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DIRICHLET INTEGRAL AND PICARD PRINCIPLE

MITSURU NAKAI AND TOSHIMASA TADA

A density P on the punctured unit disk β :0 < |z| < 1 is a 2-form

P(z)dxdy whose coefficient P(z) is a real valued nonnegative locally Holder

continuous function on the closed punctured unit disk i 2 : 0 < | 2 | < ^ l .

Here we consider Ω as an end of the punctured sphere 0 < \z\ <̂  +oo so

that the point z — 0 is viewed as the ideal boundary δΩ of Ω and the

unit circle \z\ = 1 as the relative boundary dΩ of Ω. We denote by Si =

<&(Ω) the family of densities on Ω. A density P on Ω gives rise to an

elliptic operator L = LP on Ω defined by

Lu = LPu = Δu- Pu, Δ = d2/dx2 + d'jdy2 .

Since δΩ is of parabolic character, there exists a unique bounded solution

e — eP, referred to as the P-unit on Ω, of Lu = 0 on Ω with continuous

boundary values 1 on dfi. With the operator L — LP we associate an

elliptic operator L = LP, referred to as the associate operator to L, given by

Lυ = LPv = Δv + 2F log eP-Fv , V = (d/dx, d/dy) .

We denote by & — &P the family of nonnegative solutions u of Lu = 0 on

Ω with vanishing boundary values on dΩ, by J* = @P the family of bounded

solutions u of Lu = 0 on Ω and similarly, by ώ = $P the family of bounded

solutions v of Lυ = 0 on Ω.

We are particularly interested in those densities P for which & = ^ P

is generated by a single element uQ:^ = {λuQ; λeR+}, where R is the real

number field and R+ is the set of nonnegative real numbers. Since P =

0 is the typical one of this character found by Picard, we say, after

Bouligand (cf. Brelot [2]), that the Picard principle is valid for P at δΩ if &>P

is generated by a single element, and we denote by @% = @$(Ω) the family

of densities on Ω for which the Picard principle is valid. It is a fasci-
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nating problem to characterize the family Θ%. We compile some of papers

answering to this question partially at the end of this paper. If the limit

Iim2_^a u(z) exists for every u in &P, then we say that the (weak) Riemann

theorem is valid for the operator LP. We denote by Stf* the family of

densities P such that the Riemann theorem is valid for LP. We have the

following duality theorem (cf. Heins [9], Hayashi [8], [26]):

Therefore characterizing 3f% is identical with characterizing &*. There

are quite a few instances that the Dirichlet integral plays very important

role to single out densities in Sd^ among Si.

The purpose of this paper is to clarify the efficiency of Dirichlet

integrals and at the same time its limitation in the study of the Picard

principle. For the purpose we further classify 9t. A density P is said

to be finite if

ί
JΩ

P(z)dxdy< +00

and we denote by Qx the family of finite densities on Ω. The importance

of the class 3X lies in the fact that 2X c @% (cf. [27], Kawamura [13]).

In connection with the class £&u we consider the class ^@φ of, what we

call, densities P of strongly D-type characterized by

\V log eP(z)\2 dxdy < +00 .
Ω

It is known that Sιx C ^ @ φ (cf. [27]). It is easy to see that the Dirichlet

integral D{0<lg]<r](u) of any u in &P is finite:

Ao<ι*κr}(") = f Wu(z)f dxdy < + 00
Jθ<|z|<r

for every r in (0,1). The same may or may not be true for the class $P.

If

Ao<ι.κr}(ι>) = f Wv(z)\2 dxdy < +
Jθ<\z\<r

oo

for any v in $P and any r in (0,1), then we say that P is of D-type, and

we denote by £fi% the family of densities of D-type on Ω. We know (cf.

[27]) that Q}^% C Q% C &* from which we deduced the relation Sx C 9*.

Therefore it has been known that 3X c ^©φ C ^ φ c 9Λ — 9%. We will
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study whether these inclusions are proper or not. The conclusion will be
the following:

where < indicates the strict inclusion.
In § 1 we will prove 2dx — 9®% by establishing an identity evaluating

the Dirichlet integral of log eP in terms of the integral involving P. In
§ 2 a necessary and sufficient condition is given for a rotation free density
P to belong to 9%. Here a density P is rotation free, by definition, if P(z)
— P(\z\) for every z in Ω. As an application of the result in § 2, we will
see in § 3 that the simple density P(z) = \z\~2 belongs to 9% — 9&% and
P(z) = |2|-2(log|2|)2 belongs to 9Λ - 9%. Actually, as we will see in §3,
belonging to 9% is very delicate:

c\z\-2(log\z\)2e9* for c e [ 0 , l ) ,

c \z\-2 (log \z\)2 e 9* for c 6 [1, + oo) .

