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Randomness is one of the most important characteristics of turbulence, but its origin
remains an open question. By means of a ‘thought experiment’ via several clean numerical
experiments based on the Navier–Stokes equations for two-dimensional turbulent
Kolmogorov flow, we reveal a new phenomenon, which we call the ‘noise-expansion
cascade’ whereby all micro-level noises/disturbances at different orders of magnitudes in
the initial condition of Navier–Stokes equations enlarge consistently, say, one by one like
an inverse cascade, to macro level. More importantly, each noise/disturbance input may
greatly change the macro-level characteristics and statistics of the resulting turbulence,
clearly indicating that micro-level noise/disturbance might have great influence on macro-
level characteristics and statistics of turbulence. In addition, the noise-expansion cascade
closely connects randomness of micro-level noise/disturbance and macro-level disorder of
turbulence, thus revealing an origin of randomness of turbulence. This also highly suggests
that unavoidable thermal fluctuations must be considered when simulating turbulence,
even if such fluctuations are several orders of magnitudes smaller than other external
environmental disturbances. We hope that the ‘noise-expansion cascade’, as a fundamental
property of the Navier–Stokes equations, could greatly deepen our understandings about
turbulence, and also be helpful for attacking the fourth millennium problem posed by the
Clay Mathematics Institute in 2000.
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1. Introduction
‘Turbulence is the last great unsolved problem of classical physics’, as pointed out by
the Nobel Prize winner Richard Feynman. In particular, randomness is one of the most
important characteristics of turbulence (Davidson 2004), but its origin remains an open
question until now, to the best of our knowledge.

Today it is widely accepted by the scientific community that turbulent flows can be
described mathematically by the Navier–Stokes (NS) equations. The NS equations are
so important and fundamental that their solution becomes the fourth millennium problem
posed by Clay Mathematics Institute of Cambridge, Massachusetts (2000). In a pioneering
paper, Orszag (1970) proposed the ‘direct numerical simulations’ (DNS) that numerically
solved the NS equations without any turbulence mode. Since then, DNS have become a
useful tool in fundamental research of turbulence (Rogallo 1981; She, Jackson & Orszag
1990; Nelkin 1992; Coleman & Sandberg 2010; Alexakis et al. 2024), and each result given
by DNS has been regarded as a ‘clean’ benchmark solution, because it is widely believed
that numerical noise of DNS would not grow to reach the macroscopic level due to fluid
viscosity. Coleman & Sandberg (2010) pointed out that DNS have ‘the ability to perform
fundamental studies of clean flows unaffected by numerical, modelling and measurement
errors’ and ‘the complete control of the initial and boundary conditions, and each term
in the governing equations, also leads to profound advantages over laboratory and field
studies’. It should be emphasised here that researchers traditionally focus on ‘the initial
and boundary conditions’ and flow domain of turbulence, but mostly neglect the influence
of micro-level noises such as thermal fluctuation and environmental disturbances.

However, turbulence governed by the NS equations should be chaotic, i.e. its
spatiotemporal trajectories are very sensitive (i.e. unstable) to the initial conditions
(Deissler 1986; Boffetta & Musacchio 2017; Berera & Ho 2018). Recently, Ge, Rolland
& Vassilicos (2023) reported that the average uncertainty energy of three-dimensional NS
turbulence grows exponentially. A similar phenomenon, sometimes called ‘inverse error
cascade’, was also reported in some previous publications (Aurell et al. 1996; Boffetta
& Musacchio 2001, 2010; Boffetta & Ecke 2012; Lin, Wang & Liao 2017; Ma et al.
2024), and was due to the famous butterfly effect of chaos. Note that the difference
in initial condition of these previous publications is at the same order of magnitude.
Different from these previous publications, in this paper, we focus on the influence of
several micro-level noises/disturbances at quite different orders of magnitudes. Here, the
noises/disturbances might be either physical environmental noises (such as those caused
by thermal fluctuations) or artificial disturbances. It should be emphasised that, as pointed
out by Coleman & Sandberg (2010), ‘the profound advantages over laboratory and field
studies’ of numerical experiment is the ‘complete control of the initial and boundary
conditions’. Therefore, we can use such kinds of freedom in choice of initial/boundary
condition of the NS equations to do some ‘thought experiments’ so as to deepen
our understandings about turbulence. Here, let f (r)+�1(r)+�2(r) denote an initial
condition of the NS equations, where r is a spatial vector, f (r) is a function at the macro
level, �1(r) is a small disturbance at a micro level, for example at the order 10−20 of
magnitude, and �2(r) is an even smaller disturbance, for example at the order 10−40 of
magnitude. Traditionally, it is widely believed that the second disturbance �2(r) could be
negligible since it is 20 orders of magnitude smaller than the first disturbance �1(r). Is
this traditional viewpoint really correct for turbulent flow governed by NS equations? This
is a fundamental problem, which, to the best of our knowledge, is also an open question.

In order to answer the two open questions mentioned above, it is necessary to develop
a new kind of numerical algorithm, whose numerical noise must be much smaller than
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micro-level physical disturbances and artificial numerical noise throughout a finite but
long enough interval of time. In 2009, a method called ‘clean numerical simulation’
(CNS) was proposed by Liao (2009) for solving problems involving chaos and turbulence,
and since then its computational efficiency has been increased, step by step, by several
orders of magnitude (Liao & Wang 2014; Lin et al. 2017; Hu & Liao 2020; Qin & Liao
2020, 2023a,b, 2024; Liao & Qin 2022; Liao 2023). Unlike DNS, the CNS algorithm uses
multiple precision (Oyanarte 1990) with sufficient significant digits and thus can decrease
both the truncation error and round-off error to any given tiny level. Thus numerical noise
of CNS can be rigorously negligible throughout a time interval t ∈ [0, Tc] that is long
enough for calculating statistics (Liao 2023), where Tc is called ‘the critical predictable
time’. The CNS result is therefore much more accurate than its DNS counterpart over a
finite but long enough interval of time, so can be used as a clean benchmark solution to
check, for the first time, the validity of DNS.

