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Abstract. We obtain a family of metrics on the two-dimensional sphere whose
geodesic flow is ergodic and Bernoulli. This family includes real analytic metrics.

0. Introduction
We show that there is a real analytic metric on the two dimensional sphere S2 whose
geodesic flow is ergodic and Bernoulli. Metrics with Bernoulli (and therefore ergodic)
geodesic flow that are C1 but not C2 were described by R. Osserman [O]. The
simplest of them is obtained by attaching a hemisphere to each boundary geodesic
of a pair of pants with hyperbolic metric (see, e.g. [FLP, Ch. 3]). His arguments
relied heavily on the symmetry of the hemispheres. Burago has recently found a C'
metric whose geodesic flow has the K property [Bu]. V. Donnay [Dl, D2, D3] has
obtained C°° metrics whose geodesic flows have almost everywhere nonzero
Lyapunov exponents. In [D2] he outlines a proof that these examples have ergodic
geodesic flows. Donnay's examples are similar to Osserman's. Instead of hemi-
spheres, he attaches caps that are radially symmetric surfaces with positive curvature
that decreases to zero on the boundary. The metric on the pair of pants is deformed
so that the caps can attach smoothly along the boundary geodesies. Osserman's
simple argument no longer applies, but Donnay showed that the Lyapunov exponents
are almost everywhere nonzero by applying M. Wojtkowski's method of invariant
cones [W].

We begin by studying C°° examples similar to Donnay's. Our caps are radially
symmetric disks bounded by closed geodesies in which the curvature increases with
distance from the boundary. Following Donnay, we construct an invariant family
of cones. The curvature condition on the caps simplifies the proof that the cones
are invariant. We then show that the invariance property of the cones persists under
suitable small perturbations. The class of allowable perturbations is large enough
to include a real analytic metric. The family of invariant cones is continuous and
hence the results of [BG] and [Ka] can be used to show that the geodesic flow is
ergodic and Bernoulli. This approach seems simpler than that in [D2, D4].

We are grateful to A. Katok for suggesting the problem of finding real analytic
metrics with ergodic geodesic flows. We also thank H. Bercovici, A. Katok, R.
Spatzier and S. Zucker for helpful conversations.
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The second author is grateful to the Sonderforschungsbereich, Gottingen for
support and warm hospitality during the time this paper was written.

1. Description of examples and statement of results
By a cap we will mean a closed two dimensional disk with nonnegative curvature
such that the boundary circle is a geodesic. We say that a cap has monotone curvature
if it is radially symmetric and its curvature is a nondecreasing function of distance
from the boundary. Such a cap will be called nondegenerate if this function has
positive derivative at the boundary and vanishes there.

THEOREM 1.1. Let (5, g) be a compact C°° Riemannian surface. Suppose that the set
on which the curvature is nonnegative is a union of disjoint caps with monotone curvature
"#, , . . . , "#„. Then the geodesic flow <p'g on the unit tangent bundle TlgS is ergodic
and Bernoulli.

Donnay [D4] gives a different proof of ergodicity of the geodesic flow under
essentially similar conditions. That proof and the argument in the present paper are
based on the fundamental result that the Lyapunov exponents are almost everywhere
nonzero [Dl, D2, D3]. Once ergodicity has been proved, the Bernoulli property
follows from a result of Katok [Ka].

It is clear from Proposition 2.1 that metrics with the properties required by
Theorem 1.1 can be constructed on any compact C°° surface as follows. Choose a
finite set of points whose complement in the surface supports a hyperbolic metric
with finite volume. Cut off the cusps of this hyperbolic surface along horocycles
and deform the resulting surface with boundary so that the boundary circles are
geodesies and the curvature is nonpositive and approaches 0 at the boundary. This
can be done so that each boundary circle has an annular neighbourhood isometric
to a surface of revolution in which the curvature at distance r from the boundary
is a monotone function of r on [0, 5] for some 5 > 0; moreover, we can arrange for
this function to extend to a monotone C°° function on [-S, 8]. Now Proposition
2.1 allows us to smoothly attach a cap with monotone curvature along the boundary
circle. The Gauss-Bonnet theorem imposes the restriction that there are at least
three caps if the surface is S2 and at least one cap if the surface is T2. Note also
that the surface must contain points of negative curvature, since it cannot be a
disjoint union of caps.

The main result of this paper is

THEOREM 1.2. Suppose in addition that each cap % of (S,g) is nondegenerate and
has a neighbourhood in which the metric is radially symmetric about the centre of%{.
Let g be a C3 Riemannian metric that agrees with g to second order along each d%.
Fix a neighbourhood V̂, of each d%. If g is close enough to g in the C2 topology
(throughout S) and g|̂ V, and g\Jfj are close enough in the C3 topology for each i,
then the geodesic flow <p\ on TU*S is ergodic and Bernoulli with respect to its Liouville
measure.
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In § 5 we derive

COROLLARY 1.3. Every compact real analytic surface has a real analytic metric whose
geodesic flow is ergodic and Bernoulli.

Theorems 1.1 and 1.2 are proved using the result of [BG], which is based on
work of Pesin and Wojtkowski, and a result of Katok [Ka]. The result that we shall
actually use is

THEOREM 1.4. Let M be a compact three dimensional C3 manifold, and let <p' be a
C2 flow that leaves invariant the measure defined by a C2 Riemannian metric on M.
Suppose that there is a <p'-invariant distribution P transverse to the flow. Let % be a
continuous family of two dimensional cones such that X(x)^. P(x) for all xe M.
Suppose that there is a connected open subset % of M such that
(0 U I S R <p'°M has full measure in M;

(ii) d(p'(3C(u)) is strictly contained in jfc(<p'u) whenever u<E%t>0 and <p'ue^l.
Then the flow <p' is ergodic. If in addition <p' is a contact flow and P is the kernel of
the contact form, then <p' is Bernoulli.