§1. An identity

1. Consider a subregion S of Ω with its relative boundary dS of a
simple closed curve in Ω and with the ideal boundary z = 0. We do not
exclude the case S = Ω so that 3S = 942. For every closed punctured disk
Vβ: 0 < \z\ <ΞJ e contained in S, we denote by we the harmonic measure of
dS considered o n S - Vβ. Then the Stokes formula yields

Jds dn Jd(s-v6) dn

= ί Fwε(z)-Fe(z)dxdy + ί _ M;5(2:)Je(2r)iixdy ,

where 3/3n is the outer normal derivative and ds the line element. By
the maximum principle and the Harnack principle, we see that we 11 uni-
formly on each compact subset of SU dS. On setting wε = 0 on Vβ, a
simple application of the Stokes formula yields

f \F(we - wε,)(z)\2 dxdy = f \Vwe{z)f dxdy - f |FαU*)| 2d*d!y
Js Js Js

for ε < ε\ Hence in particular we see that

f \Fw£z)\2 dxdy I 0 (ε I 0 ) .
J s
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By the Schwarz inequality

(ί Fw£z)-Fe(z)dxdy) ^ f |Fwε(z)|2dxdy- [ \Ve(z)|2 dxdy .
\Js-v6 J Js-vs Js-vε

Since the Dirichlet integral of any function in &F is finite,

f \Fe(z)fdxdy

is dominated by

f \Fe(z)f dxdy < +00 .
J Q

Thus we may conclude that

lim ί Fwε(z)'Fe(z)dxdy = 0 .

Observe that

I wε(z)Δe(z)dxdy = we(z)e(z)P(z)dxdy .

Js-ve Js
The Lebesgue-Fatou theorem implies that

lim wε(z)Δe(z)dxdy = e(z)P(z)dxdy .
ί-0 JS-Ve Js

We finally conclude that

( 1) f ^^~ds - f e(z)P(z)dxdy .
Jds an Js

This means that e(z)P(z)dxdy is a finite measure on Ω.

2 Consider a continuous function / on dS. We denote by Hf the

uniquely determined bounded harmonic function on S with continuous

boundary values f(z) on dS and by Λe the harmonic function on S — Ve

with continuous boundary values f(z) on dS and 0 on 3Ve: \z\ = ε. Then

the Stokes formula yields

f / (z )M^d S = f Λs(
Jds dn Jd(s-vε)

dn

= [ Fh£z) Fe(z)dxdy + [ hε(z)Δe{z)dxdy .
Js-vε Js-vε

Since the family of hε is uniformly bounded on S, converges to Hf uni-
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formly on each compact subset of S U dS as ε -> 0,

ί |F(Λ. - K.)(z)\* dxdy = ί \Fhε(z)\2 dxdy - f |FM*)l2d*<ίy

for ε > εf > 0 by setting he = 0 on V,, and e(z)P(z)dxdy is a finite measure

on β, the most right hand side of the above identity converges to

ί FH$(z) Γe(z)dxdy+[ Hs

f(z)e(z)P(z)dxdy

as ε -> 0 by the similar reasoning as in no. 1. Therefore we have a gene-

ralization of (1):

(2) f f(z)^-ds = f VΉs

f(z)Ve(z)dxdy+ f Hs

f(z)e(z)P(z)dxdy .

3. We will give an upper estimate of the Dirichlet integral of the

harmonic function Hf/e on S. Observe*) that e <Ξ Hf. Since jff/ attains

its minimum value on dS we have

(fl?(s))"4 ^ f

on S. Applying the Dirichlet principle to functions H?/e, 1/H?, Hf, and e

on S, we have

(z)|2 dxdy £ £ |F(l/£Γf(^))|2 dxdy

= f {H?{z))^\Vm(z)?dxdy

Js

and similarly
f \FHe

s(z)\2dxdy^ [ \Ve{z)fdxdy.
J s J s

Therefore we have the following estimate:

( 3) f WmMl2 dxdy £ (max <r4) f \Ve(z)f dxdy .
Js \ dS / Js

4. We next give an evaluation of the Dirichlet integral of log e on

Ω — S. By the Stokes theorem we have

*} Here and also in no. 6 we use the fact that e is subharmonic in | z \ < 1 by defin-
ing e(0) = lim supz-o e(z).

https://doi.org/10.1017/S0027763000019802 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000019802


