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Abstract

Let S be an orientable surface of finite type. Using Pho-on’s infinite unicorn paths, we prove the hyperfiniteness of
orbit equivalence relations induced by the actions of the mapping class group of S on the Gromov boundaries of
the arc graph and the curve graph of S. In the curve graph case, this strengthens the results of Hamenstädt and Kida
that this action is universally amenable and that the mapping class group of S is exact.

1. Introduction

An equivalence relation � on a standard Borel space - is Borel if � is a Borel subset of - × - . An
equivalence relation is countable (resp., finite) if every equivalence class is countable (resp., finite).
Given a Borel action of a countable group on a standard Borel space - , the induced orbit equivalence
relation is a countable Borel equivalence relation. A Borel equivalence relation � is hyperfinite if � can
be written as an increasing union of a sequence of finite Borel equivalence relations.

Let ( be an oriented surface of genus 6 ≥ 0 with = ≥ 0 punctures, of negative Euler characteristic.
We denote by A(() (for = ≥ 1) and C(() its arc graph and its curve graph, respectively, which are
Gromov hyperbolic (see Section 2). The actions of the mapping class group Mod(() on A(() and C(()

by automorphisms extend to actions on their Gromov boundaries by homeomorphisms. Our main result
is the following:

Theorem 1.1. The orbit equivalence relation on mA(() induced by the action of Mod(() is hyperfinite.

As a consequence we will derive the following:

Corollary 1.2. The orbit equivalence relation on mC(() induced by the action of Mod(() is hyperfinite.

This strengthens the results of Hamenstädt [Ham09, Cor 2] and Kida [Kid08, Thm 1.4(ii)] that this
equivalence relation is universally amenable (for a definition, see Section 1.1).

We will also obtain the following (for the definition of CL((), see Section 5):

Corollary 1.3. The orbit equivalence relation on the space of complete geodesic laminations CL(()

induced by the action of Mod(() is hyperfinite.

In particular, this equivalence relation is universally amenable. Since CL(() is compact and Haus-
dorff, and its point stabilisers are virtually abelian, this gives a new proof of [Ham09, Thm 1] that the
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action of Mod(() on CL(() is topologically amenable (see Section 1.1). This implies that Mod(() is
exact (which was proved independently to Hamenstädt by Kida [Kid08, Thm C.5]).

1.1. Amenability

Let ` be a Borel probability measure on a standard Borel space - . The notion of amenability for a mea-
surable action of a countable group on (-, `) was introduced by Zimmer [Zim78] (see also [Zim84])
and has many equivalent definitions (see, e.g., [AEG94]; for a more general definition for measured
groupoids, see [ADR00]). It is closely related to the notion of amenability for countable Borel equiva-
lence relations [Gao09, Def 7.4.5] (see also [Kec93, §3] or [Moo20, §3]). Namely, a measurable action
on (-, `) is `-amenable if and only if `-almost all stabilisers are amenable and the induced orbit equiv-
alence relation on - is `-amenable [AEG94, Thm 5.1]. A countable Borel equivalence relation on -

or a Borel action of a countable group on - is universally amenable if it is `-amenable for every quasi-
invariant Borel probability measure ` on - (or, equivalently, for every Borel probability measure ` on
- [KM04, Cor 10.2]). In particular, any Borel action of an amenable group is universally amenable.

By [ADR00, Thm 3.3.7], an action of a countable group� by homeomorphisms on a locally compact
Hausdorff space - is universally amenable if and only if it is topologically amenable (for a definition,
see [Oza06b, Def 2.1]). If - is compact Hausdorff, then the topological amenability of the action implies
the exactness of � [AD02, Thm 7.2].

