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Abstract

Plotkin (1975) showed that the lambda calculus is a good model of the evaluation process for

call-by-name functional programs. Reducing programs to constants or lambda abstractions

according to the leftmost-outermost strategy exactly mirrors execution on an abstract machine

like Landin’s SECD machine. The machine-based evaluator returns a constant or the token

closure if and only if the standard reduction sequence starting at the same program will end

in the same constant or in some lambda abstraction. However, the calculus does not capture

the sharing of the evaluation of arguments that lazy implementations use to speed up the

execution. More precisely, a lazy implementation evaluates procedure arguments only when

needed and then only once. All other references to the formal procedure parameter re-use the

value of the first argument evaluation. The mismatch between the operational semantics of

the lambda calculus and the actual behavior of the prototypical implementation is a major

obstacle for compiler writers. Unlike implementors of the leftmost-outermost strategy or of

a call-by-value language, implementors of lazy systems cannot easily explain the behavior

of their evaluator in terms of source level syntax. Hence, they often cannot explain why a

certain syntactic transformation ‘works’ and why another doesn’t. In this paper we develop an

equational characterization of the most popular lazy implementation technique – traditionally

called ‘call-by-need’ – and prove it correct with respect to the original lambda calculus. The

theory is a strictly smaller theory than Plotkin’s call-by-name lambda calculus. Immediate

applications of the theory concern the correctness proofs of a number of implementation

strategies, e.g. the call-by-need continuation passing transformation and the realization of

sharing via assignments.Some of this material first appeared in a paper presented at the 1995

ACM Conference on the Principles of Programming Languages. The paper was a joint effort

with Maraist, Odersky and Wadler, who had independently developed a different equational

characterization of call-by-need. We contrast our work with that of Maraist et al. in the body

of this paper where appropriate.

Capsule Review

A computational model is a formal theory with a (usually deterministic) notion of reduction

that has as intended goal to capture the operational semantics determined by the execution

mechanism of an implementation of a functional programming language. The lambda calculus
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266 Z. M. Ariola and M. Felleisen

as such is not a computational model, since an expression may be reduced in many different

ways. Lambda calculus, together with a reduction strategy or a special notion of reduction,

does form a computational model. In the paper such a model is given for the efficient

implementation technique of call-by-need evaluation, thereby continuing the line of work

initiated by Plotkin, who made similar models for call-by-name and call-by-value evaluation.

The model corresponds well to the operational behaviour of the implementations, and has

nice properties: the Church-Rosser and normalisation theorems hold. The paper also discusses

other possible implementation techniques motivated by the model, other models motivated

by the notion of fully lazy evaluation of Wadsworth, and extensions of the language.

1 Introduction

In his seminal paper on call-by-name, call-by-value, and the lambda calculus Plotkin

(1975) formulates two criteria concerning the relationship between a calculus – an

equational theory on some syntax – and a programming language – a semantics,

defined via an abstract machine or an interpreter for the same syntax as the calculus.

First, the calculus should satisfy a Curry-Feys-style Standardization Theorem, and

a standard reduction from a program to a value should mimic the evaluation of the

program according to the language’s semantics. Second, the equations of the calculus

should identify terms that are ‘observationally indistinguishable’ from each other.

Plotkin illustrates the connection with two examples. The first is the call-by-value

lambda calculus and the functional core of Landin’s ISWIM defined via the SECD

machine. The second is the lambda calculus and a variant of ISWIM that models

a pragmatic call-by-name programming language. The semantics of the language

is based on a variant of the SECD machine. The corresponding reduction strategy

differs from the evaluation strategy proposed by lambda calculus logicians. Instead

of reducing a program – a closed term – to normal form, Plotkin’s evaluator reduces

a program to a lambda abstraction.1

Unfortunately, the correspondence between non-strict functional languages and

the lambda calculus is not satisfactory. Whereas the calculus accurately models

the relation between a program and its final value, it does not accurately capture

how a program gets to its value. Take for example the term (λx.x + x + x)(1 + 2).

An implementation using ‘call-by-need’ parameter-passing evaluates 1+2 once and

remembers the result for all references to the variable x. In contrast, a standard

reduction according to the λ-calculus, which models call-by-name evaluation, reduces

the term to (1 + 2) + (1 + 2) + (1 + 2), and thus 1 + 2 is reduced three times.

We believe that if a calculus is to help implementors in defining and explaining

their work, it must capture important intensional aspects of evaluation in addition

to the extensional semantics. While the extensional semantics of a lazy implemen-

tation and a call-by-name implementation are identical, the calculus only captures

the intensionality of a call-by-name machine that re-evaluates arguments for each

1 Abramsky and Ong (1990, 1988) explored the model theoretic properties of this calculus.
They called it the ‘lazy lambda calculus’, even though this calculus does not at all address
the laziness of implementations.
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occurrence of the parameter, and not that of a call-by-need implementation. In this

paper we introduce a calculus that captures the amount of sharing in call-by-need

implementations of call-by-name languages. We prove that the calculus defines the

same interpreter as Plotkin’s call-by-name calculus and that it is a strictly smaller

theory than the lambda calculus. In addition, the call-by-need calculus satisfies a

Curry-Feys-style Standardization Theorem, which we can take as the starting point

for the derivation and verification of lower-level implementations. In short, the

calculus is a good calculus for a call-by-need language in Plotkin’s sense.

Unlike many others, we are not interested in capturing the optimality of reduction

strategies (Maranget, 1991; Yoshida, 1993; Field, 1990; Kathail, 1990; Gonthier

et al., 1992; Lamping, 1990). We do not deny the possible benefits of optimal

reductions but instead focus on modelling the sharing used in current implementa-

tions. Our work also differs from that of Purushothaman and Seaman (1992) and

Launchbury (1993), who defined an operational semantics that characterizes call-

by-need evaluation using so-called ‘natural’ semantics. The basic idea behind their

two formulations is the same. Roughly speaking, the semantics use store-passing

to describe call-by-need in terms of (the semantics of) assignment statements. An

evaluation judgement relates a program and the current store to the result and a

modified store. Since this technique is of low-level nature, neither approach permits

a simple explanation of the implementation or source-level reasoning about the

behavior of programs and the correctness of syntactic transformations. Reasoning

about equality between arbitrary terms is nearly impossible with these semantics.

Given slightly different specifications based on ‘natural’ or similar semantic frame-

works, it is difficult, if not impossible, to compare the intensional aspects of the

evaluation strategy, especially the amount of sharing. In contrast, our own work

shows that call-by-need evaluation is based on an equational theory that is strictly

smaller than the call-by-name theory and that Wadsworth’s fully lazy strategy is yet

another, closely related equational theory.

We emphasize source syntax over graphs in our work for two reasons. First,

we believe that source syntax is a natural tool for explaining the semantics of a

language because it is one aspect that every programmer must master. Second,

whereas a graph-based model for a first-order language is simple, a graph model for

a higher-order language requires many auxiliary notions. To formulate a sufficiently

strong set of transformations we would have to enrich graphs in a number of ways.

For example, we would need the concept of a name associated to a node in order to

express the lifting of expressions out of a procedure. Once we have enriched graphs

sufficiently, they are actually isomorphic to terms with explicit sharing. Given the

isomorphism, it is best to choose the model that fits the purpose. In this paper, we

use the enriched graph to work out the completeness of our calculus, but we use the

syntactic model in all other contexts.

The paper is organized as follows. Section 2 presents the basic ideas of the call-

by-name calculus. Section 3 introduces the essential of call-by-need evaluation: the

sharing of argument’s evaluation. Call-by-need evaluation is formulated in section 4

as an equational theory on the set of λ-calculus terms. In addition, section 4 contains

the proof that the calculus relates to the evaluator in precisely the same manner as
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Plotkin’s call-by-name and call-by-value calculi relate to their respective evaluators.

The call-by-need theory is shown to be a strict sub-theory of the call-by-name

λ-calculus in section 5, which also contains the proof of equivalence between the

call-by-name and the call-by-need evaluator. We briefly develop the idea of a fully

lazy calculus in section 6 and compare the modified calculus with the original

one. In section 7 we show that our calculus allows also reasoning about non-strict

languages based on a lenient strategy. We sketch in section 8 how to extend the

work to additional constructs of pragmatic functional languages. The last section

briefly addresses applications of the call-by-need calculus.

2 The call-by-name calculus

In this section we briefly review the basic concepts of the call-by-name λ-calculus,

including the notions of descendant, development and complete development. We

refer the reader to Barendregt’s (1984) treatise for a more detailed exposition.

The set of lambda terms, called Λ, is generated by the grammar

M ::= x | λx.M |MM

with x ranging over an infinite set of variables. Herein, we work with α-equivalence

classes of terms. The basic axiom of the theory λ is the β-axiom:

(λx.M)N = M[x := N].

The expression M[x := N] denotes the capture-free substitution of N for each free

occurrence of x in M. The reduction theory associated to the calculus is the result

of taking the compatible, reflexive and transitive closure of β interpreted as an

asymmetric relation:

β = {〈(λx.M)N,M[x := N]〉 |M,N ∈ Λ}.

The compatible closure of β is written as −−−−→
name

; the reflexive and transitive closure

of −−−−→
name

, as −−−−→
name
→; =name is the symmetric closure of −−−−→

name
→, or the congruence

relation generated by −−−−→
name

. We will also make use of the notation U−−→ to indicate

that U is the redex being contracted. We will omit the tag name when we may do so

unambiguously.

In an implementation of the calculus, closed expressions play the role of programs .