90 MITSURU NAKAI AND TOSHIMASA TADA

f ψ-ds-\ (lKz))ψtds=\ (lKz))ψLds
JdΩ dn J3S dn Jd(Ω-s) on

= ί F(lle(z))Te(z)dxdy + f {lje(z))Δe(z)dxdy .
JΩ-S JΩ-S

If we set S = Ω in (1), then we have

f ^Lds = [ e(z)P(z)dxdy .
JdΩ dn Jo

In view of the identities F(lle(z))-Fe(z) = -\Floge(z)\2 and (l/e(z))de(z) =
P(z), we deduce

ί \F log e{z)f dxdy = ί P(z)dxdy - ί e(z)P{z)dxdy
( A\ JΩ-S JΩ-S JΩ

+ ί (He(z))ψtds .
j ds dn

5. The identity (4) shows that the Dirichlet integral of log e over Ω
is essentially controlled by the integral of {lje){dejdή) over dS. Therefore
we have to study the behavior of the integral of (l/e)(9e/9τι) over dS as
Ω — S exhausts Ω, or, what amounts to the same, S j 0. For the purpose
we consider two cases separately: lim sup2_0 e(z) = 0 and >0. First we
consider the case lim sup^0 e(z) = 0, i.e. limz_0 e(z) = 0. For every t in
(0,1) consider the subregion St: e(z) < t of Ω, then St j 0 as t —• 0. More-
over from (1) it follows that

dn
0 ^ ί e{z)P(z)dxdy = f

jst JdSt

= λ f de& ds = — f e(z)P(z)dxdy ̂  ί P(z)dxdy .
t Jdst dn t J st JSt

Therefore the integral of (l/e)(3β/3n) over dSt, which is nonnegative, con-
verges to 0 as t -> 0 if P(z)dxdy is a finite measure on Ω.

6. Assume next that limsup^0ΦO = a> 0. There exists a closed
set E thin at 2 = 0 in Ω such that e(z) -> α as z -> 0 with 2: g £? (cf. Brelot
[4]). Then we may take a decreasing sequence {tm} in (0,1) with E Π
{2; \z\ = tm} = 0 for every m and lim™^ tm = 0. Applying (2) to the func-
tion 1/e and the subregion Sm: 0 < \z\ < tm of Ω we have

f (lle(z))^-ds = f FH1

s

/f(z)Ύe(z)dxdy

+ f H&(z)e(z)P(z)dxdy .
J Sm
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The second term on the right hand side of the above equality is dominated

by

ίmaxe" 1) e{z)P(z)dxdy,
\ dSm / J sm

and moreover by (3) we have

( ί FH^(z)Ύe(z)dxdy)2 £ ί ψ H^{z)f dxdy λ \Ve(z)f dxdy
\Jsm / Jsm Jsm

^ (maxe-λ(ί \Ve(z)f dxdyY .
\ dSm /\JSm )

Therefore we have

lim f (lle(z))^*Lds = 0 .

7. Apply (4) to S = St in the case of no. 5 or Sm in the case of no.

6 and make t —> 0 or m -> co accordingly. Then we obtain the following

evaluation of the Dirichlet integral of loge on fl:

THEOREM. For every density P(z)dxdy on Ω

ί \F log e(z)f dxdy = ί (1 - e(z))P(z)dxdy .
JΩ JΩ

Here in the above equality it may happen +oo = +oo, which is

exactly the case P is not finite. As a direct consequence of this we

obtain the following:

§2, Rotation free densities

8. Consider a rotation free density P(z)dxdy on Ω, i.e. the density with

P(z) = P(\z\) on Ω. For every nonnegative integer n we set Pn(z) = P(z)

+ n2l\z\2, which is also a rotation free density on Ω. Since the Pκ-unit

enf i.e. the unique bounded solution of Δu = Pnu on Ω with the boundary

values 1 on 342, is also rotation free, it may be viewed as a function of

r in (0,1]. In other words, en(r) may be considered as the unique bounded

solution of

Ξ -^-f(r) + 1 A ψ ( Γ ) - Pn(r)ψ(r) = 0
dr2 r dr

on (0,1) with en(ΐ) = 1, where we follow the convention Po = P and e0 — e.
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We recall some of fundamental properties of en (cf. [21], Imai [10]): For

any p e (0,1],

( 5 )
en(p)

for every r in (0, p] If we denote by ψ' the derivative dψ/dr, then

( 6 ) 0^JUΣL_IΆ^1 (n = o,i, .)
e»+1(r) en(r) r

on (0,1]; If P <Ξ Q on β,: 0 < |z| < ,o (0 < p £ 1) for another rotation free

density Q(z)dxdy on Ω, then

( 7 )
en+ί(p)en(r) fn+i(p)fn(r)

on (0, p], where Qn(2;) = Q(z) + n*/\z\2, fn the Qn-unit with the convention

fo=f being Q-unit; The Picard principle is valid for P if and only if

( 8 )

In particular (7) was first shown by Imai [10; p. 182].

