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Dedicated to the memory of TADASI NAKAYAMA

Among his various interests in algebra Nakayama also took part in the

various researches, published in the early and middle 1950's, which dealt with

the commutativity of rings [4, 5]. This paper, which studies a problem of a

related sort, thus seems appropriate in a Journal honoring his memory.

We shall study a certain class of rings which satisfy a weak form of the

commutative law and shall show that the structure of such rings can be deter-

mined.

DEFINITION. A ring R is said to be a generalized commutative ring (written

as g.c. ring) if given xf y <= R there exists positive integers mix, jy), nix, y)

depending on x and y such that {xy)n(x>y) = {yx)m{x'y).

We begin the study of g.c. rings with

THEOREM 1. Let D be a division ring which is a g.c. ring; then D is com-

mutative.

Proof. Let a> έ e D , a*0, b*0; using x-a> y-baΓ1 in the definition of

g.c. ring we know that there are positive integers n and m such that

(1) abna-ι^(aba-1)n^(a^ba-1))n^{iba-ι)a)m^bm.

Therefore ab^a'1 = bmn whence β W a = abmnaΓι = (abna'ι)m = bm\ Con-

tinuing, we easily obtain

(2) aWcΓ^b"* for all *>0.

Since D is a g.c. ring there exist positive integers k and t such that

(3) b'n(Jίbn=(b-nabn)k = at.
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Put i = k in (2) and conjugate the result by bn. We get

(4) Jb^a-'^V*

Since, however, akdnk

a~
k = bmk we see that a*~h commutes with bnk. If k~t

then (3) tells us that a positive power of a, namely ak

y commutes with a posi-

tive power of 6, namely bn. If k*t the remark made above shows us that a

positive power of a, namely a^^K commutes with the positive power bnΊc of b.

We have thus shown that for any a> b<=D there exists positive integers r(at

b)y s(a, b) such that ar(a>b) commutes with bsίa'b). The proof of Theorem 1

will therefore be complete when we have established

LEMMA 1. Let D be a division ring in which given any a, b there exist

positive integers r{a, b), s(a, b) such that arκCίb) commutes with bs{a'b\ Then D

is commutative.

Proof. If for every χt y m D, % commutes with some positive power of y,

then by a result of Herstein Γ3j D would be commutative.

Suppose then that we can find a, b<=D such that a commutes with no bn

for n>0. Let W= {x^D\xbm{x) =*bmx)x for some m(χ)>0}; Clearly W is a

subdivision ring of D. Moreover, since a$W, W^D. By hypothesis, given

JCGD, #rί*'6> e W> thus in Faith's terminology D is radical over the proper sub-

division ring W. A theorem of Faith [1] then tells us that D is commutative.

Lemma 1 has some independent interest for from it one easily deduces that

if R is a semi-simple ring in which χr(x>y) commutes with ys{x>y) for all x, y in

R then R is commutative. This answers a question raised by Faith [21

Since subrings and homomorphic images of g.c. rings are g.c. rings and

since the nxn matrices over a division ring (or any other ring with unit,

for that matter) are not g.c. rings if n>\ we easily pass from the division

ring case to the primitive case and thereby to the semi-simple case to obtain

THEOREM 2. A semi-simple g.c. ring is commutative.

COROLLARY. If R is a g.c. ring, J(R) its Jacobson radical and C(R) its

commutator ideal then C(/?)c/(/?).

We now are ready to prove the main result of this note

THEOREM 3. The commutator ideal of a g.c. ring is nil
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°roof. Let J(R) be the Jacobson radical of R and C(R) the commutator

ideal of R. As we have just seen, Cίi?)c/(i?). Thus we may suppose that

J(R) * (0). By factoring out the maximal nil ideal of R we may suppose that

R has no non-zero nil ideals. Our objective then becomes to prove that R is

commutative, that is, C(R) = (0). Suppose C{R) * (0).

We first claim that J{R) can not be commutative, for if it were for a, b e

J(R) and y^R then since ay^JiR), aby = b(ay) = {ay)b> hence a(by—yb)=Q.

Since 6y -jy6 is in J(R) Π {#e R\J(R)x = (0)} which is a nilpotent ideal, we get

that by-yb^O for all 6s/(ffl, >e/?, that is J(R)aZ{R), the center of i?.

