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ANA BUŠIĆ,∗ INRIA and École Normale Supérieure

VARUN GUPTA,∗∗ Carnegie Mellon University

JEAN MAIRESSE,∗∗∗ CNRS and University Paris Diderot

Abstract

We consider the bipartite matching model of customers and servers introduced by
Caldentey, Kaplan and Weiss (2009). Customers and servers play symmetrical roles.
There are finite sets C and S of customer and server classes, respectively. Time is
discrete and at each time step one customer and one server arrive in the system according
to a joint probability measure µ on C × S, independently of the past. Also, at each
time step, pairs of matched customers and servers, if they exist, depart from the system.
Authorized matchings are given by a fixed bipartite graph (C, S, E ⊂ C×S). A matching
policy is chosen, which decides how to match when there are several possibilities.
Customers/servers that cannot be matched are stored in a buffer. The evolution of the
model can be described by a discrete-time Markov chain. We study its stability under
various admissible matching policies, including ML (match the longest), MS (match the
shortest), FIFO (match the oldest), Random (match uniformly), and Priority. There
exist natural necessary conditions for stability (independent of the matching policy)
defining the maximal possible stability region. For some bipartite graphs, we prove
that the stability region is indeed maximal for any admissible matching policy. For the
ML policy, we prove that the stability region is maximal for any bipartite graph. For
the MS and Priority policies, we exhibit a bipartite graph with a nonmaximal stability
region.
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1. Introduction

In queueing theory, customers and servers play different roles. Customers arrive in the
system, accumulate in a buffer, get served by a server, and eventually depart. Servers on the
other hand alternate between idle and busy periods but remain forever in the system.

Within this framework, many variations and refinements are possible. For instance, we may
consider a model with multiclass customers and flexible servers. A customer of a given class c

must choose its server from a specified subset S(c) of the servers. And, of course, the subsets
S(c) may intersect; see Figure 1.
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Figure 1: Queueing model of a call center.

In this paper, we consider a model with the same multiclass flavor, but in which, by contrast,
customers and servers play completely identical roles. We now argue that this simple symmetry
requirement leads in a natural and ineluctable way to the bipartite matching model.

By symmetry, both customers and servers should arrive into the system and depart from it.
More specifically, upon completion of a service, both the customer and the server should depart
simultaneously. To model arrivals, we have a priori more flexibility, but there is basically
one nontrivial choice which is to assume that time is discrete and that customers and servers
arrive in pairs.

Consider the simplest possible model with continuous-time arrivals: (i) there is only one
class of customers and one class of servers; (ii) customers and servers arrive according to a
Poisson process with respective rates λ and µ; (iii) services have duration 0. Let us describe
the state by Z = X − Y , where X is the number of unmatched customers and Y is the number
of unmatched servers. The process Z is a birth-and-death continuous-time Markov process on
Z with drift λ− µ. It is either transient (if λ �= µ) or null recurrent (if λ = µ), but it is never
positive recurrent.

Let us switch to discrete-time independent and identically distributed (i.i.d.) arrivals. At
each time step, a batch of customers and a batch of servers arrive into the system. If the size
of the batches are allowed to be different for customers and servers, then we are back to the
continuous-time situation, and even the simplest model is never positive recurrent. Therefore,
to get a nontrivial model, the natural assumption is that exactly one customer and one server
arrive into the system at each time step. The resulting model is symmetric in another respect:
both arrivals and departures occur in pairs.

For simplicity, we always assume that the service durations are null. So the model is specified
by: (i) the finite set C of customer classes and the finite set S of server classes; (ii) the probability
law µ on C × S for the arrivals in pairs; (iii) the bipartite graph (C, S, E ⊂ C × S) giving the
possible matchings between customers and servers (hence, the possible departures in pairs);
(iv) the matching policy to decide how to match when several choices are possible. We consider
so-called admissible policies which depend only on the current state of the system. Under these
assumptions, the buffer content evolves as a discrete-time Markov chain. We call this model
the bipartite matching model.

In the bipartite matching model, there is an equal number of customers and servers at any
time, but the matching constraints may result in instability with unmatched customers and
servers accumulating. It turns out that proving stability, i.e. positive recurrence of the Markov
chain, is nontrivial. Given a bipartite graph (C, S, E), there exist natural necessary conditions
on µ for stability to hold. When these conditions are also sufficient, we say that the stability
region is maximal.

Until now, the study of the bipartite matching model has focused on the FIFO (first-in–
first-out) policy. The model was introduced by Caldentey et al. [3], under an additional
assumption of independence between arriving customers and servers (for all c and s,
µ(c, s) = µ(c, S)µ(C, s)). In the paper, the authors conjectured that any bipartite graph
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has a maximal stability region for the FIFO policy [3, Conjecture 4.2], and they explicitly
treated some small models. In [1], Adan and Weiss proved the conjecture in a fascinating way.
They showed that, for some intricate representation of the state space, the model exhibits an
explicit ‘product-form’ stationary distribution.

In the present paper we consider the stability issue for various admissible matching policies:
ML (match the longest), MS (match the shortest), FIFO (match the oldest), Random (match
uniformly), and Priority. (The FIFO case was not completely solved in [1] since only the
case of independent customers and servers was treated.) Even the irreducibility of the Markov
chain describing the model is not obvious, and we first study this problem in detail (Section 4).
Then we obtain the following results:

• sufficient conditions under which any admissible policy is stable (Section 5);

• the MS policy and some Priority policies do not have a maximal stability region for the
simple NN model of Figure 2 (Section 6);

• for any bipartite graph, the ML policy has a maximal stability region (Section 7).

We conjecture that the stability region is always maximal for the FIFO and Random policies.

1.1. Related prior work

In the original paper [3], the authors mentioned several possible domains of applications for
the bipartite matching (BM) model, ranging from call centers to public housing administration,
and they quoted related references. The product-form result of [1] relied on product-form results
for other multiclass queueing models; see [11] and the references therein. The BM model is also
related to the constrained queueing network (CQN) model of Tassiulas and Ephremides [10].
However, there is a crucial difference: in the BM model, the edges that may be activated depend
on the current state of the system (there should be nonempty buffers at both ends of the edges),
which is not the case in [10]. On the other hand, the CQN model is multi-hop, while the BM
model is single-hop. In [10], the max-weight policy is shown to have a maximal stability region,
and our Theorem 7.1 is very reminiscent of this. Also, the proofs have the same flavor using a
quadratic Lyapunov function. Among single-hop CQN models, input-queued crossbar switches
have received a lot of attention [8]. The max-weight policy is known to have a maximal stability
region under mild conditions on the arrival process [4]. Crossbar switches have a topology close
to that of the BM model: a bipartite graph with disjoint arrival and departure nodes. Models for
call centers with ‘skills-based routeing’, see, e.g. [7, Section 5], can be viewed as continuous-
time versions of single-hop CQN models in which each arrival class may be served by a subset
of the servers.

1.2. Notation

Denote by N = {0, 1, 2, . . .} the set of nonnegative integers. Let A∗ be the free monoid
generated by A. For any word w ∈ A∗ and any B ⊂ A, set |w|B = #{i | wi ∈ B}, the
number of occurrences in w of letters from B. For B = {b}, we shorten the notation to |w|b.
Furthermore, for any w ∈ A∗, set [w] := (|w|a)a∈A (the commutative image of w).

2. The bipartite matching model

We now proceed to a more formal definition of the model.

Definition 2.1. A bipartite matching structure is a quadruple (C, S, E, F ), where

• C is the nonempty and finite set of customer classes;
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Figure 2: NN graph.

• S is the nonempty and finite set of server classes;

• E ⊂ C × S is the set of possible matchings;

• F ⊂ C × S is the set of possible arrivals.

The bipartite graph (C, S, E) is called the matching graph. It is assumed to be connected.
The bipartite graph (C, S, F ) is called the arrival graph. It is assumed to have no isolated
vertices.

The two assumptions in Definition 2.1 are made without loss of generality; see Remark 2.1
and Remark 3.1 below.

In Figure 2 we give an example of a matching graph with three customer and three server
classes, called the ‘NN graph’ in the following.

Customers and servers play symmetrical roles in the model. Also, E and F play dual roles.
The graph (C, S, E) defines the pairs that may depart from the system, while the graph (C, S, F )

defines the pairs that may arrive into the system.

Definition 2.2. A bipartite matching model is a triple [(C, S, E, F ), µ, Pol], where

• (C, S, E, F ) is a bipartite matching structure;

• µ is a probability measure on C × S satisfying

supp(µ) = F, supp(µC) = C, supp(µS) = S, (2.1)

where µC and µS are the C and S marginals of µ;

• Pol is an admissible matching policy (to be defined in Section 2.2).

The notation will be simplified to [(C, S, E), µ, Pol], since this does not result in ambiguity.
We say that the model [(C, S, E), µ, Pol] is associated with the structure (C, S, E, F ).

