝐷∞ be the vanishing and pole divisors of 𝜃, respectively.

Lemma 4.2. Let 𝑑 ≥ 1 and 𝜔1, 𝜔2, 𝜔3 ∈ 𝔅4 ⊂ 𝐻4(𝑋 [3] ,C). Then

〈𝜔1, 𝜔2, 𝜔3〉0,𝑑 = 0 (4.7)
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if the unordered triple (𝜔1, 𝜔2, 𝜔3) is not one of the following:

(i)
(
𝔞−2 (1𝑋 )𝔞−1(𝛼𝑖) |0〉, 𝔞−2 (1𝑋 )𝔞−1(𝛼 𝑗 ) |0〉, 𝔞−1 (1𝑋 )𝔞−2(𝛼𝑘 ) |0〉

)
;

(ii) 𝜔1 = 𝜔2 = 𝔞−3 (1𝑋 ) |0〉, and 𝜔3 = 𝔞−2 (1𝑋 )𝔞−1(𝛼𝑖) |0〉 or 𝔞−1 (1𝑋 )𝔞−2(𝛼𝑖) |0〉;
(iii) 𝜔1 = 𝜔2 = 𝜔3 = 𝔞−3 (1𝑋 ) |0〉.

Proof. We will only prove (4.7) when the triple (𝜔1, 𝜔2, 𝜔3) is(
𝔞−2 (1𝑋 )𝔞−1(𝛼𝑖) |0〉, 𝔞−1 (1𝑋 )𝔞−2(𝛼 𝑗 ) |0〉, 𝔞−1 (1𝑋 )𝔞−2(𝛼𝑘 ) |0〉

)
since the proof of (4.7) for other triples is similar.

To show that 〈𝜔1, 𝜔2, 𝜔3〉0,𝑑 = 0, let 𝐶𝑖 , 𝐶 𝑗 , 𝐶𝑘 ⊂ 𝑋 be real 2-dimensional cycles representing the
cohomology classes 𝛼𝑖 , 𝛼 𝑗 , 𝛼𝑘 ∈ 𝐻2(𝑋,C), respectively, such that 𝐶𝑖 , 𝐶 𝑗 , 𝐶𝑘 , 𝐷0, 𝐷∞ are in general
position. By Lemma 3.1, the classes

𝔞−2 (1𝑋 )𝔞−1(𝛼𝑖) |0〉, 𝔞−1 (1𝑋 )𝔞−2(𝛼 𝑗 ) |0〉, 𝔞−1 (1𝑋 )𝔞−2(𝛼𝑘 ) |0〉

are geometrically represented by the closures𝑊1,𝑊2,𝑊3 of the subsets

𝑊 (2, 𝑋; 1, 𝐶𝑖)0, 𝑊 (1, 𝑋; 2, 𝐶 𝑗 )0, 𝑊 (1, 𝑋; 2, 𝐶𝑘 )0, (4.8)

respectively. By Lemma 3.3, it suffices to prove that

Λ𝜃 ∩ ev−1
1 (𝑊1) ∩ ev−1

2 (𝑊2) ∩ ev−1
3 (𝑊3) = ∅.

Assume [𝜑 : (Σ; 𝑝1, 𝑝2, 𝑝3) → 𝑋 [3] ] ∈ Λ𝜃 ∩ ev−1
1 (𝑊1) ∩ ev−1

2 (𝑊2) ∩ ev−1
3 (𝑊3). Since [𝜑 :

(Σ; 𝑝1, 𝑝2, 𝑝3) → 𝑋 [3] ] ∈ ev−1
1 (𝑊1) and 𝜌3(𝜑(Σ)) is a single point in 𝑋 (3) , we see from (4.8) that

𝜌3 (𝜑(Σ)) is of the form

𝜌3 (𝜑(Σ)) = 2𝑥1 + 𝑥2 (4.9)

for some (possibly the same) points 𝑥1, 𝑥2 ∈ 𝑋 such that 𝑥2 ∈ 𝐶𝑖 . Since

[𝜑 : (Σ; 𝑝1, 𝑝2, 𝑝3) → 𝑋 [3] ] ∈ ev−1
1 (𝑊2),

we must have 𝑥1 ∈ 𝐶 𝑗 . Similarly, 𝑥1 ∈ 𝐶𝑘 . So 𝑥1 ∈ 𝐶 𝑗 ∩ 𝐶𝑘 . Since 𝐶𝑖 , 𝐶 𝑗 , 𝐶𝑘 , 𝐷0, 𝐷∞ are in general
position, 𝑥1 ∉ 𝐶𝑖 ∪ 𝐷0 ∪ 𝐷∞ and 𝑥1 ≠ 𝑥2. Let 𝜑 = (𝜑1, 𝜑2, · · · ) be the standard decomposition of 𝜑.
Without loss of generality, we assume that 𝜑1 is not a constant map. By Lemma 3.3, Spt(𝜑1) ∈ 𝐷0∪𝐷∞.
So 𝑥2 = Spt(𝜑1) ∈ 𝐷0 ∪ 𝐷∞ and 𝑥2 ∈ 𝐶𝑖 ∩ (𝐷0 ∪ 𝐷∞). Therefore, 𝜑1 : Σ → 𝑋 is the constant map
𝜑1 (Σ) = 𝑥2, contradicting the assumption that 𝜑1 is not constant. �

In the rest of this section, we will compute 〈𝜔1, 𝜔2, 𝜔3〉0,𝑑 when the unordered triple (𝜔1, 𝜔2, 𝜔3) is
one of those listed in Lemma 4.2 (i), (ii) and (iii). Lemma 4.3 below deals with the unordered triple in
Lemma 4.2 (i), and its proof uses a geometric argument similar to the proof of Lemma 4.2.

Lemma 4.3. Let {𝛼1, . . . , 𝛼𝑠} be a linear basis of 𝐻2(𝑋,C). Let 𝑑 ≥ 1 and the unordered triple
(𝜔1, 𝜔2, 𝜔3) be from Lemma 4.2 (i). Then,

〈𝜔1, 𝜔2, 𝜔3〉0,𝑑 = 8〈𝛼𝑖 , 𝛼 𝑗〉 〈𝐾𝑋 , 𝛼𝑘〉. (4.10)

Proof. Let𝐶𝑖 , 𝐶 𝑗 , 𝐶𝑘 ⊂ 𝑋 be real 2-dimensional cycles representing the cohomology classes 𝛼𝑖 , 𝛼 𝑗 , 𝛼𝑘 ,
respectively, such that 𝐶𝑖 , 𝐶 𝑗 , 𝐶𝑘 , 𝐷0, 𝐷∞ are in general position. By Lemma 3.1, the cohomology
classes

𝔞−2 (1𝑋 )𝔞−1(𝛼𝑖) |0〉, 𝔞−2 (1𝑋 )𝔞−1(𝛼 𝑗 ) |0〉, 𝔞−1 (1𝑋 )𝔞−2(𝛼𝑘 ) |0〉 (4.11)
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are geometrically represented by the closures𝑊1,𝑊2,𝑊3 of the subsets

𝑊 (2, 𝑋; 1, 𝐶𝑖)0, 𝑊 (2, 𝑋; 1, 𝐶 𝑗 )0, 𝑊 (1, 𝑋; 2, 𝐶𝑘 )0, (4.12)

respectively. Let [𝜑 : (Σ; 𝑝1, 𝑝2, 𝑝3) → 𝑋 [3] ] ∈ Λ𝜃 ∩ ev−1
1 (𝑊1) ∩ ev−1

2 (𝑊2) ∩ ev−1
3 (𝑊3). Since

[𝜑 : (Σ; 𝑝1, 𝑝2, 𝑝3) → 𝑋 [3] ] ∈ ev−1
3 (𝑊3) and 𝜌3 (𝜑(Σ)) is a single point in 𝑋 (3) , we see from (4.12)

that 𝜌3(𝜑(Σ)) is of the form

𝜌3 (𝜑(Σ)) = 𝑥1 + 2𝑥2 (4.13)

for some (possibly the same) points 𝑥1, 𝑥2 ∈ 𝑋 such that 𝑥2 ∈ 𝐶𝑘 . By Lemma 3.3, since [𝜑 :
(Σ; 𝑝1, 𝑝2, 𝑝3) → 𝑋 [3] ] ∈ Λ𝜃 and 𝜑 is not a constant map, 𝑥2 ∈ 𝐷0 ∪ 𝐷∞. So 𝑥2 ∈ 𝐶𝑘 ∩ (𝐷0 ∪ 𝐷∞).
Since𝐶𝑖 , 𝐶 𝑗 , 𝐶𝑘 , 𝐷0 and 𝐷∞ are in general position, 𝑥2 ∉ 𝐶𝑖∪𝐶 𝑗 . Since [𝜑 : (Σ; 𝑝1, 𝑝2, 𝑝3) → 𝑋 [3] ] ∈
ev−1

1 (𝑊1) ∩ ev−1
2 (𝑊2), we see from (4.13) that 𝑥1 ∈ 𝐶𝑖 ∩ 𝐶 𝑗 . It follows that 𝑥1 ≠ 𝑥2, and the standard

decomposition of 𝜑 (see (3.13)) is of the form 𝜑 = (𝜑1, 𝜑2) with Spt(𝜑1) = 𝑥1 and Spt(𝜑2) = 2𝑥2. In
particular, 𝜑1 : Σ → 𝑋 is the constant map sending Σ to 𝑥1. Hence, we obtain

〈𝜔1, 𝜔2, 𝜔3〉0,𝑑 = 〈𝛼𝑖 , 𝛼 𝑗〉
〈
𝔞−2 (1𝑋 ) |0〉, 𝔞−2 (1𝑋 ) |0〉, 𝔞−2 (𝛼𝑘 ) |0〉

〉
0,𝑑

by splitting off the factors 𝔞−1 (𝛼𝑖), 𝔞−1 (𝛼 𝑗 ), 𝔞−1 (1𝑋 ) from the three classes in (4.11), respectively. It is
known (see [38, (1.35)]) that

〈𝐵𝑛, 𝛽𝑛〉 = −2 (4.14)

for 𝑛 ≥ 2. In particular,
〈
𝔞−2 (1𝑋 ) |0〉, 𝛽2

〉
= −2. So by the Divisor Axiom (2.6),

〈𝜔1, 𝜔2, 𝜔3〉0,𝑑 = 4𝑑2〈𝛼𝑖 , 𝛼 𝑗〉
〈
𝔞−2 (𝛼𝑘 ) |0〉

〉
0,𝑑 .

Finally, by Lemma 3.2 with 𝑛 = 2,
〈
𝔞−2 (𝛼𝑘 ) |0〉

〉
0,𝑑 = 2〈𝐾𝑋 , 𝛼𝑘〉/𝑑2. Therefore,

〈𝜔1, 𝜔2, 𝜔3〉0,𝑑 = 8〈𝛼𝑖 , 𝛼 𝑗〉 〈𝐾𝑋 , 𝛼𝑘〉. �

To handle the unordered triples (𝜔1, 𝜔2, 𝜔3) listed in Lemma 4.2 (ii), we will now prove three
technical lemmas. For simplicity, in the rest of this section, we let

𝑐1 = −1
2
𝐵3 = −1

2
𝔞−2 (1𝑋 )𝔞−1(1𝑋 ) |0〉 ∈ 𝐻2(𝑋 [3] ,C).

Recall from (4.14) that 〈𝐵3, 𝛽3〉 = −2. It follows that

〈𝑐1, 𝛽3〉 = 1. (4.15)

The self-intersection 𝑐2
1 via Heisenberg operators is given by the lemma below.

Lemma 4.4. Let 𝑐1 = −𝐵3/2. Then, 𝑐2
1 is equal to

𝔞−3 (1𝑋 ) |0〉 −
1
2
𝔞−1 (1𝑋 )𝔞−2(𝐾𝑋 ) |0〉 −

1
2
𝔞−1 (1𝑋 ) · 𝔞−1𝔞−1 (𝜏2∗1𝑋 ) |0〉. (4.16)

Proof. Recall Lehn’s boundary operator 𝔡 from (3.10). By definition,

𝑐2
1 = −1

2
𝔡𝔞−2 (1𝑋 )𝔞−1(1𝑋 ) |0〉.
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Moving 𝔡 all the way to the right and using 𝔡 |0〉 = 0, we get

𝑐2
1 = −1

2
{
𝔞′−2 (1𝑋 )𝔞−1(1𝑋 ) |0〉 + 𝔞−2 (1𝑋 )𝔞′−1(1𝑋 ) |0〉

}
.

By (3.11), 𝔞′−2 (1𝑋 ) = −2𝔏−2 (1𝑋 ) + 𝔞−2 (𝐾𝑋 ). So by (3.9) and (3.8),

𝔞′−2(1𝑋 )𝔞−1(1𝑋 ) |0〉
= − 2𝔞−3 (1𝑋 ) |0〉 − 2𝔞−1 (1𝑋 )𝔏−2(1𝑋 ) |0〉 + 𝔞−2 (𝐾𝑋 )𝔞−1(1𝑋 ) |0〉
= − 2𝔞−3 (1𝑋 ) |0〉 + 𝔞−1 (1𝑋 ) · 𝔞−1𝔞−1 (𝜏2∗1𝑋 ) |0〉 + 𝔞−2 (𝐾𝑋 )𝔞−1(1𝑋 ) |0〉.

Similarly, 𝔞′−1 (1𝑋 ) |0〉 = −𝔏−1 (1𝑋 ) |0〉 = 0. Therefore, 𝑐2
1 is equal to

𝔞−3 (1𝑋 ) |0〉 −
1
2
𝔞−1 (1𝑋 )𝔞−2(𝐾𝑋 ) |0〉 −

1
2
𝔞−1 (1𝑋 ) · 𝔞−1𝔞−1 (𝜏2∗1𝑋 ) |0〉. �

Since X is simply connected, if {𝛼1, . . . , 𝛼𝑠} is a linear basis of 𝐻2(𝑋,C), then

𝜏2∗1𝑋 = 𝑥 ⊗ 1𝑋 + 1𝑋 ⊗ 𝑥 +
∑

1≤ 𝑗≤𝑘≤𝑠
𝑏 𝑗 ,𝑘 𝛼 𝑗 ⊗ 𝛼𝑘 (4.17)

for some 𝑏 𝑗 ,𝑘 ∈ C, via the Künneth decomposition of 𝐻∗(𝑋2,C).
In the next two lemmas, we will compute certain special 1-point and 2-point genus-0 extremal

Gromov-Witten invariants which will appear in our applications of the composition law (2.7) and
involve the class 𝜔 = 𝔞−3(1𝑋 ) |0〉.

Lemma 4.5. Let X be a simply connected smooth projective surface. Let 𝑑 ≥ 1, 𝜔 = 𝔞−3 (1𝑋 ) |0〉 and
𝜔̃ = 𝔞−1 (1𝑋 )𝔞−2(𝛼) |0〉 for some 𝛼 ∈ 𝐻2(𝑋,C). Then,

〈𝜔𝜔̃〉0,𝑑 = −12
𝑑2 〈𝐾𝑋 , 𝛼〉. (4.18)

Proof. Let {𝛼1, . . . , 𝛼𝑠} be a linear basis of 𝐻2(𝑋,C). By (4.16) and (4.17),

𝜔 = 𝑐2
1 +

1
2
𝔞−1 (1𝑋 )𝔞−2(𝐾𝑋 ) |0〉 +

1
2
𝔞−1 (1𝑋 ) · 𝔞−1𝔞−1 (𝜏2∗1𝑋 ) |0〉

= 𝑐2
1 +

1
2
𝔞−1 (1𝑋 )𝔞−2(𝐾𝑋 ) |0〉 + 𝔞−1 (1𝑋 )2𝔞−1 (𝑥) |0〉

+
∑

1≤ 𝑗≤𝑘≤𝑠
𝑏 𝑗 ,𝑘𝔞−1 (1𝑋 )𝔞−1(𝛼 𝑗 )𝔞−1(𝛼𝑘 ) |0〉. (4.19)

In view of the linear basis (4.4), 𝔞−1 (1𝑋 )𝔞−2(𝐾𝑋 ) |0〉 · 𝜔̃ is a linear combination of 𝔞−1 (1𝑋 )𝔞−1(𝑥)2 |0〉,
𝔞−1 (𝛼 𝑗 )𝔞−1(𝛼𝑘 )𝔞−1(𝑥) |0〉, 𝔞−1(𝛼 𝑗 )𝔞−2(𝑥) |0〉 and 𝔞−3 (𝑥) |0〉. Hence, 〈𝔞−1 (1𝑋 )𝔞−2(𝐾𝑋 ) |0〉 · 𝜔̃〉0,𝑑 = 0
by Lemma 3.2. Similarly,

〈𝔞−1 (1𝑋 )𝔞−1(𝛼 𝑗 )𝔞−1(𝛼𝑘 ) |0〉 · 𝜔̃〉0,𝑑 = 0

whenever 1 ≤ 𝑗 , 𝑘 ≤ 𝑠. Note that 𝔞−1 (1𝑋 )2𝔞−1 (𝑥) |0〉 · 𝜔̃ = 2𝔞−1 (𝑥)𝔞−2 (𝛼) |0〉. Combining with (4.19)
and Lemma 3.2, we conclude that

〈𝜔𝜔̃〉0,𝑑 = 〈𝑐2
1𝜔̃〉0,𝑑 + 〈𝔞−1 (1𝑋 )2𝔞−1 (𝑥) |0〉 · 𝜔̃〉0,𝑑 = 〈𝑐2

1𝜔̃〉0,𝑑 + 4
𝑑2 〈𝐾𝑋 , 𝛼〉.
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As in the proof of Lemma 4.4, using (3.11) and (3.9), we get

𝑐2
1𝜔̃ = 𝔡𝔡𝔞−1 (1𝑋 )𝔞−2(𝛼) |0〉

= 𝔡
{
2𝔞−3 (𝛼) + 〈𝐾𝑋 , 𝛼〉𝔞−1 (1𝑋 )𝔞−2(𝑥) + 2𝔞−1 (1𝑋 )𝔞−1(𝛼)𝔞−1(𝑥)

}
|0〉

= −8𝔞−1 (𝑥)𝔞−2 (𝛼) |0〉 + 𝛾

where 𝛾 is a term satisfying 〈𝛾〉0,𝑑 = 0. By Lemma 3.2 again,

〈𝜔𝜔̃〉0,𝑑 = −8
〈
𝔞−1 (𝑥)𝔞−2 (𝛼) |0〉

〉
0,𝑑 + 4

𝑑2 〈𝐾𝑋 , 𝛼〉 = −12
𝑑2 〈𝐾𝑋 , 𝛼〉. �

Lemma 4.6. Let X be simply connected. Let 𝑑 ≥ 1, 𝑐1 = −𝐵3/2, 𝜔 = 𝔞−3 (1𝑋 ) |0〉 and 𝜔̃ =
𝔞−1 (1𝑋 )𝔞−2(𝛼) |0〉 for some 𝛼 ∈ 𝐻2(𝑋,C). Then,

(i) 〈𝑐1𝜔, 𝜔̃〉0,𝑑 = −12〈𝐾𝑋 , 𝛼〉/𝑑.
(ii) 〈𝜔, 𝑐1𝜔̃〉0,𝑑 = −2 〈𝐾𝑋 , 𝛼〉 𝑐3,𝑑 where 𝑐3,𝑑 is from (3.16).

