ON THE SOLUTION SETS TO DIFFERENTIAL INCLUSIONS ON AN UNBOUNDED INTERVAL

VASILE STAICU
Department of Mathematics, Aveiro University, 3810-193 Aveiro, Portugal (vasile@mat.ua.pt)

(Received 23 October 1998)
Dedicated to the memory of Aristide Halanay

$$
\begin{aligned}
& \text { Abstract We prove that for } F:[0, \infty) \times \mathbb{R}^{n} \rightarrow \mathcal{K}\left(\mathbb{R}^{n}\right) \text { a Lipschitzian multifunction with compact } \\
& \text { values, the set of derivatives of solutions of the Cauchy problem } \\
& \qquad x^{\prime} \in F(t, x), x(0)=\xi
\end{aligned}
$$

is a retract of $L_{\text {loc }}^{1}\left([0, \infty), \mathbb{R}^{n}\right)$.
Keywords: Lipschitzian differential inclusion; solution set; derivatives of solutions; absolute retract
AMS 1991 Mathematics subject classification: Primary 34A60; 34C30

1. Introduction and the main result

Let $\mathcal{S}_{F}(\xi)$ be the set of solutions of the Cauchy problem

$$
x^{\prime} \in F(t, x), \quad x(0)=\xi,
$$

where $F:[0, T] \times \mathbb{R}^{n} \rightarrow \mathcal{K}\left(\mathbb{R}^{n}\right)$ is a compact-valued multifunction, Lipschitzian with respect to $x, \xi \in \mathbb{R}^{n}$, and let

$$
\mathcal{S}_{F}^{\prime}(\xi)=\left\{x^{\prime}: x \in \mathcal{S}_{F}(\xi)\right\}
$$

be the set of derivatives of solutions.
Bressan et al. [2] proved that the set of fixed points of a multivalued contraction on $L^{1}\left([0, T], \mathbb{R}^{n}\right)$ is an absolute retract (for the case when the multivalued contraction has convex values, such a result was obtained by Ricceri [12]), and using this they established that $\mathcal{S}_{F}^{\prime}(\xi)$ is a retract of the space $L^{1}\left([0, T], \mathbb{R}^{n}\right)$. As a consequence, one has that the solution set $\mathcal{S}_{F}(\xi)$ turns out to be an absolute retract [7].
A different approach based on the Baire category was used by De Blasi and Pianigiani in [6] to prove the contractibility of the set $\mathcal{S}_{\text {ext } F}(\xi)$, where ext F is the set of extreme points of a Lipschitzian, closed convex-valued multifunction F. Other topological properties of
the solution sets were obtained by many authors, and we refer among others to $[\mathbf{2}, \mathbf{4}, \mathbf{8}$, $10,11,14]$.

Let consider the Cauchy problem

$$
x^{\prime} \in F(t, x), x(0)=\xi
$$

where $F:[0, \infty) \times \mathbb{R}^{n} \rightarrow \mathcal{K}\left(\mathbb{R}^{n}\right)$ is a compact-valued multifunction satisfying the following assumptions.
$\left(\mathrm{H}_{1}\right) \quad F$ is $\mathcal{L} \otimes \mathcal{B}\left(\mathbb{R}^{n}\right)$-measurable.
$\left(\mathrm{H}_{2}\right)$ There exists $l \in L_{\mathrm{loc}}^{1}([0, \infty),(0, \infty))$ such that, for any $x, y \in \mathbb{R}^{n}$,

$$
d_{H}(F(t, x), F(t, y)) \leqslant l(t)\|x-y\|, \quad \text { a.e. } t \in[0, \infty)
$$

$\left(\mathrm{H}_{3}\right)$ There exists $\beta \in L_{\mathrm{loc}}^{1}([0, \infty), \mathbb{R})$ such that

$$
d_{H}(\{0\}, F(t, 0)) \leqslant \beta(t), \quad \text { a.e. } t \in[0, \infty)
$$

It was recently proved in [13] that under the assumptions $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{3}\right)$ the set $\mathcal{S}_{F}(\xi)$ of all solutions of the Cauchy problem $\left(\mathrm{P}_{\xi}\right)$ is arcwise connected in the space of continuous functions $x:[0, \infty) \rightarrow \mathbb{R}^{n}$ with derivative $x^{\prime} \in L_{\text {loc }}^{1}\left([0, \infty), \mathbb{R}^{n}\right)$ endowed with the distance

$$
d(x, y)=\|x(0)-y(0)\|+\sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{\int_{0}^{n}\left\|x^{\prime}(t)-y^{\prime}(t)\right\| \mathrm{d} t}{1+\int_{0}^{n}\left\|x^{\prime}(t)-y^{\prime}(t)\right\| \mathrm{d} t}
$$

Let

$$
\mathcal{S}_{F}^{\prime}(\xi)=\left\{u \in L_{\mathrm{loc}}^{1}\left([0, \infty), \mathbb{R}^{n}\right): u(t) \in F\left(t, \xi+\int_{0}^{t} u(s) \mathrm{d} s\right), \text { a.e. } t \in[0, \infty)\right\}
$$

be the set of derivatives of solutions of the problem $\left(\mathrm{P}_{\xi}\right)$.
The aim of this paper is to establish a more general topological property of the solution set $\mathcal{S}_{F}(\xi)$, namely the following theorem.