Given a&J(R)yx,y<=R,ax<Ξj(R)c:Z(R) hence (tf#b> =jy(tf*) =yax = ayx, leading

to tf(#y-:yx) ~0. Since J(R)aZ(R) this immediately implies that J(R)C(R)

= (0) together with C(#) c / ( £ ) we obtain C(#) 2 = (0). Since R has no non-

zero nilpotent ideals this latter forces C(R) = (0), contrary to assumption.

We may therefore assume that J(R) is not commutative. Since R has no

non-zero nil ideals then J{R) as a ring in its own right also has no non-zero

nil ideals. Since J(R) has no nil ideals by the previously cited theorem of

Herstein there are two elements a, b^J(R) such that a commutes with no bn

for #>0. Clearly then, b can not be nilpotent.

Since ae/(/?), 1 — a is formally invertible (R need not have a unit element)

and the mapping x-> (1 - a)x{l - a)~ι is an automorphism of R.

In the hypothesis that R is a g.c. ring let x= (1 - a)b,y = Ml - a)'1. Thus

there are positive integers r, s such that

(U - α)b\l - a)~Ύ = (6(1 - a)"1 {I - a)b)s = ό2s,

that is, there are positive integers m, w>0 (wj = 2r, n = 2s) with

(1) (l

Since a commutes with no positive power of b the integers w, w in (1)

satisfy m^n. We may suppose that m>nf otherwise we could carry out the

argument on a' instead of a where (1 -a)~ι ~ l~a't that is, a-f a1 - aa! = 0.

Since both ab and ba are in /(/?) the same reasoning yields

(2) (1

(3) (l

(We can suppose that the powers of b on the left hand side of (1), (2)
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a n d ( 3 ) a r e t h e s a m e f o r if (I-a)bmί(l-a)'1-=bn\ ( 1 - ab)bm2(l - ab)'1 = bn\

(1 - ba)bm*(l - baΓ1 = bn* then m = m1w2w3 satisfies the conditions of (1), (2)

and (3)).

Multiply (2) from the left by b and (3) from the right by b; this yields

(b-bab)bm = bp(b-bab)

(b - bab)bm = bQ(b - bob),

hence (bp - bq)(b- bob) = 0.

If p*q since b is in the radical of R (and so {l-bk)x = 0 forces x =• 0

when & > 1) we get br+1{l — «Z>) = 0 where r — min (^, q). Since 1 — ab is inver-

tible we are left with &r+i = 0, contrary to the fact that b is not nilpotent.

Therefore we conclude that ./> = #; (2) and (3) then become

Subtracting we get

(4) (ab-ba)bm = bp(ab-~ba).

We return to the interrelation of (1) and (2). Multiply (1) from the right

by b and subtract from (2). We get

(5) bm+1-bm = bn+1

If bn = bp since b^J(R) we get bk = 0, where k = min (n, p), if n^p contrary

to b not nilpotent, hence bn = bp forces n=p. But then (5) reduces to bm+1-

bm = bn+i_bn S i n c e m > n b»(i - b - b>"-» + h™*1'") = 0; however i + i 1 " " " -

bm+i-n b e i n g i n ^ Λ ) j 1 __ b _ bm-n ^ bm+i-n . g i n v e r t ible. The net result of this

would be bn = 0, a contradiction. We thus know that bn*bp.

We commute (5) with b to get (bn - if) (ab - ba)b =>0. Since w ^ ί and

baJ(R) this yields

(6) bt(ab-ba)b = 0 where ί = min (w, ^ ) .

From (4) we know that

(ab - ba)bkm = bkp(ab - ba) for any &>0

so, multiplying (6) from the left by bkp~ι where kp<t we get (α& - ba)bkm+1 = 0,

so certainly (β&-te)6 ( * + 1 ) m = 0. Since 0= (ab-ba)b{k+1)m = bik+1)p(ab-ba), if
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w = max(U + l)w, (k + l)p) then (ab - ba) bw = bw (ab - ba) = ΰ. A simple

induction on ί reveals that

0 = (abι - tfά) bw = bw( ab{ - tia) for all i > 0.

Put i = w; we then have (abw -bwa)bw = 0 and bw(abw-bwa) =0. The net

result of these is that ab2w - bwabw = b2wa, that is, a commutes with a positive

power of b. This we know is contrary to assumption. The theorem is thereby-

proved.
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