Boundary actions have been studied extensively from the point of view of amenability. Connes,
Feldman and Weiss [CFW81, Cor 13] and, independently, Vershik [Ver78, Thm 2], showed that the tail
equivalence relation discussed in Section 1.2 is universally amenable, which implies that the induced
action of the finitely generated free group �= on its Gromov boundary m�= is universally amenable.
This was later generalised by Adams [Ada94] to all hyperbolic groups (see also [Kai04]). Furthermore,
Ozawa [Oza06a] proved that the action of a relatively hyperbolic group with amenable parabolic
subgroups on the Gromov boundary of its coned-off Cayley graph is topologically amenable. Moreover,
Nevo and Sageev proved that the action of a cocompactly cubulated group on a particular subset of its
Roller boundary is universally amenable [NS13]. Lécureux proved that if a group� acts geometrically on
a building - , then the action of� on the combinatorial boundary of - is topologically amenable [Léc10].
Finally, Bestvina, Guirardel and Horbez proved that the action of Out(�=) on the Gromov boundary of
its free factor complex is universally amenable (see [BGH21, Thm 6.4] and [GHL20, Prop 7.2]), which
uses the description of the Gromov boundary of the free factor complex in [BR15] and [Ham14].

1.2. Hyperfiniteness

As shown independently by Weiss and Slaman–Steel [Gao09, Thm 7.2.4], a Borel equivalence relation �

is hyperfinite if and only if there is a Borel action of Z inducing � as its orbit equivalence relation. Since
Z is amenable, the hyperfiniteness of a Borel equivalence relation implies its universal amenability. It is
a well-known open problem whether the converse holds – that is, whether a universally amenable Borel
equivalence relation is always hyperfinite. Connes, Feldman and Weiss [CFW81, Thm 10] (see also
[KM04, Thm 10.1]) showed that a `-amenable Borel equivalence relation on - becomes hyperfinite
after removing from - a set of `-measure 0.

The relative complexity of Borel equivalence relations is measured by Borel reducibility. Given two
equivalence relations � and � on standard Borel spaces - and . , respectively, a function 5 : - → . is
a Borel reduction from � to � if 5 is a Borel function and for every 0, 1 ∈ - we have 0 ∼� 1 if and
only if 5 (0) ∼� 5 (1). A relation � is Borel reducible to � if there exists a Borel reduction from � to
�. The relation �0 is defined on {0, 1}N (with the product topology) as (08)

∞
8=0 ∼�0 (18)

∞
8=0 if 08 = 18

for all 8 sufficiently large. It is easy to see that �0 is hyperfinite. In fact, a countable Borel equivalence
relation is hyperfinite if and only if it is Borel reducible to �0 [Gao09, Thm 7.2.2].

Let Ω be a countable set with discrete topology. The tail equivalence relation �C on ΩN is defined
as (08)

∞
8=0 ∼�C

(18)
∞
8=0 if there exists : ∈ Z such that 08 = 18+: for all 8 sufficiently large. Dougherty,
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Jackson and Kechris showed that �C is Borel reducible to �0, and so it is hyperfinite [DJK94, Cor 8.2].
It is not hard to see that the orbit equivalence relation induced by the action of �= on m�= is Borel
reducible to �C with finite Ω. Hence that orbit equivalence relation on m�= is hyperfinite, which we will
shortly express by saying that the boundary action of �= is hyperfinite.

More recently, Huang, Shinko and Sabok [HSS19] showed that for cocompactly cubulated hyperbolic
groups, their boundary actions are hyperfinite. The proof relied on a study of geodesic ray bundles
in hyperbolic groups. While Touikan [Tou18] showed that that approach does not work for arbitrary
hyperbolic groups, Marquis [Mar19] used it to prove the hyperfiniteness of boundary actions of groups
acting cocompactly on locally finite hyperbolic buildings with trivial chamber stabilisers. Very recently,
Marquis and Sabok [MS20] showed the hyperfiniteness of the boundary action of an arbitrary hyperbolic
group.

Organisation

In Section 2 we recall the basics on arcs, laminations and unicorn paths. In Section 3 we prove a pair
of key lemmas: the local characterisation of Pho-on’s infinite unicorn paths and the tail equivalence
for asymptotic infinite unicorn paths. This allows for the proofs of Theorem 1.1 and Corollary 1.2 in
Section 4. We prove Corollary 1.3 in Section 5.