Theorem 1.1. If $F:[0, \infty) \times \mathbb{R}^{n} \rightarrow \mathcal{K}\left(\mathbb{R}^{n}\right)$ is a compact-valued multifunction satisfying $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{3}\right)$ and $\xi \in \mathbb{R}^{n}$, then there exists a continuous map $H: L_{\mathrm{loc}}^{1}\left([0, \infty), \mathbb{R}^{n}\right) \rightarrow$ $L_{\text {loc }}^{1}\left([0, \infty), \mathbb{R}^{n}\right)$, such that
(i) $H(u) \in \mathcal{S}_{F}^{\prime}(\xi)$, for all $u \in L_{\text {loc }}^{1}\left([0, \infty), \mathbb{R}^{n}\right)$;
(ii) $H(u)=u$, whenever $u \in \mathcal{S}_{F}^{\prime}(\xi)$.

2. Preliminaries

Let \mathbb{R}^{n} be a real n-dimensional Euclidean space with norm $\|\cdot\|$. Denote by $\mathcal{K}\left(\mathbb{R}^{n}\right)$ the family of all compact non-empty subsets of \mathbb{R}^{n} with the Hausdorff-Pompeiu distance $d_{H}(\cdot, \cdot)$ defined by

$$
d_{H}(A, B)=\max \left\{\sup _{a \in A} \inf _{b \in B}\|a-b\|, \sup _{b \in B} \inf _{a \in A}\|a-b\|\right\}
$$

Let $\mathcal{B}\left(\mathbb{R}^{n}\right)$ be the family of Borel subsets of \mathbb{R}^{n} and \mathcal{L} be the σ-algebra of Lebesgue measurable subsets of $[0, \infty)$. We denote by $\mathcal{L} \otimes \mathcal{B}\left(\mathbb{R}^{n}\right)$ the product σ-algebra on $[0, \infty) \times$ \mathbb{R}^{n}, generated by the sets $A \times B$, where $A \in \mathcal{L}$ and $B \in \mathcal{B}\left(\mathbb{R}^{n}\right)$.

For every $k \geqslant 1$ we denote by I_{k} the interval $[0, k]$ and by $L^{1}\left(I_{k}, \mathbb{R}^{n}\right)$ the space of integrable functions $u: I_{k} \rightarrow \mathbb{R}^{n}$ with the norm

$$
\begin{equation*}
\|u\|_{1, k}=\int_{0}^{k}\|u(t)\| \mathrm{d} t \tag{2.1}
\end{equation*}
$$

As usual, $L_{\text {loc }}^{1}\left([0, \infty), \mathbb{R}^{n}\right)$ denotes the space of locally integrable functions $u:[0, \infty) \rightarrow$ \mathbb{R}^{n}, whose topology is generated by the family of seminorms $\left\{p_{k}: k \geqslant 1\right\}$, where

$$
p_{k}(u)=\left\|\left.u\right|_{I_{k}}\right\|_{1, k}=\int_{0}^{k}\|u(t)\| \mathrm{d} t
$$

A subset $K \subset L^{1}\left(I_{k}, \mathbb{R}^{n}\right)$ is called decomposable (see [9]) if for any $u, v \in K$ and any Lebesgue measurable subset $A \subset I_{k}$,

$$
u \chi_{A}+v \chi_{I_{k} \backslash A} \in K
$$

where χ_{A} is the characteristic function of A. Denote by $\mathcal{D}\left(L^{1}\left(I_{k}, \mathbb{R}^{n}\right)\right)$ the family of all closed and decomposable subsets of $L^{1}\left(I_{k}, \mathbb{R}^{n}\right)$.

Let S be a separable metric space, X be a separable Banach space and let $\mathcal{C}(X)$ be the family of all closed non-empty subsets of X. Let \mathcal{A} be a σ-algebra of subsets of S.

A multifunction $\Phi: S \rightarrow \mathcal{C}(X)$ is said to be lower semicontinuous if the set $\{s \in S$: $\Phi(s) \subset C\}$ is closed in S for any closed subset $C \subset X$.

We say that $\Phi: S \rightarrow \mathcal{C}(X)$ is \mathcal{A}-measurable if $\{s \in S: \Phi(s) \cap C \neq \emptyset\} \in \mathcal{A}$ for any closed subset $C \subset X$.

By selection from the multifunction $\Phi: S \rightarrow \mathcal{C}(X)$ we mean any function $\varphi: S \rightarrow X$ such that $\varphi(s) \in \Phi(s)$ for all $s \in S$.

The following lemma follows from Proposition 2.1 in [5].
Lemma 2.1. Let S be a separable metric space and $F^{*}: I_{k} \times S \rightarrow \mathcal{C}\left(\mathbb{R}^{n}\right)$ be a $\mathcal{L} \otimes \mathcal{B}(S)$-measurable multifunction such that $s \mapsto F^{*}(t, s)$ is lower semicontinuous. Then the multifunction $s \mapsto G_{F^{*}}(s)$, defined by

$$
G_{F}(s)=\left\{v \in L^{1}\left(I_{k}, \mathbb{R}^{n}\right): v(t) \in F^{*}(t, s), \text { a.e. } t \in I_{k}\right\}
$$

is lower semicontinuous from S into $\mathcal{D}\left(L^{1}\left(I, \mathbb{R}^{n}\right)\right)$ if and only if there exists a continuous $\operatorname{map} \beta: S \rightarrow L^{1}\left(I_{k}, \mathbb{R}\right)$ such that

$$
d\left(0, F^{*}(t, s)\right) \leqslant \beta(s)(t), \text { a.e. in } I_{k}
$$

Theorem 3 and Proposition 4 in [3] imply the following lemma.
Lemma 2.2. If $\Phi: S \rightarrow \mathcal{D}\left(L^{1}\left(I_{k}, \mathbb{R}^{n}\right)\right)$ is a lower continuous multifunction with closed, decomposable and non-empty values, $\varphi: S \rightarrow L^{1}\left(I_{k}, \mathbb{R}^{n}\right)$ and $\psi: S \rightarrow L^{1}\left(I_{k}, \mathbb{R}\right)$ are continuous maps, and if, for every $s \in S$, the set

$$
H(s)=\operatorname{cl}\left\{v \in \Phi(s):\|v(t)-\varphi(s)(t)\|<\psi(s)(t), \text { a.e. } t \in I_{k}\right\}
$$

is non-empty, then the multifunction $s \mapsto H(s)$ is lower semicontinuous, and, consequently, it admits a continuous selection (cl stands for closure).