An execution of a program terminates with a value. If the value is observable, e.g.

a number or a character, the evaluator will print the value; if it is higher-order,

e.g. a lazy tree or a procedure, it only indicates that the execution ended and what

kind of value was obtained. Since the pure theory only contains procedures (lambda

abstractions) as values, an evaluator only determines whether a program terminates.

Given this preliminary idea of how implementations work, we can use the calculus

to define a partial evaluation function Evalname from programs , or closed terms, to

the singleton consisting of the tag closure:

Evalname(M) = closure if and only if λ `M = λx.N.

That is, the evaluation of a program returns the tag closure if, and only if, the theory
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can prove the program is equal to a value. It is a seminal result due to Plotkin (1975)

that the evaluation function of a typical implementation is also determined by the

standard reduction relation. Put differently, a correct implementation of the evaluator

can simply reduce the standard or leftmost-outermost redex of a program until the

program becomes a value.

A convenient way of formulating the evaluation relation based on the standard

reduction strategy utilizes contexts for identifying the standard redex (Felleisen and

Friedman, 1986), where a context is a term with a hole in it (written as [ ]). The

evaluation context is such that the redex filling the hole is the standard redex. The set

of call-by-name evaluation contexts is the following subset of the λ-calculus contexts:

En ::= [ ] | EnM.

The above definition states that either a term is a redex or the redex (recursively)

occurs in the function part of an application. No reductions under λ-abstraction

occur. A program M standard reduces to N, written as M 7−−−−→
name

N, if and only if

M ≡ En[(λx.P )Q] and N ≡ En[P [x := Q]]. As usual, M 7−−−−→
name
→ N means M standard

reduces to N via the transitive-reflexive closure of 7−−−−→
name

; M 7−−−−→
name

0/1 N means M

standard reduces to N in zero or one step; M 7−−−−→
name

n N means M standard reduces

to N in n steps. As before, we will omit the tag name when no confusion arises. The

following characterization of the call-by-name evaluator is a consequence of the

confluence property and the standardization theorem of λ.

Proposition 2.1 (Plotkin)

For a program M, Evalname(M) = closure if and only if M 7−−−−→
name
→ λx.N.

In the following sections, we will need two important lemmas about the meta-

operations of the conventional lambda calculus. The first concerns substitution.

Lemma 2.2

If x 6≡ y and x 6∈ FV(M), L[x := N][y := M] = L[y := M][x := N[y := M]].

The lemma implies that if y does not occur free in L:

L[x := N][y := M] = L[x := N[y := M]],

which, in turn, validates the equation

(λy.(λx.L)N)M = (λx.L)((λy.N)M).

The next lemma shows how the evaluation relation and ordinary reductions com-

mute. Before presenting the lemma we introduce the concept of descendant of a

redex. Following Klop (1992) we define the concept using the technique of under-

lining. Let U and U1 be two distinct redexes occurring in M, and let M U1−−→M1. We

wish to know what happened in this step to the redex U. To that end, we underline

the head symbol of U (i.e. its leftmost lambda symbol), the set of underlined redexes

in M1 are the descendants of U with respect to the U1-reduction. In the reduction:

M ≡ (λx.xx)((λz.z)(λw.w)) −→M1 ≡ ((λz.z)(λw.w))((λz.z)(λw.w))

the descendants of the redex ((λz.z)(λw.w)) are the underlined redexes in M1.
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Lemma 2.3

If M−→→N1 and M 7−→ N then ∃N2, N1 7−→0/1 N2 and N−→→N2.

If F is a set of redexes occurring in a term M, a development of M with respect

toF is a series of reductions that only reduce elements ofF and their descendants.

For example, the following reduction is a development with respect to the underlined

redexes in M:

M ≡ (λx.xx)((λz.z)(λw.w)) −→ ((λz.z)(λw.w))((λz.z)(λw.w))

−→ (λw.w)((λz.z)(λw.w)).

While the reduction

M ≡ (λx.xx)((λz.z)(λw.w)) −→ ((λz.z)(λw.w))((λz.z)(λw.w))

−→ (λw.w)((λz.z)(λw.w))︸ ︷︷ ︸
U

U−−→ (λz.z)(λw.w),

is not a development, because redex U is not a descendant of an underlined redex

in M, that is, U is not an underlined redex. A development is called complete if all

redexes in F and their descendants are reduced. That is, if all redexes in F are

underlined, then a development M−→→N is a complete development if no underlining

occurs in N. The reduction

M ≡ (λx.xx)((λz.z)(λw.w)) −→ ((λz.z)(λw.w))((λz.z)(λw.w))

−→ (λw.w)((λz.z)(λw.w)) −→ (λw.w)(λw.w),

is a complete development with respect to the underlined redexes in M. We always

refer to a development and a complete development with respect to a set of redexes.

3 Reasoning about call-by-need

The basic idea behind call-by-need is to start the evaluation of a procedure’s body

as soon as the procedure shows up in function position, to defer the evaluation

of the argument until the evaluation of the procedure’s body depends on the

value of the argument, and to re-use the value of the argument for all other

references to the parameter during the rest of the procedure body’s evaluation.

The implementation of this parameter-passing technique via interpreters or abstract

machines is typically based on environments (Friedman and Wise, 1976; Henderson

and Morris, 1976) or graph reduction (Peyton Jones, 1987; Turner, 1979; Wadsworth,

1971). An environment-based machine associates a procedure’s formal parameter

with the actual argument in the environment; an interpreter based on graph-

reduction replaces occurrences of formal parameters with pointers to the argument

expression.

These implementation techniques for call-by-need suggest that an equational

characterization of call-by-need cannot rely on full-fledged substitution. Following

the work on explicit substitutions (Abadi et al., 1991; Lescanne, 1994; Bloo and

Rose, 1995), and on adding state to the λ-calculus (Crank and Felleisen, 1990;

Felleisen and Hieb, 1992), we do not reduce (λx.M)N but interpret it as a syntactic
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representation of the program M and an environment that associates x with N.

If and when the evaluation of M requires the value of N, N is reduced to a

value and occurrences of x are gradually replaced with N’s value upon demand.

This demand-driven substitution of values for variables captures the spirit of both

environment-based and graph-based machines. In the former, it corresponds to a

lookup in the environment; in the latter, it corresponds to the copying of the body

of a lambda-expression in function position. That is, the substitution operation does

not arise because of our syntactic formulation, but truly expresses what happens in

the implementation.

Formalizing our ideas must start with a replacement of the β-axiom for the

λ-calculus. One first attempt could be

(λx.M)V = M[x := V ]. (1)

The equation clarifies that formal parameters are never replaced with full arguments

but values only. However, it fails to capture any of other aspects of the informal

characterization. Specifically, the equation does not show that call-by-need replaces

variables by values gradually and only when the evaluation process demands it.

A straightforward way to improve equation (1) is to use contexts. With a context

that contains a single hole, we can indicate that a term consists of a specific variable

and some other components. For example, if x is a variable and C[ ] is a context

(that does not trap x), then

(λx.C[x])

is a way to indicate a specific occurrence of the procedure parameter in the proce-

dure’s body. By using this notation we can refine equation (1) to

(λx.C[x])V = (λx.C[V ])V for any one-hole context C[ ],

which restricts the replacement of variables by values to individual occurrences of

parameters. Unfortunately, this equation still does not explicate what ‘need’ means

in the ‘call-by-need’ terminology. It permits the replacement of any occurrence of a

procedure’s parameter by a value, even if a replacement of this particular occurrence

is not needed for the evaluation. For example, the replacement of x by 3 in the

derivation

(λx.if (true, 0, x))3 = (λx.if (true, 0, 3))3

is permissible according to our second attempt, but it is clearly superfluous to

determine the final value 0.2

To solve this last problem, we adopt Felleisen and Hieb’s constraint on variable

dereferences. Their constraint enforces that an argument is only copied into a

procedure body when the value of the procedure’s parameter is needed to advance

the body’s evaluation. The best syntactic way for expressing this idea is to restrict

2 Adopting this equation as the replacement of β also leads to inconsistencies in extensions
of the equational theory with cyclic data definitions or imperative facilities (Felleisen and
Friedman, 1989; Ariola and Klop, 1994). We consider this problem a further indictment of
the unrestricted context in the proposed axiom.
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the set of permissible contexts in the axiom that replaces β. Felleisen and Hieb chose

call-by-value evaluation contexts because they worked with an extension of Plotkin’s

call-by-value theory. We must use call-by-need evaluation contexts instead because

it is our goal to develop an equational characterization of call-by-need evaluation.

We thus arrive at the following axiom for substituting procedure parameters with

the values of their arguments:

deref : (λx.E[x])V = (λx.E[V ])V for any evaluation context E[ ].

Like our first attempt at a β-replacement, the axiom only permits the replacements

of variables with values. Like our second attempt, it forces a gradual, one-by-one

replacement of parameters by argument values. And, most importantly, parameters

are only replaced when evaluation demands it.

We have now boiled down the formulation of the replacement of the β axiom to

one critical element: the set of call-by-need evaluation contexts.3 Like any evaluation

context, a call-by-need evaluation context must formalize the notion of a leftmost-

outermost position. Put differently, a redex in the hole of an evaluation context must

be the leftmost-outermost redex of the term.

A rigorous description of the set of call-by-need evaluation contexts demands a

close look at the call-by-need evaluation strategy. Clearly, if M is a program and it

is a redex, we certainly want to determine its value, and if M is an application, we

need the value of the rator. Thus, the set of evaluation contexts subsumes at least

the following:

E ::= [ ] | EM,

which is actually the set of call-by-name evaluation contexts.

