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For turbulent bubbly flows, multi-phase simulations resolving both the liquid and bubbles
are prohibitively expensive in the context of different natural phenomena. One example is
breaking waves, where bubbles strongly influence wave impact loads, acoustic emissions
and atmospheric-ocean transfer, but detailed simulations in all but the simplest settings are
infeasible. An alternative approach is to resolve only large scales, and model small-scale
bubbles adopting sub-resolution closures. Here, we introduce a large eddy simulation
smoothed particle hydrodynamics (SPH) scheme for simulations of bubbly flows. The
continuous liquid phase is resolved with a semi-implicit isothermally compressible SPH
framework. This is coupled with a discrete Lagrangian bubble model. Bubbles and
liquid interact via exchanges of volume and momentum, through turbulent closures,
bubble breakup and entrainment, and free-surface interaction models. By representing
bubbles as individual particles, they can be tracked over their lifetimes, allowing closure
models for sub-resolution fluctuations, bubble deformation, breakup and free-surface
interaction in integral form, accounting for the finite time scales over which these events
occur. We investigate two flows: bubble plumes and breaking waves, and find close
quantitative agreement with published experimental and numerical data. In particular, for
plunging breaking waves, our framework accurately predicts the Hinze scale, bubble size
distribution, and growth rate of the entrained bubble population. This is the first coupling
of an SPH framework with a discrete bubble model, with potential for cost-effective
simulations of wave–structure interactions and more accurate predictions of wave impact
loads.
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1. Introduction

Flows involving complex, dynamic free-surface motion are found widely in industry and
nature, with fuel sloshing in aircraft wings and wave impacts on coastal and offshore
structures being prime examples. For waves in particular, the violent motion of the free
surface often results in the entrainment of bubbles at the free surface, which can have
significant effects on the overall dynamics and peak loads, and plays a major role in the
exchange of gas between the ocean and atmosphere.

With a greater understanding of the effect of bubbles in breaking waves as our
motivation, we seek improved approaches to their numerical simulation. The topic of
bubble entrainment in breaking waves has been the subject of considerable experimental
(e.g. Rapp, Melville & Longuet-Higgins 1990; Deane & Stokes 2002) and numerical
(Chen et al. 1999; Ma, Shi & Kirby 2011; Derakhti & Kirby 2014; Deike, Popinet
& Melville 2015; Deike, Melville & Popinet 2016) research, and with advances in
computational resources and mesh adaptivity in recent years, researchers have begun to
conduct multi-phase simulations with the aim of resolving even the smallest bubble and
droplet scales (Deike et al. 2015, 2016; Mostert, Popinet & Deike 2022). This work has
elucidated fundamental aspects of the process of wave breaking, including the degree of
three-dimensionality in the flow (Mostert et al. 2022), non-locality in the bubble breakup
cascade (Chan, Lozano-Durán & Moin 2020; Chan et al. 2021b), and the underlying
physical mechanisms controlling bubble breakup (Rivière et al. 2021; Ruth et al. 2022).
Whilst high-fidelity simulations are desirable for obtaining fundamental insight, their
applicability in more industrially relevant settings is limited due to computational costs.
Even with adaptive mesh refinement, the computational cost of multi-phase simulations
as in Mostert et al. (2022) is significant: of the order of a month, and half a million CPU
hours across several hundred cores.

An alternative numerical approach is to model the presence of bubbles (rather than
resolving individual bubbles), with some form of population balance equation and,
typically, an assumption that the bubbles are spherical. With this approach, there are two
options for the treatment of the dispersed phase. First, it may be modelled as a continuum,
through a bubble volume fraction, or number density field, which is subject to an evolution
equation. Here, the evolution equations for the dispersed phase are partial differential
equations, which are integrated in the same numerical framework as the equations of
motion of the continuum liquid phase. In the mesh-based literature, such schemes are
referred to as Eulerian–Eulerian, and have been developed for the simulation of bubble
plume dynamics (Becker, Sokolichin & Eigenberger 1994; Sokolichin & Eigenberger
1994; Pfleger & Becker 2001), air entrainment in breaking waves (Ma et al. 2011; Derakhti
& Kirby 2014), and liquid jet breakup (Edelbauer 2017). Since the dynamics of bubbles
dispersed in a liquid has a strong dependence on the bubble size, the treatment of
polydisperse bubble distributions here is problematic. Typically, a population of bubbles
is segregated into groups of similar sizes, each group requiring two additional evolution
equations. Bubble breakup and coalescence may then be incorporated by source and
sink terms exchanging mass (or number density) between bubble groups. An additional
limitation is that this approach does not allow the tracking of individual bubbles over their
lifetimes, but only statistical averages, and this constrains potential additional physical
models, such as those for bubble break up. Although numerically this approach allows
bubbles larger than the discretisation length scale of the continuous liquid phase (but with
small number density), the assumptions used in the derivation of such models limit bubble
sizes to smaller than the resolution of the continuous phase (Lakehal, Smith & Milelli
2002).
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Smoothed particle hydrodynamics simulations of bubbly waves

The second option for treating the dispersed phase is to model the bubbles individually,
representing each bubble as a Lagrangian particle. Again, such approaches have been
developed widely for mesh-based schemes, for example the work by Fraga et al. (2016)
focusing on bubble plumes, or the studies on turbulence–bubble interactions (Mazzitelli,
Lohse & Toschi 2003a,b; Pozorski & Apte 2009; Breuer & Hoppe 2017; Olsen, Skjetne &
Johansen 2017), and cavitation bubble clouds (Fuster & Colonius 2011; Maeda & Colonius
2018). In the mesh-based community, these methods are described as Eulerian–Lagrangian
schemes. Each individual bubble interacts with the continuous phase through exchanges
of momentum (and sometimes volume, as in Finn, Shams & Apte (2011), although in
many cases where the concentration of the dispersed phase is small, volume exchanges
are neglected). Schemes of this type allow for the tracking of individual bubbles, and a
continuous polydisperse bubble distribution poses no additional challenge. However, the
resolution of the liquid phase imposes an upper limit on the maximum bubble size that
can be represented (Fraga et al. 2016), and for very small bubbles, the computational costs
increase with (a) the increasing number of bubbles, and (b) the increasing stiffness of the
equation of motion of small bubbles due to the closure model for the drag force.

Temporarily setting aside the presence of bubbles, mesh-free methods have shown
significant promise for simulations of breaking waves in recent decades. Smoothed particle
hydrodynamics (SPH) is one mesh-free method, developed originally for astrophysical
simulations (Gingold & Monaghan 1977; Lucy 1977), and since applied with considerable
success to a range of terrestrial flows, including those with dynamically evolving free
surfaces (Monaghan 2012). The fluid is discretised by a set of Lagrangian particles, and
spatial derivatives are approximated by weighted sums of fluid properties at neighbouring
particles. Whilst tracking a deforming surface undergoing topological changes is a
complex task in mesh-based methods, for SPH, little additional effort is required. There are
now a wide variety of SPH schemes and related methods capable of simulating breaking
waves, including weakly compressible SPH (Domínguez et al. 2022), incompressible
schemes (Lind et al. 2012; Chow et al. 2018; Guo et al. 2018), and the moving particle
semi-implicit method (Khayyer & Gotoh 2009). Although multi-phase SPH schemes
are well established (e.g. Hammani et al. 2020), and capable of simulating multiple
bubbles (Zhang, Sun & Ming 2015) and bubble-free-surface interactions (Sun et al.
2021), we seek to avoid the cost of resolving both phases explicitly. We observe that
the terms ‘Eulerian–Eulerian’ and ‘Eulerian–Lagrangian’ used above are misnomers
(and somewhat ambiguous) in the context of SPH-based methods, while appropriate for
Eulerian mesh-based numerical methods. In this work, we refer to the two approaches as
‘continuous–continuous’ and ‘continuous–discrete’, descriptions that remain clear even
when used to describe schemes with non-Eulerian methods for the continuous phase.
Of the bubble modelling approaches described above, developments in SPH lag behind
mesh-based methods. A model based on the continuous–continuous approach has only
recently been introduced to SPH (Fonty et al. 2019), but with very promising results
for air entrainment in flow over a spillway (Fonty et al. 2020), though the method is
currently limited to simplified closure models for interphase momentum exchange. We
are not aware of any continuous–discrete SPH models for bubbly flows, although the SPH
implementations closest in philosophy to this approach are perhaps the multi-phase dusty
gas formulations, developed originally by Monaghan & Kocharyan (1995) and Maddison
& Monaghan (1996), and extended more recently by Laibe & Price (2012).

Herein, we present an SPH implementation of the continuous–discrete approach for
bubbly free-surface flows. The liquid is resolved via large eddy simulations (LES)
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Symbol Description

α Liquid volume fraction
β Density ratio ρl/ρb
γ Dimensional surface tension
δt Time increment
δr Initial SPH particle spacing
Δ̃ Implicit LES filter scale
ε Turbulent dissipation rate
ζ , ζ r Random vectors with normally and uniformly (resp.) distributed components
η Initial free-surface profile for Stokes waves
κ An arbitrary property used for exposition of SPH operators
Λ Critical bubble radius for breakup
μl Dimensional dynamic liquid viscosity
νsrs Sub-resolution viscosity
νS, νB Shear- and bubble-induced eddy viscosities
ξ Geometric weighting parameter in mixed-scale model
ρl, ρb Dimensional density of liquid and bubble contents
ρN SPH particle number density
σsrs Standard deviation of sub-resolution fluctuating velocity
τ‖, τ⊥ Parallel and perpendicular time scales in the Langevin model
τsrs Sub-resolution velocity fluctuation time scale
φ An arbitrary property used for exposition of SPH operators
χ Wave steepness
ψfs Free-surface–bubble interaction parameter
ab, aH Bubble radius and Hinze scale radius
bv Bubble plume width
B Diffusion matrix in Langevin model
B, Bi The set of all bubbles, and the set of neighbours of SPH particle i
Bo Bond number
c Dimensional sound speed
C Time scale constant for Langevin model
cdef Bubble deformation coefficient
Cd , Cl, Cvm Drag, lift and virtual mass coefficients (resp.)
CM , Cν,B Coefficients in mixed-scale model and bubble-induced viscosity model
d = 3 Number of spatial dimensions
dW Weiner process
eg Unit vector aligned with gravitational acceleration
Ebc, Ese Energy available for bubble creation, and surface energy of a bubble
E , E‖, E⊥ Exponential of drift matrix, and components thereof
F d , F l, F vm, F g Drag, lift, virtual mass and buoyancy forces on bubbles (resp.)
F fs Free-surface interaction force on bubble
Fr Froude number
g Dimensional gravitational acceleration
G Drift matrix in Langevin model
h SPH smoothing length
I Identity matrix
ksrs Sub-resolution turbulent kinetic energy
Ldef Bubble deformation distance
Mb, M Interphase momentum exchange on bubble, and evaluated in liquid
Ma Mach number
nnpb, nnb Number of potential new bubbles, and number of new bubbles
n, n0 Surface normal vector, and surface normal vector at plane surface
N, Nb Total number of SPH particles and bubbles (resp.)
NH+, NH− Number of super- and sub-Hinze-scale bubbles
p̃ Filtered pressure

Table 1. For caption see next page.
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Smoothed particle hydrodynamics simulations of bubbly waves

Symbol Description

P , Pi Set of all SPH particles, and set of neighbours of particle i
PI , PFS Set of internal and free-surface (resp.) SPH particles
qc Kinetic energy at test-filter scale
Q̇ Volumetric flow rate of bubble source
rs SPH kernel support radius
r0 Bubble source radius
r, rb Position vectors of SPH particle and bubble (resp.)
R Relative velocity conformation matrix, used in Langevin model
Re, Reb Integral- and bubble-scale Reynolds numbers
S̃ Resolved strain rate tensor
Sc Schmidt number
t Time
tbc, tim, tm Time: of bubble creation, of wave impact, and of bubble–free-surface merging
Tbu, Tc, Tp Characteristic time scales: for breakup, free-surface interaction, and persistence
udef Bubble deformation velocity
ub Bubble velocity
ul, ũl, u′

l Total, filtered and fluctuating velocities in liquid
ups Transport velocity
urel Relative velocity between liquid and bubble
V , Vmax, Vmin Bubble parent–child volume ratio and limits thereof
Vb Vbc Bubble volume, and volume available for bubble creation
Vl,i, Vi Volume of liquid, and total volume (resp.) held by SPH particle i
Vlb SPH volume interpolated to bubble locations
w, wc Vertical velocity component generally, and at plume centreline
W, Wij SPH kernel function
W , W‖, W⊥ Square root of velocity fluctuation covariance matrix, and components thereof
We, Web Integral- and bubble-scale Weber numbers
x, y, z Cartesian coordinate system

Table 1. List of notation used herein. Except where stated explicitly, all properties are dimensionless.

using a semi-implicit isothermally compressible SPH framework, whilst each bubble is
represented as a discrete Lagrangian particle that interacts with the liquid via exchanges
of momentum, volume and sub-resolution turbulence closures. We focus particularly
on integral models for bubble entrainment, breakup and free-surface interaction, with
application to breaking waves.