Remark 2.1. For (2.1) to have solutions, (C, S, F ) must be without isolated vertices, the
assumption made in Definition 2.1. This is not a real restriction: if it is not satisfied, we can
consider a new model without such customer or server classes.

A realization of the model is as follows. Consider an i.i.d. sequence of random variables of
law µ, representing the arrival stream of customer/server pairs. A state of the buffer consists
of an equal number of customers and servers with no possible matchings between the nonzero
classes. Upon arrival of a new ordered pair (c, s), two situations may occur: if neither c nor s

match with the servers/customers already present in the buffer, then c and s are simply added
to the buffer; if c or s can be matched then it departs the buffer with its match. If several
matchings are possible for c and s then it is the role of the matching policy to select one.
An admissible policy selects according to the current state of the buffer (and not according to
the whole history of the buffer contents for instance). The resulting evolution of the buffer is
described by a discrete-time Markov chain.
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2.1. State space description

Depending on the matching policy, we consider either a commutative (e.g. for Random) or
a noncommutative (e.g. for FIFO) state space description. The different policies considered in
the paper will be formally defined in Section 2.2.

Let us choose a matching graph (C, S, E). We introduce the following convenient notation:
C(s) is the set of customer classes that can be matched with an s-server; S(c) is the set of server
classes that can be matched with a c-customer:

S(c) = {s ∈ S : (c, s) ∈ E}, C(s) = {c ∈ C : (c, s) ∈ E}.
For any subsets A ⊂ C and B ⊂ S, we define

S(A) =
⋃
c∈A

S(c), C(B) =
⋃
s∈B

C(s).

Commutative state space. A state of the system is given by (x, y), x = (xc)c∈C and
y = (ys)s∈S , where xc denotes the number of customers of class c and ys denotes the number
of servers of class s. The commutative state space is

E =
{
(x, y) ∈ NC × NS :

∑
c∈C

xc =
∑
s∈S

ys for all (c, s) ∈ E, xcys = 0

}
. (2.2)

Noncommutative state space. A state of the system is given by two finite words of the same
size, k ≥ 0, on the alphabets C and S, describing unmatched customers and servers. The
noncommutative state space is

E =
{
(u, v) ∈

⋃
k≥0

(Ck × Sk) : ([u], [v]) belongs to (2.2)

}
.

Facet. Both the commutative and noncommutative state spaces can be decomposed into
facets, defined only by the nonzero classes.

Definition 2.3. A facet is an ordered pair (U, V ) such that U ⊂ C, V ⊂ S, and U × V ⊂
(C × S − E). The zero-facet, (∅, ∅), is denoted by ∅.

For a facet F = (U, V ), define

C•(F ) = U, S•(F ) = V,

C�(F ) = C(V ), S�(F ) = S(U),

C◦(F ) = C − (C•(F ) ∪ C�(F )), S◦(F ) = S − (S•(F ) ∪ S�(F )).

The symbol ‘•’ stands for the nonzero classes, the symbol ‘�’ stands for the classes that are
forced to be at zero (since they are matched with nonzero classes), and the symbol ‘◦’ stands
for the classes that happen to be at zero.

The following notion will play an important role later on.

Definition 2.4. A facet F is called saturated if C◦(F ) = ∅ or S◦(F ) = ∅.

In Figure 3, the facet on the left is nonsaturated, while the facet on the right is saturated.
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Figure 3: NN graph: facets ({3}, {3′}) and ({2}, {3′}).
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Figure 4: Facets for the NN graph.

Graphical convention. A facet F can be represented graphically by coloring the nodes of
the bipartite graph according to the above convention (see Figure 3 for an illustration):

• nodes in C•(F ) and S•(F ) are represented as filled circles;

• nodes in C�(F ) and S�(F ) are represented as double circles;

• nodes in C◦(F ) and S◦(F ) are represented as simple circles.

In Figure 4 we have represented the facets of the NN graph. The more complex case of the
NNN graph will be given in Section 5, Figure 14.

Algorithm 1 below takes as input a matching graph and returns as output the set of facets.
The termination and correctness of the algorithm are easily proved.

Algorithm 1. (Computation of the facets.)
Data: a bipartite graph G = (C, S, E). Result: Facets, the set of all facets of G.
begin

Facets← ∅; New← ∅;
foreach (i, j) ∈ C × S − E do New← New ∪ {({i}, {j})};
while New �= ∅ do

Facets← Facets ∪ New;
Old← New; New← ∅;
forall H , K ∈ Old such that H �=K do

if C•(H) = C•(K) or S•(H) = S•(K) then
Z← (C•(H) ∪ C•(K), S•(H) ∪ S•(K));
New← New ∪ {Z};

Facets← Facets ∪ {∅};
return Facets;

end
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2.2. Admissible matching policies

Informally, a matching policy is admissible if

• only the current state of the buffer is taken into account;

• priority is given to customers/servers that are already present in the buffer: if the state is
(u, v) and the new arrival is (c, s) ∈ E, then c and s are matched if and only if there are
no servers from S(c) in v and no customers from C(s) in u.

It follows from the first point that an admissible matching policy can be described as a
mapping 
: E × (C × S) → E which returns the new state of the system after an arrival.
The second point is a restriction that we call the buffer-first assumption. Observe however that
a matching policy that always gives priority to new arrivals can be seen as a special case of
buffer-first with an arrival probability µ such that µ(E) = 0.

We now define admissible policies formally, distinguishing between the noncommutative
and commutative state spaces.

For a word w ∈ Ak and i ∈ {1, . . . , k}, we denote by w[i] := w1 . . . wi−1wi+1 . . . wk the
subword of w obtained by deleting wi .

Definition 2.5. (Noncommutative case.) A matching policy is admissible if there are functions
� and � such that

(u, v)
 (c, s) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(uc, vs) if |u|C(s) = 0, |v|S(c) = 0, (c, s) �∈ E,

(u, v) if |u|C(s) = 0, |v|S(c) = 0, (c, s) ∈ E,

(u[�(u,s)], v[�(v,c)]) if |u|C(s) �= 0, |v|S(c) �= 0,

(u[�(u,s)]c, v) if |u|C(s) �= 0, |v|S(c) = 0,

(u, v[�(v,c)]s) if |u|C(s) = 0, |v|S(c) �= 0.

The FIFO and LIFO (last-in–first-out) policies are admissible matching policies with
functions � and � as follows.

FIFO: �(u, s) = arg min{uk ∈ C(s)}, �(v, c) = arg min{vk ∈ S(c)}.
LIFO: �(u, s) = arg max{uk ∈ C(s)}, �(v, c) = arg max{vk ∈ S(c)}.

For c ∈ C, let ec ∈ NC be defined by (ec)c = 1 and (ec)d = 0, d �= c. For s ∈ S, let es be
defined accordingly.

Definition 2.6. (Commutative case.) A matching policy is admissible if there are functions �

and � such that

(x, y)
 (c, s) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(x + ec, y + es) if xC(s) = 0, yS(c) = 0, (c, s) �∈ E,

(x, y) if xC(s) = 0, yS(c) = 0, (c, s) ∈ E,

(x − e�(x,s), y − e�(y,c)) if xC(s) �= 0, yS(c) �= 0,

(x − e�(x,s) + ec, y) if xC(s) �= 0, yS(c) = 0,

(x, y − e�(y,c) + es) if xC(s) = 0, yS(c) �= 0.

The following commutative matching policies are admissible (for Random, ML, and MS
policies, �(u, s) and �(v, c) are random variables).

Priority. For each customer class c ∈ C, we define a priority function αc : S(c)→ {1, . . . ,

|S(c)|}. Similarly, for each server class s ∈ S, we define βs : C(s) → {1, . . . , |C(s)|}.

https://doi.org/10.1239/aap/1370870122 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1370870122


358 A. BUŠIĆ ET AL.

In the case of several matching options, a customer/server is matched with the
server/customer that has the highest priority (greatest value of the priority function).
It is convenient to specify the priorities by two |C| × |S| matrices A and B, defined by

Acs =
{

αc(s), (c, s) ∈ E,

0, otherwise,
Bcs =

{
βs(c), (c, s) ∈ E,

0, otherwise.

Then �(x, s) = arg max{βs(c) : c ∈ C(s), xc > 0} and �(y, c) = arg max{αc(s) : s ∈
S(c), ys > 0}.

Random. �(x, s) and �(y, c) are random variables respectively valued in C(s) and S(c), and
respectively distributed as (xi/

∑
j∈C(s) xj )i∈C(s) and (yi/

∑
j∈S(c) yj )i∈S(c). Intuitively,

the match is chosen uniformly among all possible ones.

ML. �(x, s) and �(y, c) are random variables uniformly distributed on arg max{xi : i ∈ C(s)}
and arg max{yi : i ∈ S(c)}, respectively.