(iii) 〈𝑐1𝜔, 𝜔〉0,𝑑 = 3𝐾2
𝑋 𝑐3,𝑑 .

Proof. (i) Since 𝑐1𝜔 = 𝔡𝔞−3 (1𝑋 ) |0〉, we see from (3.11) that

𝑐1𝜔 = 𝔞′−3 (1𝑋 ) |0〉 =
(
− 3𝔏−3 (1𝑋 ) + 3𝔞−3 (𝐾𝑋 )

)
|0〉.

By (3.8), 𝔏−3 (1𝑋 ) |0〉 = −𝔞−1𝔞−2 (𝜏2∗1𝑋 ) |0〉. Thus, we have

𝑐1𝜔 = 3𝔞−1𝔞−2 (𝜏2∗1𝑋 ) |0〉 + 3𝔞−3 (𝐾𝑋 ) |0〉. (4.20)

By Lemma 3.4,
〈
𝔞−3 (𝐾𝑋 ) |0〉, 𝜔̃

〉
0,𝑑 = 0. Therefore,

〈𝑐1𝜔, 𝜔̃〉0,𝑑 = 3
〈
𝔞−1𝔞−2(𝜏2∗1𝑋 ) |0〉, 𝜔̃

〉
0,𝑑 .

By (4.17), Lemma 3.4 and 𝑐2,𝑑 = −4/𝑑, we obtain

〈𝑐1𝜔, 𝜔̃〉0,𝑑 = 3
〈
𝔞−1 (𝑥)𝔞−2 (1𝑋 ) |0〉, 𝜔̃

〉
0,𝑑 = 3〈𝐾𝑋 , 𝛼〉 · 𝑐2,𝑑 = −12

𝑑
〈𝐾𝑋 , 𝛼〉.

(ii) Similarly, by (3.11) and (3.8), we conclude that

𝑐1𝜔̃ = 𝔞′−1 (1𝑋 )𝔞−2(𝛼) |0〉 + 𝔞−1 (1𝑋 )𝔞′−2(𝛼) |0〉 = −2𝔞−3 (𝛼) |0〉 + 𝛾

where 𝛾 is a term satisfying 〈𝜔, 𝛾〉0,𝑑 = 0. By Lemma 3.4,

〈𝜔, 𝑐1𝜔̃〉0,𝑑 = −2
〈
𝔞−3 (1𝑋 ) |0〉, 𝔞−3 (𝛼) |0〉

〉
0,𝑑 = −2 〈𝐾𝑋 , 𝛼〉 𝑐3,𝑑 .

(iii) We see from (4.20) that 〈𝑐1𝜔, 𝜔〉0,𝑑 is equal to

3
〈
𝔞−1𝔞−2 (𝜏2∗1𝑋 ) |0〉, 𝔞−3(1𝑋 ) |0〉

〉
0,𝑑 + 3

〈
𝔞−3 (𝐾𝑋 ) |0〉, 𝔞−3 (1𝑋 ) |0〉

〉
0,𝑑 .

By (4.17) and Lemma 3.4, we have
〈
𝔞−1𝔞−2 (𝜏2∗1𝑋 ) |0〉, 𝔞−3 (1𝑋 ) |0〉

〉
0,𝑑 = 0 and

〈
𝔞−3 (𝐾𝑋 ) |0〉,

𝔞−3 (1𝑋 ) |0〉
〉

0,𝑑 = 𝐾2
𝑋 𝑐3,𝑑 . Hence, 〈𝑐1𝜔, 𝜔〉0,𝑑 = 3𝐾2

𝑋 𝑐3,𝑑 . �

Our next proposition determines the invariant 〈𝜔1, 𝜔2, 𝜔3〉0,𝑑 when the unordered triple (𝜔1, 𝜔2, 𝜔3)
is from Lemma 4.2 (ii). Its proof involves the composition law (2.7) and the linear basis {Δ𝑎} from (4.6).
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Proposition 4.7. Let {𝛼1, . . . , 𝛼𝑠} be a linear basis of 𝐻2 (𝑋,C). Let 𝑑 ≥ 1 and 𝜔1 = 𝜔2 = 𝔞−3(1𝑋 ) |0〉.
Let 𝜔3 = 𝔞−2 (1𝑋 )𝔞−1(𝛼𝑖) |0〉 or 𝔞−1 (1𝑋 )𝔞−2(𝛼𝑖) |0〉. Then,〈

𝜔1, 𝜔2, 𝜔3
〉

0,𝑑 = −2〈𝐾𝑋 , 𝛼𝑖〉𝑑𝑐3,𝑑 (4.21)

where 𝑐3,𝑑 is the universal constant from (3.16).

Proof. The proof of (4.21) for 𝜔3 = 𝔞−2 (1𝑋 )𝔞−1(𝛼𝑖) |0〉 is similar to the proof of (4.21) for 𝜔3 =
𝔞−1 (1𝑋 )𝔞−2(𝛼𝑖) |0〉. So we will only prove

𝑄
def
=

〈
𝜔1, 𝜔2, 𝜔3

〉
0,𝑑 = −2 〈𝐾𝑋 , 𝛼𝑖〉 𝑑𝑐3,𝑑 . (4.22)

for 𝜔3 = 𝔞−1 (1𝑋 )𝔞−2(𝛼𝑖) |0〉 Let 𝑐1 = −𝐵3/2. Apply the composition law (2.7) to

𝛾1 = 𝛾2 = 𝑐1, 𝛾3 = 𝜔2 = 𝔞−3 (1𝑋 ) |0〉, 𝛾4 = 𝜔3 = 𝔞−1 (1𝑋 )𝔞−2(𝛼𝑖) |0〉.

We will prove (4.22) by comparing both sides of (2.7).
First of all, the left-hand side of (2.7) is equal to

〈𝑐2
1, 𝜔2, 𝜔3〉0,𝑑 + 〈𝑐1, 𝑐1, 𝜔2𝜔3〉0,𝑑 +

∑
𝑑1+𝑑2=𝑑
𝑑1 ,𝑑2>0

∑
𝑎

〈𝑐1, 𝑐1,Δ𝑎〉0,𝑑1 〈Δ𝑎, 𝜔2, 𝜔3〉0,𝑑2 . (4.23)

By (4.16) and Lemma 4.2, 〈𝑐2
1, 𝜔2, 𝜔3〉0,𝑑 = 𝑄. Since 〈𝑐1, 𝛽3〉 = 1 by (4.15), we get

〈𝑐1, 𝑐1, 𝜔2𝜔3〉0,𝑑 = 𝑑2 〈𝜔2𝜔3〉0,𝑑 ,

〈𝑐1, 𝑐1,Δ𝑎〉0,𝑑1 = 𝑑
2
1 〈Δ𝑎〉0,𝑑1

in view of (2.6). By Lemma 3.2, 〈Δ𝑎〉0,𝑑1 ≠ 0 only when Δ𝑎 = 𝔞−2 (𝛼 𝑗 )𝔞−1(𝑥) |0〉 for some j.
If Δ𝑎 = 𝔞−2 (𝛼 𝑗 )𝔞−1(𝑥) |0〉, then we see from (4.4) that Δ𝑎 is a linear combination of the classes
𝔞−2 (𝛼𝑘 )𝔞−1(1𝑋 ) |0〉, 1 ≤ 𝑘 ≤ 𝑠. So 〈Δ𝑎, 𝜔2, 𝜔3〉0,𝑑2 = 0 by Lemma 4.2. It follows from (4.23) that the
left-hand side of (2.7) is equal to 𝑄 + 𝑑2 〈𝜔2𝜔3〉0,𝑑 . By Lemma 4.5, we see that the left-hand side of
(2.7) is equal to

𝑄 − 12〈𝐾𝑋 , 𝛼𝑖〉. (4.24)

Next, the right-hand side of (2.7) is equal to

〈𝑐1𝜔2, 𝑐1, 𝜔3〉0,𝑑 + 〈𝑐1, 𝜔2, 𝑐1𝜔3〉0,𝑑 +
∑

𝑑1+𝑑2=𝑑, 𝑑1 ,𝑑2>0

∑
𝑎

〈𝑐1, 𝜔2,Δ𝑎〉0,𝑑1 〈Δ𝑎, 𝑐1, 𝜔3〉0,𝑑2 .

By Lemma 4.6, we have 〈𝑐1𝜔2, 𝑐1, 𝜔3〉0,𝑑 = 𝑑〈𝑐1𝜔2, 𝜔3〉0,𝑑 = −12〈𝐾𝑋 , 𝛼𝑖〉 and

〈𝑐1, 𝜔2, 𝑐1𝜔3〉0,𝑑 = 𝑑〈𝜔2, 𝑐1𝜔3〉0,𝑑 = −2 〈𝐾𝑋 , 𝛼𝑖〉 𝑑𝑐3,𝑑 .

Therefore, the right-hand side of (2.7) is equal to

−12〈𝐾𝑋 , 𝛼𝑖〉 − 2 〈𝐾𝑋 , 𝛼𝑖〉 𝑑𝑐3,𝑑 +
∑

𝑑1+𝑑2=𝑑
𝑑1 ,𝑑2>0

∑
𝑎

𝑑1𝑑2〈𝜔2,Δ𝑎〉0,𝑑1 〈Δ𝑎, 𝜔3〉0,𝑑2 . (4.25)

By the list (4.5) of the basis 𝔅6 and Lemma 3.4, 〈𝜔2,Δ𝑎〉0,𝑑1 ≠ 0 only if Δ𝑎 = 𝔞−3 (𝛼 𝑗 ) |0〉 for some
j with 1 ≤ 𝑗 ≤ 𝑠. If Δ𝑎 = 𝔞−3 (𝛼 𝑗 ) |0〉, then Δ𝑎 is a linear combination of 𝔅6 −

{
𝔞−2 (1𝑋 )𝔞−1(𝑥) |0〉

}
.
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So 〈Δ𝑎, 𝜔3〉0,𝑑2 = 0 by Lemma 3.4 again. By (4.25), the right-hand side of (2.7) is equal to

−12〈𝐾𝑋 , 𝛼𝑖〉 − 2 〈𝐾𝑋 , 𝛼𝑖〉 𝑑𝑐3,𝑑 . (4.26)

Finally, combining (4.24) and (4.26) yields (4.22). �

We are left with the computation of the invariant 〈𝜔1, 𝜔2, 𝜔3〉0,𝑑 when the triple (𝜔1, 𝜔2, 𝜔3) is from
Lemma 4.2 (iii), that is, when 𝜔1 = 𝜔2 = 𝜔3 = 𝔞−3 (1𝑋 ) |0〉. This will be done in Proposition 4.9 below.
We prove a technical lemma first.

Lemma 4.8. Let X be simply connected. Let 𝑑 ≥ 1 and 𝜔 = 𝔞−3 (1𝑋 ) |0〉. Then,

〈𝜔2〉0,𝑑 =
18𝐾2

𝑋

𝑑2 (4.27)

Proof. Let {𝛼1, . . . , 𝛼𝑠} be a linear basis of 𝐻2(𝑋,C). By (4.19),

𝜔2 = 𝑐2
1 · 𝜔 + 1

2
𝔞−1 (1𝑋 )𝔞−2(𝐾𝑋 ) |0〉 · 𝜔 + 𝔞−1 (1𝑋 )2𝔞−1 (𝑥) |0〉 · 𝜔

+
∑

1≤ 𝑗≤𝑘≤𝑠
𝑏 𝑗 ,𝑘𝔞−1 (1𝑋 )𝔞−1(𝛼 𝑗 )𝔞−1(𝛼𝑘 ) |0〉 · 𝜔.

The cup products 𝔞−1(1𝑋 )2𝔞−1 (𝑥) |0〉 · 𝜔 and 𝔞−1 (1𝑋 )𝔞−1(𝛼 𝑗 )𝔞−1(𝛼𝑘 ) |0〉 · 𝜔 are scalar multiples of
𝔞−3 (𝑥) |0〉. Therefore, we conclude from Lemma 3.2 that

〈𝜔2〉0,𝑑 = 〈𝑐2
1 · 𝜔〉0,𝑑 + 1

2
〈
𝔞−1 (1𝑋 )𝔞−2(𝐾𝑋 ) |0〉 · 𝜔

〉
0,𝑑

= 〈𝔡𝑐1𝜔〉0,𝑑 + 1
2
〈
𝜔 · 𝔞−1 (1𝑋 )𝔞−2(𝐾𝑋 ) |0〉

〉
0,𝑑 . (4.28)

By (4.20), 𝑐1𝜔 = 3𝔞−1𝔞−2 (𝜏2∗1𝑋 ) |0〉 + 3𝔞−3 (𝐾𝑋 ) |0〉. So

〈𝔡𝑐1𝜔〉0,𝑑 = 3
〈
𝔡𝔞−1𝔞−2 (𝜏2∗1𝑋 ) |0〉

〉
0,𝑑 + 3

〈
𝔡𝔞−3 (𝐾𝑋 ) |0〉

〉
0,𝑑 =

24𝐾2
𝑋

𝑑2 (4.29)

by (4.17), (3.11), (3.9), (3.8) and Lemma 3.2. Similarly, by (4.19) and Lemma 3.2,〈
𝜔 · 𝔞−1 (1𝑋 )𝔞−2(𝐾𝑋 ) |0〉

〉
0,𝑑

=
〈
𝑐2

1 · 𝔞−1 (1𝑋 )𝔞−2(𝐾𝑋 ) |0〉
〉

0,𝑑 +
〈
𝔞−1 (1𝑋 )2𝔞−1 (𝑥) |0〉 · 𝔞−1 (1𝑋 )𝔞−2(𝐾𝑋 ) |0〉

〉
0,𝑑

=
〈
𝔡2𝔞−1 (1𝑋 )𝔞−2(𝐾𝑋 ) |0〉

〉
0,𝑑 +

4𝐾2
𝑋

𝑑2 . (4.30)

By (3.11), (3.9) and (3.8), we see that 𝔡𝔞−1 (1𝑋 )𝔞−2(𝐾𝑋 ) |0〉 is equal to

−2𝔞−3 (𝐾𝑋 ) |0〉 + 2𝔞−1 (1𝑋 )𝔞−1(𝑥)𝔞−1 (𝐾𝑋 ) |0〉 + 𝐾2
𝑋𝔞−1 (1𝑋 )𝔞−2(𝑥) |0〉.

Applying (3.11), (3.9), (3.8) and Lemma 3.2 repeatedly, we get〈
𝔡2𝔞−1 (1𝑋 )𝔞−2(𝐾𝑋 ) |0〉

〉
0,𝑑

= −2
〈
𝔡𝔞−3 (𝐾𝑋 ) |0〉

〉
0,𝑑 + 2

〈
𝔡𝔞−1 (1𝑋 )𝔞−1(𝑥)𝔞−1 (𝐾𝑋 ) |0〉

〉
0,𝑑
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+ 𝐾2
𝑋

〈
𝔡𝔞−1 (1𝑋 )𝔞−2(𝑥) |0〉

〉
0,𝑑

= −
12𝐾2

𝑋

𝑑2 −
4𝐾2

𝑋

𝑑2

= −
16𝐾2

𝑋

𝑑2 .

Combining with (4.30), we have
〈
𝜔 · 𝔞−1 (1𝑋 )𝔞−2(𝐾𝑋 ) |0〉

〉
0,𝑑 = −12𝐾2

𝑋/𝑑
2. Together with (4.28) and

(4.29), we obtain 〈𝜔2〉0,𝑑 = 18𝐾2
𝑋/𝑑

2. �

Proposition 4.9. Let X be a simply connected projective surface. Let 𝑑 ≥ 1. Then,〈
𝔞−3 (1𝑋 ) |0〉, 𝔞−3 (1𝑋 ) |0〉, 𝔞−3(1𝑋 ) |0〉

〉
0,𝑑 is equal to

−18𝐾2
𝑋 + 5𝐾2

𝑋 𝑑𝑐3,𝑑 − 2𝐾2
𝑋

𝑑−1∑
𝑖=1
𝑖𝑐3,𝑖 +

1
3
𝐾2
𝑋

𝑑−1∑
𝑖=1
𝑖𝑐3,𝑖 (𝑑 − 𝑖)𝑐3,𝑑−𝑖 (4.31)

where 𝑐3,𝑑 is the universal constant from (3.16).

Proof. For simplicity, let 𝜔 = 𝔞−3 (1𝑋 ) |0〉 and 𝑄 ′ =
〈
𝜔, 𝜔, 𝜔

〉
0,𝑑 . Our idea to compute 𝑄 ′ is the same

as in the proof of Proposition 4.7. Let 𝑐1 = −𝐵3/2. We apply the composition law (2.7) to 𝛾1 = 𝛾2 = 𝑐1
and 𝛾3 = 𝛾4 = 𝜔.

First of all, notice that the left-hand-side of (2.7) is equal to

〈𝑐2
1, 𝜔, 𝜔〉0,𝑑 + 〈𝑐1, 𝑐1, 𝜔

2〉0,𝑑 +
∑

𝑑1+𝑑2=𝑑, 𝑑1 ,𝑑2>0

∑
𝑎

〈𝑐1, 𝑐1,Δ𝑎〉0,𝑑1 〈Δ𝑎, 𝜔, 𝜔〉0,𝑑2 .

By (4.16), Lemma 4.2 and Proposition 4.7, we have 〈𝑐2
1, 𝜔, 𝜔〉0,𝑑 = 𝑄 ′ + 𝐾2

𝑋 𝑑𝑐3,𝑑 . By (2.6) and
Lemma 4.8, we get 〈𝑐1, 𝑐1, 𝜔

2〉0,𝑑 = 𝑑2〈𝜔2〉0,𝑑 = 18𝐾2
𝑋 . Next, note from (4.3) and (4.4) that if

Δ𝑎 = 𝔞−2 (𝛼𝑖)𝔞−1(𝑥) |0〉, then Δ𝑎 = −1/2 · 𝔞−2(𝛼𝑖)𝔞−1(1𝑋 ) |0〉 where {𝛼1, . . . , 𝛼𝑠} ⊂ 𝐻2(𝑋,C) is the
dual basis of {𝛼1, . . . , 𝛼𝑠} with respect to the pairing of X. So by Lemma 3.2 and Proposition 4.7, we
obtain ∑

𝑎

〈𝑐1, 𝑐1,Δ𝑎〉0,𝑑1 〈Δ𝑎, 𝜔, 𝜔〉0,𝑑2

=
𝑠∑
𝑖=1

𝑑2
1
〈
𝔞−2 (𝛼𝑖)𝔞−1(𝑥) |0〉

〉
0,𝑑1

·
(
−1

2

) 〈
𝔞−2 (𝛼𝑖)𝔞−1(1𝑋 ) |0〉, 𝜔, 𝜔

〉
0,𝑑2

=
𝑠∑
𝑖=1

2〈𝐾𝑋 , 𝛼𝑖〉 · 〈𝐾𝑋 , 𝛼
𝑖〉 𝑑2𝑐3,𝑑2 .