The remainder of the paper is set out as follows. In § 2, we introduce the governing
equations of our model. Section 3 presents details of the numerical implementation.
In § 4, we test our simulation framework against numerical and experimental data for
bubble plumes, and in § 5, we use our model to simulate the air entrainment in breaking
waves. Section 6 is a summary of our conclusions. Further validation of our LES
model is provided in the Appendix. A table of all symbols used in the work is given
in table 1.

2. Governing equations

The system considered is a continuous liquid phase, containing a dispersed bubble phase,
as illustrated in figure 1. The liquid phase is governed by the isothermal compressible
Navier–Stokes equations, whilst each bubble is modelled as a discrete particle that obeys
Newton’s second law. In the following, the subscripts l and b indicate properties in the
liquid (continuous) and dispersed bubble phases, respectively. Where the subscript l, b
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Liquid – isothermal compressible Navier–Stokes – ũl, p̃, α 

Bubbles – Newton’s second law – rb, ub, ab 

Figure 1. An illustration of the configuration considered herein. The liquid is treated as a continuum (blue),
with dispersed bubbles (red) treated as discrete particles.

appears, it denotes a liquid property evaluated at a bubble. We consider the liquid to be
isothermally compressible, with sound speed c, density ρl and viscosity μl. The bubbles
are assumed to be spherical, comprised of gas with density ρb, and with a constant
liquid–bubble surface tension γ . The entire system is subject to a gravitational acceleration
geg, where eg is a unit vector. Following non-dimensionalisation by suitable integral length
and velocity scales, the problem is parametrised by the Reynolds number Re, the Mach
number Ma, the Froude number Fr, the (integral scale) Weber number We, and the density
ratio β = ρl/ρb. Although our numerical framework is able to capture acoustic signals, in
the present work these are not of interest, and are damped out by our implicit treatment
of the pressure, hence Ma is treated as a numerical, rather than physical, parameter. In the
limit Ma = 0 (c → ∞), our framework collapses to an incompressible framework. This
approach of permitting weak compressibility, with an artificial sound speed, is common
in SPH (fully explicit weakly compressible SPH being the most widely used variant in
engineering simulations), but a difference in our approach is to use an implicit treatment,
as in Khayyer & Gotoh (2009), permitting larger time steps, and resulting in more accurate
pressure fields.

2.1. Liquid phase
The liquid phase is modelled as an isothermally compressible continuum, with an LES
scheme. Due to the assumption of isothermal flow, we can write

dp̃
dρl

= c2, (2.1)

where p̃ is the (implicitly) filtered pressure, and c is an artificial speed of sound. The
filtered continuity equation may be then expressed, in a Lagrangian frame of reference, as
an evolution equation for the pressure:

d
dt
(αp̃) = − α

Ma2 ∇ · ũl, (2.2)

where α is the liquid volume fraction, and ũl is the implicitly filtered liquid velocity.
Again we note that in the limit Ma = 0, (2.2) becomes ∇ · ũl = 0, and incompressibility
is recovered. We next assume that the liquid is weakly compressible, the compressibility
1/ρlc2 � 1 allowing us to neglect terms involving the density variation in the (filtered)
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momentum equation, which is written as

d
dt
(αũl) = −∇(αp̃)+ α

Fr2 eg + 1
Re

∇ · (α(1 + νsrs)∇ũl)+ M, (2.3)

where νsrs is a dimensionless sub-resolution viscosity, determined by the LES closure
model, and the term M represents the momentum exchange between the liquid and bubble
phases. In practice, we solve (2.2) and (2.3) in a frame that deviates from perfectly
Lagrangian by a small velocity ups, referred to in the SPH literature as a shifting velocity,
and introduced to add stability to the numerical solution. This results in a small error
that scales with the resolution of the discretisation scheme, associated with the advection
terms ups · ∇ that are omitted from (2.2) and (2.3). This approach is used widely in the
SPH literature (Lind et al. 2012).

2.1.1. The LES model
We denote the implicit filter width of the SPH framework as Δ̃. The filtered equations are
closed with a model for the sub-resolution viscosity, which is comprised of a shear-induced
and bubble-induced eddy viscosity component: νsrs = νS + νB. The bubble-induced
viscosity νB accounts for the production of sub-resolution turbulence by bubbles following
the model of Sato & Sekoguchi (1975), and is described in § 2.2.2. For the shear-induced
turbulence, we use the mixed-scale model of Lubin et al. (2006), with

νS = Re CM Δ̃
1+ξ |S̃|ξ/2(q2

c)
(1−ξ)/2, (2.4)

where S̃ = (∇ũl + (∇ũl)
T)/2 is the resolved strain rate tensor, q2

c is the test-filtered
kinetic energy, ξ = 0.5 and CM = 0.06. We evaluate qc by explicitly filtering ũl with a
Shepard filter (see § 3.1.2). We note that multi-phase LES closure models are still an open
area of research. The separation of the effective viscosity into shear- and bubble-induced
components, following Derakhti & Kirby (2014), is a modelling simplification that
presumes that the effects of bubbles and free surfaces on (2.4) may be neglected. As in
Derakhti & Kirby (2014), the turbulent dissipation rate is proportional to the shear-induced
viscosity and the square of the strain rate tensor norm, and is calculated as

ε = 1 + νS

Re
|S̃|2. (2.5)

In the development of our method, we explored several additional closure models,
including a standard Smagorinsky model and the dynamic Germano model (Germano
et al. 1991; Lilly 1992), with both local (via Shepard filtering) and Lagrangian (along
streamlines) averaging. We choose the mixed-scale model for our simulations because it
is known to yield good results in flows with deforming free surfaces (Lubin et al. 2006),
and in tests of the decay of single-phase isotropic turbulence (included in the Appendix),
it yielded improved results in our numerical framework compared with the other closure
models.

2.2. Dispersed bubble phase
The dispersed phase is represented by a discrete set B of Nb Lagrangian bubbles, each
with velocity ub, position rb, radius ab, and volume Vb = 4πa3

b/3. The system of bubbles
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is governed by

drb

dt
= ub, (2.6a)

Vb
dub

dt
= F d + F l + F vm + F g, (2.6b)

for each bubble in B. Here, F d, F l, F vm and F g are the drag, lift, virtual mass and buoyancy
forces acting on the bubble due to the surrounding liquid. These forces are evaluated for
each bubble i ∈ B through closure models as in e.g. Fraga et al. (2016) and Derakhti &
Kirby (2014), with

F d,i = 1
2 Cdβπa2

b,i
∣∣urel,i

∣∣ urel,i, (2.7a)

F l,i = ClβVb,iurel,i × ∇ × ul,i, (2.7b)

F vm,i = CvmβVb,i

(
dul

dt
− dub,i

dt

)
, (2.7c)

F g,i = (1 − β)Vb,i

Fr2 eg, (2.7d)

where β is the density ratio, the relative velocity between the bubble and liquid phase
at bubble i is given by urel,i = ul(rb,i)− ub,i, and Cd, Cl and Cvm are drag, lift and
virtual mass coefficients, respectively. Note the absence of the tilde in the liquid velocity
appearing in the definition of relative velocity, and in (2.7b) and (2.7c). Following Breuer
& Hoppe (2017), the sub-resolution fluctuating part of the liquid velocity is modelled
stochastically, with

ul(rb,i) = ũl(rb,i)+ u′
l(rb,i) (2.8)

comprising the LES filtered velocity and a sub-resolution fluctuating part. The calculation
of u′

l(rb,i) is described in § 2.2.1. Following Derakhti & Kirby (2014), the drag coefficient
in (2.7a) is modelled using the standard drag curve of Clift, Grace & Weber (1978) as

Cd =
⎧⎨⎩

0.44, Reb,i > 1000,
24

Reb,i
(1 + 0.15 Re0.687

b,i ), Reb,i ≤ 1000,
(2.9)

where the relative bubble Reynolds number is related to the integral-scale Reynolds
number by

Reb,i = 2ab,i
∣∣urel,i

∣∣ Re. (2.10)

Following Derakhti & Kirby (2014), the coefficient of virtual mass and the lift coefficient
are set to Cvm = Cl = 0.5. The momentum exchange from bubble i back to the liquid
phase is

Mb,i = (−F d,i − F l,i − F vm,i)/β, (2.11)

with β the density ratio as defined at the start of the section.

972 A24-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

64
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.649


Smoothed particle hydrodynamics simulations of bubbly waves

2.2.1. Langevin model
The fluctuating velocity component ‘felt’ by the bubbles is calculated through the
integration of a stochastic model following work by Pozorski & Apte (2009) and Breuer
& Hoppe (2017). The fluctuation velocity obeys the Langevin equation

du′
l = −Gu′

l dt +
√

2σ 2
srs BdW , (2.12)

where dW is a Wiener process, and G and B are drift and diffusion matrices, respectively.
The quantity σsrs is the standard deviation of the fluctuating velocity, related to the
sub-resolution turbulent kinetic energy ksrs by

σsrs =
√

2
3 ksrs. (2.13)

The sub-resolution turbulent kinetic energy is estimated from the double filtered velocity
as

ksrs = 1
2

∣∣∣ũl − ˆ̃ul

∣∣∣2
, (2.14)

where the ˆ indicates explicit filtering with a test filter, described in § 3.1.2.
Following Breuer & Hoppe (2017), by taking advantage of the fact that a Langevin

equation may be integrated analytically, we transform (2.12) into the recursion equation

u′
l
(
rb,i, t + δt

) = E u′
l
(
rb,i, t

) + Wζ , (2.15)

where δt is a time increment, E is the exponential of the drift matrix G, W is the square root
of the velocity fluctuation covariance matrix, and ζ is a random vector whose components
are distributed normally. Denoting the filtered relative velocity (excluding the fluctuations)
as ũrel, we define the matrix

R = 1

|ũrel|2
ũrel ⊗ ũrel, (2.16)

and the exponential of the drift matrix is then given by

E = (
E‖ − E⊥

)
R + E⊥I, (2.17)

where I is the identity matrix, and

E‖ = exp
(−δt
τ‖

)
, (2.18a)

E⊥ = exp
(−δt
τ⊥

)
. (2.18b)

Here,

τ‖ = τsrs

(
1 + |ũrel|

σ 2
srs

)−1/2

, (2.19a)

τ⊥ = τsrs

(
1 + 4

|ũrel|
σ 2

srs

)−1/2

(2.19b)

are the sub-resolution time scales associated with fluctuations parallel and perpendicular
to the filtered velocity, and the sub-resolution time scale τsrs is related to the velocity
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fluctuations by

τsrs = CΔ̃
σsrs

, (2.20)

with the constant C = 1. The factors relating τ‖ and τ⊥ to the sub-resolution time scale
τsrs account for the crossing trajectory and continuity effects (Pozorski & Apte 2009). The
square root of the covariance matrix is given by

W = (
W‖ − W⊥

)
R + W⊥I, (2.21)

where

W‖ = σsrs

√
1 − exp

(
−2 δt
τ‖

)
, (2.22a)

W⊥ = σsrs

√
1 − exp

(
−2 δt
τ⊥

)
. (2.22b)

2.2.2. Bubble-induced turbulence model
As mentioned above, we evaluate the bubble-induced turbulence, following Derakhti &
Kirby (2014), based on the model of Sato & Sekoguchi (1975), where the contribution of
an individual bubble to the turbulent viscosity is proportional to the product of the bubble
diameter and the relative velocity. In our discrete bubble framework, the contribution of
an individual bubble j is

νB,b,j = Cν,B2ab,j
∣∣urel,j

∣∣ , (2.23)

where the constant Cν,B = 0.6 as in Derakhti & Kirby (2014). To obtain the
bubble-induced turbulent viscosity in the liquid νB, we interpolate νB,b from the bubbles
to the liquid phase, as described in § 3.1.1.