For example, it was found by Qin & Liao (2022) that the DNS result of a two-
dimensional (2-D) turbulent Rayleigh–Bénard (RB) convection, which is excited by
the thermal fluctuation as an initial condition, quickly departs from the corresponding
CNS benchmark solution: the result initially exhibits a non-shearing vortical/roll-like
convection, but then it quickly turns into a kind of zonal flow, while the CNS benchmark
solution consistently retains the same non-shearing vortical/roll-like convection behaviour
over a finite but long enough time interval t ∈ [0, Tc], where Tc, called ‘the critical
predictable time’, is equal to 500 for the RB convection under consideration. To further
confirm this, 2-D turbulent Kolmogorov flow, excited by an initial condition with a kind of
spatial symmetry, was solved by DNS and CNS, respectively (Qin et al. 2024). It was found
that the spatiotemporal trajectory of the CNS benchmark solution retains the same spatial
symmetry as the initial condition throughout the whole interval of time [0, 1000]; however,
the spatiotemporal trajectory of the corresponding DNS result is the same at the beginning
as the CNS benchmark result, but quickly loses the spatial symmetry, clearly indicating
that the spatiotemporal trajectory of the 2-D turbulent Kolmogorov flow given by DNS
is badly polluted by artificial numerical noise that quickly increases to the same order of
magnitude as the exact solution of the NS equations. This clearly illustrated that the 2-D
turbulent Kolmogorov flow is a chaotic system in that its spatiotemporal trajectory is rather
sensitive to small disturbances caused by artificial numerical noise (Qin et al. 2024). More
importantly, as illustrated by Qin & Liao (2022) and Qin et al. (2024), the DNS result
sometimes may deviate greatly from the CNS benchmark solution not only in flow type
and/or spatial symmetry of flow field, but also even in statistics. These two successful
applications of CNS illustrated that CNS can indeed provide us with the capability to carry
out clean numerical experiments that enable us to investigate accurately the evolution and
propagation of micro-level noises/disturbances in the initial condition of the NS equations
for turbulence. It should be emphasised that this object cannot be realised by DNS whose
numerical noise quickly increases to the same order of magnitude as the true solution, as
illustrated by Qin & Liao (2022) and Qin et al. (2024).

In addition, CNS has been used successfully to attack some rather difficult problems in
classical mechanics. For example, the number of periodic orbits of the famous three-body
problem, which can be traced back to Newton in 1687, has been increased by several orders
of magnitude by means of CNS (Li & Liao 2017; Li, Jing & Liao 2018; Liao, Li & Yang
2022). This is because CNS, unlike other traditional numerical methods, can correctly
calculate the essentially chaotic trajectories of the three-body system (Crane 2017; Whyte
2018). The three-body problem highlights the need to determine the precise spatiotemporal
trajectory of certain complicated dynamic systems.
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In this paper, greatly inspired by spatial symmetry of the CNS benchmark solution
(Qin et al. 2024) of the 2-D turbulent Kolmogorov flow, we properly conceive/design
several clean numerical experiments based on CNS for a 2-D turbulent Kolmogorov
flow governed by the NS equations with specially chosen initial conditions that contain
terms of different orders of magnitudes and have different spatial symmetries, so as to
accurately investigate these terms’ propagations, evolutions and macro-scale influences
on the turbulence. These clean numerical experiments provide us with rigorous evidence
that all noises/disturbances at different orders of magnitudes in the initial condition of the
NS equations could enlarge, one by one like an inverse cascade, to a macro level, and
moreover, each of them could greatly change the later turbulence characteristics. Based
on this interesting phenomenon, we propose a new concept, which we call the ‘noise-
expansion cascade’. The noise-expansion cascade closely connects the randomness of the
initial micro-level noise/disturbance to the later macro-level disorder of turbulence, and
thus reveals an origin of randomness of turbulence. In addition, according to the concept of
the noise-expansion cascade, unavoidable thermal fluctuations must be considered when
simulating turbulence, even if such fluctuations are many orders of magnitudes smaller
than other external disturbances.

The paper is structured as follows. Section 2 describes the design of the clean numerical
experiments. Section 3 reports the detailed results obtained using the clean numerical
experiments, notably the noise-expansion cascade phenomenon. Section 4 discusses the
main findings of the work.

2. Clean numerical experiment
Consider the 2-D incompressible Kolmogorov flow (Obukhov 1983; Chandler & Kerswell
2013; Wu et al. 2021) in a square domain [0, L]2 (with a periodic boundary condition)
under Kolmogorov forcing, which is stationary, monochromatic and cosusoidally varying
in space, with an integer nK describing the forcing scale, and χ representing the
corresponding forcing amplitude per unit mass of fluid. Using the length scale L/2π and
the time scale

√
L/2πχ , the non-dimensional NS equation of this 2-D Kolmogorov flow

in the form of a stream function reads

∂

∂t
(∇2ψ)+ ∂(ψ,∇2ψ)

∂(x, y)
− 1

Re
∇4ψ + nK cos(nK y)= 0, (2.1)

where

Re =
√
χ

ν

(
L

2π

)3/2

is the Reynolds number, ν denotes the kinematic viscosity, ψ is the stream function,
x, y ∈ [0, 2π ] are horizontal and vertical coordinates, t denotes the time, ∇2 is the Laplace
operator, ∇4 = ∇2∇2, and

∂(a, b)

∂(x, y)
= ∂a

∂x

∂b

∂y
− ∂b

∂x

∂a

∂y

is the Jacobi operator. Note that the stream function ψ always satisfies the periodic
boundary condition

ψ(x, y, t)=ψ(x + 2π, y, t)=ψ(x, y + 2π, t). (2.2)

In order to have a relatively strong state of turbulent flow, we choose nK = 16 and Re =
2000 for all cases considered in this paper.
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Let us consider the following three different initial conditions:

ψ(x, y, 0) = −1
2

[
cos(x + y)+ cos(x − y)

]
, (2.3)

ψ(x, y, 0) = −1
2

[
cos(x + y)+ cos(x − y)

] + δ′ sin(x + y), (2.4)

ψ(x, y, 0) = −1
2

[
cos(x + y)+ cos(x − y)

] + δ′ sin(x + y)+ δ′′ sin(x + 2y), (2.5)

where δ′ and δ′′ are constants, corresponding to a Kolmogorov flow with different spatial
symmetry, as mentioned below.

Note that the initial condition (2.3) has the spatial symmetry{
rotation ψ(x, y, t)=ψ(2π − x, 2π − y, t),
translation ψ(x, y, t)=ψ(x + π, y + π, t), (2.6)

at t = 0. Here, we emphasise that Qin et al. (2024) solved the 2-D turbulent Kolmogorov
flow governed by (2.1) and (2.2) subject to the initial condition (2.3) in the case nK = 4 and
Re = 40 by means of DNS and CNS. They found that the spatiotemporal trajectory given
by DNS agrees well with the CNS benchmark solution from the beginning, and retains
the spatial symmetry (2.6) until t ≈ 120 when the DNS result completely loses spatial
symmetry, unlike the CNS benchmark solution, which retains the spatial symmetry (2.6)
throughout the whole time interval t ∈ [0, 1500], clearly indicating that the spatiotemporal
trajectory given by DNS is badly polluted by artificial numerical noise when t � 120. So
it is impossible to obtain rigorous, accurate prediction of the evolution and propagation
of micro-level disturbance by DNS. Therefore, we have to give up DNS in this paper, but
use CNS instead. Importantly, Qin et al. (2024) revealed the important fact that the 2-D
Kolmogorov turbulent flow given by CNS retains the same spatial symmetry as its initial
condition; we will use this fact to do a thought experiment via several clean numerical
experiments based on CNS, given that the same findings about spatial symmetry should
apply qualitatively for the case nK = 16 and Re = 2000 considered in this paper.