Next we need to exploit that we evaluate a procedure’s body without eliminating

the surrounding application. Translated into syntax this means that the evaluator

reduces redexes in a procedure’s body if the procedure is in the function position of

an application, i.e. the set of evaluation contexts also includes

(λx.E)M.

Unlike the previous contexts, this new kind is not a call-by-name evaluation context.

Since call-by-name evaluation can be modeled by substituting arguments for pa-

rameters, the call-by-name theory has no need for evaluation inside of a procedure

body.

Finally, we need to add evaluation contexts that show when arguments are

evaluated. Call-by-need demands the evaluation of an argument precisely when the

sequential evaluator touches a procedure parameter for a first time. Put syntactically,

if a procedure’s parameter is the leftmost-outermost term of the procedure body,

the focus of the call-by-need evaluator shifts to the procedure’s actual argument. To

express that a procedure parameter occurs in leftmost-outermost position, we can

3 Call-by-need evaluation contexts define a static notion of need that is quite different from
that of Huet and Lévy (1991), which in contrast, captures the idea that a redex is needed
if it is reduced in every reduction from the program to normal form.
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write

(λx.E[x]).

This term expresses that the procedure’s body can be partitioned into an evaluation

context and an occurrence of the bound variable, which means that an advancement

of the evaluation now depends on the value of the variable. If we can now evaluate

the term that is associated with the bound variable, we shift the focus of the

evaluation just in time, i.e. we need evaluation contexts of the form

(λx.E[x])E.

Since we have now considered all possible cases in an evaluator, we have a

complete definition of a call-by-need evaluation context:4

E ::= [ ] | EM | (λx.E)M | (λx.E[x])E.

We will prove its completeness when we show that the call-by-need calculus defines

an evaluator that is equivalent to a call-by-name evaluator.

Now that we have a replacement for β, we can check whether the axiom suffices to

reduce programs to values when possible. However, this very statement immediately

points out a problem. Programs are no longer reduced to values when we use deref

instead of β. For example, using (deref ), the term

(λx.x)(λz.z)

reduces to

(λx.(λz.z))(λz.z),

which represents the value (λz.z) in an environment that associates x with λz.z,

but is not a value per se. Practically speaking, such an expression is a syntactic

representation of a closure. The complete set of closures is

A ::= λx.M | ((λx.A)M).

We also use answer when we speak about closures.

Reducing expressions to closures means that our replacement for β does not

suffice to reduce all expressions to closures. Consider the application

(λf.fI(fI)) ((λz.λw.zw) (II)).

The argument is an answer but not a value. Moreover, it cannot be reduced further

with (deref ). Consequently, the entire term is irreducible because the argument

cannot be used to replace f, which is in the hole of an evaluation context. One

solution is to allow substitution of answers for variables, that is, we could use the

following extension of (deref ):

(λx.E[x])A = (λx.E[A])A.

4 The use of the fill operation on contexts is justified in this definition because it is a
well-defined operation on all contexts, of which we only specify a subset.
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Using this revision, the above term could be transformed as follows

(λf.fI(fI)) ((λz.λw.zw) (II)) = (λf.((λz.λw.zw) (II))I(fI)) ((λz.λw.zw) (II)).

However, the effect of substituting answers is that unevaluated arguments in the

environment of closures are duplicated. Specifically, in our example, the redex II

has been duplicated and is subsequently reduced twice.

In our syntactic model of evaluation, the duplication of unevaluated arguments

can be avoided by a re-association of bindings. In our running example, we can

rearrange the association of f with ((λz.λw.zw) (II)) as follows:

(λf.fI(fI)) ((λz.λw.zw) (II)) = (λz.(λf.fI(fI))(λw.zw))(II).

The substitution for f will then avoid copying II:

(λz.(λf.fI(fI))(λw.zw))(II) =deref (λz.(λf.(λw.zw)I(fI))(λw.zw))(II), (2)

and thus, even though f does occur twice, II will be contracted only once. The

re-association of arguments and parameters is captured by the following axiom:

assoc : (λx.E[x])((λy.A)M) = (λy.(λx.E[x])A)M.

It says that if an evaluation demands the value of some parameter yet the parameter

is associated with a closure instead, then the bindings of the closure must be shared

between the main procedure and the closure’s body.

Dually, the evaluation of expressions to answers instead of values also means

that the expression in the function position of an application can yield an answer

in place of a function. Hence, an evaluation might become stuck because the axiom

deref cannot deal with this situation. An instance of this problem is the expression

(λz.λw.zw)(II)I . To solve this problem, we introduce an axiom like assoc for the

function position of an application:

lift : (λx.A)MN = (λx.AN)M.

With lift , we can now evaluate the above expression:

(λz.λw.zw)(II)I = (λz.(λw.zw)I)(II).

The re-association of a closure’s bindings is not just a syntactic nuisance. It

captures implicit operations in both an environment-based implementation and a

graph-reduction machine. Specifically, the action of the assoc axiom corresponds to

a hidden flattening of the environments in Launchbury’s (1993) description of a lazy

interpreter:

(z 7→ II) : λw.zw ⇓ (z 7→ II) : λw.zw

{} : let z be II in λw.zw ⇓ (z 7→ II) : λw.zw
Let

(f 7→ let z be II in λw.zw) : f ⇓ (z 7→ II, f 7→ λw.zw) : λw.zw
Variable.

According to the Variable rule we evaluate let z be II in λw.zw in an empty envi-

ronment. This evaluation, following the Let rule, leads to the value λw.zw and a new

environment in which z is associated with II . At this point the implicit flattening

occurs: instead of associating f to an environment-value pair, f is bound to λw.zw.

The assoc axiom makes this step explicit in our calculus.
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Similarly, following Wadsworth’s interpreter we can depict the reduction of

(λf.fI(fI))((λz.λw.zw)(II))

as follows:
@ @ @ @ @

@@@@@@@@

@ @

@@ @

@ @ @

@ @

@ @ @ @

@

@

kz I I I I I I I

k f

kw kw kw

I www

w

I I I II I

kw

kz

kw I I

kw I I

z w

z w

f fI I

The third step represents a copy operation, which is required by the fact that there

are two pointers to the node labelled λw. In other words, given a β redex (λx.M)N,

if λx.M is shared then, before performing a substitution of the pointer to N inside

M, a copy of M has to take place. However, referring to the above picture, note that

not all nodes reachable from λw have been copied. In fact, the redex II has not been

copied. Thus, a decision has to be made on what to copy and what not. This requires

scanning the function’s body, and thus is an expensive operation. To reduce its cost

Arvind et al. (1984) proposed a different graph interpreter, called flagged interpreter.

The basic idea is: given a β redex (λx.M)N a pointer to a “flagged” N is substituted

in M. Then the copy phase of a β-step copies only those nodes of the function’s

body that are not reachable from a flagged node. Referring to the above reduction,

this means that given the redex (λz.λw.zw)(II), instead of substituting a pointer to II

in the function’s body, a pointer to a flagged II , say (II)∗, is substituted, obtaining

λw.(II)∗w. When a copy of the λw-abstraction is demanded, we then do not copy II .

In such a way no analysis of the function’s body is then carried out at run time. This

operation of ‘flagging’ corresponds to our assoc axiom. In fact, note that the term on

the right-hand side of equation (2) represents the fourth graph depicted above, that

is, the one obtained after the copy operation. As it will be discussed more in length

in section 6, more work is demanded in order to describe Wadsworth’s interpreter.

4 The call-by-need calculus

We summarize the discussion of the previous section in the following definition:

Definition 4.1

[The Call-by-Need Calculus λneed] The following clauses define the syntax and basic

axioms of the call-by-need calculus.
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Syntax

Expressions (Λ): M ::= x | λx.M |MM

Values: V ::= λx.M

Answers: A ::= V | ((λx.A) M)

Evaluation Contexts: E ::= [ ] | EM | (λx.E[x])E | (λx.E)M

Axioms

(λx.E[x])V = (λx.E[V ])V deref

(λx.A)MN = (λx.AN)M lift

(λx.E[x])((λy.A)M) = (λy.(λx.E[x])A)M assoc

= is an equivalent and congruent relation. −−−→
need

and −−−→
need
→ denote the one-step and

multiple-step call-by-need reductions, respectively.

The call-by-need calculus enjoys nice properties, namely, it is confluent and there

exists a standard reduction that leads to an answer. We start with the proof of

confluence. To that end, the following lemma proves that reductions do not interfere

with each other. Huet refers to this property as ‘absence of critical pairs’ (Huet,

1980).

Lemma 4.2

(i) A term M can be at most one redex.

(ii) If a term M is a redex then M 6≡M1M2 with M1 a redex.

(iii) The sets Answers, Values and {E[x] | E ∈ Evaluation Contexts} are each

closed under reduction.

Proof

(i) Trivial if M is a variable or a lambda abstraction. If M is an application the

result follows from a case analysis on the type of redex.

(ii) By cases on the type of redex.

(iii) An easy induction on the structure of the term.

Note

In contrast, the call-by-need calculus advocated by Maraist et al. (1994, 1995), is a

collection of interfering axioms. The basic axioms of Maraist et al.’s calculus are:

(λx.C[x])V = (λx.C[V ])V deref ′

(λx.L)MN = (λx.LN)M lift ′

(λx.L)((λy.N)M) = (λy.(λx.L)N)M assoc′

Given this system of axioms, the term M:

M ≡ (λx.x)((λy.y)z)︸ ︷︷ ︸
U1

N

︸ ︷︷ ︸
U2

contains two overlapping redexes, U1 and U2. Specifically, U1 is an assoc′ re-

dex, while U2 is a lift ′ redex. The two reductions, as shown next, still converge.
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(ky.(kx.x)y)zN(kx.x)((ky.y)z)N
assoc'

assoc'

(ky.(kx.x)yN )z

(ky.(kx.xN )y)z(kx.xN )((ky.y)z)

lift' lift'

lift'

According to our axioms, U1 is not an assoc-redex because (λy.y)z is not an answer.