2.2.3. Bubble entrainment and breakup
Our intention is to simulate flows where bubbles are entrained at the free surface. We use
an entrainment model, similar in principle to that of Ma et al. (2011) and Derakhti & Kirby
(2014), in which a fraction of the turbulent kinetic energy of the liquid is assumed to be
converted into surface energy as bubbles are created (or entrained) at the free surface. We
further include a model for bubble breakup, which is based on the imbalance between
the restoring pressure on a bubble due to surface tension, and the deforming stress due to
the turbulent motion of the liquid, based on the models of Martínez-Bazán, Montañes &
Lasheras (1999a,b) and Martínez-Bazán et al. (2010). These models cannot be explained
clearly without reference to our discretisation scheme, and we defer detailed description
of them to later, in § 3.4.

3. Numerical implementation

3.1. The SPH discretisation
The liquid phase is represented by set of discrete particles P , each of which we label
i ∈ [1,N], where N is the total number of particles. In the present work, we treat the
liquid as weakly compressible, but this weak compressibility is treated implicitly, by
solving an elliptic equation (Helmholtz, as opposed to Poisson) as in incompressible SPH
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frameworks. Hence in the present work, the core of the SPH scheme follows closely King
& Lind (2021) and Lind et al. (2012). All particles carry a (constant) liquid mass m, and
with the assumption of a weakly compressible liquid, the associated liquid volume Vl is
assumed constant. The position of particle i is denoted ri, its smoothing length is hi, and
the total volume associated with the particle is Vi. We denote the difference in the property
( · ) of two particles i and j as ( · )ij = ( · )i − ( · )j = −( · )ji. In SPH, values and derivatives
of field variables at the location of particle i are calculated using a weighted sum of the
values of the field variables at the neighbouring particles j ∈ Pi, where the weights are
obtained from a kernel function W(|rij, hi|) = Wij and its derivatives. Here, Pi is the set
of neighbours of particle i, and contains all particles j with |rij| ≤ rs,i, where rs,i is the
support radius of the kernel of particle i. Throughout this work, we use the Wendland C2
kernel (Wendland 1995) for which the support radius is rs,i = 2hi. We use initial particle
spacing δr = h0/1.3, where h0 is the smoothing length when α = 1. In all cases, we
set the implicit filter scale to the local smoothing length: Δ̃i = hi. For a derivation and
analysis of SPH fundamentals, we refer the reader to Price (2012), Fatehi & Manzari (2011)
and Monaghan (2012). In a perfectly Lagrangian framework, particles follow streamlines,
which can result in highly anisotropic particle distributions, particularly around stagnation
points, degrading the accuracy of the simulation. To regularise the particle distribution,
we use the particle shifting technique of Lind et al. (2012) to set ups as in King & Lind
(2021). The ability of the underlying SPH methodology to simulate wave propagation
accurately has been demonstrated previously, for example by Lind et al. (2012) and Skillen
et al. (2013). Note that we do not include surface tension effects in the single-phase SPH
simulation – rather, they appear only in the closure terms governing bubble dynamics.

3.1.1. Interpolation between phases
The interaction between the liquid and bubbles occurs through the modification of the
liquid volume fraction α due to the presence of the bubbles, the momentum exchange M
between the phases, and the bubble-induced turbulent viscosity νB. To achieve this, it is
necessary to interpolate between the phases, i.e. to calculate the value of a liquid property
at a bubble location, and vice versa. Figure 2 provides a diagrammatic overview of the
framework, including those properties that are exchanged between phases. Numerically,
the interphase interpolation is as follows. The total volume associated with SPH particle i
is defined as

Vi = Vl,i

(
1 +

∑
j∈Bi

W(rb,j − ri, hi)Vb,j

)
, (3.1)

where Bi is the set of all bubbles within the support radius of particle i. The summation in
the right-hand side of (3.1) represents the contribution to the volume of SPH particle i of
all individual bubbles in Bi. The liquid volume fraction of particle i is then

αi = Vl,i

Vi
. (3.2)

As the volume of the bubbles is accounted for in the liquid phase, the SPH particles
effectively expand in the proximity of gas bubbles. To retain an accurate SPH
approximation, the smoothing length of each SPH particle must be adjusted accordingly,
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LIQUID

INTERPOLATION

BUBBLES

Sub-resolution fluctuations Equation of motion Breakup model

LES closureFiltered isothermally compressible Navier–Stokes

Liquid→Bubbles Bubbles→Liquid

Velocity: ũl → ũl,b

Dissipation rate: ε → εb

Free-surface normals: n → nb

Sub-resolution TKE: ksrs → ksrs,b

Volumes: Vb → α

Bubble-induced viscosity: νB,b → νB

Momentum exchange: Mb → MVelocity gradient: ∇ũl → ∇ũl,b

Entrainment model Free-surface interaction

Figure 2. A schematic diagram of the numerical framework, showing the liquid and bubble properties that
are interpolated between phases.

to maintain ∑
j∈Pi

W(rj − ri, hi)Vj ≈ 1 ∀i ∈ P . (3.3)

With both Vi (through (3.1)) and the partition of unity (3.3) having a nonlinear dependence
on hi, we cannot choose hi explicitly to satisfy (3.3). However, by setting

hi = h0

(
Vi

Vl,i

)1/d

, (3.4)

in which d = 3 is the number of spatial dimensions, we obtain a system in which the
SPH particle distribution expands and contracts in response to the bubble volumes. The
response is not instantaneous, but occurs over a finite time, as the volume effects propagate
through the particle distribution. However, when averaged over time, this system results in
a discretisation for which (3.3) is satisfied. This effect is discussed further in § 3.3.

The momentum exchange between the bubble and liquid phases is evaluated at each
bubble (denoted Mb), and then interpolated back to the liquid phase through

M i = Vi
∑
j∈Bi

Mb,j W(rb,j − ri, hi). (3.5)

The bubble-induced turbulence at each bubble, νB,b, is interpolated back to each SPH
particle in the same manner to obtain νB. Evaluation of the lift, drag and virtual mass
forces for each bubble requires the knowledge of the filtered liquid velocity and liquid
velocity gradients, and the turbulent kinetic energy, at each bubble location. Additionally,
the bubble entrainment model described in § 3.4 requires the turbulent dissipation rate to
be interpolated from the liquid to each bubble location. These properties are interpolated
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from SPH particles to bubble locations through

φb,j =
∑
i∈P

φi W(rb,j − ri, hi)Vi ∀j ∈ B, (3.6)

where φi is the value at particle i of the property to be interpolated, and φb,j is the
interpolated property at bubble j. In our code, we construct an array for each particle
i containing the indices Pi, and a global array containing the indices of the bubble
neighbours of all particles: [B1 . . .Bi . . .BN].

3.1.2. The SPH operators
For the test filter used to evaluate ksrs, and qc in the LES closure model, we use a
normalised Shepard filter

ˆ̃
φi =

∑
j∈Pi

φ̃jWijVj∑
j∈Pi

WijVj
. (3.7)

First derivatives are discretised according to

〈∇φ̃〉i =
∑
j∈Pi

(φ̃j − φ̃i)∇W�
ijVj, 〈∇ · ũ〉i =

∑
j∈Pi

(ũj − ũi) · ∇W�
ijVj, (3.8a,b)

where the corrected kernel gradient ∇W�
ij due to Bonet & Lok (1999) is used, as detailed in

King & Lind (2021). This provides first-order consistency for first derivatives. The angled
brackets indicate that the quantity is an SPH approximation to the gradient. The Laplacian
is approximated using the formulation of Morris, Fox & Zhu (1997) as

〈∇2φ̃〉i =
∑
j∈Pi

2φ̃ij

|rij|2 rij · ∇WijVj, (3.9)

and for the inhomogeneous ‘div-grad’ operator with spatially varying coefficient κ , we use

〈∇ · (κ∇φ)〉i =
∑
j∈Pi

2κ̄jiφ̃ij

|rij|2 rij · ∇WijVj, (3.10)

with κ̄ji = 2κiκj/(κi + κj) the harmonic mean. To evaluate the shifting velocity ups, we
calculate the gradient of the particle number density as

∇ρN,i =
∑
j∈Pi

[
1 + 1

4

(
Wij

Wii

)4 ]
∇WijVj, (3.11)

and then set the shifting velocity as

ups,i = h2
i

4 δt

{
∇ρN,i ∀i ∈ PI,

(ni · ∇ρN,i)ni ∀i ∈ PFS,
(3.12)

where ni is the unit vector normal to the surface at particle i, PI is the set of internal
particles, and PFS is the set of free-surface particles. This treatment of the shifting velocity
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at the free surface, and the identification of free-surface particles, follows Lind et al. (2012)
and King & Lind (2021). The surface normal vectors are evaluated as

n�i = 1
hi

∑
j∈Pi

Vj ∇Wij, (3.13)

where the term 1/hi normalises the magnitude of the vector relative to the resolution.
Following Chow et al. (2018), the surface-normal vectors are then smoothed using the
normalised Shepard filter as in (3.7), with ni = n̂�i .

3.2. Fractional step approach for isothermally compressible liquid
Our approach to the time integration of (2.2) and (2.3) combines the methods used in
King & Lind (2021), and the approach described in Khayyer & Gotoh (2009, 2016). We
use a fractional step algorithm to solve (2.2) and (2.3) in our SPH framework. Following
the classic projection method of Chorin (1968), initially introduced to SPH in Cummins
& Rudman (1999), the right-hand side of (2.3) is split, with viscous and advective terms
being applied in a predictor step, and the pressure gradient and any divergence-free body
forces (e.g. gravity) being used in a projection step to obtain a velocity field that satisfies
the continuity equation (2.2). Splitting (2.3) as described above, we obtain

αn+1ũ�l = αnũn
l + δt

[
1

Re
∇ · (αn(1 + νsrs)∇ũn

l )+ M
]
, (3.14a)

αn+1ũn+1
l = αn+1ũ�l − δt

[
∇(αn+1p̃n+1)− αn+1

Fr2 eg

]
, (3.14b)

where ũ�l is an intermediate velocity, which is not required to be compatible with the
continuity equation (2.2). We require the velocity field at the end of the time step ũn+1

l to
satisfy (2.2), and we take the divergence of (3.14b), to get

αn+1 ∇ · ũn+1
l = −ũn+1

l · ∇αn+1 + ∇ · (αn+1ũ�l )

− δt ∇2(αn+1p̃n+1)+ δt
Fr2 eg · ∇αn+1. (3.15)

Substituting the right-hand side of (3.15) into the final term of (2.2) evaluated at time step
n + 1, and replacing the time derivative with a backwards Euler difference equation, yields

αn+1p̃n+1 − αnp̃n

δt
= 1

Ma2

[
ũn+1

l · ∇αn+1 − ∇ · (αn+1ũ�l )

+ δt ∇2(αn+1p̃n+1)− δt
Fr2 eg · ∇αn+1

]
. (3.16)

As (3.16) contains ũn+1
l explicitly, we substitute (3.14b) back into (3.16), note that

(1/α)∇α = ∇ lnα, and collect terms containing p̃n+1, obtaining

∇2(αn+1p̃n+1)− Ma2 αn+1p̃n+1

δt2
− ∇(lnαn+1) · ∇(αn+1p̃n+1)

= αn+1

δt
∇ · (ũ�l )− Ma2 αnp̃n

δt2
. (3.17)
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Note that in the combined limits of single-phase (α = 1) incompressible (Ma = 0) flow,
the standard Poisson equation is recovered.