Since
∑𝑠

𝑖=1〈𝐾𝑋 , 𝛼𝑖〉 · 〈𝐾𝑋 , 𝛼
𝑖〉 = 𝐾2

𝑋 , we conclude that∑
𝑎

〈𝑐1, 𝑐1,Δ𝑎〉0,𝑑1 〈Δ𝑎, 𝜔, 𝜔〉0,𝑑2 = 2𝐾2
𝑋 𝑑2𝑐3,𝑑2 .

In summary, we see that the left-hand side of (2.7) is equal to

(𝑄 ′ + 𝐾2
𝑋 𝑑𝑐3,𝑑) + 18𝐾2

𝑋 + 2𝐾2
𝑋

∑
0<𝑑2<𝑑

𝑑2𝑐3,𝑑2 . (4.32)
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Next, the right-hand side of (2.7) is equal to

〈𝑐1𝜔, 𝑐1, 𝜔〉0,𝑑 + 〈𝑐1, 𝜔, 𝑐1𝜔〉0,𝑑 +
∑

𝑑1+𝑑2=𝑑
𝑑1 ,𝑑2>0

∑
𝑎

〈𝑐1, 𝜔,Δ𝑎〉0,𝑑1 〈Δ𝑎, 𝑐1, 𝜔〉0,𝑑2

= 6𝐾2
𝑋 𝑑𝑐3,𝑑 +

∑
𝑑1+𝑑2=𝑑, 𝑑1 ,𝑑2>0

∑
𝑎

𝑑1〈𝜔,Δ𝑎〉0,𝑑1 𝑑2〈Δ𝑎, 𝜔〉0,𝑑2

by Lemma 4.6 (iii). If Δ𝑎 = 𝔞−3 (𝛼𝑖) |0〉, then Δ𝑎 = 1/3 · 𝔞−3 (𝛼𝑖) |0〉. Therefore,∑
𝑎

〈𝜔,Δ𝑎〉0,𝑑1 〈Δ𝑎, 𝜔〉0,𝑑2

=
𝑠∑
𝑖=1

〈
𝔞−3 (1𝑋 ) |0〉, 𝔞−3 (𝛼𝑖) |0〉

〉
0,𝑑1

· 1
3
〈
𝔞−3 (𝛼𝑖) |0〉, 𝔞−3 (1𝑋 ) |0〉

〉
0,𝑑2

=
𝑠∑
𝑖=1

〈𝐾𝑋 , 𝛼𝑖〉𝑐3,𝑑1 ·
1
3
〈𝐾𝑋 , 𝛼

𝑖〉𝑐3,𝑑2

=
1
3
𝐾2
𝑋 𝑐3,𝑑1 𝑐3,𝑑2

by Lemma 3.4. In summary, we see that the right-hand side of (2.7) is equal to

6𝐾2
𝑋 𝑑𝑐3,𝑑 + 1

3
𝐾2
𝑋

∑
𝑑1+𝑑2=𝑑, 𝑑1 ,𝑑2>0

𝑑1𝑐3,𝑑1 𝑑2𝑐3,𝑑2 . (4.33)

Finally, comparing (4.32) and (4.33) yields (4.31). �

The results in this section are summarized into a theorem.

Theorem 4.10. Let X be a simply connected smooth projective surface. Assume that {𝛼1, . . . , 𝛼𝑠} is a
linear basis of 𝐻2(𝑋,C), and let 𝔅4 stand for the linear basis of 𝐻4(𝑋 [3] ,C) from (4.4). Let 𝑑 ≥ 1 and
𝜔1, 𝜔2, 𝜔3 ∈ 𝔅4. Then,

〈𝜔1, 𝜔2, 𝜔3〉0,𝑑𝛽3 = 0

if the unordered triple (𝜔1, 𝜔2, 𝜔3) is not one of the following four cases:

(i)
(
𝔞−2 (1𝑋 )𝔞−1(𝛼𝑖) |0〉, 𝔞−2 (1𝑋 )𝔞−1(𝛼 𝑗 ) |0〉, 𝔞−1 (1𝑋 )𝔞−2(𝛼𝑘 ) |0〉

)
;

(ii) 𝜔1 = 𝜔2 = 𝔞−3 (1𝑋 ) |0〉, and 𝜔3 = 𝔞−2 (1𝑋 )𝔞−1(𝛼𝑖) |0〉 or 𝔞−1 (1𝑋 )𝔞−2(𝛼𝑖) |0〉;
(iii) 𝜔1 = 𝜔2 = 𝜔3 = 𝔞−3(1𝑋 ) |0〉.

Moreover, 〈𝜔1, 𝜔2, 𝜔3〉0,𝑑𝛽3 = 8〈𝛼𝑖 , 𝛼 𝑗〉 〈𝐾𝑋 , 𝛼𝑘〉 in case (i), and

〈𝜔1, 𝜔2, 𝜔3〉0,𝑑𝛽3 = −2 〈𝐾𝑋 , 𝛼𝑖〉 𝑑𝑐3,𝑑

in case (ii), where 𝑐3,𝑑 is the universal constant from (3.16). In case (iii),

〈𝜔1, 𝜔2, 𝜔3〉0,𝑑𝛽3 =

(
−18 + 5𝑑𝑐3,𝑑 − 2

𝑑−1∑
𝑖=1
𝑖𝑐3,𝑖 +

1
3

𝑑−1∑
𝑖=1
𝑖𝑐3,𝑖 (𝑑 − 𝑖)𝑐3,𝑑−𝑖

)
𝐾2
𝑋 .

Proof. Follows from Lemmas 4.2 and 4.3 and Propositions 4.7 and 4.9. �

Via a representation theoretic approach, [28] presents a complicated proof of Ruan’s Cohomological
Crepant Resolution Conjecture for the Hilbert-Chow morphism 𝜌𝑛 : 𝑋 [𝑛] → 𝑋 (𝑛) for all 𝑛 ≥ 1. As an
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application of Theorem 4.10 (together with the results in [23, 27] about the 1-point and 2-point genus-0
extremal Gromov-Witten invariants of 𝑋 [𝑛]), we now give a direct (but tedious) proof of this conjecture
when 𝑛 = 3.

Corollary 4.11. Let X be a simply connected smooth projective surface. Then Ruan’s Cohomological
Crepant Resolution Conjecture for the Hilbert-Chow morphism 𝜌3 : 𝑋 [3] → 𝑋 (3) holds (i.e., the Chen-
Ruan cohomology ring of 𝑋 (3) is isomorphic to the quantum corrected cohomology ring of 𝑋 [3]).

Proof. First of all, we briefly recall from [39] and [38, Chapter 16] that the Cohomological Crepant
Resolution Conjecture for 𝜌𝑛 : 𝑋 [𝑛] → 𝑋 (𝑛) asserts that there exists a ring isomorphism

Ψ𝑛 : 𝐻∗
𝐶𝑅 (𝑋

(𝑛) ,C) → 𝐻∗
𝜌𝑛 (𝑋

[𝑛] ,C)

where 𝐻∗
𝐶𝑅 (𝑋

(𝑛) ,C) is the Chen-Ruan cohomology of 𝑋 (𝑛) , and 𝐻∗
𝜌𝑛 (𝑋

[𝑛] ,C) is the cohomology
𝐻∗(𝑋 [𝑛] ,C) together with the quantum corrected ring product ·𝜌𝑛 . For 𝑤1, 𝑤2 ∈ 𝐻∗(𝑋 [𝑛] ,C), the
product 𝑤1 ·𝜌𝑛 𝑤2 is defined by putting

〈𝑤1 ·𝜌𝑛 𝑤2, 𝑤3〉 = 〈𝑤1, 𝑤2, 𝑤3〉𝜌𝑛 (−1)

where 𝑤3 ∈ 𝐻∗(𝑋 [𝑛] ,C), 〈·, ·〉 on the left-hand side is the pairing on 𝐻∗(𝑋 [𝑛] ,C), and

〈𝑤1, 𝑤2, 𝑤3〉𝜌𝑛 (𝑞) =
∑
𝑑≥0

〈𝑤1, 𝑤2, 𝑤3〉0,𝑑𝛽𝑛 · 𝑞𝑑

with q being a variable. Put

F𝑋 =
⊕
𝑛≥0

𝐻∗
𝐶𝑅 (𝑋

(𝑛) ,C).

By [38, Theorem 10.1], the spaceF𝑋 is an irreducible representation of the Heisenberg algebra generated
by the operators 𝔭𝑚 (𝛼) ∈ End(F𝑋 ), 𝑚 ∈ Z and 𝛼 ∈ 𝐻∗(𝑋,C) with the commutation relation

[𝔭𝑚 (𝛼),𝔭𝑛 (𝛽)] = 𝑚 · 𝛿𝑚,−𝑛 · 〈𝛼, 𝛽〉 · IdF𝑋

and with the vacuum vector |0〉 = 1 ∈ 𝐻∗(𝑝𝑡,C) � C. Define Ψ𝑛 by putting

Ψ𝑛

(√
−1

𝑛1+...+𝑛𝑠−𝑠
𝔭−𝑛1 (𝛼1) · · ·𝔭−𝑛𝑠 (𝛼𝑠) |0〉

)
= 𝔞−𝑛1 (𝛼1) · · · 𝔞−𝑛𝑠 (𝛼𝑠) |0〉.

Then, Ψ𝑛 : 𝐻∗
𝐶𝑅 (𝑋

(𝑛) ,C) → 𝐻∗
𝜌𝑛 (𝑋

[𝑛] ,C) is an isomorphism of vector spaces. To show Ψ𝑛 is a ring
isomorphism, we must prove that for all 𝑤1, 𝑤2, 𝑤3 ∈ 𝐻∗

𝜌𝑛 (𝑋
[𝑛] ,C),

〈Ψ−1
𝑛 (𝑤1),Ψ−1

𝑛 (𝑤2),Ψ−1
𝑛 (𝑤3)〉𝐶𝑅 = 〈𝑤1, 𝑤2, 𝑤3〉𝜌𝑛 (−1). (4.34)

In the rest of the proof, we assume 𝑛 = 3. To prove (4.34), it suffices to prove it as 𝑤1, 𝑤2, 𝑤3 run
over the linear basis (4.6) of 𝐻∗

𝜌𝑛 (𝑋
[3] ,C). We will only prove (4.34) for the case

𝜔1 = 𝜔2 = 𝔞−3 (1𝑋 ) |0〉, 𝜔3 = 𝔞−2 (1𝑋 )𝔞−1(𝛼𝑖) |0〉 (4.35)

with 𝛼𝑖 ∈ 𝐻2 (𝑋,C) since the remaining cases are similar, long and tedious. By Theorem 4.10 (ii) and
(3.16), 〈𝑤1, 𝑤2, 𝑤3〉𝜌𝑛 (𝑞) is equal to

〈𝑤1, 𝑤2, 𝑤3〉 − 2〈𝐾𝑋 , 𝛼𝑖〉
∑
𝑑≥1

𝑑𝑐3,𝑑𝑞
𝑑 = 〈𝑤1, 𝑤2, 𝑤3〉 + 18〈𝐾𝑋 , 𝛼𝑖〉

(
3𝑞3

𝑞3 + 1
− 𝑞

𝑞 + 1

)
.
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So 〈𝑤1, 𝑤2, 𝑤3〉𝜌𝑛 (−1) = 〈𝑤1, 𝑤2, 𝑤3〉 + 18〈𝐾𝑋 , 𝛼𝑖〉. We claim that

〈𝑤1, 𝑤2, 𝑤3〉 = −18〈𝐾𝑋 , 𝛼𝑖〉. (4.36)

Indeed, we see from the first five lines in the proof of Lemma 4.8 that

〈𝑤1, 𝑤2, 𝑤3〉 = 〈𝑤2
1, 𝑤3〉 = 〈𝑐2

1 · 𝑤1, 𝑤3〉 +
1
2
〈𝔞−1 (1𝑋 )𝔞−2(𝐾𝑋 ) |0〉 · 𝑤1, 𝑤3〉.

Note that 〈𝑐2
1 · 𝑤1, 𝑤3〉 = 〈𝑐1𝑤1, 𝑐1𝑤3〉. By (4.20), 〈𝑤1, 𝑤2, 𝑤3〉 is equal to

3〈𝔞−1𝔞−2 (𝜏2∗1𝑋 ) |0〉, 𝑐1𝑤3〉 + 3〈𝔞−3 (𝐾𝑋 ) |0〉, 𝑐1𝑤3〉

+ 1
2
〈𝔞−1 (1𝑋 )𝔞−2(𝐾𝑋 ) |0〉 · 𝑤1, 𝑤3〉.

Similar to (4.20), 𝑐1𝑤3 is equal to

𝔞−1 (𝛼𝑖)𝔞−1𝔞−1 (𝜏2∗1𝑋 ) |0〉 − 2𝔞−3 (𝛼𝑖) |0〉 + 𝔞−2 (𝐾𝑋 )𝔞−1(𝛼𝑖) |0〉.

Together with 〈𝔞−3 (𝐾𝑋 ) |0〉, 𝔞−3 (𝛼𝑖) |0〉〉 = 3〈𝐾𝑋 , 𝛼𝑖〉, we see that

〈𝑤1, 𝑤2, 𝑤3〉 = −24〈𝐾𝑋 , 𝛼𝑖〉 +
1
2
〈𝔞−1 (1𝑋 )𝔞−2(𝐾𝑋 ) |0〉 · 𝑤1, 𝑤3〉.

By a similar calculation, 〈𝔞−1 (1𝑋 )𝔞−2(𝐾𝑋 ) |0〉 · 𝑤1, 𝑤3〉 = 12〈𝐾𝑋 , 𝛼𝑖〉. So we get 〈𝑤1, 𝑤2, 𝑤3〉 =
−24〈𝐾𝑋 , 𝛼𝑖〉 + 6〈𝐾𝑋 , 𝛼𝑖〉 = −18〈𝐾𝑋 , 𝛼𝑖〉. This proves (4.36). Thus,

〈𝑤1, 𝑤2, 𝑤3〉𝜌𝑛 (−1) = 〈𝑤1, 𝑤2, 𝑤3〉 + 18〈𝐾𝑋 , 𝛼𝑖〉 = 0. (4.37)

On the orbifold side, the calculation of 〈Ψ−1
3 (𝑤1),Ψ−1

3 (𝑤2),Ψ−1
3 (𝑤3)〉𝐶𝑅 is similar but much simpler.

Indeed, by the results in [38],

〈Ψ−1
3 (𝑤1),Ψ−1

3 (𝑤2),Ψ−1
3 (𝑤3)〉𝐶𝑅

can be read from its counterpart 〈𝑤1, 𝑤2, 𝑤3〉 by replacing every term 〈𝐾𝑋 , 𝛼𝑖〉 by 0. Hence,
〈Ψ−1

3 (𝑤1),Ψ−1
3 (𝑤2),Ψ−1

3 (𝑤3)〉𝐶𝑅 = 0 by (4.36). Together with (4.37), we conclude that (4.34) holds
for the case (4.35). �

5. Genus-1 extremal Gromov-Witten invariants of 𝑋 [3]

In this section, we determine the genus-1 extremal Gromov-Witten invariants of the Hilbert scheme
𝑋 [3] . First of all, we show that Conjecture 1.3 holds for 𝑛 = 3.

Lemma 5.1. Let X be a smooth projective surface, and let 𝑑 ≥ 1. Then,

〈〉1,𝑑𝛽3 = (𝑎𝑑 + 𝑏𝑑 · 𝜒(𝑋)) · 𝐾2
𝑋

where 𝑎𝑑 and 𝑏𝑑 are universal constants depending only on d.

Proof. Let [𝜑 : 𝐷 → 𝑋 [3] ] ∈ 𝔐1,0 (𝑋 [3] , 𝑑𝛽3). Then, 𝜑(𝐷) is contracted by the Hilbert-Chow
morphism 𝜌3 : 𝑋 [3] → 𝑋 (3) . So either 𝜌3 (𝜑(𝐷)) = 𝑥1 +2𝑥2 for some points 𝑥1 ≠ 𝑥2, or 𝜌3 (𝜑(𝐷)) = 3𝑥
for some point 𝑥 ∈ 𝑋 . When 𝜌3 (𝜑(𝐷)) = 𝑥1 + 2𝑥2, every image 𝜑(𝑝) is of the form 𝑥1 + 𝜉 (𝑝) for some
𝜉 (𝑝) ∈ 𝑀2 (𝑥2). Define

𝜑′ : 𝐷 → 𝑋 [2]
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by 𝜑′(𝑝) = 𝜉 (𝑝). Then 𝜑′ is a stable map, and gives rise to an element

[𝜑′ : 𝐷 → 𝑋 [2] ] ∈ 𝔐1,0(𝑋 [2] , 𝑑𝛽2).

The stable map 𝜑′ is one of the two components in the standard decomposition of 𝜑 (see (3.13)). The
other component in the standard decomposition of 𝜑 is the constant map 𝐷 → 𝑥1 ∈ 𝑋 . Conversely,
given a point 𝑥1 ∈ 𝑋 and an element

[𝜑′ : 𝐷 → 𝑋 [2] ] ∈ 𝔐1,0 (𝑋 [2] , 𝑑𝛽2)

with {𝑥1} ≠ Supp
(
𝜌2(𝜑′(𝐷))

)
, we can define a unique stable map

[𝜑 : 𝐷 → 𝑋 [3] ] ∈ 𝔐1,0 (𝑋 [3] , 𝑑𝛽3)

by 𝜑(𝑝) = 𝑥1 + 𝜑′(𝑝). Using the arguments in [28], we conclude that

〈〉1,𝑑𝛽3 = (𝑎𝑑 + 𝑏𝑑 · 𝜒(𝑋)) · 𝐾2
𝑋

for some universal constants 𝑎𝑑 and 𝑏𝑑 depending only on d. �

In the rest of this section, we will determine the universal constants 𝑎𝑑 and 𝑏𝑑 in Lemma 5.1. We
will let X be a smooth projective toric surface and use torus actions and virtual localizations as in [8,
12, 20, 30] to compute 〈〉1,𝑑𝛽3 .

5.1. The contracted (C∗)2-invariant curves in 𝑋 [3] for a toric surface X

Let X be a smooth projective toric surface. In this subsection, we will write down all the invariant curves
contracted by the Hilbert-Chow morphism 𝜌3 : 𝑋 [3] → 𝑋 (3) .