MS. �(x, s) and �(y, c) are random variables uniformly distributed on arg min{xi > 0 : i ∈
C(s)} and arg min{yi > 0 : i ∈ S(c)}, respectively.

3. Necessary conditions for stability

To introduce the main ideas, consider first a simpler finite and deterministic problem. Let
(C, S, E) be a matching graph. Consider a batch of customers x ∈ NC and a batch of servers
y ∈ NS of equal size:

∑
c xc =∑

s ys . A perfect matching of x and y is a tuple m ∈ NE such
that

xc =
∑

s∈S(c)

mcs for all c ∈ C, ys =
∑

c∈C(s)

mcs for all s ∈ S.

By Hall’s theorem (also known as the ‘marriage theorem’), there exists a perfect matching if
and only if∑

c∈U
xc ≤

∑
s∈S(U)

ys for all U ⊂ C,
∑
s∈V

ys ≤
∑

c∈C(V )

xc for all V ⊂ S. (3.1)

A perfect matching, if there is one, can be obtained by restating the model as a flow network
and by solving the maximum flow problem for which efficient algorithms exist [5], [6].

The bipartite matching model is much more complicated: first it is random, and second the
matchings have to be performed on the fly, at each time step. However, the two ingredients of
the simpler model will play an instrumental role in the analysis: (i) the conditions NCond, to
be defined in (3.2), are related to (3.1); (ii) the restatement as a flow problem is used in most of
the proofs.

Consider now a bipartite matching model [(C, S, E), µ, Pol]. We identify the model with
the Markov chain on the state space E describing the evolution of the buffer content.

Let P be the transition matrix of the Markov chain. A probability measure π on E is
stationary if πP = π . It is attractive if, for any probability measure ν on E , the sequence of
Cesàro averages of νP n converges weakly to π .

Definition 3.1. The model is said to be stable if the Markov chain has a unique and attractive
stationary probability measure.
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This implies in particular that the graph of the Markov chain has a unique terminal strongly
connected component with all states leading to it. We return to this point in Section 4.

Let µC be a probability measure on C, and let µS be a probability measure on S. Define the
following conditions on (µC, µS) (collectively referred to as NCond):

µC(U) < µS(S(U)) for all U � C, U �= ∅,

µS(V ) < µC(C(V )) for all V � S, V �= ∅.
(3.2)

The above conditions appear in [3]. They have a natural interpretation. Let µC and µS be
the marginals of the arrival probability µ. Customers from U need to be matched with servers
from S(U). The first condition of NCond asks for strictly more servers in average from S(U)

than customers from U . The second condition has a dual interpretation.
Using the strong law of large numbers, we also see that the arrivals up to time n satisfy (3.1)

for all values of n large enough if and only if NCond is satisfied.

Lemma 3.1. The conditions NCond are necessary stability conditions: if the Markov chain is
stable then the conditions NCond are satisfied by the marginals of µ.

Proof. We suppose that the conditions NCond are not satisfied.
Assume first that there exists U ⊂ C such that µC(U) > µS(S(U)). Let An and Bn be the

total number of customers of class U and the total number of servers of class S(U) to arrive in
the system up to time n. Let Xn be the number of customers of class U present in the system
at time n. By definition, Xn ≥ An − Bn. By the strong law of large numbers, we have, almost
surely,

lim
n

An

n
= µC(U), lim

n

Bn

n
= µS(S(U)), lim

n

Xn

n
≥ µC(U)− µS(S(U)) > 0.

So the Markov chain is transient. Similarly, if there existsV ⊂ S such thatµS(V ) > µC(C(V )),
the model is unstable. (This part of the argument appears in [3, Proposition 3.4].)

Assume now that there exists U ⊂ C, U �= C, such that

µC(U) = µS(S(U)). (3.3)

Observe that S(U) �= S; otherwise, we would have µC(U) = µS(S) = 1 which would
contradict U �= C. Set V = S − S(U). Equation (3.3) is equivalent to µS(V ) = µC(C − U).
The bipartite matching graph (C, S, E) is represented in Figure 5. By assumption we have
(U × V ) ∩ E = ∅.

We have
µ(U × V ) = µC(U)− µ(U × S(U)),

µ((C − U)× S(U)) = µS(S(U))− µ(U × S(U)).

S VS U( )

C U C U−

Figure 5: The bipartite graph (C, S, E).
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Using (3.3), we obtain
µ(U × V ) = µ((C − U)× S(U)). (3.4)

Let Dn be the number of departures of type (C −U)× S(U) up to time n. Let An, Bn, and
Xn be defined as above. Set Zn = An − Bn. We have

Xn ≥ An − (Bn −Dn) ≥ Zn. (3.5)

For an arrival of type U × V , the Z-process makes a +1 jump; for an arrival of type
(C−U)× S(U), the Z-process makes a−1 jump; otherwise, the Z-process remains constant.
We have the following two cases.

• If µ(U × V ) > 0 then, according to (3.4), (Zn)n is null recurrent. According to (3.5),
(Xn)n is either null recurrent or transient.

• If µ(U × V ) = 0 then Xn is increasing with n. Therefore, either (Xn)n goes to ∞
with some probability, or (Xn)n becomes ultimately constant with probability 1. In the
second case, to see that the model cannot be stable, start from another initial condition
X̃0 > limn Xn.

Hence, in all cases, the model cannot be stable.

Remark 3.1. Consider a nonconnected matching graph (C, S, E). Consider a probability
µ and an admissible matching policy such that the bipartite matching model is stable. Let
(C′, S′, E′) be a connected subgraph of (C, S, E). Following the exact same steps as in the
proof of Lemma 3.1, we prove that

µC(C′) = µS(S′), µ(C′ × (S − S′)) = 0, µ((C − C′)× S′) = 0

(otherwise, the Markov chain is either transient or null recurrent). Therefore, we can decompose
the model into connected components and treat them separately. Hence, the assumption of
connectedness of (C, S, E) in Definition 2.1 was made without loss of generality.

3.1. Complexity of verifying NCond

Let us fix (C, S, E) and the probability measures (µC, µS) such that supp(µC) = C and
supp(µS) = S. We want an efficient algorithm to decide if the conditions NCond are satisfied.

The number of inequalities in NCond is exponential in |C| + |S|. So, checking directly if
all the inequalities are satisfied is a method whose time complexity is exponential in |C| + |S|.
To go beyond, we need additional material.

We use the standard terminology of network flow theory; see, for instance, [6]. Consider
the directed graph (see Figure 6)

N = (C ∪ S ∪ {i, f }, E ∪ {(i, c), c ∈ C} ∪ {(s, f ), s ∈ S}). (3.6)

Endow the arcs of E with infinite capacity, an arc of type (i, c) with capacity µC(c), and an arc
of type (s, f ) with capacity µS(s).

Recall that a cut is a subset of the arcs whose removal disconnects i and f . The capacity
of a cut is the sum of the capacities of the arcs. Set A = E ∪ {(i, c), c ∈ C} ∪ {(s, f ),

s ∈ S}. Recall that T : A→ R+ is a flow if (i) for all c, T (i, c) =∑
s∈S(c) T (c, s) and for all s,∑

c∈C(s) T (c, s) = T (s, f ); (ii) for all (x, y) ∈ E, T (x, y) is less than or equal to the capacity
of (x, y). The value of T is

∑
c T (i, c) =∑

s T (s, f ).
Let NCond≤ be the set of inequalities obtained from NCond by replacing the strict

inequalities by large inequalities.
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Figure 6: The graph N associated with the NN model of Figure 2.

C2C1

S2 S1

Figure 7: Illustration of the proof of Lemma 3.2.

Lemma 3.2. There exists a flow of value 1 in N if and only if (µC, µS) satisfies NCond≤.
There exists a flow T of value 1 such that T (c, s) > 0 for all (c, s) ∈ E if and only if (µC, µS)

satisfies NCond.

The first part of Lemma 3.2 is proved in [3, Proposition 3.7]. We reproduce the argument
for completeness.

Proof of Lemma 3.2. The celebrated max-flow min-cut Theorem [6] states that the maximal
value of a flow is equal to the minimal capacity of a cut. Observe that the set of arcs {(i, c),
c ∈ C} forms a cut of capacity 1. Therefore, the maximal flow is less than or equal to 1, and it
is 1 if and only if all cuts have a capacity greater than or equal to 1.

To be of finite capacity, a cut must contain only customer arcs {(i, c), c ∈ C} and server arcs
{(s, f ), s ∈ S}. Consider a subset A = {(i, c), c ∈ C1} ∪ {(s, f ), s ∈ S1}. Set C2 = C − C1
and S2 = S−S1 (see Figure 7). The set A is a cut if and only if C2×S2∩E = ∅, or, equivalently,
if and only if S(C2) ⊂ S1 and C(S2) ⊂ C1. Also, the capacity of A is µC(C1)+ µS(S1).