3.3. Temporal evolution of both phases
We now describe the complete algorithm for the temporal evolution of the complete
system. In the following, each operation is applied to every SPH particle i ∈ P or bubble
i ∈ B, and we have dropped the subscripts i for clarity. We introduce the superscripts n,
� and n + 1 to represent properties at the current, intermediate and next time steps. The
algorithm is as follows.

(i) Advect particles to intermediate positions according to r� = rn + δt ũl, and bubbles
to new positions according to rn+1

b = rn
b + δt un

b.
(ii) Construct boundary conditions via mirror particles, calculate bubble entrainment

and breakup if any (as described in § 3.4), and build neighbour lists Pi and Bi.
(iii) Calculate the shifting velocity ups from (3.12), based on a modified form of the

Fickian shifting introduced by Lind et al. (2012), described in detail in King & Lind
(2021).

(iv) Interpolate bubble volumes into SPH particle locations using (3.1) and (3.2) to
obtain volume fractions αn+1. Adjust smoothing lengths via (3.4). Note that this
is a first-order approximation to αn+1, but it allows us to retain an explicit scheme
for the volume fractions.

(v) Evaluate ∇ũl, ε and ksrs, and interpolate to bubble positions through (3.6).
(vi) Evolve (2.15) to obtain u′

l at bubble locations, and evaluate forces in bubbles via
(2.7).

(vii) Update bubble velocities by integrating (2.6b), evaluate Mb and νB,b, and interpolate
back to SPH particle positions through (3.5).

(viii) Evaluate remaining terms in (3.14a), and evaluate ũ�l .
(ix) Construct and solve (3.17) to obtain αn+1p̃n+1, and hence p̃n+1. The system (3.17)

is solved using a BiCGStab algorithm with Jacobi preconditioning, with Neumann
boundary conditions on solid surfaces, and homogeneous Dirichlet boundary
conditions on free surfaces as in King & Lind (2021).

(x) Evaluate pressure gradient, and project ũ�l onto ũn+1
l using (3.14b).

(xi) Advect particles to final positions rn+1 = rn + δt (ũn
l + ũn+1

l + 2ups)/2.

The value of δt is set adaptively according to criteria for the Courant condition and
viscous diffusion, as in Xenakis et al. (2015):

δt = 0.2 min
(

h
maxP (|ũ0|) ,Re h2

)
, (3.18)

in which maxP is the maximum value over the set of all particles P . Although our
numerical scheme is capable of capturing acoustic waves in the liquid, this does not
impose an additional (stability related) constraint on the time step, as the acoustic physics
is treated implicitly in the fractional step approach. The acoustic part of the system is
unconditionally stable, although for larger time steps, the acoustic waves are subject to
greater numerical dissipation. There is a trade-off here, between computational costs, and
the degree to which acoustic information is of interest. Regardless of the application,
there is a benefit of the present approach over a perfectly incompressible approach.
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Whilst both methods result in smooth pressure fields with no spurious noise (as is
commonly experienced in explicit, weakly compressible SPH), the additional terms in
(3.17) accounting for compressibility increase the diagonal dominance of the linear system
that represents the discrete form of this equation. This increased diagonal dominance
renders the system more amenable to solution using iterative methods, which will converge
more quickly. In the present application, we are not interested in capturing the acoustic
waves, and do not impose an additional time step constraint proportional to h Ma. Despite
this, for Ma = 0.05, we still obtain a reduction in the number of iterations necessary to
solve (3.17) by a factor of typically approximately 5. For our SPH framework, the solution
of (3.17) is the most expensive aspect of the simulation, so this presents a significant
computational saving. With this in mind, we consider Ma in this framework to be a
numerical parameter (rather than a physical one), as in weakly compressible SPH schemes.
The value Ma = 0.05 is consistent with the artificial sound speeds widely used in weakly
compressible SPH, ensures that the density fluctuations are well below 1 % (Monaghan
1994), and is used throughout this work.

As mentioned in § 3.1.1, SPH particle volumes are adjusted to account for bubble
volumes, resulting in a redistribution of SPH particles over a finite time to retain an
approximately uniform particle number density. To verify that this effect is small, we
perform a simulation over a triply periodic cubic domain with unit side length, and the
liquid initially at rest. We set δr = 1/20, and neglect gravity. After 10 SPH time steps,
we introduce a stationary bubble at the centre of the domain. First, we observe that the
resulting pressure and velocity fields remain zero everywhere, as does the velocity of the
bubble. The response to the addition of the bubble is purely numerical, in that only the
particle distribution is affected. We calculate the L2 norm of the magnitude of ups over the
domain, which, as it is proportional to the SPH particle concentration gradient, allows us
to quantify the effect. Figure 3 shows ‖ups‖2 plotted against time step number for several
values of bubble radius ab. For all bubble sizes, there is an initial peak when the bubble is
created, where the SPH particle volumes have increased to accommodate the bubble, but
no particle redistribution has taken place. The magnitude of this peak is proportional to the
cube of the bubble radius, as expected. For bubbles with ab ≤ 0.1δr, the peak in ‖ups‖2

is below 10−6. After the peak, the traces all decay. The decay is initially exponential,
with characteristic time approximately 2δt/3 (slope lines shown in red in figure 3) for all
bubble radii, but at later times, the decay rate slows. We believe that this reduction in
decay rate is a consequence of the finite volume of the bubble that must be accommodated
within the particle distribution. For larger bubbles, the particle redistribution must be less
localised in space, and consequently in time. We have confirmed this by running this test
for a range of different values of δt spanning an order of magnitude. We performed the
same test with a fixed ab = 0.4 δr, for a range of values of h0/δr ∈ [1.1, 1.5] (noting that
all other simulations in this work are performed with h/δr = 1.3), and found a negligible
variation in the peak value of ‖ups‖2 with h0/δr, whilst the initial decay time scale varied
from 0.55δt for h0/δr = 1.1, to 0.8δt for h0/δr = 1.5. In all these cases, the characteristic
time of decay is less than the value of the SPH time step – in other words, the particle
redistribution happens quickly. With the results shown in figure 3 in mind, we observe
that the mean value of ‖ups‖2 for the simulation of a breaking wave studied in § 5 is
1.4 × 10−2. Whilst there are physical processes in our model occurring on shorter time
scales than the redistribution process (e.g. bubble breakup, sub-resolution fluctuations),
the effect of particle redistribution due to the presence of bubbles is more than an order
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ab/δr = 0.2
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ab/δr = 0.6
ab/δr = 0.8

Figure 3. Variation of the L2 norm of the shifting velocity magnitude |ups| with time (in units of δt) for a
triply periodic unit cube of fluid at rest, subject to the instantaneous addition of a single bubble. The different
patterned lines indicate different bubble sizes ab relative to the SPH particle spacing δr. The red lines indicate
an exponential decay with characteristic time 2δt/3.

of magnitude smaller than the particle redistribution due to the fluid motion, which is a
standard aspect of SPH.

3.4. Bubble entrainment, breakup and free-surface interaction

3.4.1. Entrainment
Our intention is to simulate flows where bubbles are entrained at the free surface. We use
an entrainment model, similar in ethos to that of Ma et al. (2011) and Derakhti & Kirby
(2014), in which a fraction of the turbulent kinetic energy of the liquid is assumed to be
converted into surface energy as bubbles are created (or entrained) at the free surface.
Based on this energy balance, the energy available for bubble creation at SPH particle i in
a given time step is

Ebc,i = CεβαiεiVi δt, (3.19)

where Cε = 0.01 is a constant set empirically. The surface energy of a bubble of radius ab
is

Ese = 4πa2
b

We
. (3.20)

The closure models used to evaluate the forces on each bubble are based on the assumption
of spherical non-interacting bubbles (Fraga et al. 2016). When the concentration of bubbles
is large (and hence α is small), these assumptions cease to be valid. Therefore, we impose
an additional constraint on bubble entrainment, such that 1 − α � 1/3, by denoting the
volume available for bubble entrainment as

Vbc,i = 1
W(0)

(
3
2

− 1
αi

)
, (3.21)

where W(0) is the maximum value of the SPH kernel. Here, Vbc,i is the volume of bubbles
that must be entrained at SPH particle i to result in αi = 2/3. We note that our algorithm
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does not impose a hard limit α > 2/3, but rather an approximate limit, as it is possible for
bubbles to converge on a particular region of the flow subsequent to entrainment. Although
this limit may influence the resulting physics of our simulations, it is a necessary limitation
of the model of this form: we can either limit α, or permit α to stray into territory where our
underlying assumptions cease to be valid. Given that spherical bubbles in a cubic-packed
lattice would yield a volume fraction α ≈ 0.52, this limit does not seem overly stringent.
Furthermore, we note that the simulations of breaking waves in Derakhti & Kirby (2014)
yielded values α > 2/3. Following Derakhti & Kirby (2014), we entrain bubbles only at
the free surface, and only when ε exceeds a certain threshold. Where others (Ma et al.
2011; Derakhti & Kirby 2014) treated the bubbles as a continuum, we treat them discretely,
hence our algorithm differs somewhat, despite the principles of energy balancing being
the same. Where Derakhti & Kirby (2014) modelled the bubbles through a set of bubble
groups, each with a characteristic size, we are able to model individual bubbles, and hence
obtain a continuous bubble size distribution. To achieve this, our entrainment algorithm is
as follows.

At every time step, for every free-surface particle i ∈ PFS for which εi > 0.2 and α >
2/3, proceed through the following steps.

(i) Evaluate the available energy Ebc,i and volume Vbc,i for bubble creation, according
to (3.19) and (3.21). Initialise counters for new bubbles, and new potential bubbles:
nnb = 0 and nnpb = 0.

(ii) Generate a potential bubble radius ab,p ∈ [We−3/5/40, δr] with uniform probability
distribution. Increment the new potential bubble counter: nnpb = nnpb + 1.

(iii) Evaluate the surface energy Ese,p of the potential bubble via (3.20). If Ebc,i ≥ Ese,p,
then there is enough energy. If Ebc,i < Ese,p and Ebc,i/Ese,p > ζE, where ζE ∈ [0, 1]
is a uniformly distributed random number, then there is not enough energy for this
potential bubble.

(iv) Evaluate the volume of the potential bubble, Vb,p = 4πa3
b,p/3. If Vbc,i ≥ Vb,p,

then there is enough volume available to create this bubble. If Vbc,i < Vb,p and
Vbc,i/Vb,p > ζV , where ζV ∈ [0, 1] is a uniformly distributed random number, then
there is not enough volume available for this potential bubble.

(v) If the checks in steps (iii) and (iv) were passed, then make a new bubble j with radius
ab,j = ab,p, position rb,j = ri + ζ r δr, where ζ r is a random vector with elements in
[0, 1], ub,j = ũl,i, and δr is the initial particle spacing. Denote the time of bubble
creation as Tb,j. Increment the new bubble counter: nnb = nnb + 1.

(vi) If the checks in steps (iii) and (iv) were passed, reduce the available energy and
volume by

Ebc,i = Ebc,i − Ese,p, (3.22a)

Vbc,i = Vbc,i − Vb,p. (3.22b)

(vii) Check whether to continue entraining bubbles. If all the inequalities

Ebc,i > 0, (3.23a)

Vbc,i > 0, (3.23b)

nnb < 10, (3.23c)

nnpb < nnb + 5 (3.23d)

are satisfied, return to step (ii). Otherwise, move on to the next SPH particle.
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The addition of the stochastic processes in steps (iii) and (iv) to allow some bubbles
for which Ese,p > Ebc,i and Vb,p > Vbc,i, based on the remainders, prevents the creation of
large bubbles from being overly suppressed.

