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Near Triangularizability Implies
Triangularizability
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Abstract. In this paper we consider collections of compact operators on a real or complex Banach

space including linear operators on finite-dimensional vector spaces. We show that such a collection is

simultaneously triangularizable if and only if it is arbitrarily close to a simultaneously triangularizable

collection of compact operators. As an application of these results we obtain an invariant subspace

theorem for certain bounded operators. We further prove that in finite dimensions near reducibility

implies reducibility whenever the ground field is R or C.

1 Introduction

We start by recalling some definitions and standard notations. Throughout this pa-
per, unless otherwise stated, X stands for a separable real or complex Banach space.
As is usual, by F we mean R or C. The terms subspace and operator or linear opera-

tor will, respectively, be used to describe a closed subspace of a Banach space X and
a bounded linear operator on X. If F is a field and V is a finite-dimensional vector
space over F, then we use L(V) to denote the set (in fact the algebra) of linear trans-
formations on V. We use B(X) to denote the set (in fact the algebra) of bounded op-

erators on X; B0(X) is used to denote the set (in fact the ideal) of compact operators
on X. We note that if X is a finite-dimensional real or complex Banach space, then
L(X) = B(X) = B0(X), and that every linear subspace of X is necessarily closed. A
subspace M is invariant for a collection F of bounded operators (resp. linear trans-

formations) if TM ⊆ M for all T ∈ F; M is hyperinvariant for F if TM ⊆ M for
all T ∈ F ∪ F ′ where F ′ denotes the commutant of F. A collection F of operators
(resp. transformations) is called reducible if F = {0} or it has a nontrivial invari-
ant subspace. This definition is slightly unconventional, but it simplifies some of the

statements in what follows. For a collection C of vectors, 〈C〉 denotes the (not neces-

sarily closed) linear manifold spanned by C. A projection or an idempotent is a bounded
operator P ∈ B(X) (resp. linear transformation P ∈ L(V)) satisfying P2

= P. If P is
an idempotent,

M := {x ∈ X : Px = x} = PX, N := {x ∈ X : Px = 0} = ker P,
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then P is said to be the projection on M along N, and M and N are complementary sub-
spaces of X, i.e., M + N = X, M ∩N = {0}. In case the space is an arbitrary Hilbert

space and M ⊥ N, the the projection P is called the orthogonal projection on M along

N, or simply the orthogonal projection on M. Let P and Q be two idempotents, by
definition P ≤ Q if PQ = P = QP, equivalently PX ⊂ QX (resp. PV ⊂ QV), or
ker P ⊃ ker Q (see Lemma 7.5.2 of [9]). Existence of invariant (resp. hyperinvari-

ant) subspaces for a collection F of transformations or operators can be expressed
in terms of idempotents as follows. By Theorem 6.4.5(i) of [9], a subspace M is in-
variant (resp. hyperinvariant) for a family F of transformations or operators iff there
exists a projection P on M such that TP = PTP for all T ∈ F (resp. TP = PTP for

all T ∈ F∪F ′). If the underlying space X happens to be a finite-dimensional Hilbert
space (resp. normed linear space), then the projection P above can be chosen to be
orthogonal, equivalently ‖P‖ = 1, (resp. ‖P‖ ≤

√
dim X in view of Theorem 4.15 of

[1]), where ‖ · ‖ denotes the operator norm induced by the norm of X.

A collection F of operators (resp. transformations) is called simultaneously trian-

gularizable or simply triangularizable if there exists a maximal chain of subspaces
of X (resp. V) each of which is invariant for F. In case the underlying space is
finite-dimensional, it is easily seen that triangularizability of a family of linear trans-

formation is equivalent to the existence of a basis for the vector space such that
all transformations in the family have upper triangular matrix representation with
respect to that basis. In other words, there exists a finite chain of idempotents Pi

(i = 0, . . . , dim V) such that

0 = P0 < P1 < · · · < Pdim V = I,

and that TPi = PiTPi for all T ∈ F and i = 1, . . . , dim V. If the underlying space
X happens to be a finite-dimensional real or complex Hilbert space (resp. Banach

space), we may assume that ‖Pi‖ = 1 (resp. ‖Pi‖ ≤
√

dim X in view of Theorem
4.15 of [1]) for all 1 ≤ i ≤ dim X where ‖ · ‖ denotes the operator norm induced by
the norm of X.

Note that a collection of (individually) triangularizable operators is not necessarily

triangularizable.

2 Near Triangularizability in Finite Dimensions

We start off with a well-known theorem due to O. Perron (See [9], Theorem 1.6.2).

Theorem 2.1 (O. Perron) If A is the algebra of n × n upper triangular matrices on

F, relative to a given basis, then for every ε > 0 there is an invertible matrix Sε =

diag(η, . . . , ηn) where η = η(ε) depends on ε such that

‖S−1
ε ASε − D(A)‖ < ε‖A‖

for all A ∈ A and where D(A) is the diagonal matrix with the same entries as A on its

main diagonal.

Perron’s Theorem immediately implies the following:
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Corollary 2.2 Let F = {Aα : α ∈ Λ} be a norm bounded triangularizable family

of linear transformations on F (i.e., on R or C). Then there is a diagonalizable, thus

commutative, family {Dα : α ∈ Λ} (relative to the triangularizing basis for F) such

that for every ε > 0 there is an invertible transformation Tε satisfying

‖T−1
ε AαTε − Dα‖ < ε,

for all α ∈ Λ

Proof Triangularize F by a similarity T. Set

Dα = D(T−1AαT); Tε = TS ε
M+1

where M = sup{‖Aα‖ : α ∈ Λ}.