U2 is not a lift-redex because (λx.x) is not of the form (λx.A). By extending the

notion of value to include variables, our axioms would enable this overlapping. This

example points out another important difference between our system and the one

proposed by Maraist et al. As shown above, the assoc′ step has caused an implicit

duplication. In our system the only duplication is caused by the deref axiom, and as

such is explicit. This explicit control over duplication makes meta-reasoning about

the system easier. End

Since the metavariables occurring in the left-hand side of the axioms occur only

once, λneed satisfies the left-linearity property. Because of left-linearity and the

absence of overlapping, λneed can be expressed as a conditional orthogonal higher

order rewriting system (HORS) (van Oostrom, 1994).5

Lemma 4.3 (Parallel Move Lemma)

Let M−→→M1 and M U−−→M2, then a common reduct M3 of M1 and M2 can be found

by a complete development of the set of descendants of redex U occurring in M1.

Proof

From Lemma 4.2 the descendants of redexes are still redexes. The rewriting steps

are thus independent, and as such they commute.

Notation

Referring to the above lemma, let B be the reduction M−→→M1. We denote the set of

descendants of U with respect to the reduction B as U/B. Moreover, the reduction

M2−→→M3 is called the projection of B with respect to the U-reduction, and is denoted

by B/U. We will also make use of the notation U/U1 to denote the descendants of

U with respect to the U1-reduction.

By repeated application of the Parallel Move Lemma we get a Consistency (Church

Rosser) theorem for the call-by-need calculus.

Theorem 4.4

The call-by-need calculus is confluent: for all terms M,M1,M2 ∈ Λ such that M−→→M1

and M−→→M2 there exists M3 such that M2−→→M3 and M1−→→M3.

The confluence property follows also at once from λneed being a conditional

HORS. However the Parallel Move Lemma is stronger than confluence, since it

suggests how to find a common reduct. The Parallel Move Lemma is also useful in

5 Personal communication.
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proving the Standardization Theorem, to which we turn our attention next. Let us

first define what it means for a term to standard reduce to another term.6

Definition 4.5

Given a program M, M standard reduces to N, written as M 7−−−→
need

N, if and only

if M ≡ E[U] and N ≡ E[L], where U and L are a redex and its contractum,

respectively. M 7−−−→
need
→ N means M,N are related via the transitive-reflexive closure

of 7−−−→
need

.

The following is an example of standard reduction (I stands for λz.z):

(λf.fI(fI))(λw.(II)w) ≡ E1[(λf.fI(fI))(λw.(II)w)] 7−−−−→
deref

(λf.(λw.(II)w)I(fI))(λw.(II)w) ≡ E2[(II)] 7−−−−→
deref

(λf.(λw.(λz.I)Iw)I(fI))(λw.(II)w) ≡ E3[(λz.I)Iw] 7−−−→
lift

E3[(λz.Iw)I].

The evaluation contexts E1, E2 and E3 are:

E1 ≡ []

E2 ≡ (λf.(λw.[ ]w)I(fI))(λw.(II)w)

E3 ≡ (λf.(λw.[ ])I(fI))(λw.(II)w).

Instead, the following reduction is not standard:

(λf.fI(fI))(λw.(II)w) −−−−→
deref

(λf.fI(fI))(λw.(λz.I)Iw) −−−−→
deref

(λf.(λw.(λz.I)Iw)I(fI))(λw.(λz.I)Iw).

In fact, there is no evaluation context such that (λf.fI(fI))(λw.(II)w) ≡ E[II].

Verifying that the standard relation, 7−−−→
need

, is indeed a function from programs

to programs relies on the usual Unique Evaluation Context lemma (Felleisen and

Friedman, 1986). It states that there is a unique partitioning of a non-answer into

an evaluation context and a redex, which implies that there is precisely one way to

make progress in the evaluation.

Lemma 4.6

Given a program M, M is either an answer or there exists a unique evaluation

context E and redex N such that M ≡ E[N].

Corollary 4.7

7−−−→
need

is a partial function.

We show next that the standard reduction leads to an answer if there exists

one. We follow the proof technique of Huet and Lévy (1991). Let B be the re-

duction M−→→A. We first show that the reduction B contracts the descendant of

the standard redex, say U1, occurring in M. We then construct the projection of

the reduction B with respect to the U1-reduction, i.e. the reduction B/U1. Since

6 We only prove the important part of the Standardization Theorem, namely, that a standard
reduction starting with a program will find an answer if it exists.

https://doi.org/10.1017/S0956796897002724 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002724


The call-by-need lambda calculus 279

the reduction B/U1 also leads to an answer, we can proceed by performing the

projection (B/U1)/U2, where U2 is the standard redex contracted by the reduction

B/U1. As before, also (B/U1)/U2 leads to an answer. The termination of such a

process is guaranteed by showing that at each step the weight associated to each

reduction decreases. That is, if we call ord(B) the weight associated to the reduction

B, then we want to show ord(B) > ord(B/U1) > ord((B/U1)/U2) > · · · . Pictorially:

...

M

M1

M2

U1

U2

Un

B
A

A

A

A

B/U1

(B/U1)/U2

(. . . ((B/U1) /U2) . . . /Un)
A'

The reduction M U1−−→M1
U2−−→M2 · · · Un−−→ A′ is the desired standard reduction.

We first point out that the reduction of a non-standard redex cannot create a

standard redex.

Lemma 4.8

Let M U−−→M1, with U a non-standard redex.

(i) If M1 is an answer then M is an answer;

(ii) If M1 is of the form E[x] then M is also of the form E[x];

(iii) If M1 is a redex then M is a redex.

The following lemma shows that each reduction to an answer reduces the descen-

dant of the standard redex.

Lemma 4.9

Given a program M. If M−→→A then either M is an answer or M is of the form E[U]

with U a redex, such that a descendant of U, say U ′, is reduced in the reduction

from M to A. That is, ∃M1,M2, M−→→M1
U ′−−→M2−→→A.

Proof

By induction on the number n of reduction steps of M−→→A.

n = 0: M must be an answer.

n > 0: Let M U1−−→ M1 −→n−1 A. If U1 is the standard redex in M, then U1 is the

redex we are looking for. Otherwise, by induction hypothesis M1 must be

of the form E[U ′], such that a descendant of U ′ is reduced in the reduction

to A. By structural induction on M1 and the previous lemma it then follows

that U ′ is the descendant of the standard redex in M.
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Due to the Parallel Move Lemma, we can define a multiple steps reduction as

follows.

Definition 4.10

Let F be a set of distinct redexes in M. Then M −−−−−→
cdv F N denotes a complete

development of M with respect to F. We will write M −−−→
cdv

N when the set of

redexes reduced is clear from the context. As usual, −−−→
cdv
→ denotes the transitive and

reflexive closure of −−−→
cdv

.

For example,

(λx.xN)(λz.(λw.w)(λw.w)) −−−→
cdv

(λx.(λz.(λw.w)(λw.w))N)(λz.(λw.w)(λw.w))

−−−→
cdv

(λx.(λz.(λw.(λw.w))(λw.w))N)(λz.(λw.(λw.w))(λw.w))

where at each step the underlined redexes are reduced.

To a reduction M−−−→
cdv
→N we associate a tuple, which represents its weight.

Definition 4.11

Let B be the reduction: M −−−−−→
cdv F1

M1 −−−−−→cdv F2
· · · −−−−−→

cdv Fn
Mn. The weight of B,

written as ord(B), is defined as:

〈|Fn |, · · · , |F2 |, |F1 |〉

where |F| denotes the size of set F. Note the change of order.

Since M −→ M1 implies that M −−−→
cdv

M1, we can thus associate a weight to each

reduction. For example, to the reduction M −→ M1 −→ M2 −→ M3 we associate the

weight : 〈1, 1, 1〉. Using the lexicographical ordering among tuples, written as >, we

can then order the reductions.

Before addressing the standardization theorem, we prove that the descendants of a

redex are mutually disjoint. We call two redexes disjoint if they are not nested inside

each other. The underlined redexes in (λx.xN)(λz.(λw.w)(λw.w)) are not disjoint,

whereas the underlined redexes in

(λx.(λz.(λw.w)(λw.w))N)(λz.(λw.w)(λw.w))

are disjoint. The importance of this property is that no duplication can occur among

disjoint redexes.

Lemma 4.12

Let U and U1 be two distinct redexes in M. If M U−−→ M1 then all redexes in U1/U

are mutually disjoint.

Proof

Trivial from the analysis of the deref axiom, which is the only axiom that duplicates

terms.

We are now ready to state and prove the essence of the Standard Reduction

Theorem, which suffices to show that a call-by-need interpreter is an implementation

of the standard reduction function on non-answers.
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Theorem 4.13

Given a program M, M−→→A if and only if there exists an answer A′ such that

M 7−→→ A′−→→A.

Proof

⇐= Follows from the fact that 7−→→⊂ −→→.

=⇒ Let B be the reduction M−→→A. Without loss of generality let us assume

M U1−−→ M1
U2−−→ M2

U3−−→ A. If M is not an answer, then by Lemma 4.9

the reduction B reduces the descendant of the standard redex U occur-

ring in M. Let M 7 U−−→ N and let us construct the reduction B/U as follows:

M M1 M2

N2N1N

A

A .