2. Unicorn paths

2.1. Arcs and laminations

As in the introduction, ( is obtained from a closed oriented surface of genus 6 by removing = points.
Thus ( has = topological ends, which are called punctures. An oriented arc on ( is a map from (0, 1)
to ( that is proper. A proper map induces a map between topological ends of spaces, and in this sense
each endpoint of (0, 1) is sent to a puncture of (. We will say that the oriented arc starts and ends at
these punctures. A homotopy between oriented arcs 0 and 1 is a proper map (0, 1) × [0, 1] → ( whose
restriction to (0, 1) × {0} equals 0 and whose restriction to (0, 1) × {1} equals 1. In particular, 0 and 1

start at the same puncture and end at the same puncture. A curve on ( is a map from a circle (1 to (.
An oriented arc or a curve is simple if it is an embedding. In that case we can and will identify the

oriented arc or the curve with its image in (. We record, however, the orientation of the arc, while for
the curve we discard it. A curve is essential if it is not homotopically trivial. A curve 2 : (1 → ( is
nonperipheral if it cannot be homotoped into the puncture, in the sense that there is no proper map
(1×[0, 1) → ( whose restriction to (1×{0} is 2. An oriented arc 0 : (0, 1) → ( is essential if there is no
proper map (0, 1)× [0, 1) → ( whose restriction to (0, 1)×{0} is 0. Unless otherwise stated, all oriented
arcs in this paper are simple and essential, and all curves are simple, essential and nonperipheral.

Suppose that the Euler characteristic j = 2 − 26 − = of ( is negative. If = ≥ 1, the arc graph A(() is
the graph whose vertex set � is the set of homotopy classes of oriented arcs on (. Two vertices in � are
connected by an edge if they can be realised disjointly. Note that since our arcs are oriented, our A(()

differs from the usual arc graph by replacing each vertex with two.
Allow now = = 0, but suppose that we are not in one of the exceptional cases where 6 = 0 and = = 3

or 4, or 6 = 1 and = = 1. Then the curve graph C(() is the graph whose vertices are the homotopy
classes of curves on (. Again, two vertices are connected by an edge if they can be realised disjointly.
In the exceptional cases the edges of C(() are defined differently, but we will not be appealing to that
definition. By [MM99] and [MS13], the graphs C(() and A(() are Gromov-hyperbolic.

We fix an arbitrary complete hyperbolic metric on (. A geodesic lamination on ( is a compact subset
of ( that is a disjoint union of leaves that are geodesic lines and circles in ( that do not self-intersect.
A geodesic lamination ! is minimal if its every leaf is dense in !. Let . ⊆ ( be a subsurface whose
boundary components are all geodesic circles. We say that a geodesic lamination ! ⊂ . fills . if every
curve on. intersects !. Analogously, a pair of oriented arcs 0, 1 ⊂ . fills. if every curve on. intersects
the geodesic representative of 0 or 1.
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A peripherally ending lamination is a minimal geodesic lamination that fills a subsurface. containing
all the punctures of (. An ending lamination is a minimal geodesic lamination that fills the entire (.
Let EL(() ⊂ EL0 (() denote the sets of ending and peripherally ending laminations on (, respectively,

with the topology given by the following coarse Hausdorff convergence. Namely, !=
CH
−−→ ! if for any

subsequence !=: Hausdorff converging to a geodesic lamination ! ′, we have ! ⊂ ! ′ [Ham06]. By
[Kla99] and [Sch13] (see also Theorem 3.2), the spaces EL((),EL0(() can be equivariantly identified
with the Gromov boundaries of C(() and A(().

2.2. Unicorns

As in Section 2.1, let � denote the set of homotopy classes of oriented arcs on (.

Definition 2.1. Set 0, 1 ∈ � and keep the notation 0, 1 for the geodesic oriented arcs representing them.
A unicorn arc for 0 and 1 is the homotopy class of an oriented arc that is a concatenation 0′ ∪ 1′ for 0′

an initial segment of 0 and 1′ a terminal segment of 1, possibly 0′ = 0, 1′ = ∅ or 0′ = ∅, 1′ = 1. Note
that orienting the arcs replaces the choice of endpoints in [HPW15, Def 3.1].

The set of all oriented arcs that are such concatenations 0′ ∪ 1′ can be ordered into a sequence
(

0′8 ∪ 1′8
)=

8=0 so that for all 0 ≤ 8 < =, we have 0′
8+1 ⊂ 0′8 and 1′

8+1 ⊃ 1′8 . We denote by 28 ∈ � the
homotopy class of 0′8 ∪ 1′8 and we call the sequence %(0, 1) = (28)

=
8=0 ∈ �=+1 the unicorn path from 0

to 1.