We begin with some standard setups. The surface X is determined by a fanΣ which is a finite collection
of strongly convex rational polyhedral cones 𝜎 contained in 𝑁 = Hom(𝑀,Z), where 𝑀 � Z2. So X is
obtained by gluing together affine toric varieties 𝑋𝜎 and 𝑋𝜏 along 𝑋𝜎∩𝜏 for 𝜎, 𝜏 ∈ Σ. The coordinate
ring of 𝑋𝜎 isC[𝜎∨∩𝑀], which is theC-algebra with generators 𝜒𝑚 for𝑚 ∈ 𝜎∨∩𝑀 and multiplication
defined by 𝜒𝑚 · 𝜒𝑚′

= 𝜒𝑚+𝑚′ . By definition, 𝜎∨ ∩𝑀 is the set of elements 𝑚 ∈ 𝑀 satisfying 𝑣(𝑚) ≥ 0
for all 𝑣 ∈ 𝜎. The torus

T = (C∗)2

acts on X with finitely many fixed points 𝑥1, . . . , 𝑥𝜒 (𝑋 ) . For each i, the point 𝑥𝑖 lies in 𝑈𝑖 := 𝑋𝜎𝑖 for
some 𝜎𝑖 ∈ Σ. As X is smooth and 𝑈𝑖 possesses a unique fixed point 𝑥𝑖 , 𝑈𝑖 is isomorphic to the affine
plane with 𝑥𝑖 corresponding to the origin. Let 𝑢𝑖 , 𝑣𝑖 be the affine coordinates of𝑈𝑖 . Assume that

(𝑠, 𝑡) (𝑢𝑖 , 𝑣𝑖) = (𝜆𝑖 (𝑠, 𝑡)𝑢𝑖 , 𝜇𝑖 (𝑠, 𝑡)𝑣𝑖)

for (𝑠, 𝑡) ∈ T, where 𝜆𝑖 (𝑠, 𝑡) and 𝜇𝑖 (𝑠, 𝑡) are two independent characters of T. Denote the weights of
𝜆𝑖 (𝑠, 𝑡) and 𝜇𝑖 (𝑠, 𝑡) by 𝑤𝑖 and 𝑧𝑖 , respectively, that is,

𝑤𝑖 = 𝑐1
(
𝜆𝑖 (𝑠, 𝑡)

)
, 𝑧𝑖 = 𝑐1

(
𝜇𝑖 (𝑠, 𝑡)

)
in the equivariant Chow group 𝐴T∗ (𝑝𝑡). By the Atiyah-Bott localization formula,

𝐾2
𝑋 =

∫
𝑋
𝑐1 (𝑇𝑋 )2 =

𝜒 (𝑋 )∑
𝑖=1

(𝑤𝑖 + 𝑧𝑖)2

𝑤𝑖𝑧𝑖
(5.1)

noting that 𝑇𝑥𝑖 ,𝑋 =
(
𝜆𝑖 (𝑠, 𝑡)

)−1 +
(
𝜇𝑖 (𝑠, 𝑡)

)−1 as representations.
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The T-action on the toric surface X induces a T-action on the Hilbert scheme 𝑋 [3] with a finite
number of fixed points. The T-fixed points in 𝑋 [3] are enumerated as follows. For each 1 ≤ 𝑖 ≤ 𝜒(𝑋),
there are three T-fixed points

𝑄𝑖,0, 𝑄𝑖,1, 𝑄𝑖,2

in 𝑀3 (𝑥𝑖) ⊂ 𝑋 [3] corresponding, respectively, to the partitions (2, 1), (3) and (1, 1, 1) of 3. The
corresponding ideals are (𝑣2

𝑖 , 𝑣𝑖𝑢𝑖 , 𝑢
2
𝑖 ), (𝑣3

𝑖 , 𝑢𝑖) and (𝑣𝑖 , 𝑢3
𝑖 ). Also for each ordered pair (𝑖, 𝑗) with

𝑖, 𝑗 ∈ {1, . . . , 𝜒(𝑋)} and 𝑖 ≠ 𝑗 , we have two fixed points

𝑅 (1)
𝑖, 𝑗 = 𝜉𝑖,1 + 𝑥 𝑗 , 𝑅 (2)

𝑖, 𝑗 = 𝜉𝑖,2 + 𝑥 𝑗

in 𝑋 [3] , where 𝜉𝑖,1, 𝜉𝑖,2 ∈ 𝑀2 (𝑥𝑖) correspond to the ideals (𝑣2
𝑖 , 𝑢𝑖), (𝑣𝑖 , 𝑢2

𝑖 ), respectively. Furthermore,
whenever 𝑖, 𝑗 , 𝑘 ∈ {1, . . . , 𝜒(𝑋)} are mutually distinct, 𝑥𝑖 + 𝑥 𝑗 + 𝑥𝑘 ∈ 𝑋 [3] is a T-fixed point in 𝑋 [3] .
Denote the tangent space of 𝑋 [3] at 𝜉 ∈ 𝑋 [3] by𝑇𝜉 . As representations of T, we have the decompositions
(see [9]):

𝑇𝑄𝑖,0 = 2𝜆−1
𝑖 + 2𝜇−1

𝑖 + 𝜆−2
𝑖 𝜇𝑖 + 𝜆𝑖𝜇−2

𝑖 , (5.2)

𝑇𝑄𝑖,1 = 𝜆
−1
𝑖 𝜇

2
𝑖 + 𝜆−1

𝑖 𝜇𝑖 + 𝜆−1
𝑖 + 𝜇−3

𝑖 + 𝜇−2
𝑖 + 𝜇−1

𝑖 , (5.3)

𝑇𝑄𝑖,2 = 𝜆
−3
𝑖 + 𝜆−2

𝑖 + 𝜆−1
𝑖 + 𝜆2

𝑖 𝜇
−1
𝑖 + 𝜆𝑖𝜇−1

𝑖 + 𝜇−1
𝑖 , (5.4)

𝑇
𝑅 (1)
𝑖, 𝑗

= 𝜆−1
𝑖 𝜇𝑖 + 𝜆−1

𝑖 + 𝜇−2
𝑖 + 𝜇−1

𝑖 + 𝜆−1
𝑗 + 𝜇−1

𝑗 , (5.5)

𝑇
𝑅

(2)
𝑖, 𝑗

= 𝜆−2
𝑖 + 𝜆−1

𝑖 + 𝜆𝑖𝜇−1
𝑖 + 𝜇−1

𝑖 + 𝜆−1
𝑗 + 𝜇−1

𝑗 . (5.6)

There are exactly three T-invariant curves 𝐶 (𝑖)
0,1, 𝐶 (𝑖)

0,2 and 𝐶 (𝑖)
1,2 in 𝑀3 (𝑥𝑖). Namely, 𝐶 (𝑖)

0,1 goes through
𝑄𝑖,0 and 𝑄𝑖,1, and is the fixed locus of ker(𝜆𝑖𝜇−2

𝑖 ); 𝐶 (𝑖)
0,2 goes through 𝑄𝑖,0 and 𝑄𝑖,2, and is the fixed

locus of ker(𝜆−2
𝑖 𝜇𝑖);𝐶

(𝑖)
1,2 goes through𝑄𝑖,1 and𝑄𝑖,2, and is the fixed locus of ker(𝜆−1

𝑖 𝜇𝑖). The following
is from [8].

Lemma 5.2. There are exactly 𝜒(𝑋) (𝜒(𝑋) + 2) T-invariant curves contracted by the Hilbert-Chow
morphism 𝜌3 : 𝑋 [3] → 𝑋 (3) . They are described as follows:

(i) the curves 𝐶𝑖, 𝑗 = 𝑀2 (𝑥𝑖) + 𝑥 𝑗 where 1 ≤ 𝑖, 𝑗 ≤ 𝜒(𝑋) and 𝑖 ≠ 𝑗;
(ii) the curves 𝐶 (𝑖)

𝑘,ℓ ⊂ 𝑀3 (𝑥𝑖) where 1 ≤ 𝑖 ≤ 𝜒(𝑋) and 0 ≤ 𝑘 < ℓ ≤ 2.

Moreover, 𝐶𝑖, 𝑗 ∼ 𝐶 (𝑖)
0,1 ∼ 𝐶 (𝑖)

0,2 ∼ 𝛽3 and 𝐶 (𝑖)
1,2 ∼ 3𝛽3 for every 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝜒(𝑋).

Next, let 𝑓 : P1 → 𝑋 [3] be a degree-d morphism such that the image is one of the T-invariant curves
in Lemma 5.2 and f is totally ramified at the two T-fixed points in 𝑓 (P1). The Euler characteristic
𝜒( 𝑓 ∗𝑇𝑋 [3] ) (as a representation) has been computed in [8]. When 𝑓 (P1) = 𝐶 (𝑖)

0,1, we have

𝜒( 𝑓 ∗𝑇𝑋 [3] ) = (1 + 𝜆−1
𝑖 𝜇

2
𝑖 + 𝜆𝑖𝜇−2

𝑖 + 𝜆−1
𝑖 𝜇𝑖 + 𝜇−1

𝑖 + 𝜆−1
𝑖 + 𝜇−1

𝑖 − 𝜆−1
𝑖 𝜇

−1
𝑖 )

+ (𝜆−1
𝑖 𝜇

2
𝑖 + 1 + 𝜆−1

𝑖 𝜇𝑖 − 𝜆−2
𝑖 𝜇𝑖 − 𝜆−1

𝑖 𝜇
−1
𝑖 − 𝜆−1

𝑖 )Θ(𝑖)
0,1 (5.7)
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where Θ(𝑖)
0,1 =

∑𝑑−1
𝑚=1 (𝜆𝑖𝜇−2

𝑖 )𝑚/𝑑 (Θ(𝑖)
0,1 = 0 when 𝑑 = 1). If 𝑓 (P1) = 𝐶 (𝑖)

0,2, then

𝜒( 𝑓 ∗𝑇𝑋 [3] ) = (1 + 𝜇−1
𝑖 𝜆

2
𝑖 + 𝜇𝑖𝜆−2

𝑖 + 𝜇−1
𝑖 𝜆𝑖 + 𝜆−1

𝑖 + 𝜇−1
𝑖 + 𝜆−1

𝑖 − 𝜇−1
𝑖 𝜆

−1
𝑖 )

+ (𝜇−1
𝑖 𝜆

2
𝑖 + 1 + 𝜇−1

𝑖 𝜆𝑖 − 𝜇−2
𝑖 𝜆𝑖 − 𝜇−1

𝑖 𝜆
−1
𝑖 − 𝜇−1

𝑖 )Θ(𝑖)
0,2 (5.8)

where Θ(𝑖)
0,2 =

∑𝑑−1
𝑚=1 (𝜇𝑖𝜆−2

𝑖 )𝑚/𝑑 (Θ(𝑖)
0,2 = 0 when 𝑑 = 1). Let Θ(𝑖)

1,2 =
∑𝑑−1

𝑚=1 (𝜆𝑖𝜇−1
𝑖 )𝑚/𝑑 with Θ(𝑖)

1,2 = 0
when 𝑑 = 1. If 𝑓 (P1) = 𝐶 (𝑖)

1,2, then 𝜒( 𝑓 ∗𝑇𝑋 [3] ) is equal to

(1 + 𝜆−1
𝑖 𝜇

2
𝑖 + 𝜇𝑖 + 𝜆𝑖 + 𝜆−1

𝑖 𝜇𝑖 − 𝜆−2
𝑖 − 𝜆−1

𝑖 𝜇
−1
𝑖 − 𝜆−3

𝑖 − 𝜆−2
𝑖 𝜇

−1
𝑖 − 𝜆−1

𝑖 𝜇
−2
𝑖 )Θ(𝑖)

1,2

+ (𝜆−1
𝑖 + 𝜇−1

𝑖 + 𝜆−1
𝑖 𝜇𝑖 + 1 + 𝜆𝑖𝜇−1

𝑖 + 𝜆−1
𝑖 𝜇

2
𝑖 + 𝜇𝑖 + 𝜆𝑖 + 𝜆2

𝑖 𝜇
−1
𝑖

− 𝜆−1
𝑖 𝜇

−1
𝑖 − 𝜆−2

𝑖 𝜇
−1
𝑖 − 𝜆−1

𝑖 𝜇
−2
𝑖 ). (5.9)

Finally, when 𝑓 (P1) = 𝐶𝑖, 𝑗 , then 𝜒( 𝑓 ∗𝑇𝑋 [3] ) is equal to

(1 + 𝜆−1
𝑖 𝜇𝑖 + 𝜆𝑖𝜇−1

𝑖 + 𝜆−1
𝑖 + 𝜇−1

𝑖 + 𝜆−1
𝑗 + 𝜇−1

𝑗 − 𝜆−1
𝑖 𝜇

−1
𝑖 )

+ (1 + 𝜆−1
𝑖 𝜇𝑖 − 𝜆−2

𝑖 − 𝜆−1
𝑖 𝜇

−1
𝑖 )Θ(𝑖)

1,2. (5.10)

5.2. T-invariant stable maps, stable graphs and localizations

Let X be a smooth projective toric surface and 𝑑 ≥ 1. For simplicity, put

𝔐𝑔,𝑟 ,𝑑 = 𝔐𝑔,𝑟 (𝑋 [3] , 𝑑𝛽3).

In this subsection, using virtual localization formula, we will express the genus-1 extremal Gromov-
Witten invariant 〈〉1,𝑑𝛽3 in terms of stable graphs.

As in [12, 19], if [ 𝑓 : 𝐶 → 𝑋 [3] ] ∈ 𝔐1,0,𝑑 is T-invariant, then all the nodes, contracted components
and ramification points are mapped into the T-fixed point set (𝑋 [3] )T. Moreover, if 𝐶 ⊂ 𝐶 is a
noncontracted component, then 𝐶 = P1, 𝑓 (𝐶) is one of the T-invariant curves in Lemma 5.2, and 𝑓 |𝐶
is of the form

(𝑧0, 𝑧1) ↦→ (𝑧𝑑0 , 𝑧
𝑑
1 )

where 𝑑 = deg( 𝑓 |𝐶 ). Therefore, to each stable map [ 𝑓 : 𝐶 → 𝑋 [3] ] ∈ (𝔐1,0,𝑑)T, we can associate
a stable graph Γ as follows. The stable graph Γ has one vertex for each connected component of
𝑓 −1((𝑋 [3] )T) and one edge for every noncontracted component. The edge e is marked with the degree
𝑑𝑒 of f restricted to that noncontracted component𝐶𝑒 = P1, and the connected component corresponding
to a vertex v is denoted by 𝐶𝑣 . Let 𝑉 (Γ) (respectively, 𝐸 (Γ)) denote the set of vertices (respectively,
edges) of Γ. Define the labeling map

𝔏 : 𝑉 (Γ) −→ (𝑋 [3] )T

by putting 𝔏(𝑣) = 𝑓 (𝐶𝑣 ). The vertices have an additional labeling 𝑔(𝑣) which is the arithmetic genus
of 𝐶𝑣 (𝑔(𝑣) = 0 if 𝐶𝑣 is a point) and satisfies the identity

1 − |𝑉 (Γ) | + |𝐸 (Γ) | +
∑

𝑣 ∈𝑉 (Γ)
𝑔(𝑣) = 𝑔 = 1.

The valence of v, denoted by val(𝑣), is the number of edges connected to v. Define a flag F of the graph
Γ to be an incident edge-vertex pair (𝑒, 𝑣). Put

𝑖(𝐹) = 𝔏(𝑣).
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A flag 𝐹 = (𝑒, 𝑣) is defined to be stable if 2𝑔(𝑣)+val(𝑣) ≥ 3. Since val(𝑣) ≥ 1, F is not stable if 𝑔(𝑣) = 0
and val(𝑣) = 1 or 2 (in these cases, the component𝐶𝑣 is simply a point). Let 𝐹 (Γ) (respectively, 𝐹 (Γ)sta)
be the set of flags (respectively, stable flags) in Γ. The edge e in 𝐹 = (𝑒, 𝑣) is incident to one other vertex
𝑣′. Define 𝑗 (𝐹) = 𝔏(𝑣′). If val(𝑣) = 1, let 𝐹 (𝑣) be the unique flag containing v; if val(𝑣) = 2, let 𝐹1 (𝑣)
and 𝐹2 (𝑣) denote the two flags containing v.

Now the connected components of (𝔐1,0,𝑑)T are indexed by stable graphs corresponding to stable
maps whose images are unions of theT-invariant curves in Lemma 5.2 and whose contracted components
and special points are mapped into (𝑋 [3] )T. We use Γ to denote these stable graphs. So we have

(𝔐1,0,𝑑)T =
∐
Γ

𝔐Γ (5.11)

where 𝔐Γ denotes the connected component of (𝔐1,0,𝑑)T indexed by Γ. Let 𝑀𝑔,𝑛 be the moduli space
of n-pointed genus-g stable curves. Put

𝑀Γ =
∏

𝑣 ∈𝑉 (Γ)
𝑀𝑔 (𝑣) ,val(𝑣)

(𝑀0,1 and 𝑀0,2 are treated as points in this product). Then there is a finite map 𝑀Γ → 𝔐Γ such that
𝔐Γ = 𝑀Γ/AΓ where AΓ fits in the exact sequence

0 →
∏

𝑒∈𝐸 (Γ)
Z/𝑑𝑒Z→ AΓ → Aut(Γ) → 0. (5.12)

Since a stable curve is connected, we see from the description of the T-invariant curves in Lemma
5.2 that a summation over all the stable graphs Γ breaks up as

∑
Γ

=
∑

1≤𝑖≠ 𝑗≤𝜒 (𝑋 )

∑
Γ∈S𝑑,𝑖, 𝑗

+
𝜒 (𝑋 )∑
𝑖=1

∑
Γ∈T𝑑,𝑖

(5.13)

where S𝑑,𝑖, 𝑗 is the set of all stable graphs Γ such that 𝑓 (𝐶) = 𝐶𝑖, 𝑗 for every [ 𝑓 : 𝐶 → 𝑋 [3] ] ∈ 𝔐Γ, and
T𝑑,𝑖 is the set of all stable graphs Γ such that 𝑓 (𝐶) ⊂ 𝐶 (𝑖)

0,1∪𝐶
(𝑖)
0,2∪𝐶

(𝑖)
1,2 for every [ 𝑓 : 𝐶 → 𝑋 [3] ] ∈ 𝔐Γ.

By the virtual localization formula of [12], we have

〈〉1,𝑑𝛽3 =
∫
[𝔐1,0,𝑑 ]vir

1 =
∑
Γ

1
|AΓ |

∫
[𝑀Γ ]vir

1
𝑒(𝑁vir

Γ )
. (5.14)

Here, [𝑀Γ]vir is the pullback of [𝔐Γ]vir to𝑀Γ via the finite map𝑀Γ → 𝔐Γ, and 𝑒(𝑁vir
Γ ) is the pullback

of the Euler class of the moving part 𝑁vir
Γ of the tangent-obstruction complex. Let T 1 and T 2 be the

cohomology sheaves of the restriction of the tangent-obstruction complex on 𝔐1,0,𝑑 to 𝔐Γ. The fibers
of T 1 and T 2 at a point associated to a stable map [ 𝑓 : 𝐶 → 𝑋 [3] ] ∈ 𝔐Γ fit into the exact sequence

0 → Ext0(Ω𝐶 ,O𝐶 ) → 𝐻0(𝐶, 𝑓 ∗𝑇𝑋 [3] ) → T 1

→ Ext1(Ω𝐶 ,O𝐶 ) → 𝐻1(𝐶, 𝑓 ∗𝑇𝑋 [3] ) → T 2 → 0.