Motivated by Theorem 1.6.4 of [9] and its proof, due to A. A. Jafarian, H. Radjavi,
P. Rosenthal, and A. R. Sourour, we were able to prove the following generalization.

Theorem 2.3 Let F be a family of linear transformations on a finite-dimensional vec-

tor space V over F with the following property: for each finite subfamily {A1, . . . , Am}
of F, there is a constant K > 0 such that for every ε > 0 there exists a triangularizable

family {T1, . . . , Tm}, and an invertible transformation S = Sε satisfying

‖T j‖ ≤ K, ‖S−1A jS − T j‖ < ε,

for every 1 ≤ j ≤ m where ‖ · ‖ denotes any given norm on B(V). Then F is triangu-

larizable.

Proof First, we prove the assertion on C. Note that if F is a singleton, then we have

nothing to prove, so we may assume that |F| > 1. Let A be the algebra generated
by F. In view of Theorem 1.3.2 and Lemma 2.1.15 of [9], it suffices to show that the
trace of (BC − CB)n is 0 for all n ∈ N and B,C ∈ A. Given B,C ∈ A, there are
Ai ∈ F, (1 ≤ i ≤ m), and noncommutative polynomials p and q such that

B = p(A1, . . . , Am), C = q(A1, . . . , Am).

Since all norms on B(V) are equivalent (for B(V) is a finite-dimensional vector space,
see [2], Theorem 3.3.1), without loss of generality, we may assume that ‖ · ‖ = ‖ · ‖1

with respect to a fixed basis of the space. So in particular, for every T ∈ B(V), we
have

|tr(T)| ≤ ‖T‖,

where “tr” means the trace linear functional. Let K > 0 be the appropriate constant
for {A1, . . . , Am}. Define: hn : B(V)m −→ B(V) by

hn(X1, . . . , Xm) = (p(X1, . . . , Xm)q(X1, . . . , Xm) − q(X1, . . . , Xm)p(X1, . . . , Xm))n.
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We observe that hn, n ∈ N, is a noncommutative polynomial in m linear transfor-
mations. It is easily seen that every such hn is a uniformly continuous function of

its arguments on any bounded set in 〈B(V)m, ‖ · ‖∞〉 where ‖(X1, . . . , Xm)‖∞ =

max{‖X1‖, . . . , ‖Xm‖}. In particular, for every η > 0, there is a positive δ with
0 < δ < 1 such that

‖hn(X1, . . . , Xm) − hn(Y1, . . . ,Ym)‖ < η,

whenever ‖X j −Y j‖ < δ, ‖X j‖ ≤ K + 1, ‖Y j‖ ≤ K + 1 for all 1 ≤ j ≤ m. Now, for
a given η > 0, find the corresponding δ with 0 < δ < 1. By hypothesis, for this δ,

there exists a triangularizable family {T1, . . . , Tm}, and an invertible transformation
S = Sδ satisfying

‖T j‖ ≤ K, ‖S−1A jS − T j‖ < δ,

for every 1 ≤ j ≤ m. Clearly,

‖S−1A jS − T j‖ < δ, ‖S−1A jS‖ ≤ K + 1, ‖T j‖ ≤ K + 1,

for every 1 ≤ j ≤ m. It follows from uniform continuity of hn that

‖hn(S−1A1S, . . . , S−1AmS) − hn(T1, . . . , Tm)‖ < η.

We note that tr(hn(T1, . . . , Tm)) = 0, for {T1, . . . , Tm} is triangularizable. So we can
write

|tr(hn(A1, . . . , Am))| = |tr(S−1hn(A1, . . . , Am)S)|

= |tr(hn(S−1A1S, . . . , S−1AmS))|

= |tr(hn(S−1A1S, . . . , S−1AmS)) − tr(hn(T1, . . . , Tm))|

= |tr(hn(S−1A1S, . . . , S−1AmS) − hn(T1, . . . , Tm))|.

Now, since |tr(T)| ≤ ‖T‖ for every T ∈ B(V), we can write

|tr(hn(A1, . . . , Am))| ≤ ‖hn(S−1A1S, . . . , S−1AmS) − hn(T1, . . . , Tm)‖ < η.

Thus |tr(hn(A1, . . . , Am))| < η. Since η > 0 was arbitrary, it follows that
tr(hn(A1, . . . , Am)) = 0. That is, tr((BC − CB)n) = 0 for all n ∈ N. Thus A,

and therefore F, is triangularizable by Theorem 1.3.2 of [9].
To settle the assertion on R, fixing a basis for the space, it suffices to prove the

matrix version of the assertion. That being noted, first we claim that every A ∈ F is
triangularizable over R. To see this, using the hypothesis and if necessary by passing

to a subsequence, it is easily seen that for every A ∈ F there exists a subsequence
(Si)i∈N of invertible matrices and a triangularizable matrix T in MN (R) (N = dim V)
such that limi S−1

i ASi = T. Thus, limi S−1
i AnSi = Tn for n ∈ N, and hence

tr(An) = lim
i

tr(S−1
i AnSi) = tr(Tn),
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for all n ∈ N. Now, by Theorem 2.1.16 of [9], the two matrices A and T share the
same characteristic polynomial. Therefore, triangularizability of A follows from that

of T, for the characteristic polynomial for T splits over R, settling the claim. Now,
to establish the assertion on R, note that the complex counterpart of the assertion
we just proved, implies that the family F is triangularizable over C. Now, since F

consists of individually triangularizable matrices over R, the triangularizability of F

over R follows from Lemma 2.2.8 of [13], as desired.