Proof. Ergodicity follows from [BG]; the Bernoulli property follows from a result
in [Ka]. •

In our applications of this theorem, M will be one of the unit tangent bundles
Tl'gS or Tl*S and <p' the corresponding geodesic flow. Recall that a Riemannian
metric (•, •) on S induces a Riemannian metric on TS:

where H and V denote the horizontal and vertical components, respectively, see
e.g. [Kl, § 3.2]. We will identify £e TTS with (£H, £v). The geodesic flow <p' on TS
is defined by the vector field v-> (v, 0). The measure defined by ((•,•)) is invariant
under the geodesic flow. Since the metric g in Theorem 1.2 is C3, both the geodesic
flow and the metric that it defines on TS are C2, and TJ*S is a C3 submanifold of
TS.

If we T*S set

P(w) = {tc TwrS: <£„, w> = 0 = <£v, w)}

and

3f(w) = {£eP(»v):<|H,£v>>0}.

Note that P(w) is the orthogonal complement of the geodesic flow in the tangent
space at w of TlS. It is well known that the distribution P is invariant under the
geodesic flow. Continuity of % is obvious. The 1-form u> defined by

a>(i) = (£H,u) for £eTurS

makes <p' a contact flow: o> is invariant under <p' and the 3-form w A da> is everywhere
nondegenerate and defines the same measure as the metric ((•, •)). Before describing
the proofs of Theorems 1.1 and 1.2, we reformulate property (ii) from Theorem 1.4
in terms of Jacobi fields. Recall that if u is a unit vector and £e TUTS, then
Y(t) - (dg'£j)H is a Jacobi field along the geodesic yu determined by u with covariant
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derivative Y'(t) = (dg'g)v. Since S is a surface, Y(t) has the form

t), (1)
where a and b are constants, N is a continuous field of unit normals to yu and y
satisfies the scalar Jacobi equation

y"(t) + K(yu(t))y(t) = 0, (2)

where K(p) is the curvature at peS. (Conversely, a vector field Y satisfying (1)
and (2) arises from some £e TUTS.) It is well known that £e TuT

lS if and only if
b =0, and £e P(u) if and only if a = b = 0. (It is clear from the latter fact that the
distribution P is invariant under the geodesic flow.)

The cone 3C{u) corresponds to the set of solutions of (2) with >>(0)/(0)>0.
Property (ii) of the set °U in Theorem 1.4 is equivalent to
(ii') If ue% T>0, <pTue^l and y is a solution of (2) with y(0)/(0)>0, then

y( T)y'( T) > 0 unless y(t) = 0.

Proof of Theorem 1.1. We apply Theorem 1.4 to <p'g on TXgS. We choose °U to be
the set of unit vectors whose footpoints lie outside the caps. Proposition 2.4 shows
that 'U has property (i) required by Theorem 1.4. To show that °U has property (ii),
we verify (ii') above. Since (S, g) has negative curvature outside the caps, (ii') follows
easily from Lemma 1.5 below and Proposition 2.7, which describes what happens
when a <p'-orbit leaves and then reenters °U. D

LEMMA 1.5. Lety be a solution of (2). Suppose that K{yu(t))<0 for 0 < / < Tand
7/>(0)/(0)>0, then y(T)y'(T)>0.

Proof. (yy'y(t) = -K(yu(t))y
2(t) + (y'(t))2>0 for 0<t<T. •

Proof of Theorem 1.2. We may assume that g has positive curvature in U Int % and
negative curvature outside U ^.- To see this, note that the nondegeneracy of the
caps (%, g) means that if g | ./V and g | N are close enough in the C3 topology, there
is a neighbourhood JV0 of U ^ i such that the curvature of g is positive on
•^on (U I°t %) a n d negative on *V0\(U %). If g and g are close enough in the C2

topology, the curvature of g will also be positive on U %\^o and negative outside

We apply Theorem 1.4 to <p'g on TlgS. For each cap %, choose a closed disk 2,
with % s Int Sj such that ®, , . . . , 3sn are pairwise disjoint and (%, g) is radially
symmetric about the centre of (%, g). Let % be the set of vectors in T''*5 whose
footpoints lie outside U ®.- We verify that °U satisfies the properties (i) and (ii')
described above. Proposition 2.4 shows that the only geodesies of (5, g) that can
stay in % for all time are parametrizations of a^. Since the curvature of g is negative
in SA^i, distg (%, •) is a strictly convex function on 3>t\% (see e.g. § 1C of [BGS]).
Thus a geodesic that exits % leaves 2), after a finite time. This proves property (i).
Since the curvature of (S, g) is negative outside U ®,, property (ii') follows from
Proposition 4.10 and Lemma 1.5. •

The main idea in both proofs is to show that the effect of the negative curvature
on Jacobi fields is not destroyed when a geodesic passes through a %. For Theorem
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1.1, this is done by a direct study of the geometry of radially symmetric caps. The
point in Theorem 1.2 is that the geometry of the caps % does not change significantly
if g is close enough to g.

2. Geometry of caps
We begin by constructing examples of caps with monotone curvature that vanishes
at the boundary. The examples have constant positive curvature except in a neigh-
bourhood of the boundary. The construction allows us to prescribe the circumference
of the cap and the behaviour of the curvature near the boundary.