To understand 𝐻𝑖 (𝐶, 𝑓 ∗𝑇𝑋 [3] ), consider the normalization sequence resolving the nodes of C coming
from all the intersections 𝑥𝐹 := 𝐶𝑣 ∩ 𝐶𝑒:

0 → O𝐶 →
⊕
𝑣

O𝐶𝑣 ⊕
⊕
𝑒

O𝐶𝑒 →
⊕
𝐹

O𝑥𝐹 → 0.
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Tensoring by 𝑓 ∗𝑇𝑋 [3] and taking cohomology, we obtain an exact sequence

0 → 𝐻0(𝐶, 𝑓 ∗𝑇𝑋 [3] ) →
⊕
𝑣

𝑇𝔏(𝑣) ⊕
⊕
𝑒

𝐻0(𝐶𝑒, 𝑓
∗𝑇𝑋 [3] ) →

⊕
𝐹

𝑇𝑖 (𝐹 )

→ 𝐻1 (𝐶, 𝑓 ∗𝑇𝑋 [3] ) →
⊕
𝑣

𝐻1 (𝐶𝑣 , 𝑓
∗𝑇𝑋 [3] ) ⊕

⊕
𝑒

𝐻1(𝐶𝑒, 𝑓
∗𝑇𝑋 [3] ) → 0. (5.15)

Note that𝐻1 (𝐶𝑣 , 𝑓
∗𝑇𝑋 [3] ) = 𝐻1 (𝐶𝑣 ,O𝐶𝑣 )⊗𝑇𝔏(𝑣) where𝐻1 (𝐶𝑣 ,O𝐶𝑣 ) forms the dual of the Hodge bun-

dleH𝑔 (𝑣) over𝑀𝑔 (𝑣) ,val(𝑣) . By the five formulas (5.2)-(5.6), the fixed parts of𝑇𝑖 (𝐹 ) and𝐻1(𝐶𝑣 , 𝑓
∗𝑇𝑋 [3] )

vanish. Examining the terms in the four formulas (5.7)-(5.10) which carry negative signs, we see that
the fixed part of 𝐻1(𝐶𝑒, 𝑓

∗𝑇𝑋 [3] ) also vanishes. By (5.15), the fixed part of 𝐻1(𝐶, 𝑓 ∗𝑇𝑋 [3] ) vanishes.
Thus, T 2, 𝑓 = 0, and the fixed stack is smooth with tangent bundle T 1, 𝑓 . Hence, [𝔐Γ]vir = [𝔐Γ] and
[𝑀Γ]vir = [𝑀Γ]. By (5.14), we obtain

〈〉1,𝑑𝛽3 =
∑
Γ

1
|AΓ |

∫
[𝑀Γ ]

1
𝑒(𝑁vir

Γ )
.

In view of the splitting (5.13), the invariant 〈〉1,𝑑𝛽3 can be written as

∑
1≤𝑖≠ 𝑗≤𝜒 (𝑋 )

∑
Γ∈S𝑑,𝑖, 𝑗

1
|AΓ |

∫
[𝑀Γ ]

1
𝑒(𝑁vir

Γ )
+

𝜒 (𝑋 )∑
𝑖=1

∑
Γ∈T𝑑,𝑖

1
|AΓ |

∫
[𝑀Γ ]

1
𝑒(𝑁vir

Γ )
(5.16)

5.3. Reformulation of
∑

1≤𝑖≠ 𝑗≤𝜒 (𝑋 )
∑

Γ∈S𝑑,𝑖, 𝑗

In this subsection, we will reformulate the summation
∑

1≤𝑖≠ 𝑗≤𝜒 (𝑋 )
∑

Γ∈S𝑑,𝑖, 𝑗
in (5.16) by a suitable

genus-1 Gromov-Witten invariant of 𝑋 × 𝑋 [2] . It allows us to reduce the computation of 〈〉1,𝑑𝛽3 to the
local affine charts𝑈𝑖 � 𝑥𝑖 .

For 1 ≤ 𝑖 ≤ 𝜒(𝑋) and 1 ≤ 𝑘 ≤ 2, let 𝑅 (𝑘)
𝑖,𝑖 = (𝑥𝑖 , 𝜉𝑖,𝑘 ) ∈ 𝑋 × 𝑋 [2] and

𝐶𝑖,𝑖 = {𝑥𝑖} × 𝑀2 (𝑥𝑖) ⊂ 𝑋 × 𝑋 [2] .

For 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝜒(𝑋), regard the curve 𝐶𝑖, 𝑗 ⊂ 𝑋 [3] in Lemma 5.2 (i) as the curve {𝑥 𝑗 } × 𝑀2 (𝑥𝑖) ⊂
𝑋 × 𝑋 [2] . The T-action on X induces a T-action on 𝑋 × 𝑋 [2] . The T-fixed point set (𝑋 × 𝑋 [2] )T consists
of the points 𝑅 (𝑘)

𝑖, 𝑗 with 1 ≤ 𝑖, 𝑗 ≤ 𝜒(𝑋) and 1 ≤ 𝑘 ≤ 2. The T-invariant curves in 𝑋×𝑋 [2] contracted by

Id × 𝜌2 : 𝑋 × 𝑋 [2] → 𝑋 × 𝑋 (2)

are precisely the curves𝐶𝑖, 𝑗 with 1 ≤ 𝑖, 𝑗 ≤ 𝜒(𝑋). The decompositions of the tangent spaces of 𝑋×𝑋 [2]

at the points 𝑅 (𝑘)
𝑖, 𝑗 are given by the right-hand sides of (5.5) and (5.6). So we keep using 𝑇

𝑅
(𝑘)
𝑖, 𝑗

to denote

the tangent space of 𝑋 × 𝑋 [2] at 𝑅 (𝑘)
𝑖, 𝑗 . Similarly, if 𝑓 : P1 → 𝑋 × 𝑋 [2] is a degree-d morphism such that

𝑓 (P1) = 𝐶𝑖, 𝑗 and f is totally ramified at the two T-fixed points in 𝑓 (P1), then the Euler characteristic
𝜒( 𝑓 ∗𝑇𝑋×𝑋 [2] ) is given by the right-hand side of (5.10).

Regard 𝛽2 ∈ 𝐻2(𝑋 [2] ) as in 𝐻2 (𝑋 × 𝑋 [2] ). Apply localization to the moduli space

𝔐1,0 (𝑋 × 𝑋 [2] , 𝑑𝛽2)

whose expected dimension is equal to 0. The connected components of the T-fixed point set
(
𝔐1,0 (𝑋 ×

𝑋 [2] , 𝑑𝛽2)
)T are indexed by stable graphs Γ. For 1 ≤ 𝑖, 𝑗 ≤ 𝜒(𝑋), let S𝑑,𝑖, 𝑗 be the set of all stable
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graphs Γ such that 𝑓 (𝐶) = 𝐶𝑖, 𝑗 for every stable map [ 𝑓 : 𝐶 → 𝑋 × 𝑋 [2] ] in the connected component
𝔐Γ indexed by Γ. Note that when 𝑖 ≠ 𝑗 , S𝑑,𝑖, 𝑗 can be identified with the set S𝑑,𝑖, 𝑗 introduced in (5.13).
Moreover, for Γ ∈ S𝑑,𝑖, 𝑗 with 𝑖 ≠ 𝑗 , 𝔐Γ can be identified with the connected component 𝔐Γ introduced
in (5.11). By the virtual localization formula,∫

[𝔐1,0 (𝑋×𝑋 [2] ,𝑑𝛽2) ]vir
1 =

∑
1≤𝑖, 𝑗≤𝜒 (𝑋 )

∑
Γ∈S𝑑,𝑖, 𝑗

1
|AΓ |

∫
[𝑀Γ ]

1
𝑒(𝑁vir

Γ )
. (5.17)

Note that for each graph Γ ∈ S𝑑,𝑖, 𝑗 with 𝑖 ≠ 𝑗 , the summand
1

|AΓ |

∫
[𝑀Γ ]

1
𝑒(𝑁vir

Γ )
in (5.17) is equal to

the corresponding summand in (5.16).

Lemma 5.3.
∫
[𝔐1,0 (𝑋×𝑋 [2] ,𝑑𝛽2) ]vir

1 =
1

12𝑑
· 𝜒(𝑋) · 𝐾2

𝑋 .

Proof. We have 𝔐1,0 (𝑋 × 𝑋 [2] , 𝑑𝛽2) � 𝑋 × 𝔐1,0 (𝑋 [2] , 𝑑𝛽2). By the results in [15], the moduli
space 𝔐1,0 (𝑋 [2] , 𝑑𝛽2) is smooth (as a stack) with dimension (2𝑑 + 2), and the obstruction sheaf
O𝑏 = 𝑅1( 𝑓1,0)∗ev∗1𝑇𝑋 [2] on 𝔐1,0 (𝑋 [2] , 𝑑𝛽2) is locally free of rank (2𝑑 + 2) where 𝑓1,0 (respectively,
ev1) denotes the forgetful (respectively, evaluation) map on 𝔐1,1 (𝑋 [2] , 𝑑𝛽2). Moreover, we have

〈〉1,𝑑𝛽2 = deg 𝑐2𝑑+2 (O𝑏) =
1

12𝑑
· 𝐾2

𝑋 . (5.18)

Let 𝜙1 and 𝜙2 be the two projections on 𝑋 × 𝔐1,0 (𝑋 [2] , 𝑑𝛽2). Let H1 be the (rank-1) Hodge bundle
over the moduli space 𝔐1,0 (𝑋 [2] , 𝑑𝛽2). A direct computation shows that the obstruction sheaf over
𝔐1,0 (𝑋 × 𝑋 [2] , 𝑑𝛽2) is isomorphic to

(𝜙∗1𝑇𝑋 ⊗ 𝜙∗2H∨
1 ) ⊕ 𝜙

∗
2O𝑏

which is locally free of rank (2𝑑 + 4). Therefore, we conclude that

[𝔐1,0 (𝑋 × 𝑋 [2] , 𝑑𝛽2)]vir = 𝑐2𝑑+4
(
(𝜙∗1𝑇𝑋 ⊗ 𝜙∗2H∨

1 ) ⊕ 𝜙
∗
2O𝑏

)
= 𝑐2

(
𝜙∗1𝑇𝑋 ⊗ 𝜙∗2H∨

1
)
· 𝑐2𝑑+2

(
𝜙∗2O𝑏

)
.

Combining this with (5.18), we immediately verify our lemma. �

From (5.16), (5.17) and Lemma 5.3, we conclude that

〈〉1,𝑑𝛽3 =
1

12𝑑
· 𝜒(𝑋) · 𝐾2

𝑋 +
𝜒 (𝑋 )∑
𝑖=1

� !
∑

Γ∈T𝑑,𝑖

−
∑

Γ∈S𝑑,𝑖,𝑖

"#$ 1
|AΓ |

∫
[𝑀Γ ]

1
𝑒(𝑁vir

Γ )
. (5.19)

Note that
∑

Γ∈T𝑑,𝑖
−
∑

Γ∈S𝑑,𝑖,𝑖
depends only on the local chart𝑈𝑖 � 𝑥𝑖 .

For simplicity, whenever S is a set of stable graphs, we use
∑

Γ∈𝑆 to denote∑
Γ∈𝑆

1
|AΓ |

∫
[𝑀Γ ]

1
𝑒(𝑁vir

Γ )
. (5.20)

5.4. A reduction lemma

In this subsection, we will prove a reduction lemma which indicates that we may ignore most of the
stable graphs in T𝑑,𝑖 and S𝑑,𝑖,𝑖 when we evaluate the summation

∑
Γ∈T𝑑,𝑖

−
∑

Γ∈S𝑑,𝑖,𝑖
in (5.19).
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Before we state the reduction lemma, we present the motivations. As we will see in the next two
subsections,

∑
Γ∈T𝑑,𝑖

−
∑

Γ∈S𝑑,𝑖,𝑖
is of the form

(𝑤𝑖 + 𝑧𝑖)2 ·
𝑝1,1 (𝑤𝑖 , 𝑧𝑖)
𝑞1,1 (𝑤𝑖 , 𝑧𝑖)

+ (𝑤𝑖 + 𝑧𝑖)3 ·
𝑝1,2 (𝑤𝑖 , 𝑧𝑖)
𝑞1,2 (𝑤𝑖 , 𝑧𝑖)

where 𝑝1,1 (𝑤𝑖 , 𝑧𝑖), 𝑞1,1 (𝑤𝑖 , 𝑧𝑖), 𝑝1,2 (𝑤𝑖 , 𝑧𝑖), 𝑞1,2 (𝑤𝑖 , 𝑧𝑖) ∈ Q[𝑤𝑖 , 𝑧𝑖] are symmetric homogeneous
polynomials independent of i and X, (𝑤𝑖 + 𝑧𝑖) � 𝑞1,1 (𝑤𝑖 , 𝑧𝑖), (𝑤𝑖 + 𝑧𝑖) � 𝑞1,2 (𝑤𝑖 , 𝑧𝑖), deg(𝑞1,1) =
deg(𝑝1,1) + 2, deg(𝑞1,2) = deg(𝑝1,2) + 3 and all the roots of 𝑞1,1 (𝑤, 1) and 𝑞1,2 (𝑤, 1) are rational. Note
that 𝑝1,1 (𝑤𝑖 , 𝑧𝑖), 𝑞1,1 (𝑤𝑖 , 𝑧𝑖), 𝑝1,2 (𝑤𝑖 , 𝑧𝑖) and 𝑞1,2 (𝑤𝑖 , 𝑧𝑖) can be expressed as polynomials in 𝑤𝑖 + 𝑧𝑖
and 𝑤𝑖𝑧𝑖 . So the summation

∑
Γ∈T𝑑,𝑖

−
∑

Γ∈S𝑑,𝑖,𝑖
can be rewritten as

(𝑤𝑖 + 𝑧𝑖)2 · 𝑎̃ · (𝑤𝑖𝑧𝑖)𝑚
𝑞1,1 (𝑤𝑖 , 𝑧𝑖)

+ (𝑤𝑖 + 𝑧𝑖)3 ·
𝑝2,2 (𝑤𝑖 , 𝑧𝑖)
𝑞1,2 (𝑤𝑖 , 𝑧𝑖)

where 𝑎̃ and m are independent of i and X, and 𝑝2,2 (𝑤𝑖 , 𝑧𝑖) is a symmetric homogeneous polynomial
independent of i and X. Put 𝑞1,1 (𝑤𝑖 , 𝑧𝑖) = 𝑎̃0 (𝑤𝑖𝑧𝑖)𝑚+1+ 𝑎̃1 (𝑤𝑖𝑧𝑖)𝑚(𝑤𝑖 +𝑧𝑖)2+ . . .+ 𝑎̃𝑚+1 (𝑤𝑖 +𝑧𝑖)2(𝑚+1) .
Then,

(𝑤𝑖 + 𝑧𝑖)2 · 𝑎̃ · (𝑤𝑖𝑧𝑖)𝑚
𝑞1,1 (𝑤𝑖 , 𝑧𝑖)

= 𝑎 · (𝑤𝑖 + 𝑧𝑖)2

𝑤𝑖𝑧𝑖
− (𝑤𝑖 + 𝑧𝑖)4 ·

𝑝2,1 (𝑤𝑖 , 𝑧𝑖)
𝑤𝑖𝑧𝑖 · 𝑞1,1 (𝑤𝑖 , 𝑧𝑖)

where 𝑎 = 𝑎̃/𝑎̃0, and 𝑝2,1 (𝑤𝑖 , 𝑧𝑖) is a symmetric homogeneous polynomial independent of i and X. It
follows that

∑
Γ∈T𝑑,𝑖

−
∑

Γ∈S𝑑,𝑖,𝑖
is of the form

𝑎𝑑 · (𝑤𝑖 + 𝑧𝑖)2

𝑤𝑖𝑧𝑖
+ (𝑤𝑖 + 𝑧𝑖)3 · 𝑝𝑑 (𝑤𝑖 , 𝑧𝑖)

𝑞𝑑 (𝑤𝑖 , 𝑧𝑖)
(5.21)

where 𝑎𝑑 (= 𝑎), 𝑝𝑑 (𝑤𝑖 , 𝑧𝑖) and 𝑞𝑑 (𝑤𝑖 , 𝑧𝑖) are independent of i and X and depend only on d, 𝑎𝑑 ∈ Q,
𝑝𝑑 (𝑤𝑖 , 𝑧𝑖) and 𝑞𝑑 (𝑤𝑖 , 𝑧𝑖) are symmetric homogeneous polynomials in Q[𝑤𝑖 , 𝑧𝑖], (𝑤𝑖 + 𝑧𝑖) � 𝑞𝑑 (𝑤𝑖 , 𝑧𝑖)
and the roots of 𝑞𝑑 (𝑤, 1) are rational. Our reduction lemma below asserts that 𝑝𝑑 = 0.

Lemma 5.4. The summation
∑

Γ∈T𝑑,𝑖
−
∑

Γ∈S𝑑,𝑖,𝑖
is of the form

𝑎𝑑 · (𝑤𝑖 + 𝑧𝑖)2

𝑤𝑖𝑧𝑖
(5.22)

where 𝑎𝑑 ∈ Q is independent of i and X and depends only on d, and

〈〉1,𝑑𝛽3 =

(
𝑎𝑑 + 1

12𝑑
· 𝜒(𝑋)

)
𝐾2
𝑋 . (5.23)

Proof. Note that (5.23) follows from (5.19), (5.22) and (5.1). In the following, we will prove (5.22) (i.e.,
we will show that 𝑝𝑑 = 0 in (5.21)). For convenience, we will simply write 𝑎, 𝑝, 𝑞 instead of 𝑎𝑑 , 𝑝𝑑 , 𝑞𝑑 .
Assume 𝑝 ≠ 0. We will draw contradictions. We may further assume that 𝑝(𝑤𝑖 , 𝑧𝑖) and 𝑞(𝑤𝑖 , 𝑧𝑖) have
no common factors of positive degrees and that 𝑞(𝑤, 1) is monic.