Remarks 1. Using the same argument one can prove that the Near Triangularizabil-
ity Theorem above holds for families of linear transformations on a finite-dimen-

sional vector space over any topologically closed subfield of an algebraically closed
complete field F with a nontrivial absolute value. (See Chapter XII of [7] for a nice
exposition of fields with absolute values).

2. In view of Theorem 7.6.1 of [9] and Lemma 2.5.8(iv) of [13], using an argument

almost identical to that of the preceding theorem, one can prove an analogue of the
theorem for Cp operators on complex Hilbert spaces (see [13], Theorem 3.3.3).

In the preceding theorem, if the invertible transformation S = Sε can always be

chosen to be bounded by a function in K, or equivalently can be chosen to be the
identity transformation, then we can drop K and prove the following result.

Theorem 2.4 (Near Triangularizability Theorem) Let F be a family of linear trans-

formations on a finite-dimensional vector space V over F with the following property: For

each finite subfamily {A1, . . . , Am} of F and for every ε > 0 there exists a triangulariz-

able family {T1, . . . , Tm} satisfying ‖A j − T j‖ < ε, for every 1 ≤ j ≤ m where ‖ · ‖
denotes any given norm on B(V). Then F is triangularizable.

Proof Fixing a basis for the space, it suffices to prove the matrix version of the as-
sertion. Set n = dim V. Since Mn(F) is n2-dimensional, it suffices to show that each

finite subfamily {A1, . . . , Am} of F is triangularizable. In doing so, it is easily seen
from the hypothesis that there exist triangularizable families {Tk1, . . . , Tkm} (k ∈ N)
such that A j = limk Tk j for all 1 ≤ j ≤ m. Now, since for each k ∈ N the family
{Tk1, . . . , Tkm} is triangularizable, it follows from the definition that there exists a

finite chain of orthogonal projections

0 = Pk0 < Pk1 < · · · < Pkn = I,

such that TkiPk j = Pk jTkiPk j for all k ∈ N, 1 ≤ i ≤ m, 1 ≤ j ≤ n. In view of a well-
known theorem of Riesz about compactness of the unit ball of finite-dimensional
normed spaces, if necessary, by passing to convergent subsequences, we may assume

that there exists a finite chain of orthogonal projections

0 = P0 < P1 < · · · < Pn = I,

such that P j = limk Pk j . This together with A j = limk Tk j and TkiPk j = Pk j TkiPk j

for all k ∈ N, 1 ≤ i ≤ m, 1 ≤ j ≤ n, obviously, shows that {A1, . . . , Am} is
triangularizable relative to the chain Pi ’s above, completing the proof.
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Recall that given a transformation T, a collection F of linear transformations on a
real or complex vector space V, and a norm ‖ · ‖ on B(V), by definition dist(F, T) =

inf{‖A − T‖ : A ∈ F}. The following result is a quick consequence of the preceding
theorem.

Corollary 2.5 Let Fi , F (i ∈ N) be nonempty families of linear transformations on a

finite-dimensional real or complex vector space V. If each family Fn (n ∈ N) is triangu-

larizable and limn dist(Fn, A) = 0 for all A ∈ F, then F is triangularizable.

Proof Theorem 2.4.

We need the following lemma.

Lemma 2.6 Let A be a linear transformation on a real or complex finite-dimensional

vector space. Let (Dn)n∈N be a sequence of simultaneously diagonalizable linear trans-

formations and (Sn)n∈N a sequence of invertible linear transformations such that

limn ‖S−1
n ASn − Dn‖ = 0, then (Dn)n∈N is bounded.

Proof Diagonalize (Dn)n∈N by a similarity T. Set Nn = T−1DnT; S ′
n = SnT . We

note that (Nn)n∈N is a sequence of diagonal, hence normal, linear transformations.
We can write

lim
n

‖S
′−1
n AS ′

n − Nn‖ = ‖T−1S−1
n ASnT − T−1DnT‖

≤ ‖T−1‖‖T‖ lim
n

‖S−1
n ASn − Dn‖ = 0

So limn ‖S
′−1
n AS ′

n − Nn‖ = 0. Now it follows from Lemma 1.6.5 of [9] that (Nn)n∈N

is bounded. This implies that (Dn)n∈N is bounded.

Corollary 2.7 Let F be a collection of linear transformations on a real or complex

finite-dimensional vector space V. Then the following assertions are equivalent:

(i) The collection F is triangularizable.

(ii) There is a basis B for the space such that for each finite subset {A1, . . . , Am} of

F, there exists a diagonalizable, hence commutative, set {D1, . . . , Dm}, relative

to B, of linear transformations such that for every ε > 0 there is an invertible

transformation S = Sε satisfying ‖S−1A jS − D j‖ < ε, for all 1 ≤ j ≤ m.

(iii) There is a basis B for the space such that for each finite subset {A1, . . . , Am} of

F and every ε > 0, there exists a diagonalizable, hence commutative, set of linear

transformations {D1, . . . , Dm}, relative to B, and an invertible linear transforma-

tion S = Sε such that ‖S−1A jS − D j‖ < ε, for all 1 ≤ j ≤ m.