Now let $F:[0, \infty) \times \mathbb{R}^{n} \rightarrow \mathcal{K}\left(\mathbb{R}^{n}\right)$ satisfy $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{3}\right)$ and $\xi \in \mathbb{R}^{n}$ be given. For every $k \geqslant 1$ and for $u \in L^{1}\left(I_{k}, \mathbb{R}^{n}\right)$ define

$$
\begin{equation*}
\hat{u}(t)=\xi+\int_{0}^{t} u(s) \mathrm{d} s, \quad t \in I_{k} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{0}(u)(t)=\|u(t)\|+\beta(t)+l(t)\|\hat{u}(t)\|, \quad t \in I_{k}, \tag{2.3}
\end{equation*}
$$

where the functions $l, \beta \in L_{\mathrm{loc}}^{1}\left([0, \infty), \mathbb{R}^{n}\right)$ are given by $\left(\mathrm{H}_{2}\right)$ and $\left(\mathrm{H}_{3}\right)$. Since, for any $u_{1}, u_{2} \in L^{1}\left(I_{k}, \mathbb{R}^{n}\right)$,

$$
\left\|\beta_{0}\left(u_{1}\right)-\beta_{0}\left(u_{2}\right)\right\|_{1, k} \leqslant\left(1+\left\|\left.l\right|_{I_{k}}\right\|_{1, k}\right)\left\|u_{1}-u_{2}\right\|_{1, k},
$$

it follows that $\beta_{0}: L^{1}\left(I_{k}, \mathbb{R}^{n}\right) \rightarrow L^{1}\left(I_{k}, \mathbb{R}\right)$ is continuous, for any $k \geqslant 1$.
Moreover, by $\left(\mathrm{H}_{2}\right)$ and $\left(\mathrm{H}_{3}\right)$ we obtain that for any $k \in \mathbb{N}$ and any $u \in L^{1}\left(I_{k}, \mathbb{R}^{n}\right)$:

$$
\begin{equation*}
d(u(t), F(t, \hat{u}(t))) \leqslant \beta_{0}(u)(t), \quad \text { a.e. } t \in I_{k} \tag{2.4}
\end{equation*}
$$

Denote

$$
\mathcal{S}_{F, I_{k}}^{\prime}(\xi)=\left\{u \in L^{1}\left(I_{k}, \mathbb{R}^{n}\right): u(t) \in F(t, \hat{u}(t)), \text { a.e. } t \in I_{k}\right\}
$$

Then we have the following proposition.
Proposition 2.3. If $\varphi: L^{1}\left(I_{k}, \mathbb{R}^{n}\right) \rightarrow L^{1}\left(I_{k}, \mathbb{R}^{n}\right)$ is a continuous map such that $\varphi(u)=u$ for any $u \in \mathcal{S}_{F, I_{k}}^{\prime}(\xi)$, then the multifunction $u \mapsto \Phi^{k}(u)$ defined by

$$
\Phi^{k}(u)= \begin{cases}\Psi^{k}(u), & \text { if } u \notin \mathcal{S}_{F, I_{k}}^{\prime}(\xi) \\ \{u\}, & \text { if } u \in \mathcal{S}_{F, I_{k}}^{\prime}(\xi)\end{cases}
$$

where

$$
\Psi^{k}(u)=\left\{v \in L^{1}\left(I_{1}, \mathbb{R}^{n}\right): v(t) \in F(t, \widehat{\varphi(u)}(t)), \text { a.e. } t \in I_{k}\right\}
$$

is lower semicontinuous with closed decomposable and non-empty values.

Proof. Let $C \subset L^{1}\left(I_{k}, \mathbb{R}^{n}\right)$ be a closed subset and let $\left(u_{n}\right)_{n \in \mathbb{N}}$ converge to some u_{0} in $L^{1}\left(I_{k}, \mathbb{R}^{n}\right)$ and $\Phi^{k}\left(u_{n}\right) \subset C$ for any $n \in \mathbb{N}$. Let $v_{0} \in \Phi^{k}\left(u_{0}\right)$ and for every $n \in \mathbb{N}$ consider a measurable selection v_{n} from the measurable multifunction $t \mapsto F\left(t, \widehat{\varphi\left(u_{n}\right)}(t)\right)$ such that: $v_{n}=u_{n}$ if $u_{n} \in \mathcal{S}_{F, I_{k}}^{\prime}(\xi)$, and

$$
\left\|v_{n}(t)-v_{0}(t)\right\|=d\left(v_{0}(t), F\left(t, \widehat{\varphi\left(u_{n}\right)}(t)\right)\right), \quad \text { a.e. } t \in I_{k}
$$

if $u_{n} \notin \mathcal{S}_{F, I_{k}}^{\prime}(\xi)$. In both cases,

$$
\begin{aligned}
\left\|v_{n}(t)-v_{0}(t)\right\| & \leqslant d_{H}\left(F\left(t, \widehat{\varphi\left(u_{n}\right)}(t)\right), F\left(t, \widehat{\varphi\left(u_{0}\right)}(t)\right)\right) \\
& \leqslant l(t)\left\|\widehat{\varphi\left(u_{n}\right)}(t)-\widehat{\varphi\left(u_{0}\right)}(t)\right\|
\end{aligned}
$$

which implies

$$
\left\|v_{n}-v_{0}\right\|_{1, k} \leqslant\left\|\left.l\right|_{I_{k}}\right\|_{1, k}\left\|\widehat{\varphi\left(u_{n}\right)}-\widehat{\varphi\left(u_{0}\right)}\right\|_{1, k}
$$