9. Consider a bounded solution u of Lu ~ 0 on 42, i.e. u e 88P. In

this and following nos. we will study the Dirichlet integral of u/e in a

neighborhood of z = 0. For a continuous function M; on Ω the Fourier

coefficients

' φ) = co(r; w) = -±- Γw(re")dθ ,
2π Jo

αw(r) = an(r; w) = — f* w;(re^) cos nβd& ,

6n(r) = 6n(r; u;) = — f * w;(rβf0 si
7Γ J θ

of lί; are functions of r alone in (0,1). Since w is a bounded solution of

Lu = 0, the Fourier coefficients of u satisfy that

dr -Φ; r or \ 3r r 9r
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(r; u) + λ A-an(r; u) = aJr; Δu
r dr \

P(r)an(r; u) - -^&«(r; ^ ύ) ,

and similarly

n(r; u) + λ A-bn{r; u) = (P(r) + ^)bn(r; u) .
r dr \ r2 /

Therefore they are bounded solutions of £oψ = 0 or £nψ = 0. For any
fixed p in (0,1) we have

e(ρ)

an(r; u) = ^l^-en(r) ,
en(p)

K(r; u) = MPlΛen(r)
en(p)

on (0, p]. Therefore the Fourier coefficients of dujdθ may be represented
in terms of en in the following way:

an(r; • § • ) = n b n ( r ; u)=nbn(p; u)¥$)'
and similarly

If we set r = p then the Parseval identity yields that

w=i π Jo \ θ

Moreover from (5) it follows that

oθ
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for every positive integer n. Thus applying the Parseval identity to dujdθ

we have

Γ2ίr Cp ( 1 d u(reίθ

Jo )o\T~dθ~ e(r)
( ' - CP 1 / o(τ\

^ - f r r Σ n\an(p; uf + bn(p; uf) - ί ^ f f
ex(pf n-i Jo r \ e(r)

for every /? in (0,1).

10. The Fourier coefficients of d{uje)jdr are represented in terms of en:

c(r. 3 u\ _ ( 1 du _ e ' \ _ 1 d , , _ e ' ( r ) , ,

_ co(p; u)e'(r) _ e'(r)co(p; u)e(r) _ 0

e(r)e(P) e(r)*e(P)

air; A- ί) = * ^ . ( r ; ») - ^ - α M ( r ; u)
\ dr e I e(r) dr e(rf

= an(p;u)en{r) (e'n{r) _ e'jr) \
e(r)en(p) \en(r) e(r) ) '

and similarly

h (τ'-<L!±\ = bn(p;ύ)en(r) (e'κ(r) _ e'(r)
Λ' dr e) e(r)en(p) \ en(r) e(r)

Then by (6) we have

"V' dr e ) = V re(r)en(p) )

< τfaπ(p; uf ( φ) V
= r\(PY \ e(r) )

and similarly

. / 9 uY itbΛ(p;uY(φ)V
Ύ'ΊΪT) = r%(pf \e(r) )

for every positive integer n, where e0 = e. Therefore applying the Parseval

identity to d(uje)jdr we have

e{r)

-^Σ n\an(p; uf + bn(p; uf) \PλίlM
ex{pf n=i Jo r \ e(r)
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for every p in (0,1). Thus in view of (9) and the above inequality the

Dirichlet integral of u\e on Ω9 satisfies the following:

'u(z)2dxdy
e(z)

£ n\an(p; uf + K(p; uf) f'λfj&LYdr
™=i Jo r \ e(r) /

< _J?£
e(r)

for every p in (0, 1).

11. Consider the function υ^re™) = ex(r) cos θ/e(r) on Ω and observe

that L{eγ{r) cos θ) = 0. Then v1 is a bounded solution of Lv — 0 on β.

Moreover from the fact that

it follows that

(11) ί Wv^fdxdy^πΫUψ
JBP Jo r V e(r)

for any p in (0, 1), where z = re49. Here note that

f r-\eι{r)Kr)fdr < + ~
J P

for every p in (0, 1).