First of all, we conclude from (5.19), (5.21) and (5.1) that

𝜒 (𝑋 )∑
𝑖=1

(𝑤𝑖 + 𝑧𝑖)3 · 𝑝(𝑤𝑖 , 𝑧𝑖)
𝑞(𝑤𝑖 , 𝑧𝑖)

= 〈〉1,𝑑𝛽3 −
1

12𝑑
· 𝜒(𝑋) · 𝐾2

𝑋 − 𝑎𝐾2
𝑋 . (5.24)

For simplicity, denote the right-hand side of (5.24) by 𝑒(𝑋, 𝑑). The symmetric polynomials 𝑝(𝑤𝑖 , 𝑧𝑖)
and 𝑞(𝑤𝑖 , 𝑧𝑖) can be expressed as polynomials in (𝑤𝑖+𝑧𝑖) and𝑤𝑖𝑧𝑖 . Since (𝑤𝑖+𝑧𝑖) � 𝑞(𝑤𝑖 , 𝑧𝑖), 𝑞(𝑤𝑖 , 𝑧𝑖)
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is of the form

𝑞(𝑤𝑖 , 𝑧𝑖) = (𝑤𝑖𝑧𝑖)𝑛0 · 𝑞(𝑤𝑖 , 𝑧𝑖) = (𝑤𝑖𝑧𝑖)𝑛0 ·
𝑘∏
𝑗=1

(
(𝑤𝑖 + 𝑧𝑖)2 + 𝑎 𝑗𝑤𝑖𝑧𝑖

)𝑛 𝑗 (5.25)

where 𝑛0 ≥ 0, 𝑘 ≥ 0, 𝑎1, . . . , 𝑎𝑘 are distinct and 𝑎 𝑗 ≠ 0 and 𝑛 𝑗 > 0 for every j. So deg(𝑞) is even,
deg(𝑝) = deg(𝑞) − 3 is odd and (𝑤𝑖 + 𝑧𝑖) |𝑝(𝑤𝑖 , 𝑧𝑖). Put

𝑝(𝑤𝑖 , 𝑧𝑖) = (𝑤𝑖 + 𝑧𝑖) · 𝑝(𝑤𝑖 , 𝑧𝑖).

Being of even degree, the symmetric homogeneous polynomial 𝑝(𝑤𝑖 , 𝑧𝑖) is a polynomial of (𝑤𝑖 + 𝑧𝑖)2

and 𝑤𝑖𝑧𝑖 . By (5.24), we have

𝜒 (𝑋 )∑
𝑖=1

(𝑤𝑖 + 𝑧𝑖)4 · 𝑝(𝑤𝑖 , 𝑧𝑖)
𝑞(𝑤𝑖 , 𝑧𝑖)

= 𝑒(𝑋, 𝑑). (5.26)

For 𝑋 = P2 and P1 × P1, the weights 𝑤𝑖 and 𝑧𝑖 are of the form

{(𝑤𝑖 , 𝑧𝑖) |1 ≤ 𝑖 ≤ 𝜒(𝑋)}

=

{
{(𝑤, 𝑧), (𝑤 − 𝑧,−𝑧), (𝑧 − 𝑤,−𝑤)}, if 𝑋 = P2

{(𝑤, 𝑧), (−𝑤,−𝑧), (𝑤,−𝑧), (−𝑤, 𝑧)}, if 𝑋 = P1 × P1.

Set 𝑧 = 1. Letting 𝑋 = P2 and 𝑋 = P1 × P1 in (5.26), respectively, we obtain

(𝑤 + 1)4 𝑝(𝑤, 1)
𝑞(𝑤, 1) + (𝑤 − 2)4 𝑝(𝑤 − 1,−1)

𝑞(𝑤 − 1,−1) + (1 − 2𝑤)4 𝑝(1 − 𝑤,−𝑤)
𝑞(1 − 𝑤,−𝑤) = 𝑒1, (5.27)

(𝑤 + 1)4 · 𝑝(𝑤, 1)
𝑞(𝑤, 1) + (−𝑤 + 1)4 · 𝑝(−𝑤, 1)

𝑞(−𝑤, 1) = 𝑒2 (5.28)

where 𝑒1 = 𝑒(P2, 𝑑) and 𝑒2 = 𝑒(P1 × P1, 𝑑)/2. Since 𝑝(𝑤𝑖 , 𝑧𝑖) and 𝑞(𝑤𝑖 , 𝑧𝑖) have no common factor of
positive degree, neither do 𝑝(𝑤, 1) and 𝑞(𝑤, 1). If 𝑘 ≥ 1, then by (5.28) and (5.25), 𝑞(𝑤, 1) |𝑞(−𝑤, 1).
So 𝑞(𝑤, 1) = 𝑞(−𝑤, 1) since they are monic and 𝑞(𝑤𝑖 , 𝑧𝑖) = 𝑞(−𝑤𝑖 , 𝑧𝑖). Since the roots of 𝑞(𝑤, 1) are
rational, 𝑎 𝑗 ≠ −2 and

(𝑤𝑖 + 𝑧𝑖)2 + 𝑎 𝑗𝑤𝑖𝑧𝑖 ≠ (𝑤𝑖 − 𝑧𝑖)2 − 𝑎 𝑗𝑤𝑖𝑧𝑖

for j and i. Therefore, (𝑤𝑖 + 𝑧𝑖)2+𝑎 𝑗𝑤𝑖𝑧𝑖 and (𝑤𝑖− 𝑧𝑖)2−𝑎 𝑗𝑤𝑖𝑧𝑖 are distinct factors in the decomposition
(5.25) of 𝑞(𝑤𝑖 , 𝑧𝑖), and 𝑞(𝑤𝑖 , 𝑧𝑖) can be rewritten as

(𝑤𝑖𝑧𝑖)𝑛0 ·
𝑠∏
𝑗=1

(
((𝑤𝑖 + 𝑧𝑖)2 + 𝑎 𝑗𝑤𝑖𝑧𝑖) ((𝑤𝑖 − 𝑧𝑖)2 − 𝑎 𝑗𝑤𝑖𝑧𝑖)

)𝑛 𝑗 (5.29)

=(𝑤𝑖𝑧𝑖)𝑛0 ·
𝑠∏
𝑗=1

(
(𝑤2

𝑖 + 𝑧2
𝑖 )2 − 𝑎̃ 𝑗 (𝑤𝑖𝑧𝑖)2)𝑛 𝑗 (5.30)

where 𝑠 = 𝑘/2 ≥ 0, 𝑎̃ 𝑗 = (2 + 𝑎 𝑗 )2 and 𝑎̃1, . . . , 𝑎̃𝑠 are distinct. Since the roots of (𝑤 + 1)2 + 𝑎 𝑗𝑤 are
rational, 𝑎̃ 𝑗 ≥ 4. Since (𝑤𝑖 + 𝑧𝑖) � 𝑞(𝑤𝑖 , 𝑧𝑖), 𝑎̃ 𝑗 ≠ 4. So 𝑎̃ 𝑗 > 4, and 𝑎 𝑗 ≠ 0,−4. Let 𝑛 = deg(𝑞) =
2𝑛0 + 4(𝑛1 + . . . + 𝑛𝑠). Then deg(𝑝) = 𝑛 − 4.
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If 𝑛0 is positive and even, then as a polynomial in (𝑤𝑖+𝑧𝑖)2 and𝑤𝑖𝑧𝑖 , 𝑝(𝑤𝑖 , 𝑧𝑖) contains the monomial
(𝑤𝑖 +𝑧𝑖)𝑛−4 with nonzero coefficient. So (𝑤+1)4 𝑝(𝑤, 1) is a polynomial of degree n in w. Since 𝑞(𝑤, 1)
is of degree 𝑛−𝑛0, letting𝑤 → ∞ in (5.28), we get∞ = 𝑒2. This is impossible since 𝑒2 is a finite number.

If 𝑛0 is odd with 𝑛0 ≥ 3, then write 𝑝(𝑤𝑖 , 𝑧𝑖) =
∑𝑛−4

𝑗=0 ℎ 𝑗𝑤
𝑗
𝑖 𝑧

(𝑛−4)− 𝑗
𝑖 . Since 𝑝(𝑤𝑖 , 𝑧𝑖) is symmetric,

ℎ 𝑗 = ℎ (𝑛−4)− 𝑗 . Since (𝑤𝑖𝑧𝑖) � 𝑝(𝑤𝑖 , 𝑧𝑖), ℎ0 ≠ 0. Since 𝑎 𝑗 ∉ {0,−4}, we see that 𝑤 � 𝑞(𝑤 − 1,−1) and
𝑤 � 𝑞(1 − 𝑤,−𝑤). Substitute (5.30) into (5.27) and (5.28). Expanding the left-hand sides of (5.27) and
(5.28), we get (

(𝑛0 + 8)ℎ0 + 2ℎ1
)
𝑤−(𝑛0−1) +𝑂 (𝑤−(𝑛0−2) ) = 𝑒1,

(8ℎ0 + 2ℎ1)𝑤−(𝑛0−1) +𝑂 (𝑤−(𝑛0−3) ) = 𝑒2

where 𝑂 (𝑤−𝑖) with 𝑖 > 0 denotes a term such that as 𝑤 → 0, |𝑂 (𝑤−𝑖) | ≤ 𝑐 |𝑤−𝑖 | for some constant c.
The two coefficients of 𝑤−(𝑛0−1) cannot be 0 simultaneously. So letting 𝑤 → 0, we have either ∞ = 𝑒1
or ∞ = 𝑒2. This is absurd.

By the previous two paragraphs, 𝑛0 = 0 or 1. Since deg(𝑞) ≥ 3, 𝑠 ≥ 1. The roots of (𝑤2 +1)2 − 𝑎̃ 𝑗𝑤
2

are 𝛼, 𝛼−1,−𝛼,−𝛼−1 for some rational number 𝛼 ≠ 0, 1, and these four roots are mutually distinct. Let
𝛼0, 𝛼

−1
0 ,−𝛼0,−𝛼−1

0 be the roots of (𝑤2 + 1)2 − 𝑎̃1𝑤
2. By symmetry, let 0 < 𝛼0 < 1. If (𝑤 + 𝛼0) �(

𝑞(𝑤 − 1,−1)𝑞(1 − 𝑤,−𝑤)
)
, then letting 𝑤 → −𝛼0 in (5.27), we obtain the contradiction ∞ = 𝑒1. If

(𝑤+𝛼0) |𝑞(𝑤−1,−1), then (𝛼0 +1) ≠ 0 is a root of 𝑞(𝑤, 1). Therefore, 1/(𝛼0 +1) is a root of 𝑞(𝑤, 1) as
well. Similarly, if (𝑤+𝛼0) |𝑞(1−𝑤,−𝑤), then −(𝛼0+1)/𝛼0 is a root of 𝑞(𝑤, 1); in this case, 𝛼0/(𝛼0+1)
is also a root of 𝑞(𝑤, 1). Note that 0 < 1/(𝛼0 + 1), 𝛼0/(𝛼0 + 1) < 1. Define two functions

𝜙1(𝑥) = 1/(𝑥 + 1), 𝜙2(𝑥) = 𝑥/(𝑥 + 1).

So there exists 𝜓1 ∈ {𝜙1, 𝜙2} such that 𝜓1(𝛼0) is a root of 𝑞(𝑤, 1). Putting 𝛼1 = 𝜓1 (𝛼0) and repeating
the above process, we see that 𝑞(𝑤, 1) has a sequence of roots

𝛼𝑘 = 𝜓𝑘 · · ·𝜓1 (𝛼0), 𝑘 ≥ 1

where 𝜓1, . . . , 𝜓𝑘 ∈ {𝜙1, 𝜙2}. By induction, we get 0 < 𝛼𝑘 < 1 for every 𝑘 ≥ 0.

Claim. 𝛼𝑖 ≠ 𝛼𝑘 whenever 𝑖, 𝑘 ≥ 0 and 𝑖 ≠ 𝑘 .

Proof. Assume 𝛼𝑖 = 𝛼𝑘 with 0 ≤ 𝑖 < 𝑘 . Then, 𝛼𝑘 = 𝜓𝑘 · · ·𝜓𝑖+1(𝛼𝑖). So we may assume that
𝑖 = 0, 𝛼0 = 𝛼𝑘 and 𝛼𝑘 = 𝜓𝑘 · · ·𝜓1(𝛼0). Since 𝜓1, . . . , 𝜓𝑘 ∈ {𝜙1, 𝜙2}, we see from induction that
𝛼𝑘 = (𝑎𝛼0 + 𝑏)/(𝑐𝛼0 + 𝑑) for some integers 𝑎 ≥ 0, 𝑏 ≥ 0, 𝑐 ≥ 1, 𝑑 ≥ 1 satisfying 𝑎𝑑 − 𝑏𝑐 = ±1. So
𝛼0 = (𝑎𝛼0 + 𝑏)/(𝑐𝛼0 + 𝑑), and we get

𝑐𝛼2
0 + (𝑑 − 𝑎)𝛼0 − 𝑏 = 0.

Since𝛼0 is a rational number, (𝑑−𝑎)2+4𝑏𝑐 = 𝑓 2 for some integer f. If 𝑎𝑑−𝑏𝑐 = −1, then 𝑓 2 = (𝑑+𝑎)2+4,
and so 𝑑 + 𝑎 = 0, which contradicts 𝑎 ≥ 0 and 𝑑 ≥ 1. If 𝑎𝑑 − 𝑏𝑐 = 1, then 𝑓 2 + 4 = (𝑑 + 𝑎)2, and so
𝑓 = 0 and 𝑑 + 𝑎 = 2. Since 𝑎 ≥ 0, 𝑏 ≥ 0, 𝑐 ≥ 1, 𝑑 ≥ 1 are integers satisfying 𝑎𝑑 − 𝑏𝑐 = 1, we must
have 𝑎 = 𝑑 = 1, 𝑏 = 0 and 𝛼0 = 0. This contradicts 𝛼0 ≠ 0. �

We continue the proof of our lemma. By the above claim, the polynomial 𝑞(𝑤, 1) has infinitely many
roots 𝛼𝑘 , 𝑘 ≥ 0 which are mutually distinct. This is absurd. �

In view of Lemma 5.4, we introduce the following notation.

Notation 5.5. We use 𝑀 ((𝑤 + 𝑧)𝑛) to denote an expression of the form

(𝑤 + 𝑧)𝑛 · 𝑝(𝑤, 𝑧)
𝑞(𝑤, 𝑧)
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where 𝑝(𝑤, 𝑧) and 𝑞(𝑤, 𝑧) are polynomials in w and z with (𝑤 + 𝑧) � 𝑞(𝑤, 𝑧), and all the roots of the
polynomial 𝑞(𝑤, 1) are rational numbers.

By Lemma 5.4, when we evaluate the summation
∑

Γ∈T𝑑,𝑖
−
∑

Γ∈S𝑑,𝑖,𝑖
in (5.19), we can ignore those

stable graphs Γ in T𝑑,𝑖 and S𝑑,𝑖,𝑖 satisfying

1
|AΓ |

∫
[𝑀Γ ]

1
𝑒(𝑁vir

Γ )
= 𝑀

(
(𝑤𝑖 + 𝑧𝑖)3) .

5.5. Computation of
∑

Γ∈S𝑑,𝑖,𝑖

For simplicity, in the rest of the paper, we put

𝑤 = 𝑤𝑖 = 𝑐1 (𝜆𝑖),
𝑧 = 𝑧𝑖 = 𝑐1(𝜇𝑖).

Also, define 𝑃1 (𝑎, 𝑏) = 1. For 𝑛 ≥ 2, we define

𝑃𝑛 (𝑎, 𝑏) = (𝑎 + 𝑏) · · · (𝑎 + (𝑛 − 1)𝑏). (5.31)

Now let Γ ∈ S𝑑,𝑖,𝑖 . Similar to the formulas (4.18) to (4.21) in [8] (see also [30]), we have the
decomposition

𝑒(𝑁vir
Γ ) = 𝑒E

Γ · 𝑒V
Γ · 𝑒F

Γ . (5.32)

Here, 𝑒E
Γ, 𝑒

V
Γ , 𝑒

F
Γ denote the contributions of the edges, vertices and flags with

𝑒E
Γ =

∏
𝑒∈𝐸 (Γ)

(−1)𝑑𝑒−1((𝑑𝑒 − 1)!)2𝑤2𝑧2(𝑤 − 𝑧)2𝑑𝑒

(𝑤 + 𝑧)𝑃𝑑𝑒 (−2𝑑𝑒𝑤, 𝑤 − 𝑧)𝑃𝑑𝑒 (−𝑑𝑒 (𝑤 + 𝑧), 𝑤 − 𝑧) (5.33)

𝑒V
Γ =

∏
𝑣 ∈𝑉 (Γ)
𝑔 (𝑣)=0

val(𝑣)=2

(𝜔𝐹1 (𝑣) + 𝜔𝐹2 (𝑣) ) ·
∏

𝑣 ∈𝑉 (Γ)
𝑔 (𝑣)=0

val(𝑣)=1

𝜔−1
𝐹 (𝑣) ·

∏
𝑣 ∈𝑉 (Γ)

𝑒(𝑇𝔏(𝑣) )
𝑒(H∨

𝑔 (𝑣) ⊗ 𝑇𝔏(𝑣) )
(5.34)

𝑒F
Γ =

∏
𝐹 ∈𝐹 (Γ)sta

(𝜔𝐹 − 𝜓𝐹 ) ·
∏

𝐹 ∈𝐹 (Γ)
𝑒(𝑇𝑖 (𝐹 ) )−1 (5.35)

where (5.33) (which is the product of the equivariant Euler classes of the moving parts
𝜒((( 𝑓 |𝐶𝑒 )∗𝑇𝑋 [3] )mov), 𝑒 ∈ 𝐸 (Γ)) follows from (5.10) by reading its nonconstant terms, 𝜔𝐹 =
𝑒(𝑇𝑖 (𝐹 )𝐶𝑖,𝑖)/𝑑𝑒 for a flag 𝐹 = (𝑣, 𝑒) and 𝜓𝐹 denotes the first Chern class of the line bundle on 𝑀Γ

whose fiber is the cotangent space of the component associated to v at the point corresponding to F.
Note from (5.5) and (5.6) that 𝑇

𝑅 (1)
𝑖,𝑖
𝐶𝑖,𝑖 = 𝜆−1

𝑖 𝜇𝑖 and 𝑇
𝑅 (2)
𝑖,𝑖
𝐶𝑖,𝑖 = 𝜆𝑖𝜇−1

𝑖 . Thus, we obtain

𝜔𝐹 =

{
(−𝑤 + 𝑧)/𝑑𝑒, if 𝑖(𝐹) = 𝑅 (1)

𝑖,𝑖

(𝑤 − 𝑧)/𝑑𝑒, if 𝑖(𝐹) = 𝑅 (2)
𝑖,𝑖 .