Then, by the continuity of $\varphi: L^{1}\left(I_{k}, \mathbb{R}^{n}\right) \rightarrow L^{1}\left(I_{k}, \mathbb{R}^{n}\right)$, we obtain that $\left(v_{n}\right)_{n \in \mathbb{N}}$ converges to v_{0} in $L^{1}\left(I_{k}, \mathbb{R}^{n}\right)$. Since $v_{n} \in \Phi^{k}\left(u_{n}\right) \subset C, \forall n \in \mathbb{N}$, and since C is closed we get $v_{0} \in C$. Therefore, $\Phi^{k}\left(u_{0}\right) \subset C$ and the lower semicontinuity of Φ^{k} is proved.

On the other hand, the inequality (2.4), the continuity of β_{0}, and Lemma 2.1 imply that Ψ^{k} has closed, decomposable and non-empty values, and the same holds for the multifunction Φ^{k}.

3. Proof of the main result

We shall prove that for every integer $k \geqslant 1$, there is a continuous map $h^{k}: L^{1}\left(I_{k}, \mathbb{R}^{n}\right) \rightarrow$ $L^{1}\left(I_{k}, \mathbb{R}^{n}\right)$ with the following properties:
$\left(\mathrm{P}_{1}\right) h^{k}(u)=u$ whenever $u \in \mathcal{S}_{F, I_{k}}^{\prime}(\xi)$;
$\left(\mathrm{P}_{2}\right) h^{k}(u) \in \mathcal{S}_{F, I_{k}}^{\prime}(\xi)$ for every $u \in L^{1}\left(I_{k}, \mathbb{R}^{n}\right) ;$
$\left(\mathrm{P}_{3}\right) h^{k}(u)(t)=h^{k-1}\left(\left.u\right|_{I_{k-1}}\right)(t)$, for $t \in I_{k-1}$.
Fix $\varepsilon>0$ and for $n \geqslant 0$ set

$$
\varepsilon_{n}=(n+1 / n+2) \varepsilon .
$$

For $u \in L^{1}\left(I_{1}, \mathbb{R}^{n}\right)$ and $n \geqslant 0$ define

$$
\beta_{0}^{1}(u)(t)=\|u(t)\|+\beta(t)+l(t)\|\hat{u}(t)\|, \quad t \in I_{1}
$$

and

$$
\begin{equation*}
\delta_{n+1}^{1}(u)(t)=\int_{0}^{t} \beta_{0}^{1}(u)(s) \frac{[m(t)-m(s)]^{n}}{n!} \mathrm{d} s+\frac{[m(t)]^{n}}{n!} \varepsilon_{n+1} \tag{3.1}
\end{equation*}
$$

where $m(t)=\int_{0}^{t} l(s) \mathrm{d} s$ and l is given by $\left(\mathrm{H}_{2}\right)$.

By the continuity of the map $\beta_{0}^{1}=\beta_{0}$ proved in the previous section we obtain easily that $\delta_{n}^{1}: L^{1}\left(I_{1}, \mathbb{R}^{n}\right) \rightarrow L^{1}\left(I_{1}, \mathbb{R}\right)$ is continuous. Moreover, by a similar computation to the one provided in [1, p. 122] we get

$$
\begin{align*}
\int_{0}^{t} l(s) \delta_{n}^{1}(u)(s) \mathrm{d} s & =\int_{0}^{t} \beta_{0}^{1}(u)(s) \frac{[m(t)-m(s)]^{n}}{n!} \mathrm{d} s+\frac{[m(t)]^{n}}{n!} \varepsilon_{n} \\
& <\delta_{n+1}^{1}(u)(t) \tag{3.2}
\end{align*}
$$

Set $h_{0}^{1}(u)=u$. We claim that for any $n \geqslant 1$ there exists a continuous map h_{n}^{1} : $L^{1}\left(I_{1}, \mathbb{R}^{n}\right) \rightarrow L^{1}\left(I_{1}, \mathbb{R}^{n}\right)$ satisfying the following conditions:
(i) $h_{n}^{1}(u)=u$ whenever $u \in \mathcal{S}_{F, I_{1}}^{\prime}(\xi)$;
(ii) $h_{n}^{1}(u)(t) \in F\left(t, \widehat{h_{n-1}^{1}(u)}(t)\right)$, a.e. $t \in I_{1}$;
(iii) $\left\|h_{n}^{1}(u)(t)-h_{n-1}^{1}(u)(t)\right\| \leqslant l(t) \delta_{n-1}^{1}(u)(t)$, a.e. $t \in I_{1}$;
where, for simplicity, $l(t) \delta_{0}^{1}(u)(t)$ is understood as $\beta_{0}^{1}(u)(t)+\varepsilon_{0}$.
Indeed, define

$$
\Phi_{1}^{1}(u)= \begin{cases}\Psi_{1}^{1}(u), & \text { if } u \notin \mathcal{S}_{F, I_{1}}^{\prime}(\xi) \\ \{u\}, & \text { if } u \in \mathcal{S}_{F, I_{1}}^{\prime}(\xi)\end{cases}
$$