The maximum potential bubble size ab,p ≤ δr is set to ensure that the bubbles are
smaller than the implicit LES filter scale Δ̃. The minimum potential bubble size ab,p ≥
We−3/5/40 is equal to 0.05aH , where aH is the Hinze scale bubble radius evaluated a
priori. This limit is imposed to prevent the generation of a very large number of very
small bubbles, which would impose a significant computational cost on the simulation,
but which play little role in the overall dynamics of the flow. In future, we consider that
the present framework could be extended to treat bubbles with ab � aH as a continuum,
as is done for all bubble sizes in Eulerian–Eulerian schemes. The value of Cε influences
the total entrained volume, but has little influence on the bubble distribution in time, space
and size. For all simulations of breaking waves, we set Cε = 0.01, which provides an
approximate match in terms of the total entrained bubble volume with the direct numerical
simulations results of Deike et al. (2016).

3.4.2. Breakup
As in work by Ma et al. (2011), Martínez-Bazán et al. (2010, 1999a,b), Chan, Johnson &
Moin (2021a) and Chan et al. (2021b), we use a stochastic breakup model based on energy
balance considerations. Our model is similar to that of Martínez-Bazán et al. (2010), and is
based on the imbalance between the surface restoring pressure and the stress on the bubble
surface due to the motion of the liquid. For a bubble of size ab, the surface restoring
pressure is 6/(2ab We). The stress exerted on the bubble by the turbulent motion of the
liquid is 1

2 cdef (2εab)
2/3, where cdef = 8.2 as given in Batchelor (1953). The net deforming

stress on the bubble is given by the difference, from which we obtain an expression for a
characteristic deformation velocity

udef = sgn
(

cdef (2εab)
2/3 − 6

ab We

)√∣∣∣∣cdef (2εab)
2/3 − 6

ab We

∣∣∣∣. (3.24)

In works such as Ma et al. (2011), Martínez-Bazán et al. (2010) and Chan et al. (2021a,b),
which model the dispersed phase through a continuous bubble number density field, a
characteristic time scale of breakup is often given by

Tbu = 2ab

udef
= 2ab√

cdef (2εab)
2/3 − 6/(ab We)

, (3.25)

assuming udef > 0. In this work, we treat each bubble individually, hence we can construct
a model that attempts to account for the residence time of the bubble, and the fact that
deformation and breakup occur over a finite time (Risso & Fabre 1998). For every bubble,
we integrate numerically the deformation velocity to obtain a ‘deformation distance’

Ldef = max

{∫ t

tbc,i

udef (τ ) dτ, 0

}
, (3.26)

which is a measure of how deformed the bubble is. Here, tbc,i is the time of creation of
bubble i. Since we allow udef < 0, (3.26) accounts for both deformation of the bubble due
to turbulence, and relaxation of the bubble back towards a spherical shape. We assume that
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the bubble breaks once the deformation distance exceeds the bubble diameter, i.e. when
Ldef > 2ab.

We assume that all breakup events are binary; that is, a parent bubble splits
into two child bubbles. Once a bubble has been marked for a breakup event, we
set V = Vb,child/Vb,parent ∈ [0, 1] randomly with the probability distribution given by
Martínez-Bazán et al. (2010), where

P(V) ∝
{

V−2/3(1 − V)−2/3(V2/9 −Λ5/3)
[
(1 − V)2/9 −Λ5/3] , V ∈ [Vmin,Vmax] ,

0, otherwise.
(3.27)

Here, Vmin is set to limit the size distributions to regions where the expression for P(V)
is positive, with an additional hard limit Vmin ≥ 10−3, to ensure that breakup events do
not occur in a capillary-action-dominated regime. Also, P(V) is even about V = 1/2,
and Vmax = 1 − Vmin. To normalise P(V), and evaluate the cumulative density function
(required for generating a random number with distribution P(V)), we integrate (3.27)
numerically. Here, Λ represents a critical bubble radius (relative to the parent bubble),
below which the confining stresses due to surface tension exceed the turbulent stresses – it
is the largest bubble that will not break due to the turbulent flow (at a given instant in time
and space). For each breaking event, we evaluate Λ as

Λ =
(

12
cdef We

)3/5

ε̄−2/5 (
2ab,p

)−1
, (3.28)

where

ε̄ = 1
t − tbc,i

∫ t

tbc,i

ε(τ ) dτ (3.29)

is the mean dissipation rate of the bubble lifetime, with ε the instantaneous dissipation
rate in the liquid at bubble i. In the above model, a critical value Λcrit = 2−6/45 ≈ 0.912
exists, and the model is not valid forΛ > Λcrit (P(V) < 0 ∀V). Effectively, this imposes an
additional limit on the smallest bubble that can break, which is not necessarily consistent
with the breakup criteria obtained by integration of Ldef . Even if the evaluation of Ldef
from (3.26) suggests that a bubble should break, if it has a corresponding Λ > Λcrit,
then it does not break, as the child bubble sizes are undefined in (3.27). In practice,
this situation rarely occurs, and has negligible impact on the overall bubble population
dynamics. Figure 4 shows P(V) for various values of Λ. We see that for small Λ, the
child size distribution is largely flat, but with peaks at very small and very large bubbles
(more apparent in the inset). As Λ increases, these peaks reduce, and for Λ = 0.4, the
distribution is nearly flat. For larger Λ, the possible range of child sizes decreases, with
an increasing dominance of equal-sized breakup events. ForΛ = Λcrit, all breakup events
result in V = 1/2.

Whilst binary breakup models have been utilised in a range of works (Martínez-Bazán
et al. 1999a,b, 2010; Ma et al. 2011; Derakhti & Kirby 2014), recent work (Rivière
et al. 2021; Ruth et al. 2022) has suggested that the binary breakup mechanism presents
some limitation. Direct numerical simulations of individual bubbles breaking in isotropic
turbulence (Rivière et al. 2021) show that even for a binary breakup event, a bubble
filament joining breaking bubbles forms, and this filament ruptures into one or many
small bubbles due to capillary effects. This mechanism provides a non-local element to
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Figure 4. The probability density function of child bubble volumes for different values of Λ, given by the
breakup model of Martínez-Bazán et al. (2010).

the bubble size cascade, and has been suggested as being responsible for the majority of
sub-Hinze-scale bubble formation (Ruth et al. 2022). A breakup model constructed on the
framework above, but which includes the formation of multiple small bubbles by capillary
action, is an active area of development for us. However, at this stage we prefer to adopt a
simple binary breakup model, and focus on the free-surface–bubble interactions.

3.4.3. Free-surface interactions
In the vicinity of free surfaces, the assumption that the fluid around the bubble is uniform
and infinite does not hold, and the closure models for the forces in (2.7) are not valid.
The dynamics of the interactions between bubbles and free surfaces are complex, even
for individual bubbles in stationary reservoirs, and can include a direct rise to surface
bursting, oscillatory bouncing behaviour (Sanada, Watanabe & Fukano 2005; Suñol &
González-Cinca 2010), and long-term persistence of the bubble at the free surface. Despite
this, most mesh-based Eulerian–Lagrangian schemes simply represent the free surface via
a rigid free-slip condition (e.g. Fraga et al. 2016), or through a volume-of-fluid approach
to resolve the gas phase above the free surface (e.g. Zhang & Ahmadi 2005; Pan et al.
2021). In the latter approach, both the deceleration of bubbles on approach to the free
surface and the free-surface deformation are captured, although this occurs solely through
modification of the relative densities in the closure models used to evaluate the forces
on the bubbles. These closure models still assume a uniform liquid field surrounding
the bubbles, and the complex and small-scale physics involved are not included. Detailed
modelling of free-surface–bubble interactions are beyond the scope of this work. However,
some mechanism to describe the behaviour of the interaction is necessary, to prevent
bubbles from simply rising due to buoyancy and leaving the domain. For each SPH
particle, a surface normal vector n is evaluated (and smoothed), as in King & Lind (2021).
The surface normal vectors are then interpolated to each bubble position through (3.6) to
obtain nb. For each bubble, we construct a parameter ψfs that identifies when a bubble is
in proximity to the free surface:

ψfs = |nb|
|n0| Vlb

, (3.30)
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where |n0| is the magnitude of the surface normal vector at a plane surface, and Vlb is
the SPH volume interpolated to the bubble location (i.e. (3.6) with φ = 1). This |n0|
is dependent only on the choice of SPH kernel and ratio of smoothing length to SPH
particle spacing, and is hence constant across all our simulations, taking the precomputed
value |n0| = 0.353. For bubbles far from the free surface, ψfs ≈ 0. For bubbles within the
support radius of free-surface SPH particles, ψfs increases smoothly, to approximately 1
when bubbles are located at the free surface. Denoting n̂b = nb/|nb|, the relative normal
velocity between a bubble and the free surface is urel · n̂b. Bubbles with ψfs > 0.1 and
t − tbc > Tc are flagged to interact with the free surface. Here, Tc = δr/|urel · n̂b| is
a threshold age (which varies as a bubble evolves), designed to prevent bubbles from
being destroyed at the moment of entrainment. When a bubble is marked for free-surface
interaction, it is given an expected merge time tm = t + Tc, at which it will be located at
the free surface. For bubbles interacting with the free surface, (2.6b) is modified as

Vb,i
dub,i

dt
= F d + F l + F vm + F g + F fs, (3.31)

where the free-surface interaction force F fs is

F fs = 1
2
(1 + erf(2 log(5ψfs)))× nb

|nb|
{∣∣urel · n̂b

∣∣ (1 + Cvmβ)
Vb

max (tm − t, δt)

−
[

F b + F d + F l + βCvmVb
dul

dt

]
· nb

|nb|
}
. (3.32)

The first term, 1
2(1 + erf(2 log(5ψfs))), varies smoothly from 0 when ψfs is small, to 1 for

large ψfs, and is approximately 1 for ψfs > 0.4. This term ensures that the free-surface
interaction force is switched on smoothly as a bubble approaches the free surface. The
free-surface interaction force decelerates the bubble in the direction normal to the free
surface, such that the bubble velocity approaches the free-surface velocity over the time
scale Tc (or δt, whichever is greater). The momentum exchange is modified to include F fs
as

M = (−F d − F l − F vm − F fs)/β. (3.33)

Additionally, we impose a special treatment for bubbles interacting with spray. Where
an individual SPH particle i becomes separated from the bulk of the fluid (such that
Pi contains only i), it is subjected only to a gravitational body force, and all other
terms in (2.3) are set to zero. If a bubble has fewer than 20 (in three dimensions) SPH
particle neighbours, and all of those SPH particle neighbours are identified as free-surface
particles, then the bubble is discounted, and assumed to have burst. This provides increased
stability in regions of violent spray, such as around breaking waves, and prevents bubbles
from becoming completely isolated from the SPH simulation.

The effect of the free-surface interaction model is demonstrated in figure 5. A tank of
still water is simulated, with an individual bubble rising due to buoyancy. We vary ab,
and taking the characteristic velocity scale as the terminal velocity of the bubble ut, the
bubble Reynolds number varies as Re = 105utab, and the bubble scale Weber number is
Web = 1.4 × 104abu2

t . The bubble trajectory is shown in figure 5(a), and rise velocity
in figure 5(b), for several values of Web. In both plots, a time shift has been applied
so that the coordinate on the abscissa corresponds to the time since the bubble–surface
interaction began. We see that for larger Web, the bubble is decelerated more quickly. For
all Web ∈ [0.01, 4.06], the bubble comes to rest on the free surface. For larger bubble
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Figure 5. Trajectories of individual bubbles approaching a free surface, for a range of bubble Weber numbers
Web. (a) Variation of distance to the free surface, scaled with particle spacing δr, with dimensionless time.
(b) Variation of relative normal velocity |urel · n̂b| with dimensionless time, scaled with the terminal velocity
of the rising bubble. In (a,b), a time shift has been applied such that t = 0 corresponds to the time at which the
free-surface interaction begins.