PROPOSITION 2.1. Let L > 0 and kg: R -* R a nondecreasing Cx function with ko(O) = 0.
Then there exist R,S>0 and a radially symmetric metric on a disk 3> with radius R + S
such that
(i) the disk %> of radius R about the centre of 2 is a cap with monotone curvature;
(ii) d^ has length L;
(iii) ifs is the signed distance from d%, chosen so that s>0 inside <€, then the curvature

of 3) at distance s from d<€ is fco(s), - 5 =s 5 < 5.

The proof uses a standard comparison result for second order differential
equations.

LEMMA 2.2. Suppose K,(f) s K2(t) for 0< t =£ T and yt(t), i = 1,2, is a solution for
0<(<7o /

= 0, i = 1,2.
0) = y2(0),0>y\(0)>y'2(0) and y2(t)>0 for Os (<T , then yi(t)>y2(t) for

0st<T.

Proof. Let w(r) = (y[y2-yly'2)(r). Then w(0)>0 and w' = (K2~Ki)yly2. Thus
w(r)>0 if ^,(s)_v2(s)>0 on (0, r). The lemma follows since (y2/yi)' = -w/y\. •

Proof of Proposition 2.1. Choose a continuous function fc:(0, oo)xR-»R such that
for each rj >0,
(I) k(-q, •) is C°°, nondecreasing and has k(rj, 0) = 0;
(II) there is 5(17), 0< 6(17) <ir/4-q such that k(r}, s) = ko(s) for |S |<5 (T / ) ;

(III) 2

Let L be the solution of
l"(s) + k(v,s)l(s) = 0 (3)

with /„(()) = L and l'n(0) = 0. Let R(rf) be the first positive value of 5 with lv(s) = 0.
Since £(77, - )STJ2 , it is clear from Lemma 2.2 that R(T])>IT/2T]. We shall show
below that there is 17* such that V^iRirj*)) = -2ir.

Choose R = R(TJ*) and 8 = 8(17*). Let 3) be the disk of radius R + S with the
radially symmetric metric in which the curvature at distance r from the centre p0 is
/c(r) = k(r]*, R - r). To see that this metric is well defined, note firstly that K extends
to a C00 even function on [—R -S, R + S] since K = (T7*)2 on [0, R/2]. Now observe
that the circle of radius r about p0 in this metric should have length A(r) where A
is the solution of the initial value problem

A"(r) + K(r)A(r) = 0, A(0)=0, A'(0) = 2TT;
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the metric will be well defined if A(r)>0 for 0 < r < R + S. We see, however, that
A(r) = lv*(R-r), which is nonzero for 0<r. The circle about p0 of radius R has
iength \'(R) = 1V*(Q) = L. It is a geodesic since k'(R) = -/',,.(()) = 0, [see e.g.
3.5.22]. Claims (i), (ii), and (iii) now follow easily.

To show that we can choose 77*, it is enough, since l'v(R(j])) depends continuously
on 77, to show that
(a) l'v(R(r}))> -2n if 77 is sufficiently small and
(b) Vv(R(t})) <-2v if 77 is sufficiently large.

Note that 0</„(«)<£, / ; («)<0, and 0< £(77, s)< T72 for 0<s<R(r)). We saw
above that R(r])>v/2r). Thus IV(TT/4T))>0 and /;(7r/477)<0. Since k{r), s)=r}2

for s > TT/4T7, it follows from Lemma 2.2 that /?(T7)<37T/4T7. Thus, by (3),

Jo 4

if 77 is small. This proves (a). Since /^ > 0 on [0, #(77)], we have

which is less than —2n for large 77. This proves (b). •

Now we study the behaviour of geodesies in an arbitrary cap.

LEMMA 2.3. Let y be a geodesic (parametrized by arc length) in a cap c€. Set
d(t) = dist (y(t), 8^). Then d is a concave function.

Proof. We show that for each t there is a linear function L,(T) such that d(t) = L,(0)
and d(t + r)< L,(T) for all T sufficiently close to 0. Choose a minimizing geodesic
a from d<6 to y(t) and parametrize a so that a(0) ed^ and cr(d(t)) = y(t). We define

L,(r) = d(t) + r{y(t),&(d(t))).

Let V(s) be the vector field along a with V(d(t)) = y(t), V(0) tangent to d% and
covariant derivative

V(s)=-^-)(y(t),&(d(t)))&(s).

Set a(s, T) = yV(S)(r). Then (da/ds)(s,-) is the Jacobi field along yv(s) with initial
value &(s) and initial covariant derivative V(s). Comparison with a Jacobi field in
zero curvature using the Rauch theorem [CE, Theorem 1.28] shows that

da T
— (s, T) ^l+-jrx(y(t),&(d(t))),
ds

for any small enough T. The inequality d(t + r)< L,(T) follows, since

— (S,T) ds. U

PROPOSITION 2.4. Let ybea maximal geodesic in a cap c£. Then either (i) y is a closed
geodesic, dist (y( t), d <£) is constant and the curvature vanishes identically in the cylinder
bounded by y and 8^; or (ii) y is a segment of finite length joining two points of d<€.

Proof. If d'(t)<0 for some t, then y hits 3% after finite time. If d'(t)>0 for all t,
then y is asymptotic to a closed geodesic yo(s) with dist (yo(s),d<€) = lim,^.<xi h(t).
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The Gauss-Bonnet theorem shows that the curvature vanishes between d% and y0.
It follows easily that y must be the closed geodesic y0. •

In the rest of this section, we study a cap <€ whose curvature is monotone and
vanishes on d^. Let y be a maximal geodesic of 9? of type (ii). Parametrize y by
arc length so that y(±T0) are the points where y meets d^. It is clear from the
radial symmetry that y(0) is the unique point of y closest to the centre of %. We
study the scalar Jacobi equation along y,

y"(t) + K(t)y(t) = 0, (4)

where K(<) is the curvature at y(t). Note that the function K is even on [— To, To]
and nonincreasing on [0, To]. Let S and C be the solutions of (4) with
C(0) = l, C'(0) = 0, S(0) = 0 and S'(0) = l. Clearly S is an odd and C an even
function on [-To, To].