U U/U1 (U/U1)/U2

cdv U1/U cdv U2/(U/U1) cdv U3/((U/U1)/U2)

U1 U2 U3

The above diagram shows that the standard redex U does not get duplicated,

because the only rule that causes duplication is the deref rule, and the redex

duplicated, if any, occurs under a lambda. Let us assume the descendant of U

is U2. Thus, |U2/(U/U1) |= 0, and |U3/((U/U1)/U2) |= 1. Then,

ord(B) = 〈1, 1, 1〉 > 〈1, 0, |U1/U |〉 = ord(B/U).

If N is an answer then we are done. Otherwise we can repeat the process above.

That is, we compute the projection of B/U with respect to U ′, the standard

redex in N. It remains to show that the weight keeps decreasing, that is,

ord(B/U) > ord((B/U)/U ′). If the descendant of U ′ is U3 then ord((B/U)/U ′)

is 〈0, 0, |U1/U |〉, which is obviously less than ord(B/U). Otherwise, since the

standard reduction cannot duplicate a redex in U1/U (by Lemma 4.12), we

have:

ord(B/U) = 〈1, 0, |U1/U |〉 > 〈1, 0, |U1/U | −1〉 = ord((B/U)/U ′).

Since at each projection the weight of the reduction decreases, the process

will terminate. In conclusion, since the standard redex criterion is syntactic,

i.e. independent of the reduction, it must be the case that the constructed

reduction is the standard one.

5 Correctness of the call-by-need evaluator

Resuming Plotkin’s program again, we define the call-by-need evaluator as a partial

function Evalneed from programs, or closed terms, to the singleton consisting of the

tag closure based on equality in the call-by-need calculus:

Evalneed(M) = closure if and only if λneed `M = A.

Theorem 5.1

For a program M, Evalneed(M) = closure if and only if M 7−→→ A.
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Proof

From the confluency property (Theorem 4.4) and the Standardization Theorem of

λneed (Theorem 4.13).

Replacing the call-by-name interpreter with the call-by-need interpreter requires

an equivalence proof for the two evaluators:

Evalneed = Evalname.

In this section, we will show that the two (interpreters treated as) sets are indeed

subsets of each other. One direction is nearly obvious: the call-by-name calculus can

clearly prove every equation that the call-by-need calculus can prove.

Theorem 5.2 (Soundness)

λneed ⊂ λ.

Proof

Each call-by-need axiom is an equation in the call-by-name calculus:

assoc: λneed ` (λx.E[x])((λy.A)M) = (λy.(λx.E[x])A)M. By the variable conven-

tion, x 6= y and x 6∈ FV (M). From the Substitution Lemma (Lemma 2.2),

λ ` E[x][y := M][x := A[y := M]] = E[x][x := A][y := M].

Since y 6∈ FV (E[x]) (variable convention):

λ ` E[x][x := A[y := M]] = E[x][x := A][y := M].

The same for deref and lift . A simple example for the strictness of the inclusion is

the equation

(λx.xx)Ω = ΩΩ.

As a straightforward corollary of the Standard Reduction Theorem, the call-by-need

calculus cannot prove this equation.

Intermezzo

Whereas λneed is incomparable with λV , the call-by-value theory, Maraist et al.’s

call-by-need theory (Maraist et al., 1994), λmow , is a proper superset of λV and a

proper subset of λ, that is,

λV ⊂ λmow ⊂ λ.
To accomplish this relationship, Maraist et al. use the axiom

deref ′ (λx.C[x])V = (λx.C[V ])V

as the replacement for (β). However, since this change does not suffice to turn their

calculus into a superset of the call-by-value theory, they make further modifications.

First, they add an axiom on garbage collection because βV , the basic call-by-value

axiom, implicitly deletes values that are no longer needed. The garbage collection

axiom proves equations like

(λx.λy.y)V = λy.y,
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which a theory based on just deref ′ cannot prove. Second, Maraist et al. include

variables in the set of values so that their theory can prove equations like

(λx.x)y = y.

As explained in section 3, we disagree with deref ′ because the axiom does not

faithfully reflect the intensional behaviour of a call-by-need machine. Since the

purpose of a call-by-need calculus is to capture the intensional aspects of modern

call-by-need evaluators, deref ′ should not be the basic axiom of an equational call-

by-need characterization. Furthermore, we disagree with the inclusion of variables

in the set of values because the first lookup of a variable triggers an unbounded

computation. The inclusion of variables in the set of values is therefore misleading

because it may represent a proper computation. Finally, we believe that the inclusion

of the garbage collection axiom should be optional. End

The direction:

Evalname(M) = closure =⇒ Evalneed(M) = closure,

requires more machinery, as we explain next.

5.1 Completeness of the call-by-need calculus

Thus far we have used lambda-bound variables to express sharing. To show that the

call-by-need calculus can simulate a call-by-name reduction, we now introduce ‘lets’

to express sharing in Λ terms. Even though a different proof could be done directly

on Λ, we believe that our approach increases the reader’s intuition. Specifically, we

introduce a new axiom, as follows:

βlet : (λx.M)N = let x beN inM.

We then reformulate the axioms of Definition 4.1 on the extended syntax.

Definition 5.3

[λlet] The following clauses define the syntax and basic axioms of the let-calculus:

Syntax

Expressions (Λlet): M ::= x | λx.M |MM | let x beM in M

Values: V ::= λx.M

Answers: A ::= V | let x beM in A

Evaluation Contexts: E ::= [ ] | EM | let x be E in E[x] | let x beM in E

Axioms

(λx.M)N = let x beN in M βlet

let x be V in E[x] = let x be V in E[V ] dereflet

(let x beM in A)N = let x beM in AN liftlet

let x be let y beM in A in E[x] = let y beM in let x be A in E[x] assoclet
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Notation: −−→
let

, −−→
let
→ denote the one-step and multiple-step reductions in λlet. Anal-

ogously to Definition 4.5 we can define a notion of standard reduction, written as

7−−→
let

and 7−−→
let
→.

The key step of the completeness proof is the introduction of an ordering

between terms of λlet. Intuitively, M ≤ N if M can be obtained by unwind-

ing N, that is, the ≤-ordering captures the amount of sharing contained in a

term (Ariola & Arvind, 1995). The ordering relation ≤ expresses whether the

terms have homomorphic graphs. For example, the graph of M ≡ (λx.x)(λx.x)

can be homomorphically embedded into the graph of N ≡ let y = λx.x in yy,

@ @

x x x

kx kx kx

which shows that M ≤ N. Notation: given a term M ∈ Λlet, let Dag(M) be the

corresponding directed acyclic graph (dag).

Definition 5.4

For M,N ∈ Λlet, M ≤ N if and only if there exists a homomorphism σ : Dag(M)→
Dag(N).

The main result of this section is that if M ≤ N, and M is a call-by-name term, that

is, M does not contain a let expression, then each standard call-by-name reduction

of M can be simulated in the let-calculus by reducing N. The term obtained in

the let-calculus is not necessarily greater (in terms of the above ordering) than the

one obtained following the call-by-name reduction, because the single step in the

let-calculus that simulates a call-by-name step may actually correspond to many

steps in the call-by-name lambda calculus. Consider the following reduction:

M ≡ ((λy.y)(λz.z))((λy.y)(λz.z)) −−−−→
name

(λz.z)((λy.y)(λz.z)) ≡ M1

and the term N ≡ let x be (λy.y)(λz.z) in xx, which is larger than M (in our sharing

ordering). The required reduction step in the let-calculus that simulates the reduction

step in the call-by-name calculus is

let x be (λy.y)(λz.z) in xx −−→
let

let x be (let y be λz.z in y) in xx ≡ N1.

Note, though, N1 does not dominate M1. However, there exists M2 such that

M1 −−−−→name
M2 and M2 ≤ N1:

M1 −−−−→name
M2 ≡ (λz.z)(λz.z) ≤ N1.

Since M ≤ M, the result shows how to reconstruct a call-by-name reduction in the

let-calculus.

The main difficulty of the proof is that if M ≤ N and M is a β-redex, N is not

necessarily a βlet redex. Suppose

M ≡ (λx.x)(λx.x)

N ≡ let z be (let w be λx.x in w) in zz,
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then M ≤ N, yet N does not contain a βlet redex. This is so because the language of

dags captures only the sharing in a term but not its let-structure. We thus enrich dags

with boxes and labelled edges (Ariola and Klop, 1996). Dag2(M) is the decorated

dag associated with a term M. A box can be thought of as a refined version of

a node; the label associated with an edge is just a sequence of let-bound variable

names. The label can be thought of as a direction to be followed in order to get to

a particular node. Each let induces one box, and each edge to the shared term is

decorated with the variable name. We pictorially represent a term let x beN in M

by a box divided in two parts: the upper part corresponds to M (the unshaded area

of a box) and the lower part contains N (the shaded area of a box). If M is x then

the unshaded area will only contain the edge labelled x that leads to the shaded

area containing N. Let us illustrate the extended dag notation and terminology with

a number of examples.

Example 5.5

(i) The term let z be λx.x in z is drawn as

z

x

kx

The name z associated with the root pointer is drawn outside the shaded area.

(ii) We can also have nested boxes, e.g. the term

let z be let y be let w be λx.x

in w

in y

in z

is drawn as

z

y

w

kx

x

where the path to the λ-node must follow the label zyw and hit three walls.

In contrast, in the term

let z be λx.x

in let y be z

in let w be y

in w,
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drawn as

w

y

z

kx

x

the path to the λ-node must follow the label wyz. The path penetrates three walls

but also leaves two encasings.