Weber numbers Web (corresponding to larger ab), the system becomes less stable after the
bubble reaches the surface, and this is due to the settling over a finite time of the SPH
particles to accommodate the bubble volume. In all cases, though, the final position of the
bubble remains within a distance δr of the free-surface location.

The final feature of the free-surface interaction model is the persistence time. Once a
bubble has reached the free surface, it remains subject to (3.31) for a persistence time Tp.
If the motion of the liquid phase is such that the bubble (now moving with the liquid)
moves away from the free surface (i.e. if ψfs < 0.1), then the bubble is assumed to no
longer interact with the free surface, and its motion is again governed by (2.6b). In reality,
when bubbles reach a free surface, a thin lubrication layer forms, and the liquid in this
layer drains until the layer ruptures (see e.g. Modini et al. (2013) for a description of the
mechanism). This process is complex, and is strongly influenced by the local geometry
and the salinity (Scott 1975) (or other contaminants and surfactants) and gradients thereof.
We cannot seek to capture this process accurately in our model, and instead we seek
an order of magnitude estimate for Tp that has a physical basis. We use the (here made
non-dimensional) expression of Poulain, Villermaux & Bourouiba (2018), where

Tp = We3/4

Re
Fr1/2 Sc a1/2

b , (3.34)

in which Sc is the Schmidt number, taken as Sc = 700 for sea water at 20 ◦C (De Bruyn
& Saltzman 1997). Equation (3.34) is based on a mechanistic model for film drainage,
accounting for molecular diffusion and curvature-pressure-induced flow, and provides a
rough scaling of the persistence time, with a level of approximation that is consistent with
the present framework; a more detailed physical model is beyond the scope of this work.
Bubbles that remain in proximity to the free surface beyond tm are assumed to burst (and
are removed from the simulation) at t = tm + Tp.
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Figure 6. (a) Velocity and (b) vorticity magnitude of the flow around the bubble plume at t = 12. Bubbles
are shown as black circles (not to scale) in (a). The images show a slice through the plane y = 0.

4. Bubble plumes

We first use our model to simulate a buoyant bubble plume in a tank. Our simulation is
configured to match the experimental set-up of Fraga et al. (2016) as follows. The domain
is a unit cube of liquid, with no-slip conditions at the lateral and lower boundaries, and
a free-surface boundary at the upper surface of the liquid. The origin of our coordinate
system is at the centre of the base of the tank, with the unit vector in the z direction pointing
upwards. A bubble sparger is simulated, centred at (x, y, z) = (0, 0, 0.09), with radius r0 =
0.02. The governing parameters are β = 1000/1.2, Re = 106, We = 1.4 × 104 and Fr =
1/

√
9.81. The (dimensionless) volumetric flow rate of the bubble sparger is Q̇ = 1.67 ×

10−5. With this dimensionless scaling, the Hinze scale is estimated at aH = We−3/5/2 =
1.62 × 10−3.

Initially, we simulate the release of uniform bubbles with ab = 10−3, as in Fraga et al.
(2016). Figure 6 shows the velocity and vorticity magnitude fields in the y = 0 plane at
t = 12. Figure 7(a) shows the evolution of the mean dissipation rate in the liquid for several
resolutions. For all resolutions, there are differences in the dissipation rate, although for
δr < 1/100, the dissipation rates converge approximately for t > 6. We note that for the
isotropic turbulence with Re = 106 investigated in the Appendix, a resolution δr = 1/100
is sufficient to yield accurate dissipation rates compared with the high-order reference
data in Antuono et al. (2021). For the remainder of this section, we set δr = 1/100.
The increase in high-frequency noise in the mean dissipation rate at approximately t = 6
visible in figure 7(a) is associated with the bubble plume reaching the free surface. Whilst
previous authors (e.g. Fraga et al. 2016) have used finite-volume methods with a fixed
free surface, our SPH simulation captures the motion of the free surface, and includes a
model for the interaction of the bubbles with the free surface. The high-frequency noise is
a numerical artefact of the SPH scheme: as the liquid upwells in the centre of the tank and
moves radially outwards, SPH particles join and leave the free surface, resulting in a small
redistribution of the SPH particle arrangement.

Figure 7(b) shows the variation of the mean vertical velocity in the liquid with radial
position, at different depths. Here, the vertical velocity is scaled by the (local) velocity
at the plume centre wc(z), and the radial position is scaled by the local plume width bv ,
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Figure 7. (a) Evolution of the mean dissipation rate in the liquid for several resolutions. (b) Variation of
dimensionless mean vertical velocity in liquid with dimensionless radial position. Blue symbols indicate the
results of our simulations at depths z = 0.555 (circles) and z = 0.453 (triangles), which are compared with
the self-similar Gaussian solution (dashed black line), and the experimental (red crosses) and numerical (red
circles) results of Fraga et al. (2016).

taken as w(r = bv(z), z) = e−1 wc(z). The blue symbols indicate the results of our SPH
framework just above (z = 0.555, circles) and below (z = 0.453, triangles) the centre of
the tank. The numerical (red circles) and experimental (red crosses) data from Fraga et al.
(2016) are also shown, as is a Gaussian distribution (dashed black line). We see agreement
at both vertical locations with both the Gaussian profile and the results of Fraga et al.
(2016). For larger r/bv > 1.5, our results deviate from the Gaussian profile, but match
those of Fraga et al. (2016), tending towards a non-zero w/wc. As discussed in Fraga et al.
(2016), this deviation from the Gaussian is due to the confined plume in our simulations.

We now simulate a plume in the same configuration, but with a polydisperse bubble
size distribution. The initial bubble size distribution is a truncated Gaussian with mean
ab = 10−3, standard deviation 10−3, and a minimum radius cut-off at ab = 10−4. Figure 8
plots the magnitude of the relative velocity |ub − ũl| against the bubble size near the
centre of the tank, at z = 0.555. Each data point corresponds to a separate bubble, and the
data are collected for t ∈ [10, 20]. We see a clear, almost linear trend, with larger bubbles
rising faster relative to the liquid than smaller ones. There is also an obvious discrepancy
between the results with (black symbols) and without (red symbols) the Langevin model
for sub-resolution fluctuations. The Langevin model increases the variation of the relative
velocity (without changing the mean). This observation is consistent with figure 9, which
shows the traces of a random sample of bubbles as they rise through the plume. The
positions of bubbles are projected onto polar coordinates (r/r0, z), and are coloured
by the bubble radius. Figure 9(a) shows bubble traces where we set u′

l = 0, whilst in
figure 9(b), we calculate u′

l using the Langevin model. Without the Langevin model,
there is a clear trend for larger bubbles to migrate away from the centre of the plume,
and smaller bubbles to rise more vertically. This self-organising phenomenon has been
observed previously in numerical simulations (Fraga & Stoesser 2016), and experimentally
(Ye et al. 2022). The phenomenon can be explained by the linear dependence of the lift
force on the relative velocity: as bubbles rise through the plume, the relative velocity is
close to orthogonal to the gradient of the velocity in the liquid, and as larger bubbles have
a larger relative velocity, they experience an increased lift force, resulting in greater lateral
migration. When the Langevin model is included, the bubbles still self-organise, but there
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Figure 8. Variation in the relative velocity magnitude (excluding fluctuations) |ub − ũl| with bubble size at
depth z = 0.555, for the polydisperse bubble plume, both with (black symbols) and without (red symbols) the
Langevin model for sub-resolution velocity fluctuations.

is increased lateral migration of small bubbles due to the sub-resolution fluctuations. This
self-organisation is depicted clearly in figure 10, which plots the normalised bubble radius
ab/aH against radial position r/r0 at several depths. At z = 0.1 (figure 10a), just above the
base of the plume, the bubble sizes are distributed evenly across the radius of the plume.
Further up the plume, the bubbles migrate radially outwards, and the plume gets wider.
There is a clear trend, both with (black symbols) and without (red symbols) the Langevin
sub-resolution model, for larger bubbles to migrate further outwards, as can be seen in
figures 10(b–d). When the Langevin model is included, this trend remains, although as
observed in figure 9, the lateral migration of smaller bubbles is increased – the greater
spread in radial position of small bubbles is visible in figures 10(b–d). This behaviour is
expected, as small-scale fluctuations have a greater effect on small bubbles than larger
bubbles through the increased relative importance of the drag force.

Returning to figure 9, both with and without the Langevin model, the effect of
the free-surface interaction model is clear: as bubbles approach the free surface, they
decelerate and move with the liquid, which takes them radially outwards. This behaviour
is in qualitative agreement with numerical simulations of Cloete, Olsen & Skjetne (2009)
and Pan et al. (2021), although in both cases, these works relied on resolution of the motion
of the gas flow above the free surface to capture the bubble–free-surface interactions.

5. Breaking waves

We now use our numerical framework to simulate bubble entrainment in a breaking
wave. We consider a periodic third-order Stokes wave, which has been extensively studied
in the literature with multi-phase mesh-based schemes (Chen et al. 1999; Iafrati 2009;
Deike et al. 2015, 2016; Chan et al. 2020, 2021b; Mostert et al. 2022). We take the
wavelength as the integral length scale, and the Froude speed as the characteristic
velocity scale. The domain is a unit cube, periodic in the lateral directions, with a
free-slip condition at the lower boundary. We set Re = 4 × 104, Fr = 1, We = 1.98 × 104

and β = 1000/1.2. These parameters correspond to the configuration of Mostert et al.
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Figure 9. Bubble traces for the polydisperse plume, (a) without and (b) with the Langevin model for
sub-resolution velocity fluctuations. Bubble positions are projected onto polar coordinates (r/r0, z), where
r0 = 0.02 is the radius of the plume source. Traces are coloured by bubble radius ab/aH .
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Figure 10. Plots of bubble radius ab/aH against normalised radial position r/r0 at several depths, for
simulations with (black symbols) and without (red symbols) the Langevin model for sub-resolution velocity
fluctuations: (a) z = 0.1, (b) z = 0.3, (c) z = 0.6, and (d) z = 0.9.

(2022) (although we note here that with our scaling, wave overturning occurs shortly
after t = 1, as in Chen et al. (1999) and Chan et al. (2021b)), and give Bond number
Bo = We (β − 1)/(4π2β) = 500. Furthermore, we highlight that the Weber number in our
numerical framework influences only the bubbles, as we do not include a surface tension
model for the resolved liquid free surface. The location of the initial free surface is given
by

η(x) = 1
2π

{
χ cos (2πx)+ 1

2
χ2 cos (4πx)+ 3

8
χ3 cos (6πx)

}
, (5.1)
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Figure 11. (a) Variation of mean kinetic energy (over the entire liquid domain) with time, for a single-phase
wave breaking event in the absence of bubbles, for various resolutions, with initial wave steepness χ = 0.55.
(b) Variation of dissipation-rate-based breaking parameter b with initial steepness χ for our simulations, and
experimental data of Drazen, Melville & Lenain (2008) and Melville (1994).

where χ is the initial wave steepness. The velocity within the liquid is given by

u (x, y, t = 0) = 1
2π

χ

√
1 + χ2 cos (2πx) exp (2πy) , (5.2a)

v (x, y, t = 0) = 1
2π

χ

√
1 + χ2 sin (2πx) exp (2πy) , (5.2b)

and w(t = 0) = 0. In many of the results that follow, we refer to the time since impact,
t − tim, where tim is the time at which the wave first breaks, indicated by a sharp increase
in the (spatial) mean value of ε, and confirmed visually. An estimate of the Hinze scale is
aH = We−3/5/2 ≈ 1.36 × 10−3, and throughout the following, we report bubble sizes as
relative to the Hinze scale.