12. In view of (11) the divergence of the integral of r'^e^/eir))2 over

(0,1) implies the existence of a bounded solution of Lv = 0 on Ω whose

Dirichlet integral over a neighborhood of z = 0 is infinite. Conversely

assume that the integral of r"1(β1(r)/β(r))2 over (0,1) is finite. Take an

arbitrary bounded solution v of Lv — 0 on Ω. Then the function ve is a

bounded solution of Lu — 0 on Ω. In view of (10) the Dirichlet integral

of v = veje on a neighborhood of z — 0 is finite. Therefore we obtain

the following

THEOREM. Let P(z)dxdy be a rotation free density on Ω. Then the

Dirichlet integral of every bounded solution of LPv = 0 on a neighborhood

of z = 0 is finite if and only if

(12)
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We have thus characterized @% Π {rotation free densities} completely:
It is exactly the set of rotation free densities with (12). We feel charac-
terizing the general @% is very difficult and we do not have even the
foggiest idea at present.

§ 3. Examples

13. Consider the rotation free density P(z)dxdy = \z\~2dxdy. The P-
unit d and the (P(z) + l/|z|2)-unit dι are given by d(r) = r and dx(r) = rvγ.
Observe that

f \V log d(z)\2 dxdy = 2π Γ —dr = + oo
JΩ Jo r

and yet

o r\ d(r)

Then from Theorem in no. 12 it follows that P e S ^ - 2&% and therefore

14. We will give a rotation free density belonging to 2^ — 9ι%. Let
0 ^ ^ < 1/2,

« 1 \l/2 / 1 \

±(5 + 2α)(l + 2α)j , ^ ( 3 + 2α)(l + 2«)2(1 - 2α)j
for a > 0, and ^ = 2. Then the function

F.(x) = 1 - J(5 + 2α)(l + 2α);r2 - ^ ( 3 + 2α)(l + 2α)2(l -

of x in [(£>„, + oo) satisfies that Fa ^ 1 — a for α > 0 and 0 <; .FΌ ̂  1.
Consider rotation free densities Pa(z)dxdy and Pal(z)dxdy defined by

A—-FΛ-log [zϊ^^ψL. (0 < \z\ <L exp (-/Pa{z) = (1 +
IPiexp (-^J) (exp (-/,.) < \z\ £ 1) ,

and Pal(z) = Pα(2i) + ll\z\\ Observe that the function

(r) = 1 \ l 0 g r " ' ( l - 1(3 + 2«)α + 2a)(logλ)Λ
1 + 2a r \ 4 \ r / /+

of r in (0, exp (—pa)) satisfies Gα ̂  0 and
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d
dr

Then the function

Ga(r)

( Λexp (-/>«) \

- J ^ Ga(t)dή
of r in (0, exp(—^J] is a bounded solution of

4>.FβΨ(r) = 0 with Ea (exp (-Pa)) = 1 .

Moreover it is easy to show the fact that Ea(r)(pallog r~1)1/2+a is a bounded

solution of iUPaψ{r) = 0 on (0, exp(—pj) with the boundary values 1 at

r = exp(—pa). Therefore the Pα-unit (Pαl-unit, resp.) ea0 (eaί, resp.) may

be represented in terms of Ea on (0, exp(—pj) as follows:

ea0(r) = Ea(r)eaQ (exp (-pa))

(eaί(r) = Ea(r)[ P« \ ^ ( e x p (-Pa)\ resp.) .
\ log r"1 /

By the above representation we have

eal(r) ^ eaί (exp (—pa)) 1/2+aί 1

ea0(r) eaQ (exp (-p a )) " \ log r'1

and hence in view of (8) and Theorem in no. 12 we deduce Pa e ^ ( α > 0)

and Po e 2Λ — @%, where Po = Pa with a = 0.

15. Since the function F α satisfies that F α ^ 1 — a for <* > 0 and Fo

^ 1 on [pa, + oo) Pa satisfies that

for a > 0 and

p f a ) < (log 1-

on 0 < |J2Γ| ^ exp(—/?J, where P0(-ε) = Pa(z) with c = 0. Observe that

limα_o (1 ~ α)(l + 2α)"2 = 1. Then in view of (7) and Theorem in no. 12

the rotation free density c\z\~2 (log\z\)2dxdy satisfies

( 1 3 ) ίc \z\~2 (log |0|)2 e ^ for c e [0, 1) ,

[c \z\~2 (log \z\)2 & ®v for c € [1, + oo) .
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However c\z\~2 (log\z\)2 e^m for every ce [0, +00). The relation (13) sug-

gests the delicacy of the class Sf%. It is not convex. It is known that

^si = ^$ is also not convex (cf. [23], Kawamura [15]). We have thus

completed the classification as announced in the introduction:

As for the last strict inclusion see e.g. [21].
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