Assume that the cut {(i, c), c ∈ C1} ∪ {(s, f ), s ∈ S1} is of capacity strictly less than 1. We
have

µC(C1)+ µS(S1) < 1 ⇐⇒ µC(C1) < µS(S2).

But, C(S2) ⊂ C1, so, if NCond≤ is satisfied, we must have

µS(S2) ≤ µC(C(S2)) ≤ µC(C1).

So we have proved that NCond≤ is not satisfied.
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Conversely, if NCond≤ is not satisfied then there exist C1, S2, C(S2) = C1 such that
µC(C1) < µS(S2). Set C2 = C − C1 and S1 = S − S2. By definition, C2 × S2 ∩ E = ∅;
therefore, {(i, c), c ∈ C1} ∪ {(s, f ), s ∈ S1} is a cut. Its capacity is µC(C1)+ µS(S1) < 1.

By contraposing the above, we obtain

NCond≤ satisfied ⇐⇒ all cuts have a capacity ≥ 1 ⇐⇒ maximal flow is 1.

We now prove the second part of the lemma. Assume that the conditions NCond are not
satisfied. If the conditions NCond≤ are not satisfied either then, by the first part of the proof,
there exists no flow of value 1. Assume now that the conditions NCond≤ are satisfied. Then
there exists U ⊂ C, U �= C, such that µC(U) = µS(S(U)). Let T be any flow of value 1.
Using the flow relation for U , we obtain∑

(c,s)∈U×S(U)

T (c, s) =
∑

(i,c)∈{i}×U

T (i, c) = µC(U).

Using µC(U) = µS(S(U)) and the flow relation for S(U), we deduce that∑
(c,s)∈U×S(U)

T (c, s) = µS(S(U)) �⇒
∑

(c,s)∈(C−U)×S(U)

T (c, s) = 0.

Now it follows from the connectedness of (C, S, E) that (C − U) × S(U) ∩ E �= ∅. We
conclude that the flow T is such that T (c, s) = 0 for some (c, s) ∈ E.

Assume now that the conditions NCond are satisfied. Fix η such that 0 < η < 1/|E|.
Consider the function Tη : A→ R+ defined by

Tη(x, y) =

⎧⎪⎨⎪⎩
η for (x, y) = (c, s) ∈ E,

|S(c)|η for (x, y) = (i, c),

|C(s)|η for (x, y) = (s, f ).

By construction, Tη is a flow. Set

µ̃C(c) = µC(c)− |S(c)|η
1− |E|η , µ̃S(s) = µS(s)− |C(s)|η

1− |E|η . (3.7)

For small enough η, observe that µ̃C and µ̃S are probability measures on C and S, respectively.
Choose η small enough such that (µ̃C, µ̃S) satisfies NCond. This is possible since the
conditions NCond are open conditions.

Consider the directed graph N , see (3.6), with new capacities on the customer and server arcs
defined by µ̃C and µ̃S . By applying the first part of the proof, there exists a flow T̃ : A→ R+
of value 1. Define

T : A→ R+, T = Tη + (1− |E|η)T̃ .

By construction, T is a flow for the graph N with the original capacity constraints (µC for the
customer arcs and µS for the server arcs). The value of T is 1 and it satisfies T (x, y) > 0 for
all (x, y) ∈ E. This completes the proof.

There exist algorithms to find the maximal flow which are polynomial in the size of the
underlying graph, independent of the arc capacities. For instance, the classical ‘augmenting
path algorithm’ of Edmonds and Karp [5] operates in O((|C| + |S|)|E|2) time, and there exist
more sophisticated algorithms operating in O((|C| + |S|)3) time.

Take one of these polynomial algorithms, call it MaxFlow and consider it as a blackbox. We
build on this to design a polynomial algorithm to check NCond. Let us detail the construction.
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Lemma 3.3. Define (µ̃C, µ̃S) as in (3.7). The pair (µC, µS) satisfies NCond if and only if the
pair (µ̃C, µ̃S) satisfies NCond for η strictly positive and small enough.

Proof. Assume that (µC, µS) satisfies NCond. Since we are dealing with open conditions,
any small enough perturbation of (µC, µS) still satisfies NCond.

Assume now that (µC, µS) does not satisfy NCond. There exists U ⊂ C, U �= C, such
that µC(U) ≥ µS(S(U)). By using (3.7), we obtain

(1− |E|η)µ̃C(U)+
(∑

c∈U
|S(c)|

)
η ≥ (1− |E|η)µ̃S(S(U))+

( ∑
s∈S(U)

|C(s)|
)

η,

(1− |E|η)µ̃C(U)+ |E ∩ (U × S(U))|η ≥ (1− |E|η)µ̃S(S(U))

+ |E ∩ (C(S(U))× S(U))|η.

By definition, we have U ⊂ C(S(U)). We conclude that µ̃C(U) ≥ µ̃S(S(U)). So the pair
(µ̃C, µ̃S) does not satisfy NCond.

Using Lemmas 3.2 and 3.3, NCond is satisfied if and only if MaxFlow(N , µ̃C, µ̃S)

returns 1 for small enough η. So, the trick is to run MaxFlow on the input (N , µ̃C, µ̃S)

by considering η as a formal parameter made ‘as small as needed’. When running MaxFlow
on (N , µ̃C, µ̃S), the algorithm deals with values of the type x + yη, and adds and compares
them according to the rules below.

Consider quantities of the type x + yη for x, y ∈ R. Addition is defined as follows: if
x1, x2, y1, y2 ∈ R then (x1 + y1η)+ (x2 + y2η) = (x1 + x2)+ (y1 + y2)η. Comparisons are
defined as follows:

[x1 + y1η = x2 + y2η] ⇐⇒ [x1 = x2, y1 = y2],
[x1 + y1η < x2 + y2η] ⇐⇒ [(x1 < x2) or (x1 = x2, y1 < y2)]. (3.8)

So, η should be considered small enough not to reverse any strict inequality. On any given
input, the MaxFlow algorithm will stop in finite time, so it will have performed only a finite
number of operations (additions and comparisons). Therefore, it is possible, a posteriori, to
assign to η a value which is small enough to enforce (3.1).

Algorithm 2 below returns ‘yes’ if NCond is satisfied and ‘no’ otherwise. The termination
is obvious and the correctness follows from Lemmas 3.2 and 3.3. As a consequence, we get
the following result.

Algorithm 2. (Checking NCond.)
Data: (C, S, E), (µC, µS) such that supp(µC) = C, supp(µS) = S. Result:‘Yes’ if NCond,
‘no’ if ¬(NCond).
begin

Compute N , µ̃C , µ̃S ;
if MaxFlow(N , µ̃C, µ̃S) = 1 then

Result← yes;
else

Result← no;
end
return Result;

Proposition 3.1. Given a bipartite model [(C, S, E), µ], there exists an algorithm of time
complexity O((|C| + |S|)3) to decide if NCond is satisfied.
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4. Connectivity properties of the Markov chain

Define the following property for the transition graph of the Markov chain.

(UTC) A unique (terminal) strictly connected component with all states leading to it.

Property (UTC) is necessary for stability as defined in Definition 3.1. However, property (UTC)
is not granted in bipartite matching models and counterexamples are given below (Examples 4.2
and 4.3). In fact, we will see that we are in an unusual situation: the necessary stability
conditions NCond turn out to be sufficient conditions for the property (UTC) (Theorem 4.2)!
Observe also that property (UTC) is weaker than irreducibility, and we will give an example of
a model satisfying NCond and (UTC) without being irreducible (Example 4.4).

4.1. Stable structures

To establish property (UTC), we make a detour by introducing and studying a notion of
independent interest: stable structures.

Definition 4.1. A bipartite matching structure (C, S, E, F ) is stable if there exists a probability
measure µ satisfying (2.1) and whose marginals µC and µS satisfy NCond.

The justification for this terminology will appear in Section 7: we prove there that, under
the ML policy, any model satisfying NCond is stable. So a structure is stable if and only if
there exists an associated model which is stable.

On the one hand, there exist stable structures. Consider the following example.

Example 4.1. Consider (C, S, E, C×S), where (C, S, E) is the NN bipartite graph of Figure 2.
Let

µC : µC(1) = µC(2) = 2
5 , µC(3) = 1

5 ,

µS : µS(1′) = µS(2′) = 2
5 , µS(3′) = 1

5 .

The product measure µ = µC × µS has marginals µC and µS , and we check that (µC, µS)

satisfies NCond. (The probability µ is associated with the flow T (c, s) = 1
5 for all (c, s) ∈ E;

see Lemma 3.2.) Also, it is easily proved that, for any admissible matching policy, the graph
of the Markov chain is irreducible.

On the other hand, there exist unstable structures. We illustrate this using two examples.