In our running example, Dag2(N) is:

@

z z

w

kx

x

In this decorated dag, the path from the application (root) node to the λ-node has

label zw, and it penetrates the wall of one box. This label and the wall are obstacles

that must be eliminated to create a redex. In terms of our graphical language, we

must eliminate the names z, w, the internal box, and pull the λ-node out of the

shaded area, which is exactly the task of the assoclet , dereflet , and liftlet rules. Their

dag-based representation in Table 1 reveals that dereflet pulls a value out of the

shaded area, eliminating a name on an edge; liftlet moves a wall; and assoclet moves

a wall that is in the shaded area. The sequence dereflet , assoclet , dereflet suffices to

expose the redex in our example:

let z be (let w be λx.x in w) in zz

−−−−−−→
dereflet

let z be (let w be λx.x in λx.x) in zz

−−−−−−→
assoclet

let w be λx.x in (let z be λx.x in zz)

−−−−−−→
dereflet

let w be λx.x in (let z be λx.x in (λx.x)z).

Figure 1 (without unreachable dags) illustrates these steps.

The language and notation for decorated dags are useful in proving the following

four key lemmas.

Notation

We denote with M−−−−−→{a,l}let
→N a sequence of assoclet and liftlet reductions. Likewise,

M−−−−−−→{a,d,l}let
→N denotes a sequence of assoclet , deref let and liftlet reductions.

From Table 1 it is clear that liftlet and assoclet do not change the dag associated

with a term, while dereflet causes a duplication.
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Table 1. Rules of the let-calculus in dag-based form.

dereflet :

liftlet :

assoclet :

E [x]

x x

V

V

V

x
E [x]

@ @

N N
L L

xx

MM

x x

kz kz

E[x] E[x]
x x x x

y y

M

L

yy

kz

L

kz

M

Lemma 5.6

(i) Given M ∈ Λlet, if M−−−−−→{a,l}let
→ N then Dag(M) = Dag(N).

(ii) Given M ∈ Λlet, if M−−−−−−→
dereflet
→ N then N ≤M.

The next lemma shows that adding sharing in a term does not destroy a β-redex.

The β-redex can be reconstructed by using the assoclet, lift let and deref let axioms.
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@

z z

w

x

kx

@

z z

kx

x

@

z z

kx

x

kx

z

@

x

kx

x

Fig. 1. Exposing the redex in let z be (let w be λx.x in w) in zz.

Lemma 5.7

Given M ∈ Λ, N ∈ Λlet, if M ≤ N and M ≡ En[(λx.P )R] then there exists P ′, R′, and

E[ ], such that N 7−−−−−−→{a,d,l}let
→ E[(λx.P ′)R′].

Proof

Let z be the root in Dag(M) of the β-redex being evaluated. Let z′ and z′2 be the

corresponding nodes in Dag(N) and Dag2(N), respectively. We know that the left

branch of z′ points to a λ-node, while in Dag2(N) the path from z′2 to the λ-node

may contain some obstacles. The goal is to show that by using assoclet , dereflet , and

liftlet we can remove all the obstacles from that path. We reason by induction on the

number n of names associated with the path in Dag2(N) from z′2 to the λ-node:

n = 0 : This means that the path from z′2 to the λ-node is free of names, but it

still may penetrate intervening walls. With m walls, we need m liftlet steps

to move the walls and expose the redex.

n > 0 : By the induction hypothesis, we can remove n-1 names. Now we need to

show how to eliminate the last one. There are two cases:

1. The name associated with the λ-node is w:

kz

w

M

Since w occurs in head position, an application of dereflet exposes the

λ-node;

2. The branch labeled w points to m boxes that surround the λ-node, e.g.

kz

w

M

Since w occurs in head position, m applications of assoclet followed by a

single application of dereflet expose the λ-node.
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So far we have shown that there exists P ′, R′ and C[ ] such that N−−−−−−→{a,d,l}let
→ N ′

and N ′ ≡ C[(λx.P ′)R′], with the redex (λx.P ′)R′ rooted at z′2 in Dag2(N ′). Since

z is the root of the leftmost-outermost redex in M, it must be that (λx.P ′)R′ is

needed. Therefore, C[ ] must be an evaluation context. Moreover, since the reduction

N−−−−−−→{a,d,l}let
→N ′ is to expose a needed redex it must be the case that the reduction is

standard, i.e. N 7−−−−−−→{a,d,l}let
→ N ′.

The third lemma in our series shows that the effect of adding sharing is to turn a

value into an answer.

Lemma 5.8

Given M ∈ Λ, N ∈ Λlet, if M ≤ N and M ≡ λx.P then there exists an answer A such

that N 7−−−−−→{a,d}let
→ A.

Proof

The proof is similar to but simpler than the previous one. In fact, we need not move

the walls surrounding the lambda-node, i.e. no use of liftlet is required.

Finally, we can show that a call-by-name evaluation can be simulated in the

let-calculus.

Lemma 5.9

Given a program M ∈ Λ and N ∈ Λlet, if M ≤ N and M 7−−−−→
name
→ M1, then ∃M ′1 ∈

Λ, N1 ∈ Λlet such that

M1−−−−→name
→M ′1, N 7−−→let

→ N1 and M ′1 ≤ N1.

Pictorially:

name name

let

M

N

M'1

N1

%%

Proof

By induction on the length n of the reduction M 7−−−−→
name

n M1.

n = 1 : Let M ≡ En[(λx.P )R], and let z be the root in Dag(M) of the β-redex in

the hole of En[ ]. From Lemma 5.7, there exists P ′, R′ and E[ ]:

N 7−−→
let
→ N ′ and N ′ ≡ E[(λx.P ′)R′].

Let z′ be the root in Dag(N ′) of the βlet -redex. From Lemma 5.6 and the

fact that M does not contain any sharing we have M ≤ N ′. Thus:

M 7−−−−→
name

M1 ≡ En[P [x := R]]

and

N ′ 7−−−→
βlet

N1 ≡ E[let x be R′ in P ′].
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If there exists a node z1 in Dag(M), where z1 6= z, such that σ(z1) = z′,

where σ is the homomorphism associated with the ordering M ≤ N ′, then

M1 6≤ N1. Let F be the set of all such nodes. Let M ′1,M1−−−−→name
→M ′1, by

doing a complete development of F. We have: M ′1 ≤ N1.

n > 1 : Let M 7−−−−→
name

n−1 M ′ and M ′ 7−−−−→
name

M1. By the induction hypothesis, ∃N1 ∈

Λlet,M
′′ ∈ Λ,

N 7−−→
let
→ N1,M

′−−−−→
name
→M ′′ and M ′′ ≤ N1.

From Lemma 2.3 ∃M2,

M ′′ 7−−−−→
name

0/1 M2 and M1−−−−→name
→M2.

If M2 ≡ M ′′ we are done. Otherwise, by the induction hypothesis ∃N ′1 ∈
Λlet,M

′
2 ∈ Λ,

N1 7−−→let
→ N ′1,M2−−−−→name

→M ′2 and M ′2 ≤ N ′1.

Putting all the lemmas together we can prove that if a call-by-name interpreter

stops in a lambda abstraction then there exists a reduction in the let-calculus to an

answer.7

Theorem 5.10

Given a program M ∈ Λ, M 7−−−−→
name
→ λx.N =⇒M 7−−→

let
→ A.

Proof

Since M ≤M, from Lemma 5.9, there exists M1 ∈ Λlet, N1 ∈ Λ such that:

M 7−−→
let
→M1 and λx.N−−−−→

name
→λx.N1

where λx.N1 ≤M1. The result then follows from Lemma 5.8.

We are now ready to show that the call-by-need parameter passing technique is a

correct implementation of call-by-name.

Theorem 5.11

Given a program M, Evalname(M) = closure if and only if Evalneed(M) = closure.

Proof

The if-direction follows from Theorem 5.2. The other direction follows from Theo-

rem 5.10 and the fact that in the call-by-need calculus the let-construct is syntactic

sugar for function application.

7 Indeed, the following stronger result also holds. The call-by-need reduction always involves
lesser number of β-steps than the call-by-name reduction that it simulates.
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6 Fully lazy calculus

The call-by-need calculus captures the sharing of the evaluation of arguments.

However, some implementations share even more computations than just those of

arguments. For example, according to our calculus, the program

(λf.fI(fI))(λw.(II)w),

will evaluate the redex II twice. This is what happens also in the interpreter of

Henderson and Morris (1976) and in the G-machine (Peyton Jones and Salkild, 1989).

However, the redex II will be evaluated only once following the combinator machine

of Turner (1979), supercombinator approach of Hughes (1982) and Wadsworth’s

(1971) interpreter. We refer to these implementations as fully lazy.

Wadsworth (1971) was the first to provide a fully lazy interpreter. He observed

that the redex II should not be copied, since no occurrence of the bound variable

w occurs in II . This can be captured by lifting the redex II as follows:

(λf.fI(fI))(λw.(II)w) −→ (λf.fI(fI))((λz.(λw.zw))(II)).

If we perform such a lifting, the redex II is only performed once:

(λf.fI(fI))((λz.(λw.zw))(II)) −−−−→
assoc

(λz.(λf.fI(fI))(λw.zw))(II) −−−−→
deref

(λz.(λf.(λw.zw)(fI))(λw.zw))(II) −→ (λz.(λf.(λw.zw)(fI))(λw.zw))((λz.I)I).

A redex like II is called a maximal free expression (mfe) of (λw.(II)w).

Definition 6.1

A subterm N of a lambda abstraction M is a free expression of M if all free variables

of N are free in M, and N is not a variable or a lambda abstraction. N is said to

be a maximal free expression of M if M does not contain any other free expression

that properly contains N.