where

$$
\Psi_{1}^{1}(u)=\left\{v \in L^{1}\left(I_{1}, \mathbb{R}^{n}\right): v(t) \in F(t, \hat{u}(t)), \text { a.e. } t \in I_{1}\right\}
$$

and, by Proposition 2.3 (for $\varphi(u)=u$ and $k=1$), we obtain that $\Phi_{1}^{1}: L^{1}\left(I_{1}, \mathbb{R}^{n}\right) \rightarrow$ $\mathcal{D}\left(L^{1}\left(I_{1}, \mathbb{R}^{n}\right)\right)$ is lower semicontinuous. Moreover, due to (2.4), the set

$$
H_{1}^{1}(u)=\operatorname{cl}\left\{v \in \Phi_{1}^{1}(u):\|v(t)-u(t)\|<\beta_{0}^{1}(u)(t)+\varepsilon_{0}, \text { a.e. } t \in I_{1}\right\}
$$

is non-empty for any $u \in L^{1}\left(I_{1}, \mathbb{R}^{n}\right)$. Then a continuous selection h_{1}^{1} from $u \mapsto H_{1}^{1}(u)$ exists by Lemma 2.2 and it satisfies (i)-(iii).

Assume we have constructed $h_{0}^{1}, \ldots, h_{n}^{1}$ satisfying (i)-(iii). Then by (ii), (iii) and (3.2) we get

$$
\begin{align*}
d\left(h_{n}^{1}(u)(t), F\left(t, \widehat{h_{n}^{1}(u)}\right)\right) & \leqslant l(t) \int_{0}^{t} l(s) \delta_{n-1}^{1}(u)(s) \mathrm{d} s \\
& <l(t) \delta_{n}^{1}(u)(t), \quad \text { a.e. } t \in I_{1} \tag{3.3}
\end{align*}
$$

Define the multifunction $\Phi_{n+1}^{1}: L^{1}\left(I_{1}, \mathbb{R}^{n}\right) \rightarrow \mathcal{C}\left(L^{1}\left(I_{1}, \mathbb{R}^{n}\right)\right)$ by

$$
\Phi_{n+1}^{1}(u)= \begin{cases}\Psi_{n+1}^{1}(u), & \text { if } u \notin \mathcal{S}_{F, I_{1}}^{\prime}(\xi) \\ \{u\}, & \text { if } u \in \mathcal{S}_{F, I_{1}}^{\prime}(\xi)\end{cases}
$$

where

$$
\Psi_{n+1}^{1}(u)=\left\{v \in L^{1}\left(I_{1}, \mathbb{R}^{n}\right): v(t) \in F\left(t, \widehat{h_{n}^{1}(u)}(t)\right), \text { a.e. } t \in I_{1}\right\}
$$

Apply Proposition 2.3 (for $\left.\varphi(u)=h_{n}^{1}(u)\right)$ and obtain that Φ_{n+1}^{1} is a lower semicontinuous multifunction with closed decomposable and non-empty values. Moreover, by (3.3), the set

$$
H_{n+1}^{1}(u)=\operatorname{cl}\left\{v \in \Phi_{n+1}^{1}(u):\left\|v(t)-h_{n}^{1}(u)(t)\right\|<l(t) \delta_{n}^{1}(u)(t), \text { a.e. } t \in I_{1}\right\}
$$

is non-empty for any $u \in L^{1}\left(I_{1}, \mathbb{R}^{n}\right)$. Then we can apply Lemma 2.2 and obtain the existence of a continuous selection h_{n+1}^{1} from $u \mapsto H_{n+1}^{1}(u)$, hence satisfying (i)-(iii), proving the claim.

Now, by (iii) and (3.2) one obtains that

$$
\left\|h_{n+1}^{1}(u)-h_{n}^{1}(u)\right\|_{1,1} \leqslant \frac{[m(1)]^{n}}{n!}\left[\left\|\beta_{0}^{1}(u)\right\|_{1,1}+\varepsilon\right]
$$

and this implies that $\left(h_{n}^{1}(u)\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in the Banach space $L^{1}\left(I_{1}, \mathbb{R}^{n}\right)$, hence it converges to some $h^{1}(u) \in L^{1}\left(I_{1}, \mathbb{R}^{n}\right)$. Moreover, since the map $u \mapsto\left\|\beta_{0}^{1}(u)\right\|_{1,1}$ is continuous, it is locally bounded and the Cauchy condition is satisfied by $\left(h_{n}^{1}(u)\right)_{n \in \mathbb{N}}$ locally uniformly with respect to u, so the $\operatorname{map} u \mapsto h^{1}(u)$ is continuous from $L^{1}\left(I_{1}, \mathbb{R}^{n}\right)$ into $L^{1}\left(I_{1}, \mathbb{R}^{n}\right)$.

By (i) it follows that $h^{1}(u)=u$ if $u \in \mathcal{S}_{F, I_{1}}^{\prime}(\xi)$ and, by (ii) and the closure of the values of F, we obtain that, for any $u \in L^{1}\left(I_{1}, \mathbb{R}^{n}\right)$,

$$
h^{1}(u)(t) \in F\left(t, \widehat{h^{1}(u)}(t)\right)
$$

hence $h^{1}(u) \in \mathcal{S}_{F, I_{1}}^{\prime}(\xi)$. Therefore, $h^{1}: L^{1}\left(I_{1}, \mathbb{R}^{n}\right) \rightarrow L^{1}\left(I_{1}, \mathbb{R}^{n}\right)$ is continuous and satisfies (P_{1}) and (P_{2}).