(iv) For each finite subfamily {A1, . . . , Am} of F, there is a constant K > 0 such that

for every ε > 0 there exists a triangularizable family {T1, . . . , Tm}, and an invert-

ible transformation S = Sε satisfying ‖T j‖ ≤ K, ‖S−1A jS − T j‖ < ε, for every

1 ≤ j ≤ m.
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(v) There exist triangularizable families Fn (n ∈ N) of linear transformations on V

such that limn dist(Fn, f ) = 0 for all f ∈ F.

Proof Obviously Corollary 2.2 shows that (i) implies (ii). That (ii) implies (iii) is
obvious. That (iii) implies (iv) follows from Lemma 2.6. Taking ε = 1/n in (iii),
we get a diagonalizable set {Dn1, . . . , Dnm} of linear transformations, relative to B,

and an invertible linear transformation Sn such that ‖S−1
n A jSn − Dn j‖ < 1/n for all

1 ≤ j ≤ m. Hence limn ‖S−1
n A jSn − Dn j‖ = 0 for all 1 ≤ j ≤ m. So Lemma 2.6

implies that {‖Dn j‖}n∈N is bounded for all 1 ≤ j ≤ m. Thus there exists 0 < K ∈ R

such that ‖Dn j‖ ≤ K for all i ∈ N, 1 ≤ j ≤ m. Now it is obvious that (iii) implies

(iv). That (iv) implies (i) is nothing but Theorem 2.3. Finally, (i) obviously implies
(v). That (v) implies (i) is a quick consequence of Corollary 2.5.

In order to prove the Near Triangularizability Theorem for real Banach spaces, it

turns out that we basically need a criterion for triangularizability of an algebra of
linear transformations on real vector spaces. It is known that an algebra A of linear
transformations on a finite-dimensional vector space over C is triangularizable if and
only if AB − BA is nilpotent for all A, B ∈ A (see Theorem 1.3.2 of [9]). It will turn

out that the criterion for triangularizability of an algebra of linear transformations
over reals is rather surprising in the sense that individual triangularizability of the
members of the algebra implies triangularizability of the algebra. As a matter of fact,
it turns out that R does not play an important role in the proof of our criterion. The

aforementioned triangularization criterion holds for algebras of linear transforma-
tions on finite-dimensional vector spaces over any field over which there exists an
irreducible polynomial of degree 2.

For a given field F and k ∈ N with k > 1, we say that F is k-closed if every poly-

nomial of degree k over F is reducible over F. It is plain that a field F is algebraically
closed if and only if F is k-closed for all k ∈ N with k > 1.

Recall that if V is a finite-dimensional vector space over a field F, then a linear
transformation T on V is triangularizable if and only if the characteristic polynomial

for T is a product of linear polynomials over F (to prove this, use the Triangular-
ization Lemma, Lemma 1.1.4 of [9], or see Theorem 6.4.5 of [4]), or equivalently
σ̄(T) ⊂ F where σ̄(T) denotes the spectrum of T in the algebraic closure of F. Also
recall that Burnside’s Theorem asserts that the only irreducible algebra in L(V) is

L(V) provided that the ground field is algebraically closed.
Motivated by the proof of Burnside’s Theorem due to I. Halperin and P. Rosenthal

(see Theorem 1.2.2 of [9], or [5]), we restate Burnside’s Theorem as follows.

Theorem 2.8 Let V be a finite-dimensional vector space over a field F of dimension

greater than 1. If there exists an irreducible algebra A of linear transformations with

σ̄(A) ⊆ F, then A = L(V), and therefore F is k-closed for each k = 2, . . . , n. In

particular, Burnside’s Theorem holds in L(V).

Proof In view of individual triangularizability of the members of the algebra A, the
proof is identical to that of Burnside’s Theorem due to I. Halperin and P. Rosenthal
(see Theorem 1.2.2 of [9], or [5]).
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Theorem 2.8 implies the following. Later on, as mentioned before, we will use
part (ii) of the following theorem to prove the Near Triangularizability Theorem for

compact operators on real Banach spaces.

Theorem 2.9 (i) Let F be a field that is not 2-closed, and V an n-dimensional vector

space over F with n > 1. Let A be an algebra in L(V). Then A is triangularizable if

and only if every A ∈ A is triangularizable. Conversely, let a field F be given. If every

algebra A in L(V) with σ̄(A) ⊆ F is triangularizable, then F is not 2-closed.

(ii) Let V be a finite-dimensional vector space over R, and let A be an algebra of

linear transformations in B(V). Then A is triangularizable if and only if every element

of A is triangularizable.

Proof (i) “⇒” Obvious.
“⇐” The proof is just a quick consequence of Theorem 2.8 together with the Tri-

angularization Lemma (see Lemma 1.1.4 of [9]).
For the converse, fixing a basis for V, we need to prove the matrix version of the

assertion. Again we use contradiction. Suppose that F is 2-closed. This hypothesis
easily implies that the nontriangularizable algebra A := diag(M2(F), 0n−2) has the

property that σ̄(A) ⊆ F. On the other hand, A must be triangularizable by hypoth-
esis, for σ̄(A) ⊆ F, a contradiction.

(ii) This is a quick consequence of (i) because R is not 2-closed.

Remark In [10], we extend Theorems 2.8 and 2.9 to F-algebras of triangularizable
linear transformations in L(V) with spectra in F where V is a finite-dimensional
vector space over a field K, and F is a subfield of K that is not 2-closed.