LEMMA 2.5. S'(To) = S'(-To) = 0 andS{t)*Q unless t = 0.

Proof. Introduce normal coordinates (r, o) about the centre p0 of % so r is distance
from po and «eS ' . The restriction of the vector field d/dt> to y is a Jacobi field
(corresponding to a variation obtained by rotating y about p0). Its component
orthogonal to y vanishes only at y(0). Thus this component is a multiple of S(t)
and S(t) 5* 0 unless t = 0. Note that along the geodesic d%, B/dt> and d/dr are tangent
and normal vector fields respectively with constant length. Thus along d^,
0 = Va/^3/a<> and 0 = Va/3,d/dr = Vg/drd/d#. Hence Vud/d* = 0 for any vector v
with footpoint on d<€. In particular Vy(±ro) d/d# = Q and so S'(±T0) = 0. •

If y is a non-trivial solution of (4), let M = y'/y. Then w satisfies the Riccati equation

« ' ( 0 + « 2 ( 0 + K ( 0 = 0. (5)

Since «(f)>0, we have u'(0 — 0. Note that J>(T) = 0 corresponds to a vertical
asymptote at t = T for the graph of u. Let ws = S'/S and uc = C'/C. It follows from
Lemma 2.5 that ws(±T0) = 0 and the graph of us is as shown in figure 1.

— T

FIGURE 1
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LEMMA 2.6. There is T€ (0, To] such that lim,TT uc(t) = -oo.

Proof. We prove that if uc(t) is finite for 0<f<T 0 , then uc(t)<us(t- TO) for
0< t < To. This claim is obvious for any small enough /, since wc(0) = us(-T0) = 0,
u's(-T0) = -K(-TO) = 0 and u'c(0) = -«(0) < 0. If our claim is false, there is T, < 70

such that Uc(t)<us(t-To)<0 for 0 < f < r , and MC(T,) = MS(T,- TO). Since K is
even on [—To, To] and nonincreasing on [0, To],

| ' K(t)dt> | ' K ( / -
Jo Jo

Thus we obtain the contradiction

u2
s{t-T0)}dt

Jo

= MS(T,-T0). n

Since MS and uc are solutions of (5), their graphs cannot cross. It follows from
Lemma 2.6 that the graph of uc is as in figure 1.

Consider a solution y of (4) that has y(-To)y'(-To)>0. Since w = y'/y satisfies
(5), the graph of u must lie between the graphs of MS and uc, as shown in
figure 1. It follows that y(To)y'(To)>0. We have proved

PROPOSITION 2.7. Let y be a geodesic that enters % at time -T o and leaves at time
To. Lety be a solution of the scalar Jacobi equation along y such thaty( — T0)y'(—T0) s 0.
Theny(To)y'(To)>0. •

3. Geometry of nondegenerate caps
Our goal in the next two sections is to control the behaviour of Jacobi fields of the
perturbed surface (S,g) in Theorem 1.2 as geodesies pass through the caps %.
Eventually we shall obtain in Proposition 4.10 an analogue of Proposition 2.7. The
idea behind its proof is that geodesies and Jacobi fields for (S, g) should closely
follow those of (S, g). The main difficulty is that the time needed for a geodesic y
of (S, g) to pass through one of the caps % is not uniformly bounded. Since the
curvature vanishes at the boundary of %, y will stay in ^ for an arbitrarily long
time if the angle a at which it crosses the boundary is small enough. We deal with
this problem in § 4 by rescaling g and g near the boundary of the cap by the factor
a2/3. In this section we estimate the time taken by y to cross the cap ^, in terms
of a; see Lemma 3.4. The dependence on a of this estimate will disappear after
the rescaling.

A second difficulty is that the solution us of the Riccati equation vanishes both
when y is entering and when y is leaving the cap. It is clear from this that the
invariance property proved in Proposition 2.7 can be destroyed by arbitrarily small
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perturbations. This problem is overcome in Lemma 3.6 by following y for some
time before and after its passage through the cap. The negative curvature outside
the cap makes us increase before it enters and after it leaves the cap. The extra time
during which we follow y depends on the angle a; this dependence will also
disappear after the rescaling of g by a2/3.

We emphasize that the results of this section are for a nondegenerate cap. Similar
estimates should hold whenever the curvature changes sign at the boundary of the
cap and some derivative of the curvature perpendicular to the boundary is nonzero.

Let % be a nondegenerate cap with monotone curvature contained in a larger
disk 2 whose metric is radially symmetric about the centre of % and whose curvature
is negative outside (€. Let s be the signed distance from 3%, chosen so that s <0 in
3>\^. Let l(s) be the length of the circle at distance s from d<<? and k(s) the curvature
at points on this circle. We have

l"(s) + k(s)l(s) = 0. (6)

Note that k(s) is nondecreasing and fc(0) =0. The nondegeneracy of the cap means
that A:'(0)>0. Also /'(0) = 0, since d<€ is a geodesic [Kl, 3.5.22]. It follows that

l'(s)<0 and /"(s)==0, i f s > 0 ; (7a)

/ '(s)<0 and /"(s)>0, i f s<0 . (7b)

Let y be a geodesic in 2 that joins two points of d<€. Since the curvature is
negative in 2\^, y does not reenter <& after it leaves. As in § 2 we parametrize y
so that y(±T0) are the points where y crosses 3^. Set z(t) = s(y(t)) and let
V(t)e[ — IT/2, IT/2] be the angle that y makes with the circle on which s is constant.
The sign of ¥( /) is chosen so that ^ ( - T o ) > 0 and

z'(0 = sin¥(r). (8)

The radial symmetry implies the constancy of the Clairaut integral

l(z(t)) cos V(t) = l(z(0)) (9)
[Kl, 3.5.23].