Example 4.2. Consider the structure (C, S, E, F ), where (C, S, E) is the NN graph of Figure 2
and

F = {(1, 3′), (2, 2′), (3, 1′)}.
Consider any µ with supp(µ) = F . We have µC(1) = µS(3′) = µ(1, 3′), which violates
NCond for V = {3′}. We can also prove that property (UTC) is not satisfied. Consider a state
of the type (x, y) with x = y = (0, 0, k) for some k ≥ 0. Any one of the three possible arrivals
leave the state unchanged. In particular, there is an infinite number of terminal components.

Example 4.3. Consider the bipartite matching structure defined in Figure 8. The left-hand
diagram shows the graph (C, S, E) and the right-hand diagram shows the graph (C, S, F ).

Consider any µ with supp(µ) = F . We have

µS({1′, 2′}) = µ(3, 1′)+ µ(4, 2′) ≤ µC({3, 4}),
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C

S
1´́2´́3´́

1 2 3 4 1 2 3 4

4´́1´́2´́3´́4´́

Figure 8: Left: the matching graph (C, S, E). Right: the arrival graph (C, S, F ).

which contradicts NCond for U = {3, 4}. We can also prove that property (UTC) is not
satisfied. Consider a state (x, y) with x3 + x4 = k > 0. Reducing the number of customers
of classes 3 and 4 would require an arrival of type (1, 1′) or (1, 2′) or (2, 1′) or (2, 2′). But
none of these pairs belong to F . Therefore, it is impossible to reach a state (x′, y′) with
x′3 + x′4 < x3 + x4. On the other hand, an arrival of type (3, 3′) or (3, 4′) or (4, 3′) or (4, 4′)
strictly increases the number of customers of classes 3 and 4. Hence, all the states are transient,
and there is no terminal strongly connected component.

Stability of a structure is a decidable property. There exists a probability measure µ

with the requested properties if and only if the following system of linear inequalities in the
indeterminates µ(c, s), c ∈ C, s ∈ S, have a solution:∑

(c,s)∈C×S

µ(c, s) = 1,

µ(c, s) > 0 for all (c, s) ∈ F,

µ(c, s) = 0 for all (c, s) ∈ C × S − F,

µC(c) =
∑
s∈S

µ(c, s) for all c ∈ C,

µS(s) =
∑
c∈C

µ(c, s) for all s ∈ S,

NCond.

However, the number of inequalities is exponential in |C| + |S|. We are going to propose a
criterion which is much simpler, both conceptually and algorithmically.

Consider a bipartite matching structure (C, S, E, F ). Define F̃ = {(s, c) | (c, s) ∈ F }.
Associate with the structure the directed graph (C ∪ S, E ∪ F̃ ); in other words, the nodes
are C ∪ S and the arcs are

c→ s if (c, s) ∈ E, s → c if (c, s) ∈ F .

We have represented in Figure 9 the directed graph associated with the structure of
Example 4.3.

Figure 9: The directed graph associated with the structure of Figure 8.
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The graph of Figure 9 is not strongly connected: the four nodes on the right form a
strongly connected component. Similarly, the directed graph associated with the structure
of Example 4.2 is not strongly connected. On the other hand, the directed graph associated
with the structure of Example 4.1 is strongly connected. This is not a coincidence.

Theorem 4.1. Let (C, S, E, F ) be a bipartite matching structure. The following two properties
are equivalent:

• (C, S, E, F ) is a stable structure;

• (C ∪ S, E ∪ F̃ ) is strongly connected.

We are not aware of any result of this flavor in the literature. In particular, one can decide
if a structure is stable by testing the strong connectivity of (C ∪ S, E ∪ F̃ ). This can be done
with time complexity O(|E| + |F |) using a depth-first search algorithm.

Proof of Theorem 4.1. Assume that (C, S, E, F ) is a stable structure. Let µ be a probability
measure satisfying (2.1) and NCond. Suppose that there exist c ∈ C and s ∈ S with no directed
path from c to s in (C ∪ S, E ∪ F̃ ). Let succ(c) be the set of nodes that can be reached starting
from c in (C ∪ S, E ∪ F̃ ). Set

C1 = C ∩ succ(c), S1 = S ∩ succ(c), C2 = C − C1, S2 = S − S1.

By assumption, s ∈ S2. By construction, the following two properties hold:

µ(C2, S1) = 0, (C1 × S2) ∩ E = ∅.

Using µ(C2, S1) = 0, we obtain

µS(S1) = µ(C1, S1) ≤ µC(C1).

But, using [(C1 × S2) ∩ E = ∅] and NCond for U = C1, we obtain

µC(C1) < µS(S(C1)) = µS(S1).

From this contradiction, we deduce that, for all c ∈ C and s ∈ S, there exists a directed path
from c to s in (C ∪ S, E ∪ F̃ ). Similarly, we can prove that, for all s ∈ S and c ∈ C, there
exists a directed path from s to c in (C ∪ S, E ∪ F̃ ).

Assume now that (C ∪ S, E ∪ F̃ ) is strongly connected. We are going to construct an
explicit probability µ satisfying NCond, using Perron–Frobenius theory. Consider the matrices
A ∈ RC×S+ and B ∈ RS×C+ defined by

Acs =
{

1/|S(c)| if (c, s) ∈ E,

0 otherwise,
Bsc =

{
1/#{d, (s, d) ∈ F̃ } if (s, c) ∈ F̃ ,

0 otherwise.

By construction, matrices A and B are stochastic. Consider the stochastic matrix AB ∈ RC×C+ .
By construction, we have (AB)cd > 0 if and only if there is a path of length 2 from c to d in
the graph (C ∪ S, E ∪ F̃ ). Since (C ∪ S, E ∪ F̃ ) is strongly connected, we deduce that AB

is irreducible. Since AB is stochastic, its spectral radius is 1. Applying the Perron–Frobenius
theorem [9], we obtain the existence of a line vector x ∈ RC+ such that, for all c, xc > 0,∑

c xc = 1, and xAB = x. Set y = xA. Define the probability measure µ on C × S
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by µ(c, s) = ysBsc. By construction, we have µC = x and µS = y. Also, by construction,
supp(µ) = F . Define the function T : A→ R+ by

T (i, c) = xc for all c ∈ C, T (s, f ) = ys for all s ∈ S,

T (c, s) = xcAcs for all (c, s) ∈ E.

By construction, T is a flow of value 1 such that T (c, s) > 0 for all (c, s) ∈ E. Using
Lemma 3.2, we find that (x, y) = (µC, µS) satisfies NCond.

4.2. Back to property (UTC)

We now have all the ingredients needed to prove the following result.

Theorem 4.2. Consider a bipartite matching model [(C, S, E), µ, Pol]. Assume that the struc-
ture (C, S, E, F ) is stable, or, equivalently, that (C ∪ S, E ∪ F̃ ) is strongly connected. Then the
transition graph of the Markov chain of the bipartite matching model satisfies property (UTC).

Proof. We are going to prove that the empty state can be reached starting from any state. This
is a sufficient condition for property (UTC) to hold. The unique terminal strongly connected
component is the set of states that can be reached from the empty state.

We carry out the proof in the commutative case, but it works unchanged in the noncom-
mutative case (the only information needed is the number of customers/servers of each class).
Consider a general nonempty state (X, Y ). Recall that |X| = |Y |. To prove that the empty
state is reachable, it is sufficient to prove that we can always reach a state (X′, Y ′) such that
|X′| < |X|. To prove this, the argument is in relation to the facet to which (X, Y ) belongs; see
Definition 2.3.

Set X = (xc)c∈C and Y = (ys)s∈S . Assume that (X, Y ) belongs to the facet F = (U, V ),
i.e. xc > 0 if and only if c ∈ U , and ys > 0 if and only if s ∈ V . We lighten the notation by
replacing C•(F ), S•(F ), C�(F ), etc., by C•, S•, C�, etc. If there exists (c, s) ∈ C� × S�
such that µ(c, s) > 0, then the proof is completed. Assume now that µ(C�×S�) = 0. Choose
(c, s) ∈ C� × S�. By assumption, there exists a path from s to c in (C ∪ S, E ∪ F̃ ). Let us
denote it by (s = s1, c1, s2, c2, . . . , sk, ck = c); see Figure 10. Assume that c1, . . . , ck−1 �∈ C�
and s2, . . . , sk �∈ S�. (If not, consider a subpath satisfying the two properties.) Then c1 ∈ C◦.
Indeed, if c1 ∈ C• then (c1, s2) ∈ E and s2 ∈ S�, which contradicts the above assumption.
Now, since (si, ci) ∈ F̃ and (ci, si+1) ∈ E by construction and since c1 ∈ C◦, we obtain
c1, . . . , ck−1 ∈ C◦ and s2, . . . , sk ∈ S◦.