We shall now construct a continuous map $h^{2}: L^{1}\left(I_{2}, \mathbb{R}^{n}\right) \rightarrow L^{1}\left(I_{2}, \mathbb{R}^{n}\right)$ from h^{1}, satisfying $\left(\mathrm{P}_{1}\right)-\left(\mathrm{P}_{3}\right)$.

For this, define $h_{0}^{2}: L^{1}\left(I_{2}, \mathbb{R}^{n}\right) \rightarrow L^{1}\left(I_{2}, \mathbb{R}^{n}\right)$ by

$$
\begin{equation*}
h_{0}^{2}(u)(t)=h^{1}\left(\left.u\right|_{I_{1}}\right)(t) \chi_{I_{1}}+u(t) \chi_{I_{2} \backslash I_{1}}(t) \tag{3.4}
\end{equation*}
$$

and state that it is continuous.
Indeed, fix any $u_{0} \in L^{1}\left(I_{2}, \mathbb{R}^{n}\right)$. Since h^{1} is continuous at $\left.u_{0}\right|_{I_{1}}$ for any $\sigma>0$, there exists $\zeta_{\sigma}>0$ such that $\zeta_{\sigma}<\frac{1}{2} \sigma$ and, for every $v \in L^{1}\left(I_{1}, \mathbb{R}^{n}\right)$:

$$
\left\|v-\left.u_{0}\right|_{I_{1}}\right\|_{1,1}<\zeta_{\sigma} \Rightarrow\left\|h^{1}(v)-h^{1}\left(\left.u_{0}\right|_{I_{1}}\right)\right\|_{1,1}<\frac{1}{2} \sigma
$$

Then, for any $u \in L^{1}\left(I_{2}, \mathbb{R}^{n}\right)$ with $\left\|u-u_{0}\right\|_{1,2}<\zeta_{\sigma}$, one has that

$$
\left\|h_{0}^{2}(u)-h_{0}^{2}\left(u_{0}\right)\right\|_{1,2}=\left\|h^{1}\left(\left.u\right|_{I_{1}}\right)-h^{1}\left(\left.u_{0}\right|_{I_{1}}\right)\right\|_{1,1}+\int_{1}^{2}\left\|u(t)-u_{0}(t)\right\| \mathrm{d} t<\sigma
$$

which implies the continuity of h_{0}^{2}.
Moreover, since $h^{1}(u)=u$ for $u \in \mathcal{S}_{F, I_{1}}^{\prime}(\xi)$, by (3.4) we obtain that

$$
h_{0}^{2}(u)=u, \quad \text { whenever } u \in \mathcal{S}_{F, I_{2}}^{\prime}(\xi)
$$

For any $u \in L^{1}\left(I_{2}, \mathbb{R}^{n}\right)$, define

$$
\Phi_{1}^{2}(u)= \begin{cases}\Psi_{1}^{2}(u), & \text { if } u \notin \mathcal{S}_{F, I_{2}}^{\prime}(\xi) \\ \{u\}, & \text { if } u \in \mathcal{S}_{F, I_{2}}^{\prime}(\xi)\end{cases}
$$

where

$$
\begin{aligned}
& \Psi_{1}^{2}(u)=\left\{w \in L^{1}\left(I_{2}, \mathbb{R}^{n}\right): w(t)=h^{1}\left(\left.u\right|_{I_{1}}\right)(t) \chi_{I_{1}}(t)+v(t) \chi_{I_{2} \backslash I_{1}}(t)\right. \\
&\left.v(t) \in F\left(t, \widehat{h_{0}^{2}(u)}(t)\right), \text { a.e. } t \in I_{2} \backslash I_{1}\right\}
\end{aligned}
$$

We can apply Proposition 2.3, for $k=2, \varphi(u)=h_{0}^{2}(u)$, and obtain that Φ_{1}^{2} is lower semicontinuous from $L^{1}\left(I_{2}, \mathbb{R}^{n}\right)$ into $\mathcal{D}\left(L^{1}\left(I_{2}, \mathbb{R}^{n}\right)\right)$. Moreover, for any $u \in L^{1}\left(I_{2}, \mathbb{R}^{n}\right)$,

$$
\begin{align*}
d\left(h_{0}^{2}(u)(t), F\left(t, \widehat{h_{0}^{2}(u)}(t)\right)\right) & =d\left(u(t), F\left(t, \widehat{h_{0}^{2}(u)}(t)\right)\right) \chi_{I_{2} \backslash I_{1}}(t) \\
& \leqslant \beta_{0}^{2}(u)(t), \quad \text { a.e. } t \in I_{2} \tag{3.5}
\end{align*}
$$

where

$$
\beta_{0}^{2}(u)(t)=\left[\|u(t)\|+\beta(t)+l(t)\left\|\widehat{h_{0}^{2}(u)}(t)\right\|\right], \quad t \in I_{2}
$$