First, we perform simulations with χ = 0.55 in the absence of bubbles, to ensure that
our SPH model provides a converged solution. Figure 11(a) shows variation of the mean
kinetic energy for the single-phase wave with time. We see that the evolution of the energy
is approximately converged for resolutions δr ≤ 1/300. For the purposes of the present
study, this degree of convergence in the kinetic energy is sufficient, and except where
otherwise specified, we set δr = 1/300 in the following. Note that in our single-phase SPH
model, surface tension is neglected, although surface tension effects are included in the
closure models governing bubble dynamics. This assumption is reasonable for the present
case, as the integral scale Weber number is large. Accordingly, there is no physical limit
imposed on the minimum droplet sizes expected during the breaking process. However, we
note that the numerics of the SPH algorithm – specifically, the particle shifting technique
– introduces a surface-tension-like effect into the simulation. Although we are unable to
quantify this effect accurately, we note that droplets consisting of individual SPH particles
are formed during the simulation at all resolutions, implying that the effective numerical
surface tension of the single-phase SPH simulation is governed by resolution, for the range
of resolutions explored.

We further validate the numerical framework by performing simulations for a range of
initial wave steepness χ , and evaluating the breaking parameter b, related to the dissipation
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rate by

b = εlg
ρc5 , (5.3)

where c is the phase velocity given by c = √
gλ as defined for experiments, with g the

acceleration due to gravity, and λ the wavelength. The quantity εl is the dissipation rate
per unit length of breaking crest, which can be evaluated following Deike et al. (2015) as
the product of the initial wave energy and the decay rate during breaking, calculated by
numerical integration over the simulation domain. Figure 11(b) shows the variation of the
breaking parameter with initial wave steepness for our simulations, alongside numerical
data from Melville (1994) and Drazen et al. (2008). The semi-empirical fit of b = 0.4(χ −
0.08)5/2 (Romero, Melville & Kleiss 2012) is shown by the solid line. For all the breaking
cases studied (χ ∈ [0.33, 0.55]), our simulations show a close match with the experimental
data and empirical fit.

5.1. Bubble size distributions and the effect of resolution
We keep χ = 0.55 and now include bubbles in our simulation. Figure 12 shows the wave
at several instants during the first (dimensionless) time unit after breaking, from the side
(figures 12a–e) and beneath (figures 12f –j). An animation showing the same views of
the wave during the complete breaking process is available in the supplementary material
available at https://doi.org/10.1017/jfm.2023.649. As the plunging breaker impacts on the
surface below, bubbles are entrained in the region of impact (figures 12a, f ). At the early
times after impact (figures 12a–c,f –h) the flow is largely two-dimensional, with little
variation in the transverse direction. Later, as the (resolved) topologically induced gyre
continues to roll, a three-dimensional structure forms under the wave (figures 12d,e,i,j).
In our simulation, air entrainment occurs through several mechanisms. First, bubbles are
entrained on impact of the plunging breaker. Second, bubbles are entrained at the surface
ahead of the wave due to the impact of spray forward from the plunging breaker; this
effect is particularly clear in figure 12(i). At approximately t − tim = 0.8 (figures 12e,j),
the topologically induced gyre collapses, and results in further entrainment. We note here
a limitation of our approach. As our model for the continuum is single-phase (we do not
resolve the gas above the free surface), although we predict the entrainment of a large
topologically induced gyre, the mass of this entrained air is partially lost when this bubble
collapses. This limitation is common to all single-phase SPH models, and also to the
model of Derakhti & Kirby (2014). Our model does predict bubble entrainment as the
topologically induced gyre collapses, due to the large values of ε as the free surfaces come
together. Combining the present work with a multi-phase SPH scheme would overcome
this limitation, allowing large bubbles to be resolved, whilst bubbles with ab < δr are
modelled. This is an active area of research for us, but we reserve such a model for a future
work.

Figure 13(a) shows the evolution of the total volume of entrained bubbles (normalised
by the total liquid volume), for several resolutions. There is approximately linear growth
volume of air entrainment (the dashed black trend line has slope 1), as found in the adaptive
mesh simulations of Mostert et al. (2022). We see close agreement in the total entrained
volume for δr ≤ 1/400, suggesting that the method is converged in terms of the total
entrained volume with respect to the SPH resolution. This agreement is particularly close
at early times, prior to the collapse of the topologically induced gyre. At later times, there is
moderate divergence in the total entrained volume, which we believe is due to the inability
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Figure 12. Visualisation of the wave at several instants in time after breaking. (a–e) The wave from the
side. ( f –j) A view from beneath the wave. The free surface is shown in turquoise. In (a–e), the turbulent
dissipation rate ε is shown in a blue colour scale. In all plots, the bubbles are coloured and scaled by ab/aH . The
corresponding times are (a, f ) t − tim = 0.015, (b,g) t − tim = 0.09, (c,h) t − tim = 0.215, (d,i) t − tim = 0.465,
and (e,j) t − tim = 0.840. The SPH particles have been interpolated to a coarse regular mesh for visualisation
of the free surface, and the vertical striation visible in ( f –j) is simply a numerical artefact of this grid.

of our method to account for different modes of bubble entrainment (discussed further
below), and the inevitable dependence of the bubble size distribution on the resolution in
a model of this type.

Figure 13(b) shows the evolution of the ratio NH−/NH+ for several resolutions, where
NH− is the total number of sub-Hinze-scale bubbles, and NH+ is the number of bubbles
larger than the Hinze scale. For each resolution, NH−/NH+ is approximately constant,
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Figure 13. Evolution of the bubble population: (a) variation of total entrained volume with time after impact
t − tim, for several resolutions; (b) time variation of the number ratio of sub- to super-Hinze-scale bubbles, for
several resolutions. For (a,b), χ = 0.55.

though it varies between resolutions. Our framework admits only bubbles smaller than
the SPH resolution, so for smaller δr, the maximum bubble size is smaller. This
reduction in the available range of super-Hinze-scale bubble sizes reduces the number of
super-Hinze-scale bubbles. Given that our entrainment model is based on considerations
of energy and volume balance (which are roughly invariant with δr), the total volume
entrained is approximately the same for all six values of δr in figure 13(b). Hence we see
a corresponding increase in sub-Hinze-scale bubbles as δr is decreased. The reduction in
entrained volume at approximately t − tim = 0.2 for all resolutions (visible in figure 13a)
corresponds to the period shown in figures 12(b,c,g,h), when a portion of the bubbles
entrained during the initial impact are ejected in the spray. A similar pattern is visible in
the total bubble population evolution in the results of Mostert et al. (2022).

Figure 14 shows the bubble size distribution P(ab/aH) for various resolutions at two
times after impact. Figure 14(a) corresponds to t − tim = 0.09 and figures 12(b,g), whilst
figure 14(b) corresponds to t − tim = 0.84, and figures 12(e,j). In both plots of figure 14,
the spectrum of Deane & Stokes (2002) is plotted (dashed black lines), with slope −3/2
for sub-Hinze-scale bubbles, and −10/3 for super-Hinze-scale bubbles. The experimental
data from Deane & Stokes (2002) are also plotted (grey triangles), along with the variation
of the experimental data (grey shaded region corresponds to ± one standard deviation).
Our model yields bubble size distributions that closely match the data of Deane & Stokes
(2002), including the expected super- and sub-Hinze-scale slopes, over more than an order
of magnitude of bubble radii. This match includes predicting accurately the change in
slope of the bubble size distribution about the Hinze scale. This result is significant, given
the simplicity of our entrainment and breakup models, which are based on simple energy
and volume balance arguments. The shift in bubble size distribution as δr is reduced is
clear in figure 14. For smaller δr, P(ab/aH) drops below the −10/3 slope and decays to
zero at a smaller δr, whilst the extent to which the sub-Hinze −3/2 slope is predicted
increases. The match between the expected and simulated bubble size distributions is
consistent across both time instants, although P(ab/aH) shows more noise at early times,
as the bubble population provides a smaller sample then. Again, we mention that this result
shows that the energetics of our simulations are converged with respect to the resolution.
We also highlight the significant result that for all six resolutions tested, the model predicts
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Figure 14. Bubble size distribution for χ = 0.55 at several resolutions (circles): (a) shortly after impact, at t −
tim = 0.09; (b) at t − tim = 0.840. The grey triangles correspond to the experimental data of Deane & Stokes
(2002), and the light grey shaded area shows ± one standard deviation of the experimental measurements.
Note that the magnitude of the experimental data has been scaled to match the non-dimensionalisation of our
numerical results.

the slopes of the bubble size distribution, and where the Hinze scale falls within the
range of possible bubble sizes, the model predicts the Hinze scale and both the sub- and
super-Hinze-scale bubble size distribution slopes. Figure 14 also highlights the limitation
of this approach – that the bubble size distribution, particularly at the largest bubble scales,
depends on the resolution of the SPH. This further supports our plans as discussed above
to extend the SPH model to a multiphase one, to allow the full range of bubble scales to
be captured.

We again mention a limitation of our framework, and of models of this type. Our
entrainment model is relatively simple, and as such the local (in time and space)
entrainment bubble size spectrum depends only on ε and α, and not on the mechanism
of bubble entrainment. The three separate entrainment processes discussed earlier – by
plunging breaker, spray impact, and topologically induced gyre collapse – in reality involve
quite different mechanisms. Our model, however, cannot differentiate between them. This
applies similarly to the entrainment models used in Eulerian–Eulerian work (Ma et al.
2011; Derakhti & Kirby 2014). It is this limitation that drives us to propose the coupling
of a multi-phase SPH scheme, with the gas above the liquid surface resolved, to the
discrete bubble model. This would enable the entrainment of large-scale bubbles to be
captured more accurately, with the computationally cheaper discrete bubble model used
once large bubbles have broken to ab ≈ δr, and for breakup, entrainment and tracking
of smaller bubbles. Additionally, in the present model, the equation of motion for the
bubbles becomes increasingly stiff for small bubbles, due to the drag model. Meanwhile,
if no limit is imposed on the minimum bubble size, then the number of bubbles increases
significantly. The value of the time step used to integrate the equation of motion for the
bubbles is specific to each bubble, and for small bubbles can be more than an order of
magnitude smaller than the SPH time step. Consequently, in the present model, a large
population of small bubbles becomes computationally expensive to simulate. A valuable
extension to the present model would be to account for the smallest bubbles with a
continuum–continuum approach (as in Derakhti & Kirby 2014), with a simplified drag
model. Thus we would have a scheme that resolves large bubbles, treats intermediate sized
bubbles discretely (as in this work), and treats small bubbles as a continuum, allowing the
complete range of bubble scales to be modelled.
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Figure 15. Visualisation of the wave at several time units after breaking. The free surface is shown in turquoise,
the turbulent dissipation rate ε is shown in a blue colour scale, and the bubbles are shown coloured and scaled
by ab/aH . The corresponding times are (a) t − tim = 1.96, (b) t − tim = 3.84, and (c) t − tim = 5.71.

In the present work, we have focused on unidirectional periodic waves. An important
future development of this work is to include a piston-type wavemaker functionality. There
is an extensive body of experimental work on air entrainment in wavemaker-generated
waves (e.g. Lamarre & Melville 1991; Drazen et al. 2008), which may be used to provide
further validation of our numerical framework. This would allow us to model a broader
range of representative sea states, increasing the value of the model.

Figure 15 shows the wave at several times after t − tim = 1. At t − tim ≈ 2, a large
cloud of bubbles is entrained through a reverse breaking wave, visible in figure 15(a).
Our simulations predict the obliquely descending eddies observed by Nadaoka, Hino &
Koyano (1989) and Bonmarin (1989), and modelled using a single-phase SPH scheme by
Dalrymple & Rogers (2006), Landrini et al. (2007) and Farahani & Dalrymple (2014).
The obliquely descending eddies drag a cloud of bubbles downwards away from the
surface, which persists for several time units, and is clearly visible in figures 15(b,c). The
observations of bubble distribution between breaking waves predicted by our model, at
both early (figure 12) and late (figure 15) times, is in good qualitative agreement with the
Eulerian–Eulerian model of Derakhti & Kirby (2014), the detailed simulations of Chan
et al. (2021b), and the experimental observations of Rapp et al. (1990).