The CNS algorithm is now described briefly. First, to decrease the spatial truncation
error to a small enough level, as in DNS, we discretise the spatial domain of the flow
field by a uniform mesh N 2 = 10242, and adopt the Fourier pseudo-spectral method for
spatial approximation with the 3/2 rule for dealiasing. In this way, the corresponding
spatial resolution is fine enough for the considered Kolmogorov flow: the grid spacing
is less than the average Kolmogorov scale and enstrophy dissipative scale, as mentioned
by Pope (2001) and Boffetta & Ecke (2012). In addition, in order to decrease the
temporal truncation error to a small enough level, unlike DNS, we use the 140th-order
(i.e. M = 140) Taylor expansion with a time step �t = 10−3. Furthermore, different
from DNS, we use multiple precision with 260 significant digits (i.e. Ns = 260) for all
physical/numerical variables and parameters, so as to decrease the round-off error to
a small enough level. In addition, the self-adaptive CNS strategy (Qin & Liao 2023b)
and parallel computing are adopted to dramatically increase the computational efficiency
of the CNS algorithm. In particular, another CNS result is given by the same CNS
algorithm but with even smaller numerical noise (i.e. using even larger M and/or Ns
than those mentioned above), which confirms (by comparison) that the numerical noise
of the former CNS result (say, given by N = 1024, M = 140 and Ns = 260) remains
rigorously negligible throughout the whole time interval t ∈ [0, 300] so that it can be
used as a clean benchmark solution. For further details, refer to Qin et al. (2024) and
Liao (2023). Note that the related code of CNS and some movies can be downloaded via
GitHub (https://github.com/sjtu-liao/2D-Kolmogorov-turbulence).
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3. Results of clean numerical experiments
Our clean numerical experiments based on CNS comprise two stages.

(i) In the first stage, we set δ′ = O(1) and δ′′ = O(1) in (2.4) and (2.5), then confirm by
means of CNS that the 2-D turbulent Kolmogorov flow subject to the initial condition
(2.3) or (2.4) always retains the same spatial symmetry as its corresponding initial
condition, but the turbulent flow subject to the initial condition (2.5) has no spatial
symmetry at all.

(ii) In the second stage, we set δ′ = 10−20 and δ′′ = 10−40 in (2.4) and (2.5), then carry
out the corresponding clean numerical experiments by means of CNS. We name the
CNS results subject to the three different initial conditions (2.3), (2.4) and (2.5) as
Flow CNS, Flow CNS′ and Flow CNS′′, respectively. The so-called noise-expansion
cascade phenomenon is revealed by comparing the evolutions of spatial symmetry of
these three turbulent flows.

Details of our clean numerical experiments based on CNS are described below.

3.1. Spatial symmetry under different initial conditions
Equations (2.1) and (2.2) subject to the initial condition (2.3) in the case Re = 2000 and
nK = 16 are solved numerically by means of CNS. It is found that this CNS flow always
retains the same spatial symmetry (2.6) throughout the whole time interval t ∈ [0, 300],
exactly as the initial condition (2.3). This accords with the finding about the spatial
symmetry of the 2-D Kolmogorov turbulent flow obtained by Qin et al. (2024) using CNS
for the different case Re = 40 and nK = 4. According to the governing equation (2.1), the
periodic boundary condition (2.2), the initial condition (2.3) and the spatial symmetry
(2.6), the corresponding solution should be in series form as

ψ(x, y, t)=
∑

m+n=2r

am,n(t) cos(mx + ny)+
∑

m−n=2q

bm,n(t) cos(mx − ny),

where am,n(t), bm,n(t) are unknown time-dependent coefficients, and m � 0, n � 0, r > 0,
q are integers. Thus the vorticity ω= ∇2ψ of the flow field naturally retains the same
spatial symmetry throughout the time interval t ∈ [0, 300], i.e.{

rotation ω(x, y, t)=ω(2π − x, 2π − y, t),
translation ω(x, y, t)=ω(x + π, y + π, t). (3.1)

Note that the initial condition (2.4) in the case δ′ = 1 has spatial symmetry in
translation, say,

ψ(x, y, t)=ψ(x + π, y + π, t), ω(x, y, t)=ω(x + π, y + π, t) (3.2)

for t = 0 here. Similarly, it is found that the corresponding CNS solution governed by
(2.1) and (2.2) subject to the initial condition (2.4) with δ′ = 1 always retains the same
spatial symmetry (3.2) throughout the whole time interval t ∈ [0, 300]. In addition, it is
further found that the same spatial symmetry (3.2) is obtained as long as δ′ is a constant
at a macro-level O(1), such as δ′ = 2,−3, π , and so on. It should be emphasised that
the initial condition (2.3) and the spatial symmetry (2.6) involve two kinds of spatial
symmetry, i.e. rotation and translation, but the initial condition (2.4) in the case δ′ = O(1)
and the spatial symmetry (3.2) have only one, i.e. translation.

Note that the initial condition (2.5) in the case δ′ = 1 and δ′′ = 1 has no spatial
symmetry, due to its third term sin(x + 2y). In a similar way, it is found that the
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corresponding CNS solution indeed has no spatial symmetry throughout the whole time
interval t ∈ [0, 300]. The same conclusion about the spatial symmetry is obtained as long
as δ′ and δ′′ are constants at a macro-level O(1), such as δ′ δ′, δ′′ = 2,−3, π , and so on.

Using the aforementioned findings from clean numerical experiments based on CNS,
we discover the so-called noise-expansion cascade phenomenon by undertaking the clean
numerical experiments described below.