Note that we have 20 = 0 and 2= = 1. Moreover, the unicorn path is indeed an edge path in A(():

Remark 2.2 ([HPW15, Rm 3.2]). For each 0 ≤ 8 < =, the unicorn arcs 28 , 28+1 are adjacent in A(().

Let !0 be a peripherally ending lamination. Let ; be a geodesic line on ( that does not self-intersect
and ends at a puncture in the sense that ; contains a geodesic ray properly embedded in (. We say that
; is asymptotic to !0 if ; ⊂ ( \ !0. Since each puncture of ( lies in a once-punctured ideal polygon of
( \ !0, the number of such ; is bounded by the total number of their ideal vertices, which is at most 2|j |.

Definition 2.3 ([PO17, §3.1]). Set 0 ∈ � and keep the notation 0 for the geodesic oriented arc
representing it. Let ; be a geodesic line asymptotic to !0 ∈ EL0((). A unicorn arc for 0 and ; is the
homotopy class of an oriented arc that is a concatenation 0′ ∪ ; ′ for 0′ an initial segment of 0 and ; ′ a
terminal segment of ;, possibly 0′ = 0 and ; ′ = ∅.

The set of all oriented arcs that are such concatenations 0′ ∪ ; ′ can be ordered into a sequence
(

0′8 ∪ ; ′8
)∞

8=0 so that for all 8 ≥ 0, we have 0′
8+1 ⊂ 0′8 and ; ′

8+1 ⊃ ; ′8 . We denote by 28 ∈ � the homotopy
class of 0′8 ∪ ; ′8 and we call the sequence %(0, ;) = (28)

∞
8=0 ∈ �N the infinite unicorn path from 0 to ;.

3. Key lemmas

Definition 3.1. Set = ∈ {3, 4, . . . ,∞}. A sequence (28)
=
8=0 ∈ �=+1 is a locally unicorn path if for each

0 ≤ 9 < : ≤ =, with 9 + 3 ≤ : < ∞, the sequence (28)
:
8= 9

is the unicorn path from 2 9 to 2: .

By Remark 2.2, a locally unicorn path is an edge path in A((). Moreover, by [HPW15, Lem 3.5]
each finite unicorn path of length ≥ 3 is a locally unicorn path. Furthermore, by [PO17, Lem 3.4] an
infinite unicorn path is also locally unicorn.

By [HPW15, Prop 4.2] there is a universal constant � such that each finite unicorn path %(0, 1) is
at Hausdorff distance ≤ � from a geodesic edge path in A(() from 0 to 1. Consequently, each locally
unicorn path is bounded or converges with respect to the Gromov product [GdlH90, §7.2] to a point in
mA((). This leads to the following result of Pho-on (the existence of an equivariant homeomorphism
was announced earlier by Schleimer [Sch13]):

Theorem 3.2 ([PO17, §3.2-3]). Set 0 ∈ �. Set !0 ∈ EL0(() and let ; be a geodesic line asymptotic
to !0. Then %(0, ;) is not bounded and its limit � (!0) ∈ mA(() with respect to the Gromov product
depends only on !0. Furthermore, � : EL0 (() → mA(() is a Mod(()-equivariant homeomorphism.
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Figure 1. Ideal polygon �.

In fact, the local condition characterises infinite unicorn paths:

Lemma 3.3. Let % be a locally unicorn path that is not bounded in A((). Then % is an infinite unicorn
path.

Proof. Denote % = (28)
∞
8=0 ∈ �N, and keep the notation 28 for the geodesic oriented arcs representing

them. Since % is not bounded in A((), it converges to some point � (!0) ∈ mA((). By [PO17, Lem
3.9], we have that 28 coarse Hausdorff converge to !0 ∈ EL0 ((). Denote 2 = 20. We claim that for each
= ≥ 1 there is a geodesic line ; asymptotic to !0 such that for each 8 ≤ =, the unicorn arc 08 on the
infinite unicorn path from 2 to ; coincides with 28 . Since there are only finitely many ; asymptotic to
!0, the lemma follows from the claim.