(5.36)

In (5.34), when 𝑔(𝑣) = 0, 𝑒(H∨
𝑔 (𝑣) ⊗ 𝑇𝔏(𝑣) ) is treated as 1; when 𝑔(𝑣) = 1, H𝑔 (𝑣) is the rank-1 Hodge

bundle over 𝑀𝑔 (𝑣) ,val(𝑣) . Let 𝜆 = 𝑐1 (H1). It is known that

𝜆2 = 0,
∫
𝑀 1,1

𝜆 =
1

24
. (5.37)
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For 1 ≤ 𝑗 ≤ 𝑛, let 𝜓 𝑗 be the first Chern class of the line bundle on 𝑀1,𝑛 whose fiber at an n-pointed
stable curve is the cotangent space of the curve at the j-th marked point. Then it is known (e.g., see [18])
that 𝜓1 = 𝜆 on 𝑀1,1 and ∫

𝑀 1,2

𝜓2
1 =

∫
𝑀 1,2

𝜓2
2 =

∫
𝑀 1,2

𝜓1𝜓2 =
1

24
. (5.38)

Lemma 5.6. Let 𝑑 ≥ 1, and let Γ ∈ S𝑑,𝑖,𝑖 . Then, we have

1
𝑒(𝑁vir

Γ )
= 𝑀

(
(𝑤 + 𝑧) |𝐸 (Γ) | ) . (5.39)

Proof. We see from (5.33) that (𝑤 + 𝑧) |𝐸 (Γ) | divides the denominator of 𝑒E
Γ. Moreover, (𝑤 + 𝑧) does not

divide the numerators in (5.33). So we have

1
𝑒E
Γ

= (𝑤 + 𝑧) |𝐸 (Γ) | ·
𝑝Γ,1 (𝑤, 𝑧)
𝑞Γ,1 (𝑤, 𝑧)

(5.40)

where 𝑝Γ,1 (𝑤, 𝑧) and 𝑞Γ,1 (𝑤, 𝑧) are polynomials in w and z with (𝑤 + 𝑧) � 𝑞Γ,1 (𝑤, 𝑧), and all the roots
of 𝑞Γ,1 (𝑤, 1) are rational. By (5.34), (5.35), (5.36), (5.5) and (5.6),

1
𝑒V
Γ · 𝑒F

Γ

=
𝑝Γ,2 (𝑤, 𝑧)
𝑞Γ,2 (𝑤, 𝑧)

where 𝑝Γ,2 (𝑤, 𝑧) and 𝑞Γ,2 (𝑤, 𝑧) are polynomials in w and z with (𝑤 + 𝑧) � 𝑞Γ,2 (𝑤, 𝑧), and all the roots
of 𝑞Γ,2 (𝑤, 1) are rational. By (5.32) and (5.40), we get (5.39). �

Lemma 5.7. Let 𝑑 ≥ 1. Then, the summation
∑

Γ∈S𝑑,𝑖,𝑖
is equal to(

−𝑑2 + 𝑑 + 16
96𝑑

+ 𝑑

48

𝑑−1∑
𝑑1=1

1
𝑑1

− 1
48

∑
𝛿	𝑑

𝑑2 − 𝑑1𝑑2
𝑑1𝑑2 · |Aut(𝛿) |

)
· (𝑤 + 𝑧)2

𝑤𝑧
+ 𝑀

(
(𝑤 + 𝑧)3)

where 𝛿 = (𝑑1, 𝑑2) 	 𝑑 denotes a length-2 partition of d, |Aut(𝛿) | = 1 if 𝑑1 ≠ 𝑑2 and |Aut(𝛿) | = 2 if
𝑑1 = 𝑑2.

Proof. By Lemma 5.6, we need only to consider those stable graphs Γ ∈ S𝑑,𝑖,𝑖 with |𝐸 (Γ) | = 1 or 2.
We begin with the case |𝐸 (Γ) | = 1 (i.e., Γ ∈ S𝑑,𝑖,𝑖 has exactly one edge). There are exactly two such
stable graphs:

𝑣1 𝑣2
𝑑

where 𝑉 (Γ) = {𝑣1, 𝑣2}, 𝔏(𝑣1) = 𝑅 (1)
𝑖,𝑖 , 𝔏(𝑣2) = 𝑅 (2)

𝑖,𝑖 , 𝑔(𝑣1) ∈ {1, 0} and 𝑔(𝑣2) ∈ {1, 0} − {𝑔(𝑣1)}. In
both cases, |AΓ | = 𝑑 · |Aut(Γ) | = 𝑑 by (5.12). Using (5.32)-(5.37) and noticing that (5.33) is unchanged
when w and z are switched, we get∑

Γ∈S𝑑,𝑖,𝑖 , |𝐸 (Γ) |=1
=

9 − 𝑑
48𝑑

· (𝑤 + 𝑧)2

𝑤𝑧
+ 𝑀

(
(𝑤 + 𝑧)3) . (5.41)

Next, we consider the stable graphs Γ ∈ S𝑑,𝑖,𝑖 with |𝐸 (Γ) | = 2. So Γ ∈ S𝑑,𝑖,𝑖 has exactly two edges.
Denoting the distributions of the degree d on the two edges by 𝑑1 and 𝑑2, we see that these stable graphs
are of the form:
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(i)

𝑣1

𝑣2

𝑣3

𝑑1

𝑑2

where 𝔏(𝑣1) ∈
{
𝑅 (1)
𝑖,𝑖 , 𝑅

(2)
𝑖,𝑖

}
, 𝔏(𝑣2) = 𝔏(𝑣3) ∈

{
𝑅 (1)
𝑖,𝑖 , 𝑅

(2)
𝑖,𝑖

}
−

{
𝔏(𝑣1)

}
, 𝑔(𝑣1) ∈ {1, 0}, 𝑔(𝑣2) ∈

{1, 0} − {𝑔(𝑣1)}, 𝑔(𝑣3) = 0 and 𝛿 = (𝑑1, 𝑑2) 	 𝑑 is a partition of d. There are exactly 4 types
of such graphs if we ignore the edge weights. By (5.12), |AΓ | = 𝑑1𝑑2 if 𝑔(𝑣1) = 0, while |AΓ | =
𝑑1𝑑2 · |Aut(𝛿) | if 𝑔(𝑣1) = 1.

(ii)

𝑣1 𝑣2

𝑑1

𝑑2

where 𝔏(𝑣1) = 𝑅 (1)
𝑖,𝑖 , 𝔏(𝑣2) = 𝑅 (2)

𝑖,𝑖 , 𝑔(𝑣1) = 𝑔(𝑣2) = 0 and 𝛿 = (𝑑1, 𝑑2) 	 𝑑 is a partition of d. We
have |AΓ | = 𝑑1𝑑2 · |Aut(𝛿) |.

A lengthy computation via (5.32)-(5.38) shows that
∑

Γ∈S𝑑,𝑖,𝑖 , |𝐸 (Γ) |=2 is equal to(
−𝑑2 + 3𝑑 − 2

96𝑑
+ 𝑑

48

𝑑−1∑
𝑑1=1

1
𝑑1

− 1
48

∑
𝛿	𝑑

𝑑2 − 𝑑1𝑑2
𝑑1𝑑2 · |Aut(𝛿) |

)
· (𝑤 + 𝑧)2

𝑤𝑧
+ 𝑀

(
(𝑤 + 𝑧)3) .

Summing this with (5.41), we complete the proof of our lemma. �

5.6. Computation of
∑

Γ∈T𝑑,𝑖

Let Γ ∈ T𝑑,𝑖 . For an edge 𝑒 ∈ 𝐸 (Γ) and for 0 ≤ 𝑗 < 𝑘 ≤ 2, define 𝑒 ∈ 𝐸 𝑗 ,𝑘 (Γ) if the component 𝐶𝑒

is mapped to 𝐶 (𝑖)
𝑗 ,𝑘 . By Lemma 5.2, the curves 𝐶 (𝑖)

0,1, 𝐶 (𝑖)
0,2 and 𝐶 (𝑖)

1,2 are homologous to 𝛽3, 𝛽3 and 3𝛽3,
respectively. Therefore, ∑

𝑒∈𝐸0,1 (Γ)
𝑑𝑒 +

∑
𝑒∈𝐸0,2 (Γ)

𝑑𝑒 +
∑

𝑒∈𝐸1,2 (Γ)
3𝑑𝑒 = 𝑑. (5.42)

Now formulas (5.32), (5.34) and (5.35) still hold with the understanding that

𝜔𝐹 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑤 − 2𝑧)/𝑑𝑒, if 𝑒 ∈ 𝐸0,1(Γ) and 𝑖(𝐹) = 𝑄𝑖,0

(−𝑤 + 2𝑧)/𝑑𝑒, if 𝑒 ∈ 𝐸0,1(Γ) and 𝑖(𝐹) = 𝑄𝑖,1

(−2𝑤 + 𝑧)/𝑑𝑒, if 𝑒 ∈ 𝐸0,2(Γ) and 𝑖(𝐹) = 𝑄𝑖,0

(2𝑤 − 𝑧)/𝑑𝑒, if 𝑒 ∈ 𝐸0,2(Γ) and 𝑖(𝐹) = 𝑄𝑖,2

(−𝑤 + 𝑧)/𝑑𝑒, if 𝑒 ∈ 𝐸1,2(Γ) and 𝑖(𝐹) = 𝑄𝑖,1

(𝑤 − 𝑧)/𝑑𝑒, if 𝑒 ∈ 𝐸1,2(Γ) and 𝑖(𝐹) = 𝑄𝑖,2

(5.43)

since 𝑇𝑄𝑖,0𝐶
(𝑖)
0,1 = 𝜆𝑖𝜇−2

𝑖 , 𝑇𝑄𝑖,1𝐶
(𝑖)
0,1 = 𝜆−1

𝑖 𝜇
2
𝑖 , 𝑇𝑄𝑖,0𝐶

(𝑖)
0,2 = 𝜆−2

𝑖 𝜇𝑖 , 𝑇𝑄𝑖,2𝐶
(𝑖)
0,2 = 𝜆2

𝑖 𝜇
−1
𝑖 , 𝑇𝑄𝑖,1𝐶

(𝑖)
1,2 = 𝜆−1

𝑖 𝜇𝑖

and 𝑇𝑄𝑖,2𝐶
(𝑖)
1,2 = 𝜆𝑖𝜇−1

𝑖 in view of (5.2), (5.3) and (5.4). Moreover, we see from (5.7), (5.8) and (5.9) that
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the factor 𝑒E
Γ in (5.32) is given by∏

𝑒∈𝐸0,1 (Γ)

(
(−1)𝑑𝑒−1((𝑑𝑒 − 1)!)2(𝑤 − 2𝑧)2𝑑𝑒 (𝑤 − 𝑧)𝑤𝑧2

(𝑤 + 𝑧)𝑃𝑑𝑒 (−𝑑𝑒 (2𝑤 − 𝑧), 𝑤 − 2𝑧)

·
𝑃𝑑𝑒 (−𝑑𝑒 (𝑤 − 𝑧), 𝑤 − 2𝑧)

𝑃𝑑𝑒 (−𝑑𝑒 (𝑤 + 𝑧), 𝑤 − 2𝑧)𝑃𝑑𝑒 (−𝑑𝑒𝑤, 𝑤 − 2𝑧)

)
·

∏
𝑒∈𝐸0,2 (Γ)

(
(−1)𝑑𝑒−1 ((𝑑𝑒 − 1)!)2(𝑧 − 2𝑤)2𝑑𝑒 (𝑧 − 𝑤)𝑧𝑤2

(𝑧 + 𝑤)𝑃𝑑𝑒 (−𝑑𝑒 (2𝑧 − 𝑤), 𝑧 − 2𝑤)

·
𝑃𝑑𝑒 (−𝑑𝑒 (𝑧 − 𝑤), 𝑧 − 2𝑤)

𝑃𝑑𝑒 (−𝑑𝑒 (𝑧 + 𝑤), 𝑧 − 2𝑤)𝑃𝑑𝑒 (−𝑑𝑒𝑧, 𝑧 − 2𝑤)

)
·

∏
𝑒∈𝐸1,2 (Γ)

(
(−1)𝑑𝑒 ((𝑑𝑒 − 1)!)2(2𝑤 − 𝑧) (𝑤 − 2𝑧) (𝑤 − 𝑧)2𝑑𝑒𝑤2𝑧2

(𝑤 + 𝑧) (2𝑤 + 𝑧) (𝑤 + 2𝑧)𝑃𝑑𝑒 (−2𝑑𝑒𝑤, 𝑤 − 𝑧)𝑃𝑑𝑒 (−𝑑𝑒 (𝑤 + 𝑧), 𝑤 − 𝑧)

·
𝑃𝑑𝑒 (−𝑑𝑒 (𝑤 − 2𝑧), 𝑤 − 𝑧)𝑃𝑑𝑒 (𝑑𝑒𝑧, 𝑤 − 𝑧)𝑃𝑑𝑒 (𝑑𝑒𝑤, 𝑤 − 𝑧)

𝑃𝑑𝑒 (−3𝑑𝑒𝑤, 𝑤 − 𝑧)𝑃𝑑𝑒 (−𝑑𝑒 (2𝑤 + 𝑧), 𝑤 − 𝑧)𝑃𝑑𝑒 (−𝑑𝑒 (𝑤 + 2𝑧), 𝑤 − 𝑧)

)
. (5.44)

Notation 5.8. Let 𝑑 ≥ 1, and let Γ ∈ T𝑑,𝑖 . We use 𝑉0(Γ) to denote the subset of 𝑉 (Γ) consisting of all
the vertices v of Γ such that

𝔏(𝑣) = 𝑄𝑖,0, 𝑔(𝑣) = 0, val(𝑣) = 2, 𝑑𝑒1 (𝑣) = 𝑑𝑒2 (𝑣)

for the two edges 𝑒1(𝑣) and 𝑒2 (𝑣) attaching to v, and 𝑒 𝑗 (𝑣) ∈ 𝐸0, 𝑗 (Γ) for 𝑗 = 1, 2.

If 𝑣1, 𝑣2 ∈ 𝑉0 (Γ) are distinct, then 𝔏(𝑣1) = 𝑄𝑖,0 = 𝔏(𝑣2). So none of the two edges attaching to 𝑣1
coincide with any of the two edges attaching to 𝑣2, and

2|𝑉0 (Γ) | ≤ |𝐸 (Γ) |. (5.45)

Lemma 5.9. Let 𝑑 ≥ 1 and Γ ∈ T𝑑,𝑖 . Then,

1
𝑒(𝑁vir

Γ )
= 𝑀

(
(𝑤 + 𝑧)3)

unless one of the following cases happens:

(i) |𝑉0 (Γ) | = 2 and |𝐸 (Γ) | = 4;
(ii) |𝑉0 (Γ) | = 1 and |𝐸 (Γ) | = 2;

(iii) |𝑉0 (Γ) | = 1 and |𝐸 (Γ) | = 3;
(iv) |𝑉0 (Γ) | = 0 and |𝐸 (Γ) | = 1;
(v) |𝑉0 (Γ) | = 0 and |𝐸 (Γ) | = 2.

Proof. First of all, let us examine the factor 𝑒E
Γ. If 𝑒 ∈ 𝐸0,1 (Γ), then we see from (5.31) that (𝑤 + 𝑧) |

𝑃𝑑𝑒 (−𝑑𝑒 (𝑤 − 𝑧), 𝑤 −2𝑧) if and only if 3|𝑑𝑒; moreover, if 3|𝑑𝑒, then (𝑤 + 𝑧)2 � 𝑃𝑑𝑒 (−𝑑𝑒 (𝑤 − 𝑧), 𝑤 −2𝑧)
and (𝑤 + 𝑧) |𝑃𝑑𝑒 (−𝑑𝑒𝑤, 𝑤 − 2𝑧). Applying a similar argument to 𝑒 ∈ 𝐸0,2 (Γ) and 𝑒 ∈ 𝐸1,2 (Γ), we
conclude that

1
𝑒E
Γ

= 𝑀
(
(𝑤 + 𝑧) |𝐸 (Γ) | ) . (5.46)
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Next, by (5.34), (5.35), (5.2), (5.3) and (5.4), the only possible factors in 1/(𝑒V
Γ · 𝑒F

Γ) divisible by
(𝑤 + 𝑧) come from (𝜔𝐹1 (𝑣) +𝜔𝐹2 (𝑣) ) with 𝑔(𝑣) = 0 and val(𝑣) = 2. If such a factor (𝜔𝐹1 (𝑣) +𝜔𝐹2 (𝑣) ) is
divisible by (𝑤 + 𝑧), then we see from (5.43) that 𝔏(𝑣) = 𝑄𝑖,0, 𝑑𝑒1 (𝑣) = 𝑑𝑒2 (𝑣) for the two edges 𝑒1(𝑣)
and 𝑒2(𝑣) attaching to v,

(𝜔𝐹1 (𝑣) + 𝜔𝐹2 (𝑣) ) = − 1
𝑑𝑒 𝑗 (𝑣)

· (𝑤 + 𝑧),

and 𝑒 𝑗 (𝑣) ∈ 𝐸0, 𝑗 (Γ) for 𝑗 = 1, 2. Hence, 𝑣 ∈ 𝑉0(Γ). It follows that

1
𝑒V
Γ · 𝑒F

Γ

= 𝑀
(
(𝑤 + 𝑧)−|𝑉0 (Γ) | ) .

Combining this with (5.32) and (5.46), we conclude that

1
𝑒(𝑁vir

Γ )
= 𝑀

(
(𝑤 + 𝑧) |𝐸 (Γ) |− |𝑉0 (Γ) | ) .

By (5.45), we have |𝐸 (Γ) | − |𝑉0 (Γ) | ≥ |𝑉0 (Γ) |. Now our lemma follows. �

Lemma 5.10. Let 𝑑 ≥ 1. Then, the summation
∑

Γ∈T𝑑,𝑖
is equal to

𝑓𝑑 · (𝑤 + 𝑧)2

𝑤𝑧
+ 𝑀

(
(𝑤 + 𝑧)3) (5.47)

where 𝑓𝑑 is a universal constant depending only on d and is given by

4
9𝑑2

∑
𝛿	𝑑/2

𝑑1𝑑2
|Aut(𝛿) | · 𝛾

2
𝑑1
𝛾2
𝑑2

+ 1
54𝑑

∑
𝛿	𝑑/2

𝑑2
1
𝑑2

· 𝛾2
𝑑1
𝛾2
𝑑2

− 1
108

∑
𝛿	𝑑/2

𝑑2
1 + 𝑑1𝑑2 + 𝑑2

2
𝑑1𝑑2 · |Aut(𝛿) | · 𝛾

2
𝑑1
𝛾2
𝑑2

+4𝑑 − 49
216𝑑

· 𝛾2
𝑑/2 +

∑
2𝑑1+3𝑑2=𝑑

(
𝑑1𝑑2

𝑑2 − 𝑑2

432𝑑1𝑑2
+ 1

72
+ 𝑑

16𝑑3
1
+

𝑑2
1

54𝑑𝑑2

)
· 𝛾2

𝑑1
𝛾̃𝑑2

+
∑

2𝑑1+𝑑2=𝑑

(−1)𝑑 (2𝑑2 + 𝑑2
2)

216𝑑1 (𝑑1 + 𝑑2)
· 𝛾2

𝑑1
𝛾𝑑2 +

(−1)𝑑
24

� !5
9
−

∑
1≤𝑚≤𝑑−1,𝑚≠𝑑/3

𝑑

𝑑 − 3𝑚
"#$ · 𝛾𝑑

+17(−1)𝑑−1

54𝑑
· 𝛾𝑑 + 49 − 7𝑑

144𝑑
· 𝛾̃𝑑/3

+
∑
𝛿	𝑑

(−1)𝑑 (−69𝑑4 + 77𝑑3𝑑1 + 307𝑑2𝑑2
1 − 704𝑑𝑑3

1 + 384𝑑4
1)

1728𝑑2𝑑1𝑑2 · |Aut(𝛿) |
· 𝛾𝑑1𝛾𝑑2

+ (−1)𝑑
108

∑
𝑑1+𝑑2=𝑑,𝑑1≠𝑑2

𝑑2
1

(𝑑1 − 𝑑2)𝑑2
· 𝛾𝑑1𝛾𝑑2 +

∑
𝑑1+3𝑑2=𝑑

(−1)𝑑1 (2𝑑2 + 𝑑2
1)

36(𝑑2 − 𝑑2
1)

· 𝛾𝑑1 𝛾̃𝑑2

+
∑
𝛿	𝑑/3

3(𝑑4
1 − 𝑑

3
1𝑑2 + 8𝑑2

1𝑑
2
2 − 3𝑑1𝑑

3
2 − 𝑑

4
2)

16𝑑2𝑑1𝑑2 · |Aut(𝛿) |
· 𝛾̃𝑑1 𝛾̃𝑑2 .