3.2. Discovery of the noise-expansion cascade
In the second stage of our clean numerical experiments based on CNS, we hereafter choose
δ′ = 10−20 and δ′′ = 10−40 in the initial conditions (2.4) and (2.5), corresponding to two
micro-level disturbances 10−20 sin(x + y) and 10−40 sin(x + 2y), where the second is 20
orders of magnitude smaller than the first. Thus the initial conditions (2.4) and (2.5)
become hereafter

ψ(x, y, 0) = −1
2

[
cos(x + y)+ cos(x − y)

] + 10−20 sin(x + y), (3.3)

ψ(x, y, 0) = −1
2

[
cos(x + y)+ cos(x − y)

] + 10−20 sin(x + y)

+ 10−40 sin(x + 2y), (3.4)

respectively. In other words, (2.1) and (2.2) in the case Re = 2000 and nK = 16 are solved
by means of CNS in the time interval t ∈ [0, 300], subject to initial condition (2.3), (3.3)
or (3.4), whose clean numerical simulations are called hereafter Flow CNS, Flow CNS′
and Flow CNS′′, for the sake of simplicity. Note that according to the three different initial
conditions (2.3), (3.3) and (3.4), Flow CNS′ is equal to Flow CNS plus δ1(x, y, t), and
Flow CNS′′ is equal to Flow CNS′ plus δ2(x, y, t), where δ1(x, y, t) and δ2(x, y, t) denote
the spatiotemporal evolution of the first disturbance 10−20 sin(x + y) and the second
disturbance 10−40 sin(x + 2y) in the initial conditions (3.3) and (3.4), respectively.

Due to the butterfly effect of chaos, a micro-level disturbance of a chaotic system grows
exponentially to the macro level (Deissler 1986; Aurell et al. 1996; Boffetta & Musacchio
2001; Boffetta & Ecke 2012; Boffetta & Musacchio 2017; Berera & Ho 2018; Ge et al.
2023; Ma et al. 2024). Logically, the smaller the disturbance, the longer the time it requires
to reach the macro level. According to Qin et al. (2024), the two turbulent Kolmogorov
flows under consideration are chaotic systems. Therefore, δ2(x, y, t), corresponding to
the second disturbance 10−40 sin(x + 2y), requires more time to reach the macro level
than δ1(x, y, t), corresponding to the first disturbance 10−20 sin(x + 2y). According to
our previous clean numerical experiments mentioned in § 3.1, when both δ1(x, y, t)
and δ2(x, y, t) are negligible, Flow CNS′ and Flow CNS′′ should have the same spatial
symmetry (2.6) as the initial condition (2.3). However, when δ1(x, y, t) corresponding to
the first disturbance enlarges to a macro-level O(1) but δ2(x, y, t) is still at a micro level
and thus negligible, the corresponding Flow CNS′ and Flow CNS′′ should have the same
spatial symmetry (3.2) as the initial condition (2.4) when δ′ = O(1). In addition, when
both δ1(x, y, t) and δ2(x, y, t) enlarge to a macro-level O(1), the corresponding Flow
CNS′′ should have no spatial symmetry at all, just like 2-D turbulent Kolmogorov flow
subject to the initial condition (2.5) when δ′ = O(1) and δ′′ = O(1). Thus by comparing
the spatial symmetry of Flow CNS, Flow CNS′ and Flow CNS′′ given by our clean
numerical experiments, we can find out when the evolution δ1(x, y, t), corresponding to
the first disturbance 10−20 sin(x + y), and the evolution δ2(x, y, t), corresponding to the
second disturbance 10−40 sin(x + 2y), enlarge to macro-level O(1).

As shown in figure 1, the vorticity field ω(x, y, t) of Flow CNS, subject to the initial
condition (2.3), is compared with that of Flow CNS′, subject to the initial condition (3.3).
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Figure 1. Vorticity fields ω(x, y) of the 2-D turbulent Kolmogorov flow governed by (2.1) and (2.2) for
nK = 16 and Re = 2000 given by CNS, subject to either the initial condition (2.3) (left, Flow CNS) or
(3.3) (right, Flow CNS′), at different times: (a,b) t = 30, (c,d) t = 35, (e,f ) t = 40 and (g,h) t = 300. See
supplementary movie 1 for the whole evolution process of vorticity field, which can be downloaded via GitHub
(https://github.com/sjtu-liao/2D-Kolmogorov-turbulence).
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Note that Flow CNS retains the spatial symmetry (3.1) of vorticity throughout the whole
time interval t ∈ [0, 300]. Obviously, the term 10−20 sin(x + y) in the initial condition
(3.3) can be regarded as a micro-level disturbance added to the initial condition (2.3), since
it is 20 orders of magnitude smaller. Certainly, it takes some time for this tiny disturbance
10−20 sin(x + y) to be enlarged to a macro-level O(1). Indeed, Flow CNS′ appears the
same as Flow CNS from the beginning, for example at t = 30 as shown in figures 1(a)
and 1(b), when δ1(x, y, t) corresponding to the tiny disturbance 10−20 sin(x + y) of the
initial condition (3.3) has not been increased to macro level, as shown in figures 2(a–e),
so that both Flow CNS and Flow CNS′ agree well and retain the same spatial symmetry
(3.1) of vorticity. It is found that the vorticity of Flow CNS′ deviates from the spatial
symmetry (3.1) obviously at t ≈ 35, and thereafter loses the spatial symmetry (3.1) but
retains the spatial symmetry (3.2) throughout the time interval t ∈ [35, 300] instead, as
shown in figures 1(c–h). Note that the term sin(x + y) of the initial condition (3.3) implies
the spatial symmetry of translation but no spatial symmetry of rotation since sin(x + y)=
sin(π + x + π + y) but sin(x + y) �= sin(2π − x + 2π − y). The explanation is provided
by considering figure 2: δ1(x, y, t) corresponding to the disturbance 10−20 sin(x + y) in
the initial condition (3.3), which increases from a micro level, step by step, to a macro level
at t ≈ 35, remains the same spatial symmetry (3.2) throughout the whole time interval
t ∈ [0, 300] so that it destroys the spatial symmetry (3.1) and triggers the transition of the
spatial symmetry from (3.1) to (3.2) at t ≈ 35 when it reaches a macro-level O(1). This
provides us with rigorous evidence that a very small disturbance 10−20 sin(x + y) to the
initial condition (3.3) indeed increases to the same order of magnitude as the exact solution
of the NS equations at t ≈ 35, which destroys the spatial symmetry (3.1) and triggers the
transition of the spatial symmetry from (3.1) to (3.2).