Notation

~z and ~N stand for z1, · · · , zn and N1, · · · , Nn, respectively. mfe(M, ~N) is true if

N1, · · · , Nn are mfe’s of M. We use Vmfe to denote a value that does not contain

mfe’s.

If we now restrict the axiom deref of the call-by-need calculus so that it only

duplicates values that do not contain mfe’s, we are guaranteed that no mfe is reduced

twice. We call the new deref axiom deref wad:

(λx.E[x])Vmfe = (λx.E[Vmfe])Vmfe.

To accommodate this restriction, we must also introduce an axiom that permits the

reduction of a value to a value without mfe’s so that the deref wad axiom applies.

This suggests the mfe axiom:

(λy.C[~N]) = ((λ~zy.C[~z])~N) mfe(λy.C[~N], ~N) and 6 ∃N, mfe(λy.C[~z], N).

The proviso guarantees that all mfe’s are extracted at once, which avoids the
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following non-confluence trap:

kx.( yz)x( yz)

(kw1x.w1x( yz))( yz) (kw2x.( yz)xw2)( yz)

((kw2w1x.w1xw2( yz))( yz) ((kw1w2x.w1xw2( yz))( yz)  .

Unfortunately, the mfe axiom still interferes with itself:

(ky.(kx.(II )x)y)
 

 
((kzy.(kx.zx)y)(II )) (ky.(kzx.zx)(II )y)

((kwy.wy)((kzx.zx)(II )))

U1

U
U U1

Since the goal of lifting mfe’s is to avoid some extra copying, it makes sense to

perform redex U because the λy-abstraction can be put in a context that associates

a name to it. However, that is not the case for the λx-abstraction. Therefore, there

is no need of reducing redex U1; no copying of the body (II)x can be demanded at

this point. This suggests the following axiom as a replacement of mfe:

(λx.E[x])(λy.C[~N]) = (λx.E[x])((λ~zy.C[~z])~N) mfe(λy.C[~N], ~N) and

6 ∃N, mfe(λy.C[~z], N).

In other words, we allow lifting of mfe’s only if there is a danger of duplication, and

demand that mfe’s are lifted to a well-defined point. We summarize the fully lazy

calculus in the following definition.

Definition 6.2

[Wadsworth’s calculus λwad] The following axioms define Wadsworth’s calculus:

(λx.E[x])Vmfe = (λx.E[Vmfe])Vmfe derefwad

(λx.E[x])(λy.C[~N]) = (λx.E[x])((λ~zy.C[~z])~N) mfewad

mfe(λy.C[~N], ~N) and

6 ∃N, mfe(λy.C[~z], N)

(λx.A)MN = (λx.AN)M lift

(λx.E[x])((λy.A)M) = (λy.(λx.E[x])A)M assoc

−−−→
wad

and −−−→
wad
→ denote the one-step and multiple steps reductions, respectively.

Like the call-by-need calculus, Wadsworth’s calculus still enjoys two key prop-

erties: there are no critical pairs, and it is left-linear. As such, λwad satisfies the

Parallel Move Lemma and is confluent. Therefore, as in section 4, we can define a

standard reduction, written as 7−−−→
wad
→, and prove that the standard reduction leads to

an answer, if one exists. The standard reduction defines Wadsworth’s interpreter.
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It is interesting to analyse the effects of the call-by-need axioms on terms that do

not contain mfe’s. As shown next, no new mfe’s are created by applying the deref

axiom.

Lemma 6.3

If M does not contain mfe’s and M −−−−→
deref

N then N also does not contain mfe’s.

Proof

Let M ≡ C[(λx.E[x])V ] −−−−→
deref

N ≡ C[(λx.E[V ])V ]. M does not contain mfe’s,

therefore the value V can actually be denoted by Vmfe. Since values are not mfe’s,

by structural induction on the definition of evaluation context we can show that if

E[x] does not contain mfe’s then the same holds for E[Vmfe]. The result then follows

trivially.

In contrast, the assoc and the lift axioms introduce new mfe’s. Take the following

reduction

M ≡ (λx.x)((λy.λz.z)N) −−−−→
assoc

(λy.(λx.x)λz.z)N ≡M1, (3)

the term (λx.x)(λz.z) is a new mfe of (λy.(λx.x)λz.z). The same happens for the lift

axiom:

M ≡ (λx.λz.z)N1N2 −−−→lift (λx.(λz.z)N2)N1 ≡M1, (4)

(λz.z)N2 is a new mfe of (λx.(λz.z)N2). Note that the creation of new mfe’s only

happens when the assoc and lift redexes are of the form (λx.E[x])((λy.V )M) and

(λx.V )MN, respectively.

Lemma 6.4

Let M be free of mfe’s:

(i) if M −−−−→
assoc

N and N contains a mfe then it must be that M ≡
C[(λx.E[x])((λy.V )P )].

(ii) if M −−−→
lift

N and N contains a mfe then it must be that M ≡ C[(λx.V )PQ].

Proof

(i) Let us assume M ≡ C[(λx.E[x])((λy.A)P )] −→ C[(λy.(λx.E[x])A)P ] ≡ N, with

A not a value. For (λx.E[x])A to be a mfe of (λy.(λx.E[x])A), the bound

variable y cannot occur free in A. Since A is not a value, it means that A

must be a mfe of λy.A. Since M is free of mfe’s we reached a contradiction.

Therefore, A must be a value.

(ii) Same as above.

The mfe’s created by either assoc or lift are benign mfe’s, that is, no need of

lifting them will ever occur during the evaluation of a program. In fact, referring to

equation (3), the evaluation of M1 will dereference x and then stop. Analogously,

referring to equation (4), the evaluation of M1 must reduce N2 to a value, and if that

succeeds the evaluation will stop after a deref step. In other words, if the program

does not contain any mfe’s, no mfewad step occurs at run-time.
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Theorem 6.5

If M does not contain mfe’s then there is no N, M 7−−−→
need
→ N and N ≡ E[U], with U

a mfewad redex.

Proof

Let us assume there exists a term N, M 7−−−→
need
→ N and N contains a mfewad redex U.

Since M does not contain mfe’s it means that the mfe’s lifted by redex U must have

been created during the evaluation of M. That is, there must be terms M1 and M2

such that

M 7−−−→
need
→M1 7−→M2 7−−−→need→ N,

with M2 the first term in the evaluation that contains a mfe that is later on lifted

by redex U. By Lemma 6.3 the reduction from M1 to M2 must either be an assoc or

a lift step. We analyse the two cases:

assoc: By the previous lemma, M1 is E[(λx.E1[x])((λy.V )P )], and M2 is

E[(λy.(λx.E1[x])V )P ]. We show by structural induction on the definition

of the evaluation context E that the lifting of the new mfe (λx.E1[x])V will

never be demanded.

E is [ ]: That is, M2 is (λy.(λx.E1[x])V )P . Trivial, since the λy-abstraction

will never have a name associated to it.

E is E2Q or (λz.E2)Q: Follows from the induction hypothesis.

E is (λz.E2[z])E3: That is, M2 ≡ (λz.E2[z])E3[((λy.(λx.E1[x])V )P )]. By in-

duction hypothesis, (λx.E1[x])V does not get lifted by evaluating

E3[((λy.(λx.E1[x])V )P )]. Thus, the only way it might be lifted is if

it is demanded by the outside lambda, that is, by (λz.E2[z]). For that to

happen, E3[((λy.(λx.E1[x])V )P )] must first be evaluated to a value. Dur-

ing that evaluation the application (λx.E1[x])V will have to disappear,

and thus the possibility of lifting it vanishes.

lift: As in the previous case.

Since M does not contain mfe’s and the new mfe’s are not lifted out, it must be the

case that such an N cannot be found.

Corollary 6.6

If M does not contain mfe’s and M 7−−−→
wad

n N then M 7−−−→
need

n N.

From the above corollary laziness and fully laziness coincide for programs that do

not contain mfe’s. Moreover, the corollary suggests that we could lift all the mfe’s of

a program at compile-time and then use our call-by-need interpreter. The lifting of

mfe’s at compile-time is the essence of the sophisticated lambda lifting algorithms

pioneered by John Hughes (1982). Since we cannot predict at compile time whether

or not a lambda abstraction will be shared, we have to resort to the mfe axiom.

It is strongly normalizing, which implies that we can mfe-normalize the program

before evaluating. However, as described earlier, it is non-confluent. To encompass

this problem the mfe rule is applied following a specific strategy, namely we apply

it in an inside-out manner, starting from the innermost lambda of a term. For
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example, the reduction (λy.(λx.(II)x)y −−−→
mfe

(λzy.(λx.zx)y)(II) is disallowed because

II should be lifted from the λx-abstraction first. If we denote by MFE(M) the final

term obtained by applying the mfe rule in an inside-out manner, we conjecture the

soundness and the completeness of the lifting process:

Conjecture 6.7

Given a program M, Evalneed(M) = Evalneed(MFE(M)).

Unfortunately, applying the lifting of mfe’s at compile time is not as efficient as

Wadsworth’s interpreter:

M 7−−−→
wad

n A 6=⇒ MFE(M) 7−−−→
need

≤n A′.

And yet worse, lifting mfe’s can even slow down a call-by-need interpreter. For

example,

M ≡ (λf.fI)(λw.(II)w) 7−−−→
need

4 A.

Whereas,

MFE(M) ≡ (λf.fI)((λz.λw.zw)(II)) 7−−−→
need

6 A′.

We are currently in the process of investigating how different notions of mfe’s impact

efficiency. That is, how to best approximate Wadsworth’s interpreter without too

much run-time overhead.