We now prove a near reducibility theorem. The idea of the proof below is similar
to that of Theorem 2.4. However, we include the proof for the sake of completeness.

Theorem 2.10 (Near Reducibility Theorem) Let F be a family of linear transforma-

tions on a finite-dimensional vector space V over F with the following property: For each

finite subfamily {A1, . . . , Am} of F and for every ε > 0 there exists a reducible family

{T1, . . . , Tm} satisfying

‖A j − T j‖ < ε,

for every 1 ≤ j ≤ m. Then F is reducible.

Proof Fixing a basis for the space, it suffices to prove the matrix version of the as-
sertion. Set n = dim V. Since Mn(F) is n2-dimensional, it suffices to show that each

finite subfamily {A1, . . . , Am} of F is reducible. In doing so, it is easily seen from
the hypothesis that there exist reducible families {Tk1, . . . , Tkm} (k ∈ N) of matrices
such that A j = limk Tk j for all 1 ≤ j ≤ m. Now from reducibility of {Tk1, . . . , Tkm},
we see that there exist orthogonal projections Pk’s such that TkiPk = PkTkiPk for all

k ∈ N and 1 ≤ i ≤ m. In view of a well-known theorem of Riesz about compact-
ness of the unit ball of finite-dimensional normed spaces, if necessary, by passing to
a convergent subsequence, we may assume that there exists an orthogonal projection
P such that P = limk Pk. This together with A j = limk Tk j and TkiPk = PkTkiPk for
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all k ∈ N, 1 ≤ i ≤ m, obviously, shows that {A1, . . . , Am} is reducible, completing
the proof.

Remarks 1. Using the argument of Theorem 3.2.12 of [13], one can prove that
the near reducibility theorem above holds for families of linear transformations on
a finite-dimensional vector space over an algebraically closed complete field F with a

nontrivial absolute value.
2. Having proved the above near reducibility theorem, one can prove an analogue

of Corollary 2.5 for reducible collections of transformations on a real or complex
vector space. More precisely, one can prove: Let V be a finite-dimensional real or

complex vector space, Fi , F (i ∈ N) nonempty families of linear transformations on V.

If each family Fn(n ∈ N) is reducible and limn dist(Fn, A) = 0 for all A ∈ F, then F is

reducible.

The following useful lemma, taken from [13], is needed for the proof of the coun-
terpart of Theorem 2.9 for algebras of compact operators on real Banach spaces. It
is worth mentioning that we are quoting the lemma below and some of its conse-
quences for reader’s convenience.

Lemma 2.11 Let X be a real or complex Banach space, S a semigroup in B(X), and

T a nonzero linear operator in B(X). If S is irreducible, then so is TS|R where R = TX

is the closure of the range of T.

Proof See [11] or Lemma 2.5.1 of [13].

Let X be a complex (resp. real) Banach space, and S a subset of C (resp. R). By an
S-semigroup S of B(X), we mean a multiplicative semigroup of bounded operators
that is closed under scalar multiplication by the elements of S. The following lemma

is the counterpart of Lemma 7.4.5 of [9] which is due to Radjavi. We should point
out that the proof below is essentially an imitation of Radjavi’s proof.

Lemma 2.12 Let X be a real Banach space and let S be a uniformly closed R
+-

semigroup of compact triangularizable operators on X where R
+ denotes the set of posi-

tive real numbers. If S contains an operator that is not quasinilpotent, then S contains a

nonzero finite-rank operator that is either idempotent or nilpotent.

Proof The idea of proof is identical to that of Lemma 7.4.5 of [9]. First note that by
multiplying by an appropriate sequence of positive reals, we can assume that there
is a K ∈ S of spectral radius 1. Since σ(K) ∈ R, it follows that K has either one or

two eigenvalues of absolute value 1, namely either 1 or −1. If necessary, by repeated
application of Corollary 6.4.13 of [9], one can conclude that there are complementary
invariant subspaces N and R of K such that N is finite-dimensional, ∅ 6= σ(K|N) ⊆
{−1, 1}, and ρ(K|R) < 1. From this point on, the proof is identical to that of Lemma

7.4.5 of [9] which we omit for the sake of brevity.

As pointed out in [11], Turovskii’s Theorem [9, Theorem 8.1.11] and Lomonosov’s
Lemma [9, Lemma 7.3.1] hold on arbitrary real Banach spaces as well. The proofs are
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identical to those of their counterparts over complex Banach spaces. The following
lemma is needed to prove the counterpart of Theorem 2.9 (ii) for algebras of compact

operators on real Banach spaces.

Lemma 2.13 Let X be a real Banach space of dimension greater than 1, and let A be

a subalgebra of triangularizable compact operators. Then A is reducible.

Proof In view of Lemma 5 on page 1091 of [3], we may, without loss of generality,
assume that the algebra A is uniformly closed. Use contradiction. If A is a Volterra
algebra, i.e., an algebra of quasinilpotent operators, then A is triangularizable, hence

reducible, by Lomonosov’s Lemma (Lemma 7.3.1 of [9]) which is a contradiction.
So suppose that A contains an operator that is not quasinilpotent. It follows from
the preceding lemma that A then contains a nonzero finite-rank operator F that is
either idempotent or nilpotent. Since A is assumed to be irreducible, without loss of

generality, we may assume that rank(F) > 1. Let R denote the range of F, by Lemma
2.11 the algebra FA|R, on the finite-dimensional space R over R of dimension greater
than 1, is irreducible. On the other hand, by Theorem 2.9(ii) the algebra FA|R is
triangularizable, hence reducible, for σ(A) ⊂ R for all A ∈ A. This contradiction

proves the assertion.