Figure 3 compares the vorticity field ω(x, y, t) of Flow CNS′, subject to the initial
condition (3.3), with that of Flow CNS′′, subject to the initial condition (3.4). Traditionally,
compared with the first disturbance 10−20 sin(x + y) in the initial condition (3.4), the
second disturbance 10−40 sin(x + 2y) could be neglected completely, since it is 20 orders
of magnitude smaller. However, this traditional viewpoint is in fact wrong: Flow CNS′′
looks the same as Flow CNS from the beginning until t ≈ 35, when it loses the spatial
symmetry (3.1) but has the new spatial symmetry (3.2) instead, indicating that δ1(x, y, t)
corresponding to the first disturbance 10−20 sin(x + y) increases to macro-level O(1) and
thus triggers the transition of the spatial symmetry from (3.1) to (3.2). More importantly,
it is found that Flow CNS′′ appears the same as Flow CNS′ from the beginning, for
example at t ≈ 88 as shown in figures 3(a) and 3(b), until t ≈ 93, when it loses the spatial
symmetry (3.2), as shown in figures 3(c) and 3(d). Note that Flow CNS′′ completely
loses spatial symmetry after t � 98, as shown in figures 3(e–h), clearly indicating that
the evolution δ2(x, y, t), corresponding to the second micro-level disturbance 10−40

sin(x + 2y), must increase to a macro-level O(1), and finally destroys the spatial
symmetry. Note that the term sin(x + 2y) has no spatial symmetry in rotation and
translation, since sin(x + 2y) �= sin(2π − x + 4π − 2y) and sin(x + 2y) �= sin(π + x +
2π + 2y). So the reason is very clear from figure 4: δ2(x, y, t), corresponding to the
second disturbance 10−40 sin(x + 2y) in the initial condition (3.4), increases from a micro
level, step by step, to a macro level at t ≈ 93, which has no spatial symmetry throughout
the whole time interval t ∈ [0, 300] so that it destroys the spatial symmetry (3.2) at t ≈ 93
when it reaches a macro-level O(1).

Let us focus on the initial condition (3.4): the second disturbance 10−40 sin(x + 2y)
is 20 orders of magnitude smaller than the first disturbance 10−20 sin(x + y). From the
traditional viewpoint, the second disturbance should be negligible compared with the first
one. However, on the contrary, both the first disturbance 10−20 sin(x + y) and the second
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Figure 2. Vorticity fields of the evolution δ1(x, y, t), corresponding to the first disturbance 10−20 sin(x + y)
in the initial condition (3.3) of 2-D turbulent Kolmogorov flow governed by (2.1) and (2.2) for nK = 16 and
Re = 2000 given by CNS, at the different times (a) t = 0, (b) t = 8, (c) t = 15, (d) t = 25, (e) t = 30, ( f ) t = 35,
(g) t = 100 and (h) t = 300.
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Figure 3. Vorticity fields ω(x, y) of the 2-D turbulent Kolmogorov flow governed by (2.1) and (2.2)
for nK = 16 and Re = 2000 given by CNS, subject to either the initial condition (3.3) (left, Flow
CNS′) or (3.4) (right, Flow CNS′′), at different times: (a,b) t = 88, (c,d) t = 93, (e, f ) t = 98 and (g,h)
t = 300. See supplementary movie 2 for the whole evolution process, which can be downloaded via GitHub
(https://github.com/sjtu-liao/2D-Kolmogorov-turbulence).
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Figure 4. Vorticity fields of the evolution δ2(x, y, t), corresponding to the second disturbance 10−40 sin(x +
2y) in the initial condition (3.4) of 2-D turbulent Kolmogorov flow governed by (2.1) and (2.2) for nK = 16
and Re = 2000 given by CNS, at the different times (a) t = 0, (b) t = 18, (c) t = 53, (d) t = 65, (e) t = 78,
(f ) t = 88, (g) t = 93 and (h) t = 300.
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Figure 5. Time histories of (a) Δ=
√

〈δ2
i 〉A with i = 1, 2, where δ1(x, y, t) denotes the evolution of the first

disturbance (green dashed line) and δ2(x, y, t) is the evolution of the second disturbance (blue dash-dotted
line) of the initial condition (3.4), and (b) the normalised correlation coefficient C(t) of vorticity of Flow CNS
versus δ1(x, y, t) (green dashed line) as well as that of Flow CNS′ versus δ2(x, y, t) (blue dash-dotted line),
for the 2-D turbulent Kolmogorov flow governed by (2.1) and (2.2) in the case nK = 16 and Re = 2000 subject
to the initial condition (3.4).

disturbance 10−40 sin(x + 2y) to the initial condition (3.4) enlarge separately, one by one
in an inverse cascade, to macro-level O(1): first the former triggers the transformation
of the spatial symmetry from (3.1) to (3.2) at t ≈ 35, then the latter totally destroys the
spatial symmetry of the 2-D turbulent Kolmogorov flow at t ≈ 93. This is very clear from
figure 2 for the evolution δ1(x, y, t) of the first disturbance 10−20 sin(x + y), and figure 4
for the evolution δ2(x, y, t) of the second disturbance 10−40 sin(x + 2y) of the initial
condition (3.4).

Figure 2 shows that the vorticity field caused by δ1(x, y, t) corresponding to the first
disturbance 10−20 sin(x + y) increases from a micro-order O(10−20) of magnitude at
t = 0, step by step, to the order O(10−15) at t = 8, O(10−10) at t = 15, O(10−5) at t = 25,
O(10−2) at t = 30, until a macro-order O(10) at t = 35. Figure 4 shows that the vorticity
field caused by δ2(x, y, t) corresponding to the second disturbance 10−40 sin(x + 2y)
increases from a micro-order O(10−40) of magnitude at t = 0, step by step, to the order
O(10−30) at t = 18, O(10−15) at t = 53, O(10−10) at t = 65, O(10−5) at t = 78, O(10−1)
at t = 88, until a macro-order O(10) at t = 93. All of these at different orders of magnitude
often coexist with a macroscopic flow field.

We write Δ=
√

〈δ2
i 〉A with i = 1, 2, where δ1(x, y, t) and δ2(x, y, t) denote

the evolutions of the first disturbance 10−20 sin(x + y) and the second disturbance
10−40 sin(x + 2y) to the initial condition (3.4), respectively, and 〈 〉A is an operator of

statistics defined in Appendix A. As shown in figure 5(a),
√

〈δ2
1〉A expands exponentially

until t ≈ 35, when it reaches a macro level, i.e.
√

〈δ2
1〉A ∼ O(1). Similarly,

√
〈δ2

2〉A expands

exponentially until t ≈ 93, when it is at a macro level, i.e.
√

〈δ2
2〉A ∼ O(1). As mentioned

before, Flow CNS′ is equal to Flow CNS plus δ1(x, y, t), and Flow CNS′′ is equal to Flow
CNS′ plus δ2(x, y, t). As shown in figure 5(b), the normalised correlation coefficient of
vorticity of Flow CNS versus δ1 is very small from the beginning to t ≈ 32, indicating
that there is no correlation between them because δ1(x, y, t) is negligible compared to
Flow CNS, until t ≈ 35, when their correlation suddenly becomes strong, indicating that
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Figure 6. Comparisons of (a) time histories of the spatially averaged kinetic energy dissipation rate 〈D〉A and
(b) the probability density function (PDF) of the kinetic energy dissipation D(x, y, t) of the 2-D turbulent
Kolmogorov flow, governed by (2.1) and (2.2) for nK = 16 and Re = 2000, given by Flow CNS subject to the
initial condition (2.3) (red solid line), Flow CNS′ subject to the initial condition (3.3) (green dash-dotted line),
and Flow CNS′′ subject to the initial condition (3.4) (blue dashed line).