To justify the claim, note that since % is a locally unicorn path, all 28 with 8 ≥ 1 end at a common
puncture ?. Let � be the ideal polygon of ( \ !0 containing ?. Let ; be a geodesic line asymptotic to !0

ending at ?. Let 2′ ∪ ; ′ represent the =th unicorn arc on the unicorn path from 2 to ;, let G; = 2′ ∩ ; ′ and
let 3; be the segment of 2 that is the component of � ∩ 2 containing G; (see Figure 1). Let � ? be the
component of � −

⋃

; 3
; containing ?, where the union is taken over all the geodesic lines ; asymptotic

to !0 and ending at ?. Let U > 0 be the minimum possible angle that makes with !0 a geodesic ray in

� ? starting on !0 and ending at ?. Since (28)
∞
8=0

CH
−−→ !0, there is # ≥ = such that 2# does not intersect

!0 at angle ≥ U. Consequently, the component 2′
#

of 2# ∩ � ? ending at ? starts on 3; for some ; (see
Figure 1).

Let @ be the puncture at which 2 starts. We have a bijection ℎ : ; ′ ∩ 2 → 2′
#
∩ 2 such that each pair

G, ℎ(G) lies in the same component of � ? ∩ 2. Furthermore, for each G ∈ ; ′ ∩ 2, the segments @G ⊂ 2

and G? ⊂ ; intersect only at G if and only if the segments @ℎ(G) ⊂ 2 and ℎ(G)? ⊂ 2# intersect only at
ℎ(G). In other words, the concatenation @G ∪ G? represents a unicorn arc for 2 and ; if and only if the
concatenation @ℎ(G) ∪ ℎ(G)? represents a unicorn arc for 2 and 2# . Moreover, these two oriented arcs
are homotopic. Finally, this correspondence preserves the order of unicorn arcs. Thus, for 0 ≤ 8 ≤ =,

we have 08 = 28 , justifying the claim. �

Set !0 ∈ EL0 ((). We define an equivalence relation ∼!0 on � by declaring 0 ∼!0 1 if the geodesic
representatives of 0, 1 start at the same puncture and their first points in !0 lie on the same side of the
ideal polygon of ( \ !0 containing that puncture. Note that ∼!0 has at most 2|j | equivalence classes.

We now prove a tail equivalence lemma that will later allow us to reduce the orbit equivalence on
mA(() to �C .

Lemma 3.4. Set !0 ∈ EL0((), and set 0, 1 ∈ � with 0 ∼!0 1. Then for each geodesic line ; asymptotic
to !0, the unicorn path (08)

∞
8=0 from 0 to ; and the unicorn path (18)

∞
8=0 from 1 to ; satisfy 08 = 18+: for

some : ∈ Z and all 8 sufficiently large.
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Figure 2. Rectangle �.

Proof. Set 0, 1 ∈ � with 0 ∼!0 1 and keep the notation 0, 1 for the geodesic oriented arcs representing
them. Let G, H be the first points on 0, 1 in !0. Since 0 ∼!0 1, there is a geodesic segment GH ⊂ !0.
Furthermore, since !0 is minimal, there are segments GG ′, HH′ in 0, 1 such that G ′H′ is a geodesic segment
in !0 and GG ′H′H bounds a topological disc � embedded in ( (see Figure 2).

Consequently, the components of the intersection � ∩ ; are geodesic segments joining GG ′ to HH′,
which yields a bijection ℎ : GG ′∩ ; → HH′∩ ;. Let 0′ ⊂ 0 be an initial segment of 0 ending in I ∈ GG ′∩ ;,
and let 1′ be the initial segment of 1 ending in ℎ(I). Furthermore, let ; ′, ; ′′ be the terminal segments of
; starting in I, ℎ(I), respectively. Assume without loss of generality ; ′′ ⊂ ; ′, as in Figure 2.