LEMMA 3.1. z"(r)-0 unless y(t) is the centre of<€.

Proof. We see from (8) and (9) that

^ cos2 nt). (10)

The lemma follows from this and (7a, b). •

LEMMA 3.2. z"'(t)<0for-T0<t<0.

Remark. Lemma 3.2 and its proof apply to any radially symmetric cap.

Proof. By (10),

Observe that I2(z(t)) cos2 "9(t) is constant, since it is the square of the Clairaut
integral. Since z(r) is increasing for - T o < t <0 and /'(z(-T0)) = /'(0) = 0, it follows
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from (7a) that, for - T o < t<0, l'{z{t)) is nonpositive and nonincreasing while
/ (z{t)) is positive and nonincreasing. D

Set zmax = z(0) and let a =^ (0 )>0 be the angle at which y crosses 9%. If a is
small enough so that dist(d%d2i)>a2/3, we define T,>0 by z(Tl) = -a2/3. The
radial symmetry of 3) means that zmax, To and T, are determined by a.

LEMMA 3.3. There is a constant C3 > 1 swell that Cjla2/3 < zmax(a)< C3a
2/3 for any

small enough a.

Proof. It follows from (9) that l(zmax) = 1(0) cos a = 1(0) -\l(0)a2 + o(a3) as a -*0.
Since /'(0) = 0, and /"(0) = -fc(0)/(0) = 0,

as s -> 0. The lemma follows, since nondegeneracy of the cap implies /"'(0) =
-fc'(0)/(0)<0. •

LEMMA 3.4. There is a constant C4> 1 such that for any small enough a,

CSa-'/3<To(a)<C<a-1/3;

C 4 - 1 a - I / 3 <r l (a ) -T 0 (a )<C 4 «- 1 / 3 .

(a)

(b)

Proof, (a) Since z"<0 on (-To,0), z'(t)<z'(-T0) = sin a for - T 0 < f < 0 . Thus
zmax< To sin a and the lower bound follows from Lemma 3.3. Lemma 3.2 implies
that for lT 0 <<<r 0

T/{ TO)

Thus z m a x >z ( -5 r o )> - l r o s in a. The upper bound follows from Lemma 3.3.
(b) By Lemma 3.1,

sin ¥ ( -T , ) = z ' (-r , ) > z'(t) > z '(- To) = sin a.

Since z(TQ) —z(Tt) = a2/3, the upper bound on Tx — To is clear. The lower bound
will also follow if

sin¥(-T,) = O(a). (11)

We see from (9) that

We have l'(0) = l"(0) = 0, l'"(0)<0. Also zmax= O(a2'3) by Lemma 3.3. Thus there
is a constant B > 0 such that

l(zmax)>l(0)(l-Ba2)
and

•Hence cos^ ( -T , )> 1 -3Ba2, which proves (11).

We now consider the Riccati equation (5) along y for — 7*,< f < 7",. Define MS

and MC as in § 2. We saw in § 2 that 0= ws(T0)< MC(T0)SOO. Since K(-y(f))^0 for
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Tos f < T,, it follows that
O<u s (O<»c( ' )< 0 0 for r o < t < T , . (12)

LEMMA 3.5. There is a constant C5> 1 such that, for any small enough a,

Proof. Let u0 be the solution of (5) with limUTo u(0 = °°- Then u c ( r )^ «0(0 for
r o < r < T,. For such f we have 0> z( ( )2-a 2 / 3 . Since the curvature is a smooth
function on 3) and vanishes on 9% there is a constant B>0 such that, for any
small enough a, K(y(t))>-B2a2/i for T0<t<Tx. It follows that uo(t)^ux(t)
for To< f =£ 7",, where uY is the solution of the initial value problem

u'1(t) + u2
i(t)-B

2a2/3 = 0, lim IJ , (0 = » .
rJT0

Hence uc(t) < Ba1/3 coth (fla 1/3(f - To)) for 7"0< / < T,. The desired upper bound
on uc(Tx) follows, since a1/3(T, - To) is uniformly bounded from below, by Lemma
3.4(b).

If <> To, then z'(t)^z'(T0) = -sin a, by Lemma 3.1. Since the cap % is nondegen-
erate, fc'(0)>0. Thus there is A>0 such that, for any small enough a, we have
k'{z(t))z'{t)<-2As\na<-Aa for T0<t<Tx. Since k(z(To))=0 we obtain
k(z(t))<—Aat. It follows from Lemma 3.4(b) that there is a constant C > 0 such
that for all small enough a we have K(y(t)) s -C2a2/3 for Tl/2 = \{ To+ T,) < r < T,.
Thus MS(0 —"2(0 for r 1 / 2 s ( < T,, where «2(0 is the solution of the initial value
problem

u'2(t) + u2(t)-C2a2/3 = 0, u2(T1/2)=0.
Hence

«s(r)> Ca1/3 tanh (Cal/3(t- Tm))

for r 1 / 2 ^ < s T , . The lower bound on MS(^I) follows since ai/3T1/2 is uniformly
bounded from below by Lemma 3.4(b). •

4. Perturbation of a nondegenerate cap
As in § 3, let ^ be a nondegenerate cap with monotone curvature contained in the
interior of a disk 3) that is radially symmetric about the centre of "# and has negative
curvature outside % Denote by g the metric on 3s. Let g be another metric on 3)
that agrees with g to second order on 3%. Let / b e a neighbourhood of d'fi. We
compare geodesies for g and g under the assumptions that g|̂ V and g\Jf are
C3-close and that g and g are C2 close. Let -y be a geodesic of (3), g) that crosses
d^ at angle a. Parametrize y as in §3, so that y(-T0(a)) and y(T0(a)) are the
points where y enters and leaves % respectively. Let y be the g-geodesic with
y(-ro(a)) = r(-To(a)).