The following is the infinite-dimensional counterpart of Theorem 2.9(ii).

Theorem 2.14 Let X be a real Banach space of dimension greater than 1, and let A

be a subalgebra of compact operators. Then A is triangularizable if and only if every

element of A is triangularizable.

Proof Necessity is obvious. Sufficiency is established by the Triangularization Lem-
ma [9, Lemma 7.1.11] and Theorem 2.13.

Remark In [11], the preceding theorem is extended to R-algebras of compact op-

erators on a real or complex Banach space with spectra in R where R is a subring
of R.

3 Near Triangularizability in Infinite Dimensions

In this section we prove the infinite-dimensional version of near triangularizability.
Here is the Near Triangularizability Theorem for arbitrary collections of compact
operators on a real or complex Banach space.

Theorem 3.1 Let F be a family of compact operators on a real or complex Banach

space with the following property: For each finite subfamily {A1, . . . , Am} of F and for

every ε > 0 there exists a triangularizable family {T1, . . . , Tm} of compact operators

satisfying ‖A j − T j‖ < ε, for every 1 ≤ j ≤ m. Then F is triangularizable.

Proof We first prove the assertion for the case when the underlying space is a real
Banach space. Let A be the algebra generated by F. In view of Theorem 2.14, it
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suffices to show that every element of A is triangularizable. Given A ∈ A, there are
Ai ∈ F, (1 ≤ i ≤ m, m ∈ N), and noncommutative polynomial p such that

A = p(A1, . . . , Am).

Let K = max{‖Ai‖ : 1 ≤ i ≤ m}. As we mentioned before, it is easily seen that
every such p is a uniformly continuous function of its arguments on any bounded set
in 〈(B(X))m, ‖ · ‖∞〉 where ‖(X1, . . . , Xm)‖∞ = max{‖X1‖, . . . , ‖Xm‖}, and where
‖ · ‖ is the operator norm on B(X). In particular, for every n > 0, there is a δn with

0 < δn < 1 such that

‖p(X1, . . . , Xm) − p(Y1, . . . ,Ym)‖ <
1

n
,

whenever

‖X j − Y j‖ < δn, ‖X j‖ ≤ K + 1, ‖Y j‖ ≤ K + 1

for all 1 ≤ j ≤ m.
Now, by the hypothesis for this δn, there is a triangularizable family {Tn1, . . . ,Tnm}

of linear transformations satisfying

‖A j − Tn j‖ < δn,

for every 1 ≤ j ≤ m. Clearly,

‖A j‖ ≤ K + 1, ‖Tn j‖ ≤ K + 1, ‖A j − Tn j‖ < δn,

for every 1 ≤ j ≤ m. Thus it follows from (∗) that

‖p(A1, . . . , Am) − p(Tn1, . . . , Tnm)‖ <
1

n
.

Thus ‖p(A1, . . . , Am) − Tn‖ < 1
n
, where Tn = p(Tn1, . . . , Tnm). Obviously, Tn is

a triangularizable operator, for {Tn1, . . . , Tnm} is a triangularizable family of linear

operators. In particular, σ(Tn) ⊆ R, n ∈ N. So we have p(A1, . . . , Am) = limn Tn

and σ(Tn) ⊆ R, n ∈ N; hence it follows from Lemma 5 on page 1091 of [3] that
σ(p(A1, . . . , Am)) ⊆ R and that A = p(A1, . . . , Am) is triangularizable, as desired.

We now prove the assertion for the case when the underlying space is a com-

plex Banach space. As before, we note that if F is a singleton, then we have nothing
to prove, for every compact operator is triangularizable. So we may assume that
|F| > 1. Let A be the algebra generated by F. In view of Theorem 7.6.1 of [9], it
suffices to prove that each commutator BC − CB is quasinilpotent for all B and C in

A.
To do so, we will show that ρ(BC−CB) = 0 where “ρ” denotes the spectral radius.

As before, given B,C ∈ A, there are Ai ∈ F, (1 ≤ i ≤ m), and noncommutative
polynomials p and q such that

B = p(A1, . . . , Am), C = q(A1, . . . , Am).
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As before, set K = max{‖Ai‖ : 1 ≤ i ≤ m}. Define

h(x1, . . . , xm) = p(x1, . . . , xm)q(x1, . . . , xm) − q(x1, . . . , xm)p(x1, . . . , xm).

Since the spectral radius is continuous at h(A1, . . . , Am), for h(A1, . . . , Am) is a com-
pact operator, it follows that for a given ε > 0, there is a δ = δ(ε) > 0 such that

|ρ(h(A1, . . . , Am)) − ρ(A)| < ε whenever ‖h(A1, . . . , Am) − A‖ < δ.
Now, for this δ = δ(ε) > 0, there is an η with 0 < η < 1 such that

‖h(X1, . . . , Xm) − h(Y1, . . . ,Ym)‖ < δ,

whenever
‖X j − Y j‖ < η, ‖X j‖ ≤ K + 1, ‖Y j‖ ≤ K + 1

for all 1 ≤ j ≤ m. By the hypothesis, for this 0 < η < 1 there is a triangularizable
family {T1, . . . , Tm} of compact operators satisfying ‖A j − T j‖ < η for every 1 ≤
j ≤ m. Clearly,

‖A j‖ ≤ K + 1, ‖T j‖ ≤ K + 1, ‖A j − T j‖ < η,

for every 1 ≤ j ≤ m. Thus it follows from (∗) that

‖h(A1, . . . , Am) − h(T1, . . . , Tm)‖ < δ.