Note that GI intersects Iℎ(I) ⊂ ; ′ only at I. Furthermore, GI is disjoint from ; ′′ if and only if
Hℎ(I) intersects ; ′′ only at ℎ(I). Consequently, the concatenation 0′ ∪ ; ′ represents a unicorn arc if and
only if 1′ ∪ ; ′′ represents a unicorn arc. Moreover, these two oriented arcs are homotopic. Finally, this
correspondence preserves the order of unicorn arcs, and all 08 for 8 sufficiently large are accounted for
in this way. �

4. Hyperfiniteness

We fix a base point 00 ∈ �.

Definition 4.1. Let P ⊂ �N be the set of infinite unicorn paths from 00 to any geodesic line asymptotic
to any !0 ∈ EL0 ((). Let 5 : P → mA(() be the map assigning to such path its limit � (!0) ∈ mA(()

with respect to the Gromov product (see Theorem 3.2).

Note that 5 is finite-to-one, since 00 is fixed and there are finitely many geodesic lines asymptotic to
a given !0 ∈ EL0(().

Remark 4.2. We equip the countable set � with the discrete topology and �N with the product topology.
Then the set P ⊂ �N is Borel. Indeed, by Lemma 3.3, P is the set of locally unicorn paths that are not
bounded. The set of locally unicorn paths is closed in �N, since each of the conditions on (28)

:
8= 9

to be

a unicorn path is closed. Furthermore, for each = ≥ 0, the set of sequences in �N at distance ≤ = from
00 is closed, so the set of sequences in �N at bounded distance from 00 is a countable union of closed
sets. Consequently, P is a countable intersection of open sets.

Since locally unicorn paths are uniformly Hausdorff close to geodesic edge paths, and the function 5

assigns their limits in mA((), we have that 5 is continuous with respect to the metric on mA(() defined
using the Gromov product.

Let T be the countable set of finite-length edge paths in A((), up to the action of Mod((), equipped
with the discrete topology. For an infinite unicorn path % = (28)

∞
8=0, given 8 ≥ 0 and 9 = 8 + 1, . . . , the

subsurfaces Σ8, 9 ⊆ ( filled by 28 and 2 9 form an ascending sequence Σ8,8+1 ⊆ Σ8,8+2 ⊆ · · · that stabilises
with some subsurface, which we call Σ8 ⊆ (. For each 8 ≥ 0, let <(8) > 8 + 1 be minimal satisfying

Σ8+1,<(8) = Σ8+1. Let )8 =
(

2 9

)<(8)

9=8
, and let [)8] be the equivalence class of )8 in T. Let 6 : P → T

N be
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the map defined by 6(%) = ([)8])
∞
8=0. Let �C be the tail equivalence relation on T

N described in Section 1
(with Ω = T).

Note that the definition of 6 can be analogously extended to infinite unicorn paths % ∉ P (that is, to
infinite unicorn paths that start at points distinct from 00), which we will make use of later on.

Remark 4.3. We equip T
N with the product topology. Then the map 6 : P → T

N is Borel. Indeed,
for all 0 ≤ 8 < 9 , the maps % → Σ8, 9 are continuous maps from P to the countable discrete set of
subsurfaces of (, and hence their limits % → Σ8 are Borel. Thus, for all 0 ≤ 8 < 9 , the subset of P
defined by the identity Σ8, 9 = Σ8 is Borel, and so the maps <(8) : P → N are Borel. Consequently, all
the maps [)8] : P → T are Borel, as desired.

Lemma 4.4. Set %, %′ ∈ P. If 6(%) ∼�C
6(%′), then there is k ∈ Mod(() satisfying k 5 (%) = 5 (%′).

Conversely, for each orbit l of the action of Mod(() on mA((), there are finitely many equivalence
classes of �C on T

N containing all 6(%) for % ∈ P with 5 (%) ∈ l.