Mostly we study geodesies that make a small angle with d^. Choose a0 so small
that the estimates of Lemmas 3.3, 3.4 and 3.5 apply for any a < a0. Set

JTa={pe 2: distg (p, d<€)< (C3+ l)a2/3},

where C3 is the constant denned in Lemma 3.3. We assume that, for a :£ a0,
= 0 and V̂a does not contain the centre of (% g).
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The comparison between y and y is simplified if we rescale the metrics g and g
by a factor of a113 to obtain the metrics ha and ha respectively. We have the following
estimates for curvatures Kha and K^ of ha and h~a on Jfa.

LEMMA 4.1. (a) There is a constant C > 0 such that \Kh<x{p)\<C whenever a<a0

and peJfa.
(b) There is a constant L>0 such that \Kha(p)-KK(q)\< La'1 dist/,a (p, q)

whenever a<a0 and p,qeJfa.

Proof. Since the curvature Kg of g is a smooth function on 3s, there is a constant
L > 0 such that \Kg(p)-Kg(q)\<Ldistg (p, q) for any p,qeN. This implies (b),
since Kha = a~2/3.Kg and dist/,o = a1/3 distg. Since Kg vanishes on d%

\Kg(p)\<L(C3+l)a2/3

on J{a, which proves (a).

L E M M A 4.2. Let e > 0 . / / " g | j V a n d g\N are close enough in the C3 topology, then

whenever a<a0 and peJfa.

Proof. Recall that curvature is determined by the second derivative of a metric and
that g and g agree to second order on d^. Hence, given e '>0, we will have

\Kg(p)-Ki(p)\^e'distg(p,d<€)^e'(C3+l)a2/i, peJf,

provided g\Jf and g\Jf are sufficiently C3-close. •

Let /3(f) = y(a~Uit) and p(t) = y(a~U3t). Then /8 and )3 are unit speed geodesies
for ha and ha respectively. Set to(a) = al/3T0(a) and tl(a) = aV3Tl{a). Note that

p{t)eJfa and dist*. (/8(/),aJV)aa, (13)

for - f , (a )<f<f , (a ) . Also

C ^ I , ( a ) s C ( and C4"'< r,(a)-<<>(«)« C4, (14)

for all a < a0, where C4 is the constant defined in Lemma 3.4.

P R O P O S I T I O N 4.3. Suppose 0 < e < l . If g\N and g\M are close enough in the C3

topology, then d i s t^ ( )8(0 , ) 3 ( / ) ) s ea whenever a<a0 and - / , ( a ) < f < tt(a).

The proof uses a well known lemma from the theory of ordinary differential
equations.

LEMMA 4.4. Let X and X be C1 vector fields on a compact Riemannian manifold M
with boundary. Let <p' and t/r' be the flows defined by X and X respectively. Suppose
that there are constants A, B > 0 such that for any meJl and $ e TM
(i) ||X(m)-X(m)||<A;
(ii) d/dtqdv'm.-^BUl
Let m0€ M\dM. Suppose that, for each t e (0, T), <p'm0, i/»'m0£ Jl\dM and there is a
minimal geodesic from <p'm0 to i(i'm0 that does not contain any point of dM. Then

/orO<r<T.
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Remark. The conditions on (p'm0 and i/r'm0 will follow if

dist((p'mo,dM)>-(eBT-l) forO<r<T.
B

Proof. Let /(f) = dist (<p'm0, tl/'m0). For a given t, set L,(s) = dist ((ps+'m0, <p>'m0)
and L2(s) = dist {(psifi'm0, <l/s+'m0). Then

from which the lemma is clear. To see that L[(0) < Bl(t), choose a minimal geodesic
<r with <r(0) = i/»'m0 and cr(l(t)) = <p'm0. Then

• / ( 0

s=0

^ B I II c»"( T ) II dr
Jo

We have L'2(s)< A since <p'mo£dM. D

To prove Proposition 4.3, we will apply this lemma with

We will use on Ma the Riemannian metric Ha determined by ha in the manner
explained in § 1. The vector fields X and X will be the infinitesimal generators of
the geodesic flows for ha and ha respectively. The appropriate choices of A and B
will be clear from the next two lemmas.

LEMMA 4.5. Let e > 0. If g is sufficiently close to g in the C3 topology on Jf, then
\\X(v)-X(v)\\Ha^eaforallveMa.

Proof. Let x', x2 be Fermi coordinates for the geodesic d <€ with respect to the original
metric g, so xl measures g-distance along d<& and x2 is the (signed) g-distance from
d'tg. Observe that the geodesic flow for g (respectively g) on TJf is exactly the same
flow as the geodesic flow for ha (respectively ha). Thus, in our coordinates,

X(x\ x2, v1, v2) = (vl, v\ -r]j(x\ x2)t/V, -r?j(x\ x2)vV),

where

There are analogous formulas for X and f J. The metrics g and g agree to second
order on 3^. Thus if g | V̂ and g | Jf are sufficiently close in the C3 topology, we can
assume that, for any given 5 > 0,

If5-r*|s5(x2)2 (is)
throughout Jf. Let ||^||0 denote the length of £ e 7XV in the Riemannian metric
induced on TJf by g. There is a constant C > 0 such that, for v = (x1, x2, vl, v2) e TN,

| | X ( D ) - X ( I > ) | I O ^ C max i f ^ x ' . x ^ - r ^ ' . x 2 ) ! max \v'vJ\.