By definition of the graph (C ∪ S, E ∪ F̃ ), we have µ(ci, si) > 0 for all i. Choose the
sequence of arrivals (c1, s1), . . . , (ck, sk). Consider the effect of the arrival of (c1, s1). Since
s1 ∈ S�, it will be matched with a customer of C• (and not with c1, even if (c1, s1) ∈ E, since an
admissible matching policy is always buffer-first; see Section 2.2). Since c1 �∈ C�, it will remain
unmatched. Let (X(1), Y (1)) be the new state. We have |X(1)| = |X|. Also, in the new state,
we have c1 ∈ C

(1)• , which implies that s2 ∈ S
(1)
� . So we can repeat the argument inductively.

(c1, s1)

sk

ck

˜F˜FE˜F

s1

c1

E ˜F˜F

Figure 10: The path (s = s1, c1, s2, c2, . . . , sk, ck = c) in (C ∪ S, E ∪ F̃ ).
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E∅ {1}, {1} {3}, {3}

E{2}, {3 } E{2,3}, {3} E{3}, {2} E{3}, {2, 3 }

Figure 11: Transition graph for the Random policy.

After the arrivals of (c1, s1), . . . , (ck−1, sk−1), we are in a state (X(k−1), Y (k−1)) satisfying

|X(k−1)| = |X|, sk ∈ S
(k−1)
� , ck ∈ C

(k−1)
� .

Therefore, after the arrival of (ck, sk), we end up in a state (X(k), Y (k)) such that |X(k)|=|X| − 1.
This completes the proof.

Example 4.4. Consider a bipartite matching model associated with the structure (C, S, E, F ),
where (C, S, E) is the NN graph of Figure 2 and

F = {(1, 1′), (2, 2′), (3, 3′)}.
The graph (C ∪ S, E ∪ F̃ ) is strongly connected. According to Theorem 4.2, the transition
graph of the Markov chain satisfies property (UTC). However, it is not irreducible. Indeed, for
any policy, it is impossible to reach the state ((0, 1, 0); (0, 0, 1)) starting from the empty state.
To further illustrate, let us give the precise structure of the transition graph for the Random
policy. Denote by EF the set of states belonging to the facet F . The transition graph is
represented in Figure 11.

Below, we study the stability of bipartite matching models. Therefore, we always assume
that the necessary conditions NCond are satisfied. So we obtain property (UTC) for the Markov
chain as a consequence of Theorem 4.2.

5. Models that are stable for all admissible policies

Definition 5.1. Consider a bipartite graph (C, S, E) and an admissible matching policy Pol.
The stability region is the set of values of µ for which the bipartite matching model [(C, S, E),

µ, Pol] is stable.

The stability region is included in the polyhedron defined by NCond. The stability region
is maximal if it is equal to this polyhedron.

Let us introduce a new set of conditions, SCond, that defines a polyhedron included in the
stability region. These conditions are simply those that allow us to prove stability using a linear
Lyapunov function (see the proof of Proposition 5.1).

Denote by F the set of facets. Define the following conditions on µ (referred to as SCond):

µC(C�(F ))+ µS(S�(F )) > 1− µ(E ∩ C◦(F )× S◦(F )) for all F ∈ F− {∅}. (5.1)
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Let F be a saturated facet; see Definition 2.4. Assume for instance that C◦(F ) = ∅. Then
E ∩ C◦(F )× S◦(F ) = ∅ and C�(F ) = C − C•(F ). So (5.1) implies that

µS(S�(F )) > µC(C•(F )).

Since S�(F ) = S(C•(F )), we recognize exactly (3.2) for U = C•(F ). Conversely, consider
U � C and the associated condition in NCond: µC(U) < µS(S(U)). Choose a state with
a strictly positive number of customers/servers for the classes U and S − S(U). Let F be
the corresponding facet. The facet F is saturated: S�(F ) = S(U), S•(F ) = S − S(U),
S◦(F ) = ∅. Let us apply (5.1) to the facet F :

µC(C�(F ))+ µS(S(U)) > 1,

µS(S(U)) > µC(C − C�(F )) ≥ µC(U).

To summarize, the subset of the inequalities (5.1) obtained by considering only the saturated
facets gives precisely the inequalities NCond.

We now show that the conditions SCond are sufficient stability conditions.

Proposition 5.1. A bipartite model with probability µ satisfying SCond is stable under any
admissible matching policy.

Proof. Consider the linear Lyapunov function

L(u, v) = |u|, (u, v) ∈ E ,

the number of unmatched customers (servers). Let (Un, Vn)n be the Markov chain of the buffer
content. Let F �= ∅ be an arbitrary and fixed facet. Then, for any (u, v) ∈ F , we have (see
Table 1)

E[L(Un+1, Vn+1) | (Un, Vn) = (u, v)] − L(u, v)

= −µ(C�(F ), S�(F ))+ µ(C◦(F ), S•(F ))+ µ(C•(F ), S•(F ))

+ µ(C•(F ), S◦(F ))+ µ(C◦(F )× S◦(F ) ∩ Ec)

= 1− µC(C�(F ))− µS(S�(F ))− µ(C◦(F )× S◦(F ) ∩ E).

Inequality (5.1) implies directly that

E[L(Un+1, Vn+1) | (Un, Vn) = (u, v)] − L(u, v) < ε < 0.

By application of the Lyapunov–Foster theorem, see, for instance, [2, Section 5.1], we
conclude that the model is stable.

Corollary 5.1. Consider a bipartite graph in which any nonzero facet is saturated. For any
admissible matching policy, the stability region is maximal.

Table 1: Variation of the linear Lyapunov function.

C� C◦ C•
S� −1 0 0
S◦ 0 0 or 1 1
S• 0 1 1
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Figure 12: NCond and SCond for the NN graph with µ = µC × µS and µC = µS .

The bipartite graph (C = {1, 2}, S = {1′, 2′}, C×S−{(2, 2′)}) is such that any nonzero facet
is saturated. Therefore, its stability region is maximal for any admissible policy. The same is true
for the ‘almost complete graphs’ (C = {1, . . . , k}, S = {1′, . . . , k′}, C×S−{(i, i′) for all i}).
Example 5.1. Consider the NN graph from Figure 2. The graph has only one nonzero facet
that is nonsaturated, facet ({3}, {3′}). For any admissible policy, the stability region is at least
the polyhedron SCond, Proposition 5.1, which is defined by the conditions NCond and

µC(1)+ µS(1′) > 1− µ(2, 2′).

Assume now that µ = µC × µS and µC = µS . Set x = µC(1) = µS(1′) and y = µC(2) =
µS(2′). Then

NCond : x < 0.5 and 2x + y > 1,

SCond : NCond and 2x + y2 > 1.

In Figure 12, the light-shaded region corresponds to SCond, and the union of the light- and
dark-shaded regions corresponds to NCond.

Unfortunately, for some bipartite graphs, the polyhedron SCond is empty. This is illustrated
by the following example.

Example 5.2. Consider the NNN graph of Figures 13 and 14. The condition SCond for facet
({1}, {4′}) gives

µC({3, 4})+ µS({1′, 2′}) > 1− µ(2, 3′), (5.2)

and, for facet ({4}, {1′}), gives

µC(1)+ µS(4′) > 1− µ(2, 2′)− µ(2, 3′)− µ(3, 3′). (5.3)

Inequality (5.2) is equivalent to µC(1)+µS(4′) < 1−µC(2)−µ({1, 3, 4}, 3′). Together with
(5.3) this gives

µC(1)+ µS(4′) < 1− µC(2)− µ({1, 3, 4}, 3′)
< 1− µ(2, 2′)− µ(2, 3′)− µ(3, 3′) < µC(1)+ µS(4′),

which is impossible.
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1 32 4 1 32 4

1´́ 2´́ 3´́ 4´́1´́ 2´́ 3´́ 4´́

Figure 13: NNN graph: facets ({1}, {4′}) and ({4}, {1′}).
0

{1},{4 }′ {1},{3 }′ {3},{1}′{2},{1 }′ {3},{2 }′

{2,4},{1}′{2,3},{1}′ {3},{1 ,2 }′ ′

{2,3,4},{1 }′

{2},{1 ,4 }′′{1,4},{3 }′{1,2},{4 }′{1},{3 ,4 }′′

{4},{3 }′ {4},{2 }′ {4},{1}′

{3,4},{2 }′ {3,4},{1}′ {4},{2 ,3 }′ ′

{3,4},{1 ,2 }′ ′

{4},{1 ,3 }′ ′

{4},{1 ,2 ,3 }′ ′ ′

{4},{1 ,2 }′ ′

{2},{4 }′

Figure 14: Facets for the NNN graph. Saturated facets are encircled (13 among 25 facets).