δ1(x, y, t) is at the same order of magnitude as Flow CNS and thus is not negligible
thereafter. Similarly, the normalised correlation coefficient of vorticity of Flow CNS′
versus δ2(x, y, t) is very small from the beginning to t ≈ 90, indicatingthat there is no
correlation between them because δ2(x, y, t) is negligible compared to Flow CNS′, until
t ≈ 93, when their correlation suddenly becomes strong, indicating that δ2(x, y, t) is at
the same order of magnitude as Flow CNS′ and thus is not negligible thereafter.

The foregoing provides rigorous evidence that all disturbances at different orders
of magnitude to the initial condition of the NS equations increase separately, say,
one by one like an inverse cascade, to macro level, with each capable of completely
altering the characteristics (such as the vorticity spatial symmetry) of the turbulent flow
considered in this paper. Based on this very interesting phenomenon revealed by our
clean numerical experiments mentioned above, we propose a new concept, which we
call the ‘noise-expansion cascade’, that closely connects the randomness of micro-level
noises/disturbances to the macro-level disorder of turbulence.

3.3. Influence of the noise-expansion cascade on statistics
Figure 6(a) compares time histories of the spatially averaged kinetic energy dissipation
rate 〈D〉A of Flow CNS, Flow CNS′ and Flow CNS′′, where 〈 〉A is an operator of statistics
defined in Appendix A. The distinct deviation in 〈D〉A between Flow CNS and Flow CNS′
appears at t ≈ 35 when the evolution δ1(x, y, t) of the first disturbance 10−20 sin(x +
y) increases to a macro-level O(1) that finally destroys the spatial symmetry (3.1), and
triggers the transformation of the spatial symmetry from (3.1) to (3.2). In addition, the
distinct deviation in 〈D〉A of Flow CNS′ versus Flow CNS′′ appears at t ≈ 93 when the
evolution δ2(x, y, t) of the second disturbance 10−40 sin(x + 2y) increases to a macro-
level O(1) that finally destroys all spatial symmetry. As shown in figure 6(a), when t >
110, the spatially averaged kinetic energy dissipation rate 〈D〉A of Flow CNS is much
larger than the rates of Flow CNS′ and Flow CNS′′. This leads to the obvious deviation
between their probability density functions, as shown in figure 6(b). Figure 7 compares the
spatiotemporal averaged kinetic energy 〈E〉x,t (y) and the spatiotemporal averaged kinetic
energy dissipation rate 〈D〉x,t (y) of Flow CNS, Flow CNS′ and Flow CNS′′, where 〈 〉x,t

1009 A2-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

14
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.140


Journal of Fluid Mechanics

(a) (b)

〈E〉x, t

y y

1.6 2.0 2.4 2.8 3.2 3.6 4.0
0

1

2

3

4

5

6

〈D〉x, t

0.05 0.10 0.15 0.20

CNS
CNS′
CNS′′

CNS
CNS′
CNS′′

0

1

2

3

4

5

6

Figure 7. Comparisons of (a) the spatiotemporal averaged kinetic energy 〈E〉x,t (y) and (b) the spatiotemporal
averaged kinetic energy dissipation rate 〈D〉x,t (y) of the 2-D turbulent Kolmogorov flow, governed by (2.1)
and (2.2) for nK = 16 and Re = 2000, given by Flow CNS subject to the initial condition (2.3) (red solid line),
Flow CNS′ subject to the initial condition (3.3) (green dash-dotted line) and Flow CNS′′ subject to the initial
condition (3.4) (blue dashed line).

is an operator of statistics defined in Appendix A. Note that these statistics also exhibit
obvious deviations.

The above results can be confirmed once again by comparing the kinetic energy spectra
Ek of Flow CNS, Flow CNS′ and Flow CNS′′, as shown in figure 8. When t ∈ [0, 35],
the deviations between the spatiotemporal trajectories of Flow CNS, Flow CNS′ and Flow
CNS′′ are negligible, and their corresponding kinetic energy spectra Ek agree quite well, as
shown in figure 8(a) for t = 30. Thereafter, the evolution δ1(x, y, t) of the first disturbance
10−20 sin(x + y) increases to a macro-level O(1) so that the kinetic energy spectra Ek
of Flow CNS deviates from the spectra of Flow CNS′ and Flow CNS′′ that remain the
same until t ≈ 93, as shown in figure 8(b) for t = 80. When the evolution δ2(x, y, t) of
the second disturbance 10−40 sin(x + 2y) increases to a macro-level O(1) at t ≈ 93, all
kinetic energy spectra Ek are different, as shown in figure 8(c) for t = 130. Note that all of
them satisfy a −5/3 law, indicating that all of them are turbulent flows, no matter whether
the vorticity field has spatial symmetry or not.

It is very interesting that Flow CNS contains more kinetic energy than Flow CNS′, and
Flow CNS′ contains more kinetic energy than Flow CNS′′, as shown in figure 8. This
fact illustrates that turbulence with more spatial symmetries needs more kinetic energy to
maintain. In order words, turbulence without spatial symmetry should be optimal from
the viewpoint of energy. This is mainly because the spatially averaged kinetic energy
dissipation rate 〈D〉A of Flow CNS is much larger than that of Flow CNS′, and the latter is
larger than that of Flow CNS′′, as shown in figure 6, indicating that turbulence with spatial
symmetry indeed requires more kinetic energy to maintain. This might be the reason why
turbulent flows have no spatial symmetry in practice.

Thus not only do all disturbances at different orders of magnitudes to the initial
condition of the NS equations increase, one by one like an inverse cascade, to a
macro level, but also each of them is capable of completely altering the macro-level
characteristics of turbulent flow, even including certain statistical properties, as illustrated
above. In other words, micro-level noise/disturbance might have great influence on
macro-level characteristics and statistics of turbulence.

1009 A2-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

14
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.140


S. Liao and S. Qin

k

Ek
Ek

100 102
10–11

10–9

10–7

10–5

10–3

10–1

101

CNS
CNS′
CNS′′

CNS
CNS′
CNS′′

CNS
CNS′
CNS′′

–5/3

t = 30

(a)

–5/3

t = 80

(b)

–5/3

t = 130

(c)

k
100 101 102

10–11

10–9

10–7

10–5

10–3

10–1

101

k
101

k

Ek

100 101 102
10–11

10–9

10–7

10–5

10–3

10–1

101

Figure 8. Kinetic energy spectra Ek of the 2-D turbulent Kolmogorov flow governed by (2.1) and (2.2) for
nK = 16 and Re = 2000 given by Flow CNS (red line), Flow CNS′ (green triangle or line) and Flow CNS′′
(blue circle or line), at the different times (a) t = 30, (b) t = 80 and (c) t = 130, where a black dashed line
corresponds to a −5/3 power law, and the black dash-dotted line denotes k = nK = 16.