In the above, 𝑑1 > 0, 𝑑2 > 0, 𝛿 = (𝑑1, 𝑑2) is a length-2 partition, 𝛾𝑑1 = −2 if 3|𝑑1 and 𝛾𝑑1 = 1 if 3 � 𝑑1,
𝛾̃𝑑2 = 3 if 2|𝑑2 and 𝛾̃𝑑2 = 1 if 2 � 𝑑2, and a summand containing

∑
𝛿	𝑑/2 or 𝛾𝑑/2 (respectively,

∑
𝛿	𝑑/3)

does not appear if 2 � 𝑑 (respectively, if 3 � 𝑑).
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Proof. By Lemma 5.9, the computation of
∑

Γ∈T𝑑,𝑖
is reduced to those stable graphs Γ ∈ T𝑑,𝑖 satisfying

Lemma 5.9 (i), (ii), (iii), (iv) or (v).
To begin, the stable graphs Γ ∈ T𝑑,𝑖 satisfying Lemma 5.9 (i) are:

(i-1)

𝑣1

𝑣2

𝑣3

𝑣4

𝑑1

𝑑1

𝑑2

𝑑2

where {𝑣1, 𝑣4} = 𝑉0(Γ) (so that 𝔏(𝑣1) = 𝑄𝑖,0 = 𝔏(𝑣4)), 𝔏(𝑣2) = 𝑄𝑖,1, 𝔏(𝑣3) = 𝑄𝑖,2, 𝑔(𝑣 𝑗 ) = 0
for every j, 2|𝑑 and 𝛿 = (𝑑1, 𝑑2) 	 𝑑/2 denotes a length-2 partition of 𝑑/2. By (5.12), |AΓ | =
𝑑2

1𝑑
2
2 · |Aut(Γ) | = 𝑑2

1𝑑
2
2 · |Aut(𝛿) |. By (5.32), (5.44), (5.34), (5.35) and (5.43), we have∑

Γ∈T𝑑,𝑖 , Case (i-1)
=

4
9𝑑2

∑
𝛿	𝑑/2

𝑑1𝑑2
|Aut(𝛿) | · 𝛾

2
𝑑1
𝛾2
𝑑2

· (𝑤 + 𝑧)2

𝑤𝑧
+ 𝑀

(
(𝑤 + 𝑧)3)

where 𝛾𝑑1 = −2 if 3|𝑑1 and 𝛾𝑑1 = 1 if 3 � 𝑑1.
(i-2)

𝑣3

𝑣2 𝑣1

𝑣4 𝑣5

𝑑1

𝑑1

𝑑2

𝑑2

Figure (i-2)

where {𝑣2, 𝑣4} = 𝑉0(Γ), 𝔏(𝑣3) ∈
{
𝑄𝑖,1, 𝑄𝑖,2

}
, 𝔏(𝑣1) = 𝔏(𝑣5) ∈

{
𝑄𝑖,1, 𝑄𝑖,2

}
−

{
𝔏(𝑣3)

}
, 𝑔(𝑣1) =

1, 𝑔(𝑣 𝑗 ) = 0 for every 𝑗 ≠ 1, 2|𝑑 and 𝛿 = (𝑑1, 𝑑2) 	 𝑑/2 denotes a length-2 partition of 𝑑/2.
There are exactly 2 types of such graphs if we ignore the edge weights. By (5.12), |AΓ | = 𝑑2

1𝑑
2
2.

By (5.32), (5.44), (5.34), (5.35) and (5.43) together with (5.37), we get∑
Γ∈T𝑑,𝑖 , Case (i-2)

=
1

54𝑑

∑
𝛿	𝑑/2

𝑑2
1
𝑑2

· 𝛾2
𝑑1
𝛾2
𝑑2

· (𝑤 + 𝑧)2

𝑤𝑧
+ 𝑀

(
(𝑤 + 𝑧)3) .

(i-3) Γ has the same shape as Figure (i-2) with {𝑣2, 𝑣4} = 𝑉0(Γ), 𝔏(𝑣3) ∈
{
𝑄𝑖,1, 𝑄𝑖,2

}
, 𝔏(𝑣1) =

𝔏(𝑣5) ∈
{
𝑄𝑖,1, 𝑄𝑖,2

}
−
{
𝔏(𝑣3)

}
, 𝑔(𝑣3) = 1, 𝑔(𝑣 𝑗 ) = 0 for every 𝑗 ≠ 3, and 2|𝑑. There are exactly

2 types of such graphs if we ignore the edge weights. By (5.12), |AΓ | = 𝑑2
1𝑑

2
2 · |Aut(𝛿) |. By (5.32),

(5.44), (5.34), (5.35) and (5.43), together with (5.37) and (5.38), we obtain∑
Γ∈T𝑑,𝑖 , Case (i-3)

= − 1
108

∑
𝛿	𝑑/2

𝑑2
1 + 𝑑1𝑑2 + 𝑑2

2
𝑑1𝑑2 · |Aut(𝛿) | · 𝛾

2
𝑑1
𝛾2
𝑑2

· (𝑤 + 𝑧)2

𝑤𝑧
+ 𝑀

(
(𝑤 + 𝑧)3) .

Next, the stable graphs Γ ∈ T𝑑,𝑖 satisfying Lemma 5.9 (ii) are:
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(ii)

𝑣1

𝑣2

𝑣3

𝑑/2

𝑑/2

where 2|𝑑, {𝑣1} = 𝑉0(Γ), 𝔏(𝑣2) = 𝑄𝑖,1, 𝔏(𝑣3) = 𝑄𝑖,2, 𝑔(𝑣 𝑗 ) = 1 for some 𝑗 ∈ {2, 3} and 𝑔(𝑣𝑘 ) = 0
if 𝑘 ≠ 𝑗 . There are 2 types of such graphs, and

∑
Γ∈T𝑑,𝑖 , Case (ii)

=
4𝑑 − 49

216𝑑
· 𝛾2

𝑑/2 ·
(𝑤 + 𝑧)2

𝑤𝑧
+ 𝑀

(
(𝑤 + 𝑧)3) .

The stable graphs Γ ∈ T𝑑,𝑖 satisfying Lemma 5.9 (iii) are:

(iii-1)

𝑣1

𝑣2

𝑣3

𝑑1

𝑑1

𝑑2

where {𝑣1} = 𝑉0(Γ) (so that 𝔏(𝑣1) = 𝑄𝑖,0), 𝔏(𝑣2) = 𝑄𝑖,1, 𝔏(𝑣3) = 𝑄𝑖,2, 𝑔(𝑣 𝑗 ) = 0 for every j
and 2𝑑1 + 3𝑑2 = 𝑑. We have∑

Γ∈T𝑑,𝑖 , Case (iii-1)
=

∑
2𝑑1+3𝑑2=𝑑

𝑑1𝑑2

𝑑2 · 𝛾2
𝑑1
𝛾̃𝑑2 ·

(𝑤 + 𝑧)2

𝑤𝑧
+ 𝑀

(
(𝑤 + 𝑧)3)

where 𝛾̃𝑑2 = 3 if 2|𝑑2 and 𝛾̃𝑑2 = 1 if 2 � 𝑑2.
(iii-2)

𝑣1

𝑣2

𝑣3

𝑣4
𝑑1

𝑑1

𝑑2

Figure (iii-2)

where {𝑣1} = 𝑉0 (Γ),𝔏(𝑣2) = 𝑄𝑖,1,𝔏(𝑣3) = 𝑄𝑖,2,𝔏(𝑣4) = 𝑄𝑖,0 (respectively,𝑄𝑖,2), 2𝑑1 +𝑑2 = 𝑑
(respectively, 2𝑑1 + 3𝑑2 = 𝑑), 𝑔(𝑣 𝑗 ) = 1 for some 𝑗 ∈ {2, 3, 4} and 𝑔(𝑣𝑘 ) = 0 if 𝑘 ≠ 𝑗 . There are
exactly 6 types of such graphs if we ignore the edge weights.

(iii-3) Γ has the same shape as Figure (iii-2) with {𝑣1} = 𝑉0(Γ), 𝔏(𝑣2) = 𝑄𝑖,2, 𝔏(𝑣3) = 𝑄𝑖,1,
𝔏(𝑣4) = 𝑄𝑖,0 (respectively,𝑄𝑖,1), 2𝑑1 + 𝑑2 = 𝑑 (respectively, 2𝑑1 + 3𝑑2 = 𝑑), 𝑔(𝑣 𝑗 ) = 1 for some
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𝑗 ∈ {2, 3, 4} and 𝑔(𝑣𝑘 ) = 0 if 𝑘 ≠ 𝑗 . There are exactly 6 types of such graphs if we ignore the
edge weights. We see that

∑
Γ∈T𝑑,𝑖 , Case (iii-2) +

∑
Γ∈T𝑑,𝑖 , Case (iii-3) is equal to

( ∑
2𝑑1+3𝑑2=𝑑

(
− 𝑑2

432𝑑1𝑑2
+ 1

72
+ 𝑑

16𝑑3
1
+

𝑑2
1

54𝑑𝑑2

)
· 𝛾2

𝑑1
𝛾̃𝑑2

+
∑

2𝑑1+𝑑2=𝑑

(−1)𝑑 (2𝑑2 + 𝑑2
2)

216𝑑1 (𝑑1 + 𝑑2)
· 𝛾2

𝑑1
𝛾𝑑2

)
· (𝑤 + 𝑧)2

𝑤𝑧
+ 𝑀

(
(𝑤 + 𝑧)3) .

The stable graphs Γ ∈ T𝑑,𝑖 satisfying Lemma 5.9 (iv) are:

(iv-1)

𝑣1 𝑣2
𝑑

where 𝔏(𝑣1) = 𝑄𝑖,0, 𝔏(𝑣2) ∈
{
𝑄𝑖,1, 𝑄𝑖,2

}
, 𝑔(𝑣1) ∈ {1, 0} and 𝑔(𝑣2) ∈ {1, 0} − {𝑔(𝑣1)}. There

are exactly 4 types of such graphs. We see that the summation
∑

Γ∈T𝑑,𝑖 , Case (iv-1) is equal to

� ! (−1)𝑑
24

� !5
9
−

∑
1≤𝑚≤𝑑−1,𝑚≠𝑑/3

𝑑

𝑑 − 3𝑚
"#$ − 17(−1)𝑑

54𝑑
"#$𝛾𝑑 · (𝑤 + 𝑧)2

𝑤𝑧
+ 𝑀

(
(𝑤 + 𝑧)3) .

(iv-2)

𝑣1 𝑣2
𝑑/3

where 3|𝑑, 𝔏(𝑣1) = 𝑄𝑖,1, 𝔏(𝑣2) = 𝑄𝑖,2, 𝑔(𝑣1) ∈ {1, 0} and 𝑔(𝑣2) ∈ {1, 0} − {𝑔(𝑣1)}. There are
exactly 2 types of such graphs. We obtain

∑
Γ∈T𝑑,𝑖 , Case (iv-2)

=
49 − 7𝑑

144𝑑
· 𝛾̃𝑑/3 ·

(𝑤 + 𝑧)2

𝑤𝑧
+ 𝑀

(
(𝑤 + 𝑧)3) .

Finally, the stable graphs Γ ∈ T𝑑,𝑖 satisfying Lemma 5.9 (v) are:

(v-1)

𝑣1 𝑣2

𝑑1

𝑑2

where 𝔏(𝑣1) = 𝑄𝑖, 𝑗1 and 𝔏(𝑣2) = 𝑄𝑖, 𝑗2 for some 𝑗1, 𝑗2 ∈ {0, 1, 2} with 𝑗1 < 𝑗2 and 𝑔(𝑣1) =
𝑔(𝑣2) = 0. There are exactly 3 types of such graphs if we ignore the edge weights.
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(v-2)

𝑣1

𝑣2

𝑣3

𝑑1

𝑑2

Figure (v-2)

where 𝔏(𝑣1) = 𝑄𝑖, 𝑗1 for some 𝑗1 ∈ {0, 1, 2}, 𝔏(𝑣2) = 𝑄𝑖, 𝑗2 and 𝔏(𝑣3) = 𝑄𝑖, 𝑗3 for some
𝑗2, 𝑗3 ∈ {0, 1, 2} − { 𝑗1} with 𝑗2 ≤ 𝑗3, 𝑔(𝑣1) = 1 and 𝑔(𝑣2) = 𝑔(𝑣3) = 0. There are 9 types of such
graphs if we ignore the edge weights.

(v-3) Γ has the same shape as Figure (v-2) with 𝔏(𝑣1) = 𝑄𝑖, 𝑗1 for some 𝑗1 ∈ {0, 1, 2}, 𝔏(𝑣2) = 𝑄𝑖, 𝑗2

and 𝔏(𝑣3) = 𝑄𝑖, 𝑗3 for some 𝑗2, 𝑗3 ∈ {0, 1, 2} − { 𝑗1}, 𝑔(𝑣2) = 1, 𝑔(𝑣1) = 𝑔(𝑣3) = 0 and 𝑑1 ≠ 𝑑2 if
𝑗1 = 0 and 𝑗2 ≠ 𝑗3. There are exactly 12 types of such graphs if we ignore the edge weights.

We see that the summation
∑

Γ∈T𝑑,𝑖 , Case (v-1) +
∑

Γ∈T𝑑,𝑖 , Case (v-2) +
∑

Γ∈T𝑑,𝑖 , Case (v-3) is equal to the last
three lines in the formula of 𝑓𝑑 in our lemma. �

Example 5.11. Let 𝑑 = 1. Then, we have |𝐸 (Γ) | = 1 and |𝑉 (Γ) | = 2 for every stable graph Γ ∈
S𝑑,𝑖,𝑖 ∪T𝑑,𝑖 . If Γ ∈ S𝑑,𝑖,𝑖 , then Γ is one of the two stable graphs stated in the first paragraph in the proof
of Lemma 5.7:

𝑣1 𝑣2
𝑑

where 𝔏(𝑣1) = 𝑅 (1)
𝑖,𝑖 , 𝔏(𝑣2) = 𝑅 (2)

𝑖,𝑖 , 𝑔(𝑣1) ∈ {1, 0} and 𝑔(𝑣2) ∈ {1, 0} − {𝑔(𝑣1)}. An easy computation
shows that

∑
Γ∈S𝑑,𝑖,𝑖

is equal to

4
∫
𝑀 1,1

𝜆 · (𝑤 + 𝑧)2

𝑤𝑧
=

1
6
· (𝑤 + 𝑧)2

𝑤𝑧
(5.48)

where w and z denote 𝑤𝑖 and 𝑧𝑖 , respectively. Similarly, if Γ ∈ T𝑑,𝑖 , then Γ is one of the four stable
graphs stated in Case (iv-1) in the proof of Lemma 5.10:

𝑣1 𝑣2
𝑑

where 𝔏(𝑣1) = 𝑄𝑖,0, 𝔏(𝑣2) ∈
{
𝑄𝑖,1, 𝑄𝑖,2

}
, 𝑔(𝑣1) ∈ {1, 0} and 𝑔(𝑣2) ∈ {1, 0} − {𝑔(𝑣1)}. A straightfor-

ward but lengthy computation shows that∑
Γ∈T𝑑,𝑖 , 𝑔 (𝑣1)=0

1
|AΓ |

∫
[𝑀Γ ]

1
𝑒(𝑁vir

Γ )
=

1
24

· (𝑤 + 𝑧)2

𝑤𝑧
· 8𝑤2 + 8𝑧2

(𝑤 − 2𝑧) (2𝑤 − 𝑧) ,∑
Γ∈T𝑑,𝑖 , 𝑔 (𝑣1)=1

1
|AΓ |

∫
[𝑀Γ ]

1
𝑒(𝑁vir

Γ )
=

1
24

· (𝑤 + 𝑧)2

𝑤𝑧
· 6𝑤2 − 35𝑤𝑧 + 6𝑧2

(𝑤 − 2𝑧) (2𝑤 − 𝑧) .

It follows that
∑

Γ∈T𝑑,𝑖
=
∑

Γ∈T𝑑,𝑖 , 𝑔 (𝑣1)=0 +
∑

Γ∈T𝑑,𝑖 , 𝑔 (𝑣1)=1 is equal to

7
24

· (𝑤 + 𝑧)2

𝑤𝑧
.
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In particular, the constant 𝑓1 in (5.47) is equal to 7/24, as asserted by Lemma 5.10. Combining with
(5.48), we conclude that

∑
Γ∈T𝑑,𝑖

−
∑

Γ∈S𝑑,𝑖,𝑖
is equal to

1
8
· (𝑤 + 𝑧)2

𝑤𝑧
.

Hence, we see from (5.19) that for a smooth projective toric surface X,

〈〉1,𝛽3 =
1

12
· 𝜒(𝑋) · 𝐾2

𝑋 + 1
8
· 𝐾2

𝑋 =

(
1
8
+ 1

12
· 𝜒(𝑋)

)
· 𝐾2

𝑋 . (5.49)

By Lemma 5.1, formula (5.49) holds for every smooth projective surface X.

It is unclear how to simplify the constant 𝑓𝑑 in Lemma 5.10 for a general 𝑑 ≥ 1. Finally, we are able
to determine the genus-1 extremal invariant 〈〉1,𝑑𝛽3 .

Theorem 5.12. Let X be a smooth projective surface. Let 𝑑 ≥ 1, and let 𝑓𝑑 be the constant defined in
Lemma 5.10. Then, 〈〉1,𝑑𝛽3 is equal to(

𝑓𝑑 −
(
−𝑑2 + 𝑑 + 16

96𝑑
+ 𝑑

48

𝑑−1∑
𝑑1=1

1
𝑑1

− 1
48

∑
𝛿	𝑑

𝑑2 − 𝑑1𝑑2
𝑑1𝑑2 · |Aut(𝛿) |

)
+ 1

12𝑑
· 𝜒(𝑋)

)
· 𝐾2

𝑋

where 𝛿 = (𝑑1, 𝑑2) 	 𝑑 denotes a length-2 partition of d.

Proof. By Lemma 5.1, 〈〉1,𝑑𝛽3 = (𝑎𝑑+𝑏𝑑 ·𝜒(𝑋)) ·𝐾2
𝑋 where 𝑎𝑑 and 𝑏𝑑 are universal constants depending

only on d. By (5.19), Lemma 5.4, Lemma 5.7 and Lemma 5.10, our theorem holds when X is a smooth
projective toric surface. Therefore, the theorem holds for every smooth projective surface X. �
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