7 Reasoning about a lenient language

The Evalneed interpreter defines a possible implementation of non-strictness. In this

section, we investigate another evaluator based on a notion of parallel reduction.

Instead of delaying the evaluation of the argument until its value is needed, the

argument can be evaluated in parallel with the body of the function. For example, we

could reduce (λf.(II)f)(II) to (λf.(λz.I)If)((λz.I)I) in one step. In other words, if we

had processors waiting for work, we could execute any redex we want independently

of the need. One extreme is to compute all redexes in a term. This is usually referred

in the literature as the Gross-Knuth evaluation strategy, and we denote it by (−−−→
GK

).

Due to the Parallel Move Lemma of the call-by-need calculus, the Gross-Knuth

evaluation strategy defines a function on terms.

Definition 7.1

M −−−→
GK

N if and only if M −−−−−→
cdv F N, with F the set of all redexes in M. −−−→

GK
→ is the

transitive reflexive closure of −−−→
GK

.

For simplicity let us assume II −→ I . The following reduction is then a complete

development with respect to the underlined redexes in M:

M ≡ (λx.x(II))(λy.II) −→ (λx.(λy.II)(II))(λy.II) −→ (λx.(λy.I)(II))(λy.II)

−→ (λx.(λy.I)I)(λy.II) −→ (λx.(λy.I)I)(λy.I).

Thus, we would say M −−−→
GK

(λx.(λy.I)I)(λy.I).
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Lemma 7.2

−−−→
GK
→ is a cofinal strategy: for all terms M,N such that M−−−→

need
→N there exists M1

such that M−−−→
GK
→M1 and N−−−→

need
→M1.

Proof

By induction on the number n of reduction steps of M−−−→
need
→N.

n = 1: Directly from the Parallel Move Lemma.

n > 1: Let M −→n−1 M1 −→ N. By induction hypothesis, ∃M ′1, M−−−→
GK
→M ′1 and

M1−−−→need→M
′
1. Let us assume M1

U−−→ N. From the Parallel Move Lemma:

M ′1 −−−−−→cdv Fk
N ′ and N−−−→

need
→N ′,

where Fk is the set of descendants of U with respect to the reduction

M1−−−→need→M
′
1. If the size of Fk is zero, then the result holds trivially. Since

Fk is a subset of all the redexes in M ′1, the result follows again from the

Parallel Move Lemma.

The Gross-Knuth strategy suggests a lockstep parallelism, that is, we first find

all redexes in a program, we reduce them and then start over. However, real

implementations allow more freedom than that. Even more, redexes inside a lambda

are not reduced until the function is applied. For example, in the term

(λx. (II)︸︷︷︸
U

(λy. II︸︷︷︸
U1

))M,

we would like to allow the reduction of U but not of U1, because U1 occurs inside a

lambda abstraction which is not applied. We call this evaluation strategy lenient, i.e.

the only control mechanism is lambda abstraction (this is the evaluation strategy of

the language Id (Nikhil, 1991)). We first introduce the notion of lenient evaluation

context:

Elenient ::= [ ] | ElenientM |MElenient | (λx.Elenient)M.

The lenient strategy is then defined as:

Definition 7.3

M −−−−−→
lenient

N if and only if M is not an answer and M −−−−−→
cdv F N, with F a set of

redexes U in M such that M ≡ Elenient[U].

Note that differently from the Gross-Knuth strategy we do not have to select all

redexes in a term. For example,

(λx.(II)w(II))(λy.II) −−−−−→
lenient

(λx.Iw(II))(λy.II),

but

(λx.(II)w(II))(λy.II) 6−−−→
GK

(λx.Iw(II))(λy.II).

The lenient strategy is non-deterministic but confluent.
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Theorem 7.4

Given a program M, M−−−→
need
→A if and only if there exists an answer A′ such that

M−−−−−→
lenient
→A′−−−→

need
→A.

Proof

The only if direction is trivial. The other direction follows from the cofinality of the

Gross-Knuth strategy (Lemma 7.2) and the fact that if M−−−→
GK
→A then there exists

an answer A′ such that M−−−−−→
lenient
→A′−−−→

need
→A.

By defining a lenient evaluator as:

Evallenient(M) = closure if and only if M−−−−−→
lenient
→A,

we obtain that the lenient strategy is another possible implementation of non-

strictness.

Corollary 7.5

Given a program M, Evalneed(M) = closure if and only if Evallenient(M) = closure.

The above corollary indicates that laziness should not be confused with non-

strictness, as it is often done in the literature. Specifically, non-strictness is a property

of a language’s semantics while laziness is an implementation technique.

8 Extensions

Lazy implementations of the lambda calculus provide at least two pragmatic ex-

tensions of the pure theory. The first extension is a set of constructors for forming

complex data values. The second important extension is a form for specifying mu-

tually recursive computations (and values). We deal with each of these extensions in

turn.

Lazy constructors Most non-strict functional languages provide lazy data construc-

tors. For example, lazy cons only evaluates its arguments when there is a demand for

their respective values (Friedman and Wise, 1976). The evaluation rules for cons can

be inferred from the usual encoding of cons and the related destructure operations

as functions (Barendregt, 1984): cons = (λx1x2p.px1x2), car = λp.p(λx1x2.x1), and

cdr = λp.p(λx1x2.x2).

Recursion A deficiency of the call-by-need calculus is its treatment of recursive

or cyclic values. Following tradition, it relies on the Y combinator to implement

recursion. In the absence of data constructors, this solution is not a problem.

However, once data constructors are included the sharing in the source language no

longer reflects the sharing in the evaluator. For example, the term

M ≡ Y(λy.cons(1, y))

evaluates to a term containing two distinct cons cells even though a lazy evaluator

will only allocate one cell and will represent M as a cyclic structure.
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To cope with recursion, we transform Ariola and Klop’s (1994, 1996) call-by-name

calculus with cycles to a call-by-need calculus with cycles. The first step is to add a

letrec construct of the form

letrec x1 be N1, . . . , xn be Nn in M

to the syntax. No ordering among the bindings is assumed. The set of

evaluation contexts is the natural adaptation of the set of evaluation con-

texts for the call-by-need calculus. The only difference is the presence of

D[x, xn], which stands for a set of declarations containing bindings of the form

“x be E[x1], x1 be E[x2], . . . , xn−1 be E[xn]”. As shown in the following definition,

the set of values V also contains a new constant •, which arises due to cycles.

Specifically, we consider a set of declarations of the shape D[x, x] to be equivalent

to •. The constant • represents a program that provably diverges. It is not an answer

and does not contain a redex.

Definition 8.1

[The Call-by-Need Letrec Calculus] The following clauses define the syntax and

basic axioms of the call-by-need Letrec calculus.

Syntax

Expressions (Λ): M ::= x | λx.M |MM | letrec D in M

Declaration: D ::= x1 be M1, . . . , xn be Mn

Values: V ::= λx.M | •
Answers: A ::= V | letrec D in A

Evaluation Contexts: E ::= [ ] | EM | letrec D in E |
letrec D, x be E in E[x] |
letrec xn be E,D[x, xn] in E[x]

Dependencies: D[x, xn] ::= x be E[x1], . . . , xn−1 be E[xn], D

Axioms

βneed :

(λx.M)N = letrec x be N in M

lift :

(letrec D in A)N = letrec D in AN

deref :

letrec D, x be V in E[x] = letrec D, x be V in E[V ]

derefenv :

letrec xn be V , D[x, xn] in E[x] = letrec xn be V , D[x, V ] in E[x]

assoc

letrec D′, x be (letrec D in A) in E[x] = letrec D′, D, x be A in E[x]

assocenv
letrec xn be (letrec D in A), D[x, xn] in E[x] = letrec D, xn be A, D[x, xn] in E[x]

By applying a similar reasoning as in section 4 it is possible to show that the

extended call-by-need calculus is an orthogonal system, and as such it is confluent

and enjoys the Parallel Move Lemma. We are in the process of showing soundness
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and completeness of the above calculus with respect to Ariola and Klop’s calculus

(1994, 1996).

9 Applications

The call-by-need calculus has a number of potential applications. Its primary purpose

is as a reasoning tool for the implementation of lazy languages. We sketch three

ideas.

Call-by-need and assignment Call-by-need is usually implemented using assignments.

Crank (1990) briefly discusses a rewriting semantics of call-by-need based on

Felleisen and Hieb’s (1992) λ-calculus with assignment. We believe that the call-

by-need calculus is the correct basis for proving this implementation technique

correct with a simple bi-simulation theorem for the respective standard reductions.

Call-by-need and cps conversion Okasaki et al. (1994) recently suggested a

continuation-passing transformation for call-by-need languages. In principle, this

transformation should satisfy the same theorems as the continuation-passing trans-

formation for call-by-name and call-by-value calculi (Plotkin, 1975). Plotkin’s proof

techniques should immediately apply. Since this transformation appears to be used

in several implementations of lazy languages (Odersky: personal communication,

June 1994), it is important to explore its properties with standard tools.

Garbage collection Modelling the sharing relationship of an evaluator’s memory in

the source syntax suggests that the calculus can also model garbage collection.

Indeed, the idea of garbage collection can easily be expressed for the call-by-need

calculus by adapting the garbage collection rule for reference cells of Felleisen and

Hieb (1992, 1990):

(λx.N)M = N if x 6∈ FV (N).

We expect that the work on garbage collection in functional languages by Morrisett

et al. (1995) will apply to call-by-need languages and will strengthen the calculus

and its utility for reasoning about the implementations of lazy languages.
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