Since

$$
\beta_{0}^{2}(u)(t)=\beta_{0}(u)(t)+l(t)\left\|h^{1}\left(\left.u\right|_{I_{1}}\right)-u\right\|_{1,1} \chi_{I_{2} \backslash I_{1}}(t)
$$

by the continuity of β_{0} and h^{1} we obtain that $\beta_{0}^{2}: L^{1}\left(I_{2}, \mathbb{R}^{n}\right) \rightarrow L^{1}\left(I_{2}, \mathbb{R}\right)$ is continuous.
Set

$$
\delta_{n+1}^{2}(u)(t)=\int_{0}^{t} \beta_{0}^{2}(u)(s) \frac{[m(t)-m(s)]^{n}}{n!} \mathrm{d} s+\frac{[m(t)]^{n}}{n!} \varepsilon_{n+1}
$$

and, by the continuity of the map β_{0}^{2}, we easily obtain that $\delta_{n}^{2}: L^{1}\left(I_{2}, \mathbb{R}^{n}\right) \rightarrow L^{1}\left(I_{2}, \mathbb{R}\right)$ is continuous. Moreover, as in (3.2) with $\beta_{0}^{2}(u)$ instead of $\beta_{0}^{1}(u)$, we have

$$
\begin{align*}
\int_{0}^{t} l(s) \delta_{n}^{2}(u)(s) \mathrm{d} s & =\int_{0}^{t} \beta_{0}^{2}(u)(s) \frac{[m(t)-m(s)]^{n}}{n!} \mathrm{d} s+\frac{[m(t)]^{n}}{n!} \varepsilon_{n} \\
& <\delta_{n+1}^{2}(u)(t) \tag{3.6}
\end{align*}
$$

We shall prove that for any $n \geqslant 1$ there exists a continuous map $h_{n}^{2}: L^{1}\left(I_{2}, \mathbb{R}^{n}\right) \rightarrow$ $L^{1}\left(I_{2}, \mathbb{R}^{n}\right)$ satisfying
(i) $h_{n}^{2}(u)(t)=h^{1}\left(\left.u\right|_{I_{1}}\right)(t)$, for $t \in I_{1}$;
(ii) $h_{n}^{2}(u)=u$ whenever $u \in \mathcal{S}_{F, I_{2}}^{\prime}(\xi)$;
(iii) $h_{n}^{2}(u)(t) \in F\left(t, \widehat{h_{n-1}^{2}(u)}\right)$, a.e. $t \in I_{2}$;
(iv) $\left\|h_{n}^{2}(u)(t)-h_{n-1}^{2}(u)(t)\right\| \leqslant l(t) \delta_{n-1}^{2}(u)(t)$, a.e. $t \in I_{1}$;
where $l(t) \delta_{0}^{2}(u)(t)$ is understood as $\beta_{0}^{2}(u)(t)+\varepsilon_{0}$.
Define

$$
H_{1}^{2}(u)=\operatorname{cl}\left\{v \in \Phi_{1}^{2}(u):\left\|v(t)-h_{0}^{2}(u)(t)\right\|<\beta_{0}^{2}(u)(t)+\varepsilon_{0}, \text { a.e. } t \in I_{2}\right\}
$$

and, by (3.5), the set $H_{1}^{2}(u)$ is non-empty for any $u \in L^{1}\left(I_{2}, \mathbb{R}^{n}\right)$. Since Φ_{1}^{2} is lower semicontinuous, and the functions h_{0}^{2} and β_{0}^{2} are continuous, Lemma 2.2 can be applied and obtain the existence of a continuous selection h_{1}^{1} from $u \mapsto H_{1}^{2}(u)$, which satisfies (i)-(iv).

Assume we have constructed $h_{0}^{2}, \ldots, h_{n}^{2}$ satisfying (i)-(iv). Then, by (H_{2}), (iv) and (3.6), one obtains

$$
\begin{align*}
d\left(h_{n}^{2}(u)(t), F\left(t, \widehat{h_{n}^{2}(u)}\right)\right) & \leqslant l(t) \int_{0}^{t} l(s) \delta_{n-1}^{2}(u)(s) \mathrm{d} s \\
& <l(t) \delta_{n}^{2}(u)(t), \quad \text { a.e. } t \in I_{2} \tag{3.7}
\end{align*}
$$

Define the multifunction $\Phi_{n+1}^{2}: L^{1}\left(I_{1}, \mathbb{R}^{n}\right) \rightarrow \mathcal{C}\left(L^{1}\left(I_{1}, \mathbb{R}^{n}\right)\right)$ by

$$
\Phi_{n+1}^{2}(u)= \begin{cases}\Psi_{n+1}^{2}(u), & \text { if } u \notin \mathcal{S}_{F, I_{2}}^{\prime}(\xi) \\ \{u\}, & \text { if } u \in \mathcal{S}_{F, I_{2}}^{\prime}(\xi)\end{cases}
$$

where

$$
\begin{aligned}
& \Psi_{n+1}^{2}(u)=\left\{w \in L^{1}\left(I_{2}, \mathbb{R}^{n}\right): w(t)=h^{1}\left(\left.u\right|_{I_{1}}\right)(t) \chi_{I_{1}}(t)+v(t) \chi_{I_{2} \backslash I_{1}}(t)\right. \\
& v(t)\left.\in F\left(t, \widehat{h_{n}^{2}(u)}(t)\right), \text { a.e. } t \in I_{2} \backslash I_{1}\right\}
\end{aligned}
$$

and, by Proposition 2.3, we obtain that it is lower semicontinuous with closed decomposable and non-empty values. Moreover, by (3.7), the set

$$
H_{n+1}^{2}(u)=\operatorname{cl}\left\{v \in \Phi_{n+1}^{1}(u):\left\|v(t)-h_{n}^{2}(u)(t)\right\|<l(t) \delta_{n}^{2}(u)(t), \text { a.e. } t \in I_{1}\right\}
$$

is non-empty for any $u \in L^{1}\left(I_{2}, \mathbb{R}^{n}\right)$. By applying Lemma 2.2 we obtain the existence of a continuous selection h_{n+1}^{2} from $u \mapsto H_{n+1}^{1}(u)$, satisfying (i)-(iv). We need to prove that the sequence $\left(h_{n}^{2}(u)\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in the Banach space $L^{1}\left(I_{2}, \mathbb{R}^{n}\right)$ with norm $\|\cdot\|_{1,2}$, locally uniformly with respect to u. But this follows by a similar reasoning to the one made for $\left(h_{n}^{1}(u)\right)_{n \in \mathbb{N}}$ and the remark that (iv) and (3.6) imply

$$
\left\|h_{n+1}^{2}(u)-h_{n}^{2}(u)\right\|_{1,2} \leqslant \frac{\left[\left\|\left.l\right|_{I_{2}}\right\|_{1,2}\right]^{n}}{n!}\left[\left\|\beta_{0}^{2}(u)\right\|_{1,2}+\varepsilon\right]
$$