5.2. Influence of wave steepness χ
Finally, we change the wave steepness χ , to cover both breaking and non-breaking waves.
Figure 16 shows the wave profiles (coloured by dissipation rate), and bubbles (coloured by
ab/aH), for several wave steepnesses χ ∈ [0.3, 0.5]. The wave with χ = 0.3 (figure 16a)
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Figure 16. Wave profiles showing dissipation rate ε (blue colour scale) and bubbles (coloured by ab/aH),
for various wave steepnesses χ : (a) χ = 0.3, (b) χ = 0.33, (c) χ = 0.35, (d) χ = 0.4, (e) χ = 0.45, and
( f ) χ = 0.5. For (b–f ), the wave is shown at time t − tim = 0.2. For (a), in which the wave does not break,
t = 2.5.
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Figure 17. Evolution of total entrained volume with time for various wave steepnesses χ . In all cases, the
SPH resolution is δr = 1/300.

does not break. For χ = 0.33 and χ = 0.35 the wave breaks by overspilling, whilst as χ
is increased further, there is a transition to the plunging breaker studied in the previous
subsection. As a limiting test, we observe that for the case where the wave does not break,
no bubbles are entrained, and that for all cases where the wave (visibly) breaks, bubbles are
entrained. Figure 17 shows the time evolution of the total entrained volume (normalised
by the total liquid volume), for various wave steepnesses χ ∈ [0.33, 0.55]. For χ = 0.33
and χ = 0.35, the total entrained volume remains small, although the wave breaking and
entrainment process has a long duration. As χ increases and the plunging breaker regime
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is approached, the total volume of air entrained increases significantly, whilst the peak
moves earlier, to approximately 1.5 time units after breaking. As in figure 13, the linear
growth of the entrained volume is clearly visible in the plunging breaker regime.

We note here the work of Lamarre & Melville (1991) and Melville (1994), who
performed measurements on controlled deep-water breaking waves to obtain a picture of
the void fraction distribution and the time evolution of integral properties of the bubble
plume. Whilst the results of our simulations are not comparable with these experiments
(due to the different types and scales of waves considered), we again highlight that the
inclusion of a wavemaker in our numerical framework is an area of ongoing development,
and will enable direct comparison with these experimental data, along with simulation of
a broader range of sea states.

6. Conclusions

In recent years, the potential of SPH for simulations of free-surface flows has been
demonstrated widely, but limitations in adaptivity remain in comparison to adaptive mesh
methods, preventing the use of SPH high-fidelity simulations of bubbly flows. Approaches
that resolve a continuous liquid phase, and include bubbles as discrete Lagrangian
particles, are established in the mesh-based community, but have not been developed
previously in a mesh-free framework, despite the benefits of mesh-free approaches for
free-surface flows.

In this work, we have presented a numerical framework for LES of bubbly, free-surface
flows. The framework employs a continuum–discrete structure, where we use SPH for
the LES of the liquid phase, whilst treating bubbles as discrete Lagrangian particles,
which interact with the liquid via exchanges of volume and momentum. We introduce a
Langevin model for the sub-resolution velocity fluctuations, and several closure models
for bubble breakup, entrainment, and free-surface interaction. The modification of a
projection method to admit a small degree of compressibility provides a significant
reduction in computational costs, whilst preserving smooth pressure fields obtained with
incompressible SPH. Exchanges between bubbles and liquid are implemented by SPH
interpolation, and the additional construction of neighbour lists required to enable this
is straightforward in an SPH framework. Individual bubbles are able to be tracked over
a lifetime, including motion due to turbulent structures below the resolution of the SPH
scheme. Hence models for bubble breakup (or in future, deformation and oscillation),
which happen over a finite time, may be constructed in integral formulations, rather than
as probabilistic events based on an instantaneous flow state.

We have demonstrated the ability of our method to simulate bubble plumes and
breaking waves, with quantitative agreement with previous numerical and experimental
data in terms of mean flow statistics, bubble size distributions, and bubble population
evolution. Despite the inclusion of bubble entrainment and breakup through simplified
energy-balance models, the numerical scheme is capable of predicting accurately the
Hinze scale, and the multi-slope bubble size distribution present in breaking waves,
alongside the bubble population growth rate. The bubble distributions between breaking
waves generated by our model compare well qualitatively with experimental data,
including the generation of bubble clouds dragged downwards by obliquely descending
eddies.

Our investigations have highlighted a limitation of models of this type, which is
that bubble entrainment models based on turbulence dissipation rates alone cannot
account for the different physical mechanisms of entrainment in different flow types.
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Further developments that are planned include the extension of the SPH model to
multi-phase flows, to yield a framework in which large-scale bubbles are resolved,
with small-scale bubbles modelled as in the present scheme. As bubbles influence the
forces and loads on structures due to wave impacts, and given the strengths of SPH
in computationally affordable free-surface flow simulations, the work herein offers the
potential for improvements in the accuracy of predictive modelling for wave–structure
interactions.

Supplementary material. A supplementary movie is available at https://doi.org/10.1017/jfm.2023.649.
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Appendix. Choice and verification of LES closure model

In the development of our numerical framework, we have investigated the use of several
LES closure models in our SPH scheme. In addition to the mixed-scale model of Lubin
et al. (2006), we tested a standard Smagorinsky model (referred to here as SS), and
the dynamic model of Germano et al. (1991) and Lilly (1992). To avoid locally large
fluctuations in νsrs from the dynamic model, we have implemented both local averaging
using a Shepard filter as in (3.7) (referred to herein as DSS), and Lagrangian averaging
following Meneveau, Lund & Cabot (1996) (referred to as DSL). The SS and DSS models
have been used previously for LES studies of breaking waves in a finite-volume framework
by Christensen & Deigaard (2001) and Christensen (2006). Temporarily neglecting the
dispersed bubble phase, we test our single-phase LES SPH scheme on the problem
introduced in Antuono et al. (2021) for weakly compressible SPH. The problem consists
of a triply periodic domain with unit side length. Setting Re = 106, a ramped body force is
applied over the first time unit, with forcing proportional to the generalised Beltrami flow
described in Antuono (2020). After this, the flow evolves, with a transition to turbulence
occurring within the first few time units. With Re = 106, our maximum resolution (2563)
is significantly larger than the Kolmogorov scale, so this is a challenging test for the
LES closure model. We compare the results of our code with both the SPH results
and a reference fifth-order finite-volume scheme, presented in Antuono et al. (2021).
Figure 18(a) shows the evolution of the kinetic energy in the domain with time, for the
various LES closure models. All results were obtained with δr = 1/128 to match the
resolution in Antuono et al. (2021). The SS model (solid black line) is overly dissipative
immediately after t = 1, resulting in significantly delayed transition (identified by the
time at which the gradient steepens) compared to the other models. This observation is
anticipated: SS models are known to perform poorly, being overly dissipative, in laminar
and transitional flows (Derakhti & Kirby 2014). Compared with the SPH simulations of
Antuono et al. (2021) (dashed blue line), who used a static model, both the dynamic
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Figure 18. (a) Comparison of variation of kinetic energy with time for our approach and the results of Antuono
et al. (2021) (blue lines) for various LES closure models: standard Smagorinsky (SS) indicated by solid black;
dynamic (Germano) model with Lagrangian averaging (DSL) indicated by solid red; Germano model with
Shepard averaging (DSS) indicated by dashed black; and mixed-scale model (MSM) indicated by dashed
red. All results were obtained with δr = 1/128. (b) Comparison of kinetic energy variation with time for our
approach at various resolutions, and the results of Antuono et al. (2021) (blue lines).

models give an earlier transition, and a post-transition dissipation rate that matches more
closely the reference finite-volume simulation (referred to as FVM; solid blue line).
Interestingly, there is negligible difference between the DSL and DSS models; for the
present case, the choice of averaging procedure has no effect. The mixed-scale model
(MSM) provides the best match with the reference solution: the post-transition decay rates
(the slopes of the lines) are a close match, as highlighted by the dotted black lines, which
are parallel.

Figure 18(b) shows the variation of kinetic energy with time as the resolution is varied,
from 643 particles up to 2563, when using the MSM. In the early stages of decay, the
flow is laminar, and the theoretical decay rate has characteristic time Re/48π2 ≈ 2111.
Although this decay rate is never achieved due to the numerical dissipation in all the
schemes, we see that as we increase the resolution, the decay rate does reduce (flatter lines
immediately after t = 1). For finer resolutions, there is an increased delay to transition,
and the convergence of the post-transition decay rate is apparent. We note that our results
converge to a slightly larger post-transition decay rate (steeper lines) than the finite-volume
scheme used in Antuono et al. (2021), likely due to their use of resolution 1/128. In any
case, the post-transition decay rates yielded by our scheme with the MSM are notably
closer to the high-order reference solution of Antuono et al. (2021) than the SPH results
of Antuono et al. (2021) for all resolutions δr ≤ 1/96.

We note that the choice of filter length scale Δ̃ in SPH is not as clear as for finite-volume
schemes (where the implicit filter scale is the same as the cell size). In the present work, the
implicit filter scale is taken as the smoothing length Δ̃ = h, but this choice is by no means
unique (indeed, Antuono et al. (2021) set Δ̃ equal to the SPH kernel standard deviation),
and may contribute to discrepancies between the LES SPH and the finite-volume reference
data. The appropriate specification of Δ̃ in SPH is an open problem.

The energy spectra were evaluated for the above simulations by interpolating the
velocity field from SPH particle positions to a Cartesian grid using a variant of the local
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Figure 19. (a) Energy spectra for the different closure models: standard Smagorinsky (SS) indicated by solid
black; dynamic (Germano) model with Lagrangian averaging (DSL) indicated by solid red; Germano model
with Shepard averaging (DSS) indicated by dashed black; and mixed-scale model (MSM) indicated by dashed
red. (b) Energy spectra for the MSM closure model at different resolutions. In (a,b), slope −5/3 is indicated
by a solid blue line.

anisotropic basis function method (King, Lind & Nasar 2020), providing fourth-order
consistency. Figure 19(a) shows the energy spectra (normalised by the instantaneous total
energy) for the different closure models. In all cases, the spectra are evaluated when the
total energy decays to 0.02, as in Antuono et al. (2021). The spectra for models SS and
MSM appear relatively similar, although MSM yields a slope closer to −5/3 (solid blue
line) for a slightly greater range of wavenumbers. These similarities might be expected
– the MSM is the geometric mean of the SS model and a model based on filtering
the turbulent kinetic energy. The spectra for the dynamic models (DSS and DSL) are
almost identical to each other, and markedly different from the SS model and MSM. They
exhibit a more pronounced peak at the forcing wavenumber (despite the forcing term
being switched off several dimensionless time units prior to evaluation of the spectra),
and a distinctly steeper slope than −5/3. Furthermore, they have a pronounced peak at
high wavenumbers. This is consistent with our observation, when using the DSL and
DSS models for simulations of breaking waves, that the dissipation rate appeared noisy.
Specifically focusing on the MSM, figure 19(b) shows the energy spectra for different
resolutions. All resolutions have a peak in the energy spectrum at the forcing wavenumber,
as expected, followed by a decay. With increasing resolution, the range of wavenumbers
for which a −5/3 slope (solid blue line) is observed increases.

Finally, whilst the tests here provide some quantitative information on the relative
performance of different LES closure models in our SPH framework, we note that
the performance of the models may change for different flows. For simulations of
breaking waves, the turbulence is patchy and transitional, non-isotropic and multiphase.
Quantitative analysis of the performance of LES models under these conditions is not
trivial, and remains an open problem.
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