So it follows from the continuity of spectral radius at h(A1, . . . , Am) that

|ρ(h(A1, . . . , Am)) − ρ(h(T1, . . . , Tm))| < ε.

But ρ(h(T1, . . . , Tm)) = 0, for {T1, . . . , Tm} is triangularizable. Thus we conclude
that

|ρ(h(A1, . . . , Am))| < ε,

for all ε > 0. Hence, ρ(BC − CB) = ρ(h(A1, . . . , Am)) = 0 for each commutator
BC − CB, B,C ∈ A. Therefore, BC − CB is quasinilpotent for all B,C ∈ A, com-
pleting the proof.

Remark Having proved the above near triangularizability theorem, one can prove
an analogue of Corollary 2.5 for collections of compact operators on a real or com-
plex Banach space where nearness is measured by the operator norm.

4 A Reducibility Result

In this section we use the Near Triangularizability Theorem to prove a rather surpris-

ing reducibility result. Let X be a real or complex Banach space, and An, A ∈ B(X).
By s-limn An = A we mean A is the limit of An’s in the strong operator topology on
B(X), i.e., limn ‖Anx − Ax‖ = 0 for all x ∈ X. To present our reducibility result, we
need the following two results.
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Lemma 4.1 Let X be a real or complex Banach space, An, A ∈ B(X), and Kn, K ∈
B00(X) (n ∈ N). If s-limn An = A and limn Kn = K, then limn AnKn = AK.

Proof We give the proof in three stages.
(i) If s-limn An = A, then limn AnF = AF for all F ∈ B00(X).

Since F is a finite-rank operator, it follows that we can write

F =

m∑

i=1

φi ⊗ xi ,

where m ∈ N, φi ∈ X∗, xi ∈ X (1 ≤ i ≤ m), and φi ⊗ xi is the rank-one operator
defined on X by φi ⊗ xi(x) = φi(x)xi . It is easily seen that AF =

∑m
i=1 φi ⊗ Axi .

Therefore, we can write

‖AnF − AF‖ = ‖(An − A)F‖ = sup
‖y‖=1

‖(An − A)F(y)‖

= sup
‖y‖=1

‖
m∑

i=1

φi(y)(Anxi − Axi)‖.

On the other hand, since s-limn An = A, it follows that limn Anxi = Axi for each
i = 1, . . . , m. Hence, for given ε > 0, there exists N ∈ N such that

‖Anxi − Axi‖ <
ε

2mM
,

for all n ≥ N and 1 ≤ i ≤ m where M = max1≤i≤m ‖φi‖. So for all n ≥ N we can
write

‖AnF − AF‖ ≤
m∑

i=1

‖φi‖.‖(Anxi − Axi)‖ ≤
m∑

i=1

M
ε

2mM
=

ε

2
< ε.

That is, limn AnF = AF.

(ii) If s-limn An = A and limn Fn = K where Fn ∈ B00(X) (n ∈ N), then

limn AnK = AK.

Since s-limn An = A, it follows from the Principle of Uniform Boundedness (The-
orem III.14.1 of [2]) that there exists M > 0 such that ‖A‖, ‖An‖ ≤ M for each
n ∈ N. We have limn Fn = K. Therefore, for a given ε > 0, there exists N1 > 0 such
that

‖Fn − K‖ <
ε

3(M + 1)
,

for all n ≥ N1. We can write

‖AnK − AK‖ ≤ ‖AnK − AnFN1
‖ + ‖AnFN1

− AFN1
‖ + ‖AFN1

− AK‖
≤ ‖An‖ · ‖K − FN1

‖ + ‖AnFN1
− AFN1

‖ + ‖A‖ · ‖FN1
− K‖
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On the other hand, (i) implies that limn ‖AnFN1
− AFN1

‖ = 0. Hence there exists
N2 > 0 such that

‖AnFN1
− AFN1

‖ <
ε

3
,

for all n ≥ N2. Now for all n ≥ max(N1, N2) we can write

‖AnK − AK‖ < M
ε

3(M + 1)
+

ε

3
+ M

ε

3(M + 1)
< ε.

That is, limn ‖AnK − AK‖ = 0. In other words, limn(AnK − AK) = 0 which is what
we wanted.

(iii) We now prove the general statement.

Again, in view of the Principle of Uniform Boundedness, it is easily seen that

there exists M > 0 such that ‖A‖, ‖An‖, ‖K‖, ‖Kn‖ ≤ M for each n ∈ N. Since
limn Kn = K, we conclude that for a given ε > 0 there exists N1 > 0 such that

‖Kn − K‖ <
ε

2(M + 1)
,

for all n ≥ N1. The fact that K ∈ B00(X) along with (ii) implies that

lim
n

‖AnK − AK‖ = 0.

Thus, there exists N2 > 0 such that ‖AnK − AK‖ < ε
2

for all n ≥ N2. Now for all

n ≥ max(N1, N2) we can write

‖AnKn − AK‖ ≤ ‖AnKn − AnK‖ + ‖AnK − AK‖

≤ ‖An‖ · ‖Kn − K‖ + ‖AnK − AK‖ < M
ε

2(M + 1)
+

ε

2
< ε.