Therefore, $\left(h_{n}^{2}(u)\right)_{n \in \mathbb{N}}$ converges in $L^{1}\left(I_{2}, \mathbb{R}^{n}\right)$ to some $h^{2}(u) \in L^{1}\left(I_{2}, \mathbb{R}^{n}\right)$ and the map $u \mapsto h^{2}(u)$ is continuous from $L^{1}\left(I_{2}, \mathbb{R}^{n}\right)$ into $L^{1}\left(I_{2}, \mathbb{R}^{n}\right)$. Moreover, by (i) it follows that

$$
h^{2}(u)(t)=h^{1}\left(\left.u\right|_{I_{1}}\right)(t), \quad \text { for } t \in I_{1}
$$

by (ii),

$$
h^{1}(u)=u, \quad \text { if } u \in \mathcal{S}_{F, I_{1}}^{\prime}(\xi)
$$

and by (iii) and the closure of the values of F we obtain that for any $u \in L^{1}\left(I_{2}, \mathbb{R}^{n}\right)$

$$
h^{2}(u)(t) \in F\left(t, \widehat{h^{2}(u)}(t)\right), \quad \text { a.e. } t \in I_{2}
$$

Therefore, h^{2} satisfies properties $\left(\mathrm{P}_{1}\right)-\left(\mathrm{P}_{3}\right)$.
Similarly, for any $k>2$, we obtain a continuous map $h^{k}: L^{1}\left(I_{k}, \mathbb{R}^{n}\right) \rightarrow L^{1}\left(I_{k}, \mathbb{R}^{n}\right)$ from $h^{k-1}: L^{1}\left(I_{k-1}, \mathbb{R}^{n}\right) \rightarrow L^{1}\left(I_{k-1}, \mathbb{R}^{n}\right)$, satisfying properties $\left(\mathrm{P}_{1}\right)-\left(\mathrm{P}_{3}\right)$.

Define $H: L_{\text {loc }}^{1}\left([0, \infty), \mathbb{R}^{n}\right) \rightarrow L_{\text {loc }}^{1}\left([0, \infty), \mathbb{R}^{n}\right)$ by

$$
H(u)(t)=h^{k}\left(\left.u\right|_{I_{k}}\right)(t), \quad k=1,2, \ldots
$$

By using (P_{3}) and the continuity of each h^{k} it is easy to see that H is well defined and continuous. Moreover, for each $u \in L_{\mathrm{loc}}^{1}\left([0, \infty), \mathbb{R}^{n}\right)$, by $\left(\mathrm{P}_{2}\right)$ we have

$$
\left.H(u)\right|_{I_{k}}(t)=h^{k}\left(\left.u\right|_{I_{k}}\right)(t) \in \mathcal{S}_{F, I_{k}}^{\prime}(\xi), \quad \text { for each } k=1,2, \ldots
$$

hence

$$
H(u) \in \mathcal{S}_{\boldsymbol{F}}^{\prime}(\xi)
$$

References

1. J. P. Aubin and A. Cellina, Differential inclusions (Springer, Berlin, 1984).
2. A. Bressan, A. Cellina and A. Fryszkowski, A class of absolute retracts in space of integrable functions, Proc. Am. Math. Soc. 112 (1991), 413-418.
3. A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math. 102 (1992), 209-216.
4. A. Bressan and G. Crasta, Extremal selections of multifunctions generating a continuous flow, Ann. Polon. Math. 40 (1994), 101-117.
5. R. Colombo, A. Fryszkowski, T. Rzezukowski and V. Staicu, Continuous selections of solution sets of lipschitzian differential inclusions. Funkcial. Ekvac. 34 (1991), 321-330.
6. F. S. De Blasi and G. Pianigiani, On the solution sets of nonconvex differential inclusions, J. Diff. Eqns 128 (1996), 541-555.
7. F. S. De Blasi, G. Pianigiani and V. Staicu, Topological properties of nonconvex differential inclusions of evolution type, Nonlinear Analysis 24 (1995), 711-720.
8. L. Gorniewicz, On the solution sets of differential inclusions, J. Math. Analysis Appl. 113 (1986), 235-244.
9. F. Hiai and H. Umegaki, Integrals, conditional expectations and martingales of multivalued maps, J. Multivariate Analysis 7 (1977), 149-182.
10. O. Naselli Ricceri and B. Ricceri, Differential inclusions depending on a parameter, Bull. Pol. Acad. Sci. 37 (1989), 665-671.
11. N. S. Papagiorgiou, A property of the solution set of differential inclusions in Banach spaces with Carathéodory orientor, Applic. Analysis 27 (1988), 279-286.
12. B. Ricceri, Une proprieté topologique de l'ensemble des points fixes d'une contraction multivoque à valeurs convexes, Rend. Accad. Naz. Lincei 81 (1987), 283-286.
13. V. Staicu, Arcwise connectedness of solution sets to differential inclusions, technical report CM/I 41 (Aveiro University, 1998).
14. A. A. Tolstonogov, On the structure of the solution sets for differential inclusions in Banach spaces, Mat. USSR Sb. 46 (1983), 1-15.