Proof. Denote % = (28)
∞
8=0, %

′ =
(

2′8
)∞

8=0. Let ) ′
8 be defined for %′ analogously as )8 was for %. If

6(%) ∼�C
6(%′), then there are : ∈ Z, 9 ∈ N such that [)8] =

[

) ′
8+:

]

for all 8 ≥ 9 . In particular, there is
k ∈ Mod(() with k)9 = ) ′

9+:
. We will show inductively that k)8 = ) ′

8+:
for all 8 ≥ 9 , so in particular

k28 = 2′
8+:

implying k 5 (%) = 5 (%′).
Suppose that we have established k)8 = ) ′

8+:
for some 8 ≥ 9 . If <(8 + 1) ≤ <(8), then k)8+1 = ) ′

8+1+:
is immediate, so we can assume <(8 + 1) > <(8). Let d ∈ Mod(() be such that d)8+1 = ) ′

8+1+: . Then
d−1k fixes all 28+1, . . . , 2<(8) . Thus the restriction of d−1k to the subsurface Σ8+1 ⊂ (, which 28+1 and
2<(8) fill, is the identity map. By the definition of Σ8+1, we have that 2<(8)+1, . . . , 2<(8+1) all lie in Σ8+1.
This implies that d−1k fixes them, and so k)8+1 = ) ′

8+1+: , completing the induction.
For the converse, let l be the orbit under Mod(() of some � (!0) ∈ mA((). Let ;1, . . . , ;= be the

finitely many geodesic lines asymptotic to !0. Choose 01, . . . , 0? ∈ � that are representatives of the
equivalence classes of ∼!0 distinct from the one containing 00. For 0 ≤ @ ≤ ? and 1 ≤ 9 ≤ =, let
%@ 9 = %

(

0@ , ; 9
)

.
Set % = (28)

∞
8=0 ∈ P with 5 (%) ∈ l. By Theorem 3.2, we have % = %(00, ;), where ; is a geodesic

line asymptotic to k!0 for some k ∈ Mod((). In particular, for some 1 ≤ 9 ≤ = we have ; = k; 9 . Thus
k−1% = %

(

k−100, ; 9
)

. Choose 0 ≤ @ ≤ ? so that 0@ ∼!0 k
−100. By Lemma 3.4, writing %@ 9 = (18)

∞
8=0,

we have k−128 = 18+: for some : ∈ Z and all 8 sufficiently large. We have then that 6
(

%@ 9

)

and 6(k−1%),
hence also 6(%), are tail equivalent. �

Proof of Theorem 1.1. Write � for the equivalence relation on mA(() induced by the action of Mod(()
and write �∗ for the equivalence relation on P that is the pullback of � via 5 – that is, % ∼�∗ %′ if
5 (%) ∼� 5 (%′). Since � is Borel and countable, and 5 is Borel and finite-to-one, we have that �∗ is
also Borel and countable.

Since 5 is a Borel finite-to-one function, it has a Borel right inverse by the Lusin–Novikov uniformi-
sation theorem [Kec95, Thm 18.10]. Consequently, � is Borel reducible to �∗. Thus it is enough to
show that �∗ is hyperfinite.

Write �∗
C for the equivalence relation on P that is the pullback of �C via 6. Since �C is Borel, and

6 is Borel, we have that �∗
C is Borel. By Lemma 4.4, we have �∗

C ⊆ �∗ and every equivalence class of
�∗ contains finitely many equivalence classes of �∗

C . (In particular, �∗
C is countable.) Thus by [JKL02,

Prop 1.3(vii)], it is enough to show that �∗
C is hyperfinite.

Note that 6 is a Borel reduction of �∗
C to �C . Thus since �C is hyperfinite [DJK94, Cor 8.2], we have

that �∗
C is hyperfinite as well. �

Proof of Corollary 1.2. Assume first that ( has = ≥ 1 punctures. Then by [Kla99, Thm 1.3], Theorem 1.1
and [JKL02, Prop 1.3(iii)], it suffices to prove that EL(() is a Borel subset of EL0 ((). Indeed, !0 ∈

EL0(() is a minimal filling lamination if and only if each geodesic representative of a curve 2 on (

intersects !0 and does it transversally. Given 2, this is an open condition, and so EL(() is a countable
intersection of open sets.
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Second, assume = = 0 and let (′ be the surface obtained from ( by adding one puncture at a
point outside the closure of the union of all embedded geodesic circles and lines, which exists by
[BS85, Thm I]. This induces a closed embedding 4 : EL(() → EL((′), which is a section for the map
A : EL((′) → EL(() defined by forgetting the puncture (see [PO17, §4.2] for details). Thus for each
!1, !2 ∈ EL((), with k ′4(!1) = 4(!2) for some k ′ ∈ Mod((′), the image k ∈ Mod(() of k ′ under
the puncture-forgetting map Mod((′) → Mod(() satisfies k(!1) = !2.