6. Priorities and MS are not always stable

Consider the NN bipartite graph of Figure 2 and Example 5.1. For this model, Proposition 5.1
does not allow us to decide if the stability region is maximal (see Figure 12). In Figure 15, we
give simulation results for the average buffer size up to time n = 1 000 000 for the NN graph
with µ = µC × µS , µC = µS , and the MS policy. We can see that the average buffer size is
growing rapidly near the 2x + y = 1 line. This does not necessarily imply instability, as even
for stable models we could have the mean stationary buffer size that is growing unboundedly as
we approach the boundary of the stability region. In fact, we show below that, for the Priority
and MS matching policies, the stability region is not maximal.

Proposition 6.1. Consider the NN model with either the MS policy or the Priority policy,
given by

A =
⎡⎣0 2 1

2 1 0
1 0 0

⎤⎦ and B =
⎡⎣0 2 1

2 1 0
1 0 0

⎤⎦ .

For both policies, the stability region is not maximal.

1.0

0.8

0.6

0.4

0.2
0.1

1.0

10

100

1000

10000

0.0

y

0.0 0.1 0.2 0.3 0.4 0.5
x

Figure 15: Average buffer size for the NN graph with µ = µC × µS , µC = µS , and MS policy;
x = µC(1) = µS(1′) and y = µC(2) = µS(2′).
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Proof. We carry out the proof for the Priority policy. The idea of the proof is to use the
interplay between two different Markov chains: one describing the evolution of the buffer
content, and an auxiliary one which mimics the evolution of the customers/servers of classes
2/2′ on some of the facets.

Consider an auxiliary Markov chain on Z with the following transition probabilities.

x → x − 1 x → x x → x + 1

x < 0 a−1 a0 a1
x = 0 b−1 b0 b1
x > 0 c−1 c0 c1

Assume that a−1, a1, b−1, b1, c−1, c1 are all different from 0. The chain is positive recurrent
if and only if [a−1 < a1, c1 < c−1]. The stationary distribution is then equal to

π(0) =
(

1+ b−1

a1 − a−1
+ b1

c−1 − c1

)−1

,

π(x) = π(0)
b1

c1

(
c1

c−1

)x

if x > 0,

π(x) = π(0)
b−1

a−1

(
a−1

a1

)|x|
if x < 0.

Consider an NN model with a probability µ such that supp(µ) = C × S. Let (X, Y ) =
(X(n), Y (n))n be the Markov chain of the buffer content, where X(n) = (X1(n), X2(n),

X3(n)) and Y (n) = (Y1(n), Y2(n), Y3(n)). Assume without loss of generality that (X, Y ) is
given under the form of a stochastic recursive sequence, that is,

(X(n+ 1), Y (n+ 1)) = �(X(n), Y (n), θn),

where (θn)n is an i.i.d. sequence of random variables distributed according to µ, and � is a
deterministic function.

Consider now the process (X2(n) − Y2(n))n. This is not a Markov chain. However, if
X2(n)+X3(n) > 0 then ‘it becomes a Markov chain’. More precisely, if X2(n)+X3(n) > 0
then

X2(n+ 1)− Y2(n+ 1) = �2(X2(n)− Y2(n), θn), (6.1)

where �2 is a deterministic function. This can be checked by direct inspection. Moreover, the
transition kernel on Z defined by recursion (6.1) is of the same type as the above auxiliary chain
with parameters

a1 = µ(1, 1′)+ µ(1, 3′)+ µ(2, 1′)+ µ(2, 3′),
a0 = µ(1, 2′)+ µ(2, 2′)+ µ(3, 1′)+ µ(3, 3′),

a−1 = µ(3, 2′),
b1 = µ(2, 1′)+ µ(2, 3′),
b0 = µ(1, 1′)+ µ(1, 3′)+ µ(2, 2′)+ µ(3, 1′)+ µ(3, 3′),

b−1 = µ(1, 2′)+ µ(3, 2′),
c1 = µ(2, 3′),
c0 = µ(1, 3′)+ µ(2, 1′)+ µ(2, 2′)+ µ(3, 3′),

c−1 = µ(1, 1′)+ µ(1, 2′)+ µ(3, 1′)+ µ(3, 2′).
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Table 2: Effect of arrivals.

Arrival Possible matchings Selected matchings �X2

(1, 1′) (1, 3′), (2, 1′), (3, 1′) (1, 3′), (2, 1′) −1
(1, 2′) (1, 3′), (1, 2′), (2, 2′) (1, 3′), (2, 2′) −1
(2, 1′) (2, 1′), (3, 1′) (2, 1′) 0
(2, 2′) (2, 2′) (2, 2′) 0
(2, 3′) ∅ ∅ +1
(3, 2′) (2, 2′) (2, 2′) −1
(3, 1′) (2, 1′), (3, 1′) (2, 1′) −1

Let us justify for instance the values of c−1, c0, c1. We are in the case X2(n)+X3(n) > 0 and
X2(n)− Y2(n) > 0, which implies that

X1(n) = 0, X2(n) > 0, Y1(n) = Y2(n) = 0, Y3(n) > 0.

In Table 2 we show the effect of the different possible classes of arrivals, restricting to the ones
which may affect X2, i.e. when the customer class is 2 or the server class is 1′ or 2′. To simplify,
we have assumed in Table 2 that X3 > 0. For X3 = 0, the ‘Possible matchings’ column would
be affected, but not the ‘Selected matchings’ and ‘�X2’ columns.

Let us comment on a couple of cases. If the arrival is of type (1, 1′) then the selected
matching is (2, 1′) rather than (3, 1′) due to the Priority policy (B2,1′ > B3,1′ ). If the arrival
is of type (1, 2′), the selected matching is (2, 2′) rather than (1, 2′) according to the buffer-first
property of admissible policies; see Section 2.2. The other cases are argued similarly.

Let us introduce a new Markov chain (Wn)n on Z defined by

Wn+1 = �2(Wn, θn).

(The process (Wn)n is different from the process (X2(n) − Y2(n))n. The former is always
defined according to recursion (6.1), while the latter is defined according to (6.1) only for the
ns such that X2(n)+X3(n) > 0. The former is Markovian while the latter is not.)

The condition c1 < c−1 becomes µC(2) < µS(1′) + µS(2′), and a−1 < a1 becomes
µS(2′) < µC(1)+µC(2). Both conditions follow from NCond. So the auxiliary chain (Wn)n
is ergodic and its stationary distribution π satisfies

π(0) =
(

1+ b−1

a1 − a−1
+ b1

c−1 − c1

)−1

, π(Z∗+) = π(0)
b1

c−1 − c1
,

π(Z∗−) = π(0)
b−1

a1 − a−1
,

where Z∗+ = {1, 2, . . .} is the set of strictly positive integers and Z∗− = {−1,−2, . . .} is the set
of strictly negative integers. From now on, we fix an initial condition W0 satisfying

W0 ∼ π, W0⊥⊥(θn)n.

Let us switch back to the Markov chain (X, Y ). Set

L(n) = X2(n)+X3(n), �L(n) = L(n+ 1)− L(n).
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If L(n) > 0 then we check by direct inspection that

�L(n) = �(X2(n)− Y2(n), θn),

where � is a deterministic function. We have, in particular,

α := E[�L(n) | L(n) > 0, Y2(n) > 0] = µ(3, 2′)+ µ(3, 3′)− µ(1, 1′)− µ(2, 1′),
β := E[�L(n) | L(n) > 0, X2(n) = Y2(n) = 0]
= µ(2, 3′)+ µ(3, 2′)+ µ(3, 3′)− µ(1, 1′),

γ := E[�L(n) | L(n) > 0, X2(n) > 0] = µ(2, 3′)+ µ(3, 3′)− µ(1, 1′)− µ(1, 2′).

Let us turn again to the auxiliary chain (Wn)n. By performing the computation, we obtain

E[�(Wn, θn)] = π(Z∗−)α + π(0)β + π(Z∗+)γ.

The ergodic theorem for Markov chains, see, for instance, [2, Section 3.4], gives

lim
n

1

n

n−1∑
i=0

�(Wn, θn) = π(Z∗−)α + π(0)β + π(Z∗+)γ almost surely.

Assume that π(Z∗−)α + π(0)β + π(Z∗+)γ > 0. Then we have

lim
n

n−1∑
i=0

�(Wn, θn) = +∞ almost surely.

Therefore, for each ε > 0, there exists Kε ≥ 0 such that

P

(
min
n≥1

n−1∑
i=0

�(Wn, θn) > −Kε

)
≥ 1− ε. (6.2)

Let us switch back to the Markov chain (X(n), Y (n))n. Choose the initial condition (X(0),

Y (0)) such that

X2(0)− Y2(0) = W0, min(X3(0), Y3(0)) = Kε,

where Kε is defined in (6.2). By construction, on the event

A =
{

min
n≥1

n−1∑
i=0

�(Wn, θn) > −Kε

}
,

we have
L(n) > 0, X2(n)− Y2(n) = Wn, for all n.