That is, limn ‖AnKn − AK‖ = 0. In other words, limn AnKn = AK which is what we
wanted.

The following result is needed for the proof of the main theorem of this section.

Theorem 4.2 Let X be a real or complex Banach space of dimension greater than

one, S a semigroup of operators in B(X), and B ∈ B(X) a bounded operator with

rank(B) ≥ 2. If SB is triangularizable, then S has a nontrivial invariant subspace.

Proof Let A denote the algebra generated by the semigroup S. We note that A = 〈S〉.
That being noted, it suffices to prove the assertion for an algebra A of operators in

B(X). Let C be a maximal chain of subspaces each of which is invariant for AB. Let
X– := ∪X6=Y∈CY. We now distinguish two cases.

(a) X– = X.
Obviously, there exists a Y ∈ C with Y 6= X, and a y0 ∈ Y such that By0 6= 0.

Define M := ABy0. If M = {0}, then 〈By0〉 is a nontrivial invariant subspace for A.
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If M 6= {0}, then we would have 0 6= M = ABy0 ⊆ Y 6= X. So M would then be a
nontrivial invariant subspace for A.

(b) X– 6= X.
Since C is maximal, it follows that X ∈ C is a closed subspace of X of codimension

one, i.e., dim X
X–

= 1. Since rank(B) ≥ 2, we see that there exists x0 ∈ X– such that

Bx0 6= 0. Again define M := ABx0. If M = {0} , then 〈Bx0〉 is a nontrivial invariant
subspace for A. If M 6= {0}, then we would have 0 6= M = ABx0 ⊆ X– 6= X. So M

would then be a nontrivial invariant subspace for A.

Remarks 1. In the preceding theorem, if the triangularizing chain, say C, for SB

happens to have the property that X– = X, e.g., any continuous chain, then, by
case (a) of the proof above, the assertion holds under the weaker hypothesis that B is
nonzero.

2. By adjusting case (b) of the proof above, it is easily seen that the preceding
theorem holds on finite-dimensional vector spaces over general fields. It is worth
noting that in the preceding theorem the hypothesis that rank(B) ≥ 2 cannot be
weakened. To see this, let F be a field and n > 1. Note that Mn(F) is irreducible

whereas Mn(F)E is triangularizable where E is any rank-one matrix in Mn(F). Also
note that B(X) is irreducible but B(X)T is triangularizable where T is any rank-one
operator on X. This, in view of the preceding remark, shows that if T is a rank-
one operator, then any triangularizing chain, say C, for B(X)T is not continuous at

X ∈ C, i.e., X– 6= X.
3. It is not difficult to see that in the preceding theorem if the operator B hap-

pens to be 1–1, then reducibility of SB implies that of S. (See the remarks following
Theorem 2.3 of [12].)

Here is the main theorem of this section.

Theorem 4.3 Let X be a real or complex Banach space, An, A ∈ B(X), and Kn, K ∈
B00(X) (n ∈ N) with rank(K) ≥ 2. If s-limn An = A, limn Kn = K, and {An, Kn} is

triangularizable for each n ∈ N, then A has a nontrivial invariant subspace.

Proof Let S denote the semigroup generated by A. In light of Theorem 4.2, it suf-
fices to show that SK is triangularizable. That is, we need to show that the collec-
tion {AiK}∞i=1 is triangularizable. In view of Theorem 3.1, it suffices to show that

{AiK}∞i=1 satisfies the hypotheses of Theorem 3.1. Suppose that a finite subfamily
{An1 K, . . . , Anm K} is given. Since s-limi Ai = A, it easily follows that s-limi A

n j

i = An j

for each j = 1, . . . , m. Now, since limi Ki = K, we see from Lemma 4.1 that
limi A

n j

i Ki = An j K for each j = 1, . . . , m. Since {Ai , Ki} is triangularizable, it fol-

lows that so is {An1

i Ki , . . . , Anm

i Ki} for each i ∈ N. Since limi A
n j

i Ki = An j K for each
j = 1, . . . , m, we conclude that for i large enough ‖A

n j

i Ki − An j K‖ < ε, for each
j = 1, . . . , m. Therefore, the collection {AiK}∞i=1 is triangularizable, finishing the
proof.

Corollary 4.4 (i) Let X be a real or complex Banach space, An, A ∈ B(X), and K ∈
B00(X) (n ∈ N) with rank(K) ≥ 2. If s-limn An = A, and {An, K} is triangularizable

for each n ∈ N, then A has a nontrivial invariant subspace.
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(ii) Let H be a real or complex Hilbert space, (αi)i∈N be an orthonormal basis for H,

and An, A ∈ B(H). If s-limn An = A, and for each n ∈ N there exists a permutation

πn on N such that (απn(i))i∈N is a triangularizing basis for An, then A has a nontrivial

invariant subspace.

Proof (i) This is a special case of Theorem 4.3 when Kn = K for all n ∈ N.

(ii) Let K be the compact (and in fact normal) operator defined by diag(1/ j)∞j=1

relative to the orthonormal basis (αi)i∈N for the space H. Note that K ∈ B00(H), for
B00(H) = B0(H). The hypothesis implies that {An, K} is triangularizable for each
n ∈ N. So (i) applies.
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