Conversely, set ! ∈ EL(() and let '1, . . . , '= ⊂ ( be the components of ( \ !. For 1 ≤ 9 ≤ =, let ! 9

be a lamination in EL((′) obtained from ! by adding a puncture in ' 9 , under an arbitrary identification
with (′. All such identifications differ by Mod((′), so the resulting orbit

[

! 9

]

in EL((′) does not depend
on our choice. Since 4 is a section for A , we have 4(!) ∈

⋃=
9=1

[

! 9

]

. Analogously, for any k ∈ Mod((),

we have 4(k(!)) ∈
⋃=

9=1

[

! 9

]

.
Consequently, under the identification of EL(() with 4(EL(()), each orbit of Mod(() on EL(()

consists of the intersections of finitely many orbits of Mod((′) on EL((′) with 4(EL(()). Thus by
[JKL02, Prop 1.3 (iii,vii)], the hyperfiniteness of the action of Mod(() on EL(() follows from the
hyperfiniteness of the action of Mod((′) on EL((′). �

5. Complete geodesic laminations

A geodesic lamination ! on ( is complete if each component of ( \ ! is an ideal triangle or a once-
punctured monogon, and ! lies in the closure (in the Hausdorff topology on the space of compact subsets
of () of the set of embedded geodesic circles. By C!(() we denote the space of complete geodesic
laminations with the Hausdorff topology, which is compact and Hausdorff [Ham09, §2.1].

Proof of Corollary 1.3. For a complete geodesic lamination !, let ! ′ denote the union of minimal
sublaminations of ! that are not embedded geodesic circles. Let . (!) denote the subsurface of ( filled
by ! ′. Given a subsurface . ⊆ (, let C!((,. ) ⊂ C!(() denote the subspace of laminations ! with
. (!) = . . We claim that each C!((,. ) is a Borel subset of C!((), and hence Mod(()C!((,. ) is Borel
as well.

Indeed, for a lamination ! in C!((,. ), the union / of the nonisolated leaves of ! on ( \ . is a
union of disjoint (geodesic representatives of) curves on ( \. . Thus a complete geodesic lamination !

belongs to C!((,. ) if and only if

◦ each curve 2 on . intersects ! transversally an infinite number of times (� X condition) and
◦ there exists a union of disjoint curves / on ( \ . such that each curve 2 on ( \ (. ∪ /) or in / ∪ m.

does not intersect ! transversally an infinite number of times (�fXf condition).

Thus C!((,. ) is an �fXf set, justifying the claim.
By [JKL02, Prop 1.3(v)], to prove that the orbit equivalence relation on C!(() induced by the action

on Mod(() is hyperfinite, it suffices to show that its restriction to each Mod(()C!((,. ) is hyperfinite.
By [JKL02, Prop 1.3(vi)], it suffices to show that the orbit equivalence relation � on C!((,. ) induced
by the action of the stabiliser Mod((). of . in Mod(() is hyperfinite.

Let .1, . . . , .: be the components of . , where we treat all geodesic boundary components as punc-
tures. Let 6 : C!((,. ) → EL(.1) × · · · × EL(.: ) be the map assigning to each ! the components
of its sublamination ! ′. In the case where . = ∅, the product EL(.1) × · · · × EL(.: ) should be un-
derstood as a point. By Corollary 1.2 and [JKL02, Prop 1.3(iv)], the orbit equivalence relation on
EL(.1) × · · · × EL(.: ) induced by the action of Mod(.1) × · · · × Mod(.: ) is hyperfinite. The group
Mod(.1) × · · · × Mod(.: ) is of finite index in Mod(.1 ⊔ · · · ⊔.: ). Thus by [JKL02, Prop 1.3(vii)], the
orbit equivalence relation on EL(.1) × · · · × EL(.: ) induced by the action of Mod(.1 ⊔ · · · ⊔ .: ) is
hyperfinite. Its pullback � under 6 is thus hyperfinite as well, since 6 has countable fibres. Since � is
contained in �, it is hyperfinite by [JKL02, Prop 1.3(i)], as desired. �
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