ON THE SOLUTION SETS TO DIFFERENTIAL INCLUSIONS ON AN UNBOUNDED INTERVAL

VASILE STAICU

Department of Mathematics, Aveiro University, 3810-193 Aveiro, Portugal (vasile@mat.ua.pt)

(Received 23 October 1998)

Dedicated to the memory of Aristide Halanay

Abstract We prove that for $F : [0, \infty) \times \mathbb{R}^n \to \mathcal{K}(\mathbb{R}^n)$ a Lipschitzian multifunction with compact values, the set of derivatives of solutions of the Cauchy problem

$$x'\in F(t,x), x(0)=\xi,$$

is a retract of $L^1_{loc}([0,\infty),\mathbb{R}^n)$.

Keywords: Lipschitzian differential inclusion; solution set; derivatives of solutions; absolute retract

AMS 1991 Mathematics subject classification: Primary 34A60; 34C30

1. Introduction and the main result

Let $S_F(\xi)$ be the set of solutions of the Cauchy problem

$$x' \in F(t, x), \quad x(0) = \xi,$$

where $F : [0,T] \times \mathbb{R}^n \to \mathcal{K}(\mathbb{R}^n)$ is a compact-valued multifunction, Lipschitzian with respect to $x, \xi \in \mathbb{R}^n$, and let

$$\mathcal{S}'_F(\xi) = \{x' : x \in \mathcal{S}_F(\xi)\}$$

be the set of derivatives of solutions.

Bressan *et al.* [2] proved that the set of fixed points of a multivalued contraction on $L^