It is clear from the definition of ̂ Va that, if we choose 5 in (15) small enough, we
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will have
\\X(v)-X(v)\\0^ea2/3

for all veJla. The lemma follows, since || • || Ha = aU3\\ • ||0. •

LEMMA 4.6. Let S be a complete Riemannian surface whose curvature satisfies
\K(p)\ < K0for all pe S. Let g e TVTS. The derivative of the geodesic flow <p' satisfies

Remark. This is the same result as Lemma 5.1 of [BBB]. Theorem 2 of [M] contains
a related estimate.

Proof. Let Y be the Jacobi field along yv(t) for which Y(t) and Y'(t) are the
horizontal and vertical components of d<p'(v)g. Then

It follows from the Jacobi equation that

{(Y, Y) + (Y\ y» ' = 2{<y, Y')-(Y',R(Y, yv)yv)}

y, Y)+(Y\ Y')}. a

COROLLARY 4.7. There is a constant B>0 such that

whenever a<a0 and £e TMa.

Proof. This follows from Lemmas 4.6 and 4.1 (a), since ||t>||ho<2 for any
veMa. U

Proof of Proposition 4.3. Let vo = p(-to(a)). Then

We see from (13) that p(t)eJla and distHo (P(t), dMa)>a>ea for
-to(a)< r< r,(a). Choose B as in Corollary 4.7 and e' very small. It follows
from Lemma 4.4, Lemma 4.5 and (14) that, if g\Jf and g\Jf are sufficiently C3

close and e' is small enough, then

distH,(<p'h,v0,<pi.Vo)^ — {eBi''>+^-l}sea
B

for 0<r<f o (« )+ 'i(«)- It follows that

for - t o ( a )< t< *i(a). A similar argument, with time reversed, proves this inequality
for - f , ( a )< f < - r o ( a ) . •

Now we make a comparison between the scalar Jacobi equations along B and B,

y"+Kha(B(t))y = 0, (16)

O. (16*)
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We transform both equations by setting 0 = tan~' (y'/y), to obtain

6'+ sin2 0 + KK(P(t)) cos2 0 = 0, (17)

6»' + sin2 0 + Kj;a(p(t)) cos2 0 = 0. (17*)

Note 0eR/irZ, which we identify with (-v/2, IT/2].

PROPOSITION 4.8. Let e > 0. Let 0 and 0 be the solutions of (17) and (17 ) respectively
with 0(0) = 0O= 0(0). Ifg\Jf and g\ Jf are close enough in the C3 topology, then, for
any a<a0 and 0oeR/TTZ, we have \6(t)-0(t)\^ e for - f , ( a ) < *<f,(a).

Proof. We apply Lemma 4.4 with X and X as the vector fields on [—tt(a), tt(a)]x

R/TTZ that define (17) and (17 ) respectively. The linearization of (17) is

©' + 2 sin 0 cos 0{1 - Kha(P(t))}0 = 0.

We see from this, (13) and Lemma 4.1(a) that 6'/© is uniformly bounded for a<a0

and - f , ( a ) < / < f , ( a ) . Thus the proposition will follow from Lemma 4.4 if we
choose e '>0 small enough and show that

whenever a<a0 and -/,(<*)< a < *i(a). We have

- K(;a(P(t))\. (18)

Proposition 4.3 and Lemma 4.1(b) show that the first term on the right hand side
of (18) can be made less than \e' if g\N and g\Jf are sufficiently C3-close.
Proposition 4.3 and (13) show that p~(t)eJfa. Hence, by Lemma 4.2, the second
term on the right hand side of (18) is less than \e' if g\Jf and g\N are sufficiently
C3-close. •

PROPOSITION 4.9. Ifg\Jf and g \ Jf are close enough in the C3 topology then, for any
a < a 0 and any solution y of (16) with _y(-<i(a)))>'(-'i(a))s=0, we have
y(*i(a))/(li(«))sO.

Proof. The proposition is equivalent to the claim that if 0 is a solution of (17 ) with
O<0(-f,(a))<-n-/2, then 0< 0(ti(a))< IT/2. Let 0S and §c be the solutions of
(17*) with 0S(O) = TT/2 and 0C(O) = 0. Let 0S and 0C be the corresponding solutions
of (17). Then a1/3 tan [0s(a

l/3t)] = us(t) and a1/3 tan [0c(a
1/3t)] = uc(t), where MS

and uc are the solutions of (5) defined in § 2. It follows from Lemma 3.5 that there
are constants 0t and 02 such that, for any a<a0,

O<01<0s(tl(a))<0c(tl(a))<O2<Tr/2.

Since 0s and 0C are odd functions, we also have

O>-0i>0s(-tl(a))>0c(-ti(a))>-02>-ir/2.

It follows from Proposition 4.8 that if g\Jf and g\Jf are close enough in the C3

topology, there are constants 0r and 02 such that, for any a<a0,

0< 0,^ 0s(h(a))< 6c(h(a))< 62< tr/2
and

O>-01>0s(-«,(a))>0c(-r1(a))>-(92>—JT/2.

This proves the proposition; see figure 2. •
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-t

PROPOSITION 4.10. Let <€, 2> and Jf be as described at the beginning of § 4. If g\N
and g\Jf are close enough in the C3 topology and g is close enough to g in the C2

topology {throughout 3)), then for any unit speed geodesic y in (2, g) such that
y(a) € d3) and y(b) e d2, and for any solution y of the scalar Jacobi equation along y,

y"(t) + Ki(7(t))y(t) = 0, (19)

with yy'(a)s:0, we have yy'(b) > 0.