3.4. An origin of randomness of turbulence
The most surprising aspect of the noise-expansion cascade phenomenon is the fact that all
disturbances, even if at quite different orders of magnitudes, separately enlarge to macro
level, one by one like an inverse cascade. For example, for Flow CNS′′ subject to the
initial condition (3.4), the evolution δ1(x, y, t) of the first disturbance 10−20 sin(x + y)
increases to macro level at t ≈ 35, then triggers the transformation of the spatial symmetry
of the flow field from (3.1) to (3.2), but the evolution δ2(x, y, t) of the second disturbance
10−40 sin(x + 2y) totally destroys the spatial symmetry of the turbulent flow when it
increases to macro level at t ≈ 93. This clearly indicates that the second disturbance
10−40 sin(x + 2y) of the initial condition (3.4) can cause the turbulence characteristics
(such as the vorticity spatial symmetry) to change greatly, even though the second
disturbance is 20 orders of magnitude smaller than the first one. This strongly suggests
that all disturbances must be considered for turbulence. This answers the second open
question posed at the beginning of this paper.

Note that internal thermal fluctuation and external environmental disturbance are
unavoidable in practice. In general, environmental disturbance is much larger than thermal
fluctuation. So traditionally, thermal fluctuation is neglected for most turbulent flows,
especially those governed by the NS equations. However, according to the noise-expansion
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cascade concept proposed herein, thermal fluctuation must be considered for turbulence,
even if it is many orders of magnitude smaller than environmental disturbance. Note that
thermal fluctuation is essentially random, and this randomness can naturally transfer from
the micro level to macro level through the noise-expansion cascade. This concept enables
us to reveal an origin of randomness in turbulence, thus answering the first open question
posed at the beginning of this paper.

4. Conclusion and discussion
Qin & Liao (2022) and Qin et al. (2024) recently demonstrated that the spatiotemporal
trajectory given by direct numerical simulations (DNS) can rapidly become badly polluted
by artificial numerical noise so that it becomes impossible for DNS to simulate accurately
and rigorously the evolution and propagation of small disturbances in turbulent flow.
Fortunately, clean numerical simulation (CNS) (Liao 2009; Liao & Wang 2014; Lin et al.
2017; Hu & Liao 2020; Qin & Liao 2020; Liao & Qin 2022; Qin & Liao 2023a,b,
2024) produces very much smaller artificial numerical noise than DNS, so can be used
to provide clean numerical experiments for turbulence. In this paper, by means of a
‘thought experiment’ via several clean numerical experiments based on CNS for a 2-D
turbulent Kolmogorov flow, it is discovered, for the first time, that all disturbances at
different orders of magnitudes in initial condition of the NS equations quickly enlarge
separately, one by one like an inverse cascade, to macro level. More importantly, each
noise/disturbance might greatly change characteristics of the turbulent flow not only in the
spatial symmetry of the flow, but also even in the statistics, thus clearly indicating that
micro-level noise/disturbance might have great influence on macro-level characteristics
and statistics of turbulence. Based on this interesting phenomenon, we propose a new
concept, called the ‘noise-expansion cascade’, that closely connects the randomness of
micro-level noise/disturbance to the macro-level disorder of turbulence. This reveals an
origin of randomness in turbulence, thus answering the first open question posed at the
beginning of the paper.

Note that internal thermal fluctuation and external environmental disturbance are
unavoidable in practice. So according to the noise-expansion cascade, thermal fluctuation
must be considered for turbulence, even if it is much smaller than external environmental
disturbance, just as in the Landau–Lifshitz–Navier–Stokes equations that include the
influence of thermal fluctuation (Landau & Lifshitz 1959). This answers the second
open question that we mentioned at the beginning of this paper. Note that the influence
of thermal fluctuation on turbulence has been recently reported by several researchers
(Bandak et al. 2022; Ma et al. 2024).

Due to the noise-expansion cascade, many micro-level random factors might exert great
influence on the macro-level disorder of turbulence. Hence the noise-expansion cascade
should be viewed as a bridge connecting micro-level random fluctuation/disturbance to
the macro-level disorder of turbulence. So the concept of the noise-expansion cascade
provides a scientific explanation of the philosopher Heraclitus’ aphorism that ‘people
cannot step twice into the same river’. It strongly implies that turbulence should be a unity
of micro-level random noise/disturbance, their evolution and propagation, and macro-level
disorder, which are closely connected through the noise-expansion cascade. This is why
turbulence is so challenging to understand.

It should be emphasised that the noise-expansion cascade as a new concept cannot be
discovered by numerical experiments based on DNS (since its artificial numerical noises
increase exponentially) or physical experiments in the laboratory (since it is impossible in
practice to have such accurate micro-level disturbances); this illustrates the great potential
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of clean numerical experiments based on CNS. Note that the two micro-level disturbances
10−20 sin(x + y) and 10−40 sin(x + 2y) hardly exist in practice; this is the reason why
the noise-expansion cascade as a new fundamental concept of NS turbulence can be
discovered only by such a ‘thought experiment’ based on CNS.

The noise-expansion cascade exhibits an obvious difference from the ‘energy cascade’
that is a fundamental concept in turbulence theory. There are two types of energy cascade:
the direct energy cascade whereby energy transfers from large scale to small scale; and the
inverse energy cascade whereby energy transfers from small scale to large scale. However,
unlike the energy cascade, the noise-expansion cascade has only one direction: from micro
scale to large scale. Moreover, the energy cascade describes spatial transfer of energy,
whereas the noise-expansion cascade describes the temporal evolution and propagation
of initial noise/disturbance. Recently, it was reported that the average uncertainty energy
of NS turbulence grows exponentially (Aurell et al. 1996; Boffetta & Musacchio 2001;
Boffetta & Boffetta & Ecke 2012; Lin et al. 2017; Ge et al. 2023; Ma et al. 2024). This
phenomenon, sometimes called ‘inverse error cascade’, is observed using different initial
conditions at the same order of magnitude. However, the noise-expansion cascade focuses
on the influence of initial conditions with different orders of magnitude. This further
underlines the novelty of the noise-expansion cascade as a new fundamental concept of
NS turbulence.