So, on the event A, we have

L(n) = Kε +
n−1∑
i=0

�L(i) = Kε +
n−1∑
i=0

�(Wi, θi)→+∞.

We conclude that the Markov chain (X, Y ) of the NN model is transient.
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We now show that the stability region is not maximal, by giving an example such that
π(Z∗−)α + π(0)β + π(Z∗+)γ > 0. Consider µC = ( 1

3 , 2
5 , 4

15 ), µS = µC , and µ = µC × µS .
Thus, conditions NCond are satisfied. However, we have

a1 = 11
25 , a0 = 34

75 , a−1 = 8
75 ,

b1 = 6
25 , b0 = 13

25 , b−1 = 6
25 ,

c1 = 8
75 , c0 = 34

75 , c−1 = 11
25 ,

and
π(0) = 25

61 , π(Z∗+) = 18
61 , π(Z∗−) = 18

61 .

This gives α = − 1
15 , β = 13

75 , γ = − 1
15 , and

π(Z∗−)α + π(0)β + π(Z∗+)γ = 29
915 > 0.

This completes the proof.

Consider now the MS policy. Set L(n) = min(X3(n)−X2(n), Y3(n)− Y2(n)). The initial
distribution can be taken such that

X2(0)− Y2(0) ∼ π,

{
X3(0)−X2(0) = Kε if X2(0) > 0,

Y3(0)− Y2(0) = Kε otherwise.

Modulo these modifications, the proof carries over unchanged.

7. ML is always stable

In this section we show that the ML policy has a maximal stability region.
The idea of the proof is as follows. Consider the quadratic Lyapunov function

L(x, y) =
∑
c∈C

x2
c +

∑
s∈S

y2
s , (x, y) ∈ E . (7.1)

Observe that the ML policy minimizes the value of this Lyapunov function at each step. We
introduce an alternate policy that depends on the arrival distribution µ. For this policy, we
manage to prove that the quadratic Lyapunov function has a negative drift outside a finite
region.

Theorem 7.1. For any bipartite graph, the ML policy has a maximal stability region.

Proof. We introduce an alternate matching policy. This policy is admissible, corresponds
to a commutative state space, but does not belong to the policies listed in Section 2.2. It is a
probabilistic policy and its specificity is to be facet dependent.

Let us describe the alternate policy on a nonempty facet F . Set C• = C•(F ), S• =
S•(F ), C� = C�(F ), etc. To describe the matching policy, the only thing we have to describe
is how to match an arriving customer of class c ∈ C� or server of class s ∈ S�. Let us
concentrate first on a server of class s ∈ S�.

From NCond,
µC(C•) < µS(S�), µS(S•) < µC(C�).

We build a directed graph as in (3.6) but restricted to the nodes in C• and S�. Formally,

NF = (C• ∪ S� ∪ {i, f }, {E ∩ C• × S�} ∪ {(i, c), c ∈ C•} ∪ {(s, f ), s ∈ S�}). (7.2)
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Endow the arcs of E∩C• ×S� with infinite capacity, an arc of type (i, c) with capacity µC(c),
and an arc of type (s, f ) with capacity µS(s).

As in Lemma 3.2, NCond implies that the minimal cut of NF has capacity µC(C•). Any
maximal flow T is such that, for all c ∈ C•, T (i, c) = µC(c) and, for all s ∈ S�, T (s, f ) ≤
µS(s). Let us prove that there exists a maximal flow T such that

T (i, c) = µC(c) for all c ∈ C•, T (s, f ) < µS(s) for all s ∈ S�.

Define µ̃S on S� by µ̃S(s) = µS(s)− η. Here η > 0 is chosen to be small enough so that, for
all U ⊂ C•, µC(U) < µ̃S(S(U)) and, for all V ⊂ S�, µ̃S(V ) < µC(C(V )). This is possible
since NCond are open conditions. Consider the same network as above but with the capacities
µ̃S(s) on the arcs (s, f ). The minimal cut still has capacity µC(C•). A maximal flow T is such
that, for all c ∈ C•, T (i, c) = µC(c) and, for all s ∈ S�, T (s, f ) ≤ µ̃S(s) < µS(s). Clearly,
T is also a flow for the original network.

The server s ∈ S� is matched to c ∈ C• ∩ C(s) randomly, independently of the past, with
probability

P F
sc =

1

µS(s)

[
T (c, s)+ µS(s)− T (s, f )

|C• ∩ C(s)|
]
.

Let us check that this indeed defines a probability:

∑
c∈C•∩C(s)

P F
sc =

1

µS(s)

[
µS(s)− T (s, f )+

∑
c∈C•∩C(s)

T (c, s)

]

= 1

µS(s)

[
µS(s)− T (s, f )+ T (s, f )

]
= 1.

For c ∈ C• and s ∈ S(c), set εsc = (µS(s) − T (s, f ))/|C• ∩ C(s)|. For c ∈ C•, set
εc =∑

s∈S(c) εsc. We have εc > 0. Observe that∑
s∈S(c)

µS(s)P F
sc = µC(c)+ εc for all c ∈ C•. (7.3)

Symmetrically, we define the directed graph of type (7.2) but on the nodes C� and S•.
We build a maximal flow on this new graph as above, and, based on this flow, we define the
probability P F

cs that a customer c ∈ C� is matched to a server s ∈ S• ∩ S(c). For s ∈ S•, we
define εcs, c ∈ C(s), and εs accordingly. We have εs > 0.

Let (X(n), Y (n))n be the Markov chain of the buffer content of the model. Assume that
(X(n), Y (n)) = (x, y) ∈ F and let c ∈ C•. We have the following cases.

(i) X(n+ 1)c = X(n)c − 1 if and only if

• the arriving customer is not of class c;

• the arriving server is of class s ∈ S(c);

• the arriving server is matched with c (probability P F
sc ).

This case happens with probability αc =∑
s∈S(c) µ(C − c, s)P F

sc .
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(ii) X(n+ 1)c = X(n)c + 1 if and only if

• the arriving customer is of class c;

• the arriving server is not matched with c. This may occur in two possible ways:
either the arriving server is of class s �∈ S(c), or the arriving server is of class
s ∈ S(c) but is not matched with c (probability 1− P F

sc ).

This case happens with probability βc = µ(c, S − S(c))+∑
s∈S(c) µ(c, s)(1− P F

sc ).

(iii) X(n+ 1)c = X(n)c.

Using (7.3), we obtain∑
s∈S(c)

µ(C − c, s)P F
sc =

∑
s∈S(c)

µS(s)P F
sc −

∑
s∈S(c)

µ(c, s)P F
sc

= µC(c)+ εc −
∑

s∈S(c)

µ(c, s)P F
sc

= µ(c, S − S(c))+ µ(c, S(c))+ εc −
∑

s∈S(c)

µ(c, s)P F
sc

= µ(c, S − S(c))+
∑

s∈S(c)

µ(c, s)(1− P F
sc )+ εc.

Thus, αc = βc + εc. Observe that βc < µC(c). We obtain, for (x, y) ∈ F and c ∈ C•,

E[X(n+ 1)2
c −X(n)2

c | (X(n), Y (n)) = (x, y)] = βc(2xc + 1)− αc(2xc − 1)

= 2βc − εc(2xc − 1)

< 2µC(c)− εcxc.

Let L be the quadratic Lyapunov function (7.1). Define �L(n) = L(Xn+1, Yn+1) −
L(Xn, Yn). Set ε = minv∈C•∪S• εv > 0. Then (the first term in the sum takes care of the
vertices in C − C• and S − S•)

E[�L(n) | (Xn, Yn) = (x, y)] < 2+
∑
c∈C•

(2µC(c)− εcxc)+
∑
s∈S•

(2µS(s)− εsys)

< 2+ 2µC(C•)+ 2µS(S•)− ε

(∑
c∈C•

xc +
∑
s∈S•

ys

)
< 6− 2ε

∑
c∈C

xc.

Fix δ > 0. If
∑

c∈C xc > (6+ δ)/2ε then E[�L(n)] < −δ. There are finitely many facets, so
there is a finite set A ⊂ E such that

E[�L(n)] < −δ for all (x, y) �∈ A. (7.4)

By the Lyapunov–Foster theorem, see, for instance, [2, Section 5.1], the alternate matching
policy is stable.

Since the ML matching policy minimizes the value of the quadratic Lyapunov function, we
have a fortiori that (7.4) holds for it. Therefore, the ML policy is also stable.
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7.1. Conclusion

Many open questions remain. First, we do not know if the stability region is always maximal
for the FIFO and Random policies (for FIFO, the result of [1] covers only the ‘independent’
case, i.e. µ = µc × µS). Numerical experiments seem to indicate that it is indeed the case.
Second, for the MS and Priority policies, we know that the stability region is not always
maximal, but we do not know how to compute it. Last, we would like to obtain sufficient
conditions for stability, valid for all admissible policies, and which are better than those of
Section 5.
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