Proof. As in the proof of Theorem 1.2, we may assume that (2>,g) has negative
curvature outside <£ and consequently dist$ ("#,-) is a strictly convex function on
®\<£. If y does not enter <€,yy'(b)>0 follows from Lemma 1.5. Suppose that y
enters *#, making angle a with d<€. We may assume that a was chosen so that, as
in the rest of § 4, y(- T0(a)) is the point where y enters ^. Choose a0 as in Proposition
4.9. If a < a0, it follows from Proposition 4.9 and Lemma 1.5 that yy'(b) >0. Now
consider the case a>a0. Clearly it is enough to prove that yy\ b) > 0 for any solution
of (19) with

(y2 + (y')2)(-To(a)) = l and yy" (-To(a))s0. (20)

Choose S such that 0< S < distg (d% d3>). As before let y be the geodesic of (S, g)
with y(-T0(a)) = y(-T0(a)). Consider the scalar Jacobi equation along y,

y"(t) + Kg(y(t))y(t)) = 0. (21)

It follows from Proposition 2.7 and Lemma 1.5 that, for any a with a 0 ^ a < IT/2,
any solution of (21) satisfying

(>-2 + (/)2)(-To(a)) = l and yy'(-To(a))>0 (22)

has yy'( T0(a) + S) > 0. An obvious compactness argument shows that there is e > 0
such that yy'(T0(a) + 8)>e whenever a o <a<77/2 and y satisfies (21) and (22).
Note that T0{a) is uniformly bounded for ao<a< TT/2. If g and g are close enough
in the C2 topology, then, for any geodesic y with a > a0, the equations (19) and
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(21) will be close enough so that any solution y of (19) satisfying (20) has
yy'(To(a) + S)>0. Moreover, we can assume that y and y are sufficiently close
that y(t)e3>\<€ for T0(a) + S<f<fc. Then yy'(b)>0 by Lemma 1.5. •

This is the result that is needed to prove Theorem 1.2.

5. Real analytic metrics
To obtain real analytic metrics with Bernoulli geodesic flows we will need Theorem
5.1 below, which is based on H. Cartan's theorem B. We are grateful to S. Zucker
for pointing out Cartan's theorem to us and explaining its application to our Lemma
5.2.

THEOREM 5.1. Let S be a compact real analytic surface with a C°° Riemannian metric
g. Suppose that y is a union of disjoint closed real analytic curves on S and there exists
a neighbourhood Jf of y on which g is real analytic. Then for any positive integer r
there exists a real analytic Riemannian metric g on S such that g and g agree up to
order r on y. Moreover g can be taken arbitrarily close to g in the C°° topology.

Remark. It follows from Proposition 2.1 and the discussion after Theorem 1.1 that
for any compact real analytic surface 5 there exists a C°° Riemannian metric g and
caps <#,,..., %n satisfying the hypothesis of Theorem 1.2 such that each d<#,- is a
real analytic curve and there is a neighbourhood of U d"̂  on which g is real analytic.
Thus Corollary 1.3 follows from Theorem 1.2 and Theorem 5.1.

LEMMA 5.2. Let S be a real analytic surface and let y be a finite union of disjoint real
analytic curves on S. Suppose that f: S-> R is C°° and there is some neighbourhood Jf
of y such thatf\Jfis real analytic. Then given any positive integer r there exists a real
analytic function f\ S -»R such that f and f agree up to order r on y.

Proof. Let Os be the sheaf of real analytic functions on S and let 'S be the subsheaf
of real analytic functions which vanish up to order r on y. Then the short exact
sequence

induces a long exact sequence

(See, e.g. [We].) Since the sheaf <& is coherent, it follows from Theorem 3B of [C]
that H\S,(S) = 0 and consequently the induced map H°(S, Cs)^H°(S, 0 s /# )
is onto. Since the cohomology groups of degree 0 are the sections, the lemma
follows. •

Proof of Theorem 5.1. By [B], we may assume that S is real analytically embedded
in Rm so that y is real analytic and the metric g\Jf is real analytic. For x =
(x , , . . . , xm) € S, we define an inner product g on TxU

m by g | TXS = g, and if w e TXS
and v = {vu...,vm)e{ T^)-1 then g(v, v) = v2 + • • • + v2

m and g(v, w) = 0. Define gu:
5-»R, 1 < i , ;<m, by
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Clearly (g,>(x)),si)jsm is a positive definite matrix for all xeS. Also, for 1 < i,y< m,
gy is C°° and gtJ\Jf is real analytic. By Proposition 15 of [C] there exists a real
analytic function F whose zero set is y. By replacing F by one of its powers, if
necessary, we may assume that F vanishes up to order r on y. By the inequality of
Lojasiewicz (Theorem 4.1 in Chapter IV of [Mai] there exist constants c, r, > 0 such
that for x e S,

Now consider the quotient Q=f/F, where/: S-»R2isa C°° function which vanishes
to some order r2 on y. It follows by successive implicit differentiation of f=FQ
that if r2= r2(k, r,) is sufficiently large and we set Q = 0 on y, then Q is Ck on S.
From Lemma 5.2 we obtain real analytic functions h,j such that gy and ht] agree up
to order r2 on y. Then (gy - htj)/F is Ck on S (if we define this quotient to be zero
on y) and there are real analytic functions /?„ such that

is close to 0 in the Ck topology. Since the /3,/s are chosen after F, we can get
gij -(hy + faF) sufficiently close to 0 in the Ck topology so that

is positive definite for all x e S and the metric g on S obtained by restricting the
inner product obtained from (/iy + )31>F)lsusm to TS is Ck close to g. Also g is real
analytic and agrees with g up to order r on y. •
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