At each time step, the DNS algorithm unavoidably contains artificial numerical noise.
Thus due to the noise-expansion cascade, the artificial numerical noise of the DNS
algorithm at each time step will increase consistently to reach the macro level: this is
exactly why the spatiotemporal trajectory of DNS departs quickly from the true solution,
and why the noise-expansion cascade cannot be revealed by DNS.

Actually, CNS requires substantial computer resources and is time-consuming to run at
present, just like DNS when Orszag (1970) proposed it. For the 2-D turbulent Kolmogorov
flow under consideration, the parallel computing of the CNS takes 285 hours (i.e.
approximately 12 days) using 4096 CPUs (Intel’s CPU: Xeon Gold 6348, 2.60 GHz) of
the Tian-He New Generation Supercomputer at the National Supercomputer Center in
Tianjin, China. The related code of CNS and some movies can be downloaded via GitHub
(https://github.com/sjtu-liao/2D-Kolmogorov-turbulence). By contrast, DNS of the same
case require only 13 hours using 1024 CPUs on the same computing platform. Even so,
CNS undoubtedly provides us with a new way to investigate turbulence through clean
numerical experiments, i.e. with negligible artificial numerical noise, as illustrated in this
paper.

We would like to emphasise that DNS is a milestone in fluid mechanics, since it opened
a new era of numerical experiment and has greatly promoted the progress of turbulence
in theories, physical experiments and applications. In essence, CNS can be regarded as
a general form of DNS with rigorously negligible numerical noise in a finite but long
enough time interval t ∈ [0, Tc], where Tc is the so-called ‘critical predictable time’. In
other words, the critical predictable time Tc of CNS is much longer than that of DNS.
Thus CNS offers a powerful method by which to accurately investigate the influence of
micro-scale physical/artificial disturbances on macro-scale characteristics and statistics of
turbulent flow.

Note that, like DNS, CNS has ‘the ability to perform fundamental studies of clean flows
unaffected by numerical, modelling and measurement errors’ and ‘the complete control of
the initial and boundary conditions, and each term in the governing equations, also leads
to profound advantages over laboratory and field studies’ (Coleman & Sandberg 2010).
It is found that our conclusions are qualitatively same as those mentioned above even if
we use the different first disturbance such as 10−10 sin(x + y) and the different second
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disturbance such as 10−20 sin(x + 2y). We emphasise that it is impossible to accurately
have such kinds of micro-level disturbances at quite different orders of magnitude by
physical experiments in a laboratory, thus we in fact did a thought experiment of the
NS turbulence by means of CNS in this paper. Note that it is this thought experiment
that reveals the new fundamental concept ‘noise-expansion cascade’. Here, we emphasise
once again that the noise-expansion cascade not only reveals an origin of randomness
of turbulence, but also highly indicates that micro-level noises/disturbances might have
great influence on macro-level characteristics and statistics of turbulence. In other words,
macro-level characteristics and statistics of turbulence should be determined not only by
its spatial domain of flow and its initial/boundary conditions, but also by its micro-level
noises/disturbances. We hope that the noise-expansion cascade as a fundamental property
of the NS equations could greatly deepen our understandings about turbulence, and is
also helpful for attacking the fourth millennium problem posed by the Clay Mathematics
Institute of Cambridge, Massachusetts (2000).

There are many interesting problems worthy of further investigation in future. For
example, it might be possible that artificial numerical noise could be regarded as a kind
of physical external disturbance, as long as we could prove that artificial numerical noise
could have the same influences as thermal fluctuation and/or environmental disturbance
to turbulent flow, which unfortunately is still an open question up to now. This kind of
investigation might reveal the essence of artificial numerical noises to turbulent flow. In
addition, thermal fluctuation is random and discontinuous, but it is still an open question
whether or not such discontinuous random disturbance might become continuous when
it increases to macro level due to the noise-expansion cascade. In particular, there exist
two types of chaotic system, i.e. normal chaos and ultra chaos (Liao & Qin 2022); unlike
normal chaos, statistics of ultra chaos are unstable (or sensitive) to small disturbances
(Qin & Liao 2023a; Yang et al. 2023a,b; Zhang & Liao 2023; Zhang, Yang & Liao 2024;
Yang & Liao 2024). In other words, statistical non-reproducibility is an inherent property
of an ultra chaos, so that an ultra chaos is at a higher level of disorder than a normal chaos.
If a turbulent flow belongs to an ultra chaos, say, its statistics are sensitive (i.e. unstable)
to small noise/disturbance, then due to the noise-expansion cascade, its statistics are
unstable/sensitive to physical environmental disturbances or artificial numerical noises so
that statistical reproducibility of experimental/numerical results does not exist. However,
it is an open question how to solve (or understand) sucha kind of ultra-chaotic turbulence
without reproducibility of statistics.

Supplementary material. Supplementary material are available at https://doi.org/10.1017/jfm.2025.140.
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Appendix A. Some definitions and measures
For simplicity, the definitions of some statistical operators are briefly described below. The
operator of spatial average is defined by

〈 f 〉A = 1
4π2

∫ 2π

0

∫ 2π

0
f dx dy, (A1)

and the operator of spatiotemporal average (along the x direction) is defined by

〈 f 〉x,t = 1
2π(T2 − T1)

∫ 2π

0

∫ T2

T1

f dx dt, (A2)

where T1 = 100 (for Flow CNS and Flow CNS′) or 120 (for Flow CNS′′) and T2 = 300 are
used in this paper to calculate statistics.

The kinetic energy is given by

E(x, y, t)= 1
2

[
u2(x, y, t)+ v2(x, y, t)

]
, (A3)

and the kinetic energy dissipation rate is defined by

D(x, y, t)= 1
2 Re

∑
i, j=1,2

[
∂i u j (x, y, t)+ ∂ j ui (x, y, t)

]2
, (A4)

where u1(x, y, t)= u(x, y, t), u2(x, y, t)= v(x, y, t), ∂1 = ∂/∂x and ∂2 = ∂/∂y.
The stream function can be expanded as the Fourier series

ψ(x, y, t)≈
�N/3�∑

m=−�N/3�

�N/3�∑
n=−�N/3�

Ψm,n(t) exp(imx) exp(iny), (A5)

where m, n are integers, � � stands for a floor function, i = √−1 denotes the imaginary
unit, and for dealiasing Ψm,n = 0 is imposed for wavenumbers outside the above domain∑

. Note that for the real number ψ , Ψ−m,−n =Ψ ∗
m,n must be satisfied, where Ψ ∗

m,n is the
conjugate of Ψm,n . Therefore, the kinetic energy spectrum is defined as

Ek(t)=
∑

k−1/2�
√

m2+n2<k+1/2

1
2(m

2 + n2) |Ψm,n(t)|2, (A6)

where the wavenumber k is a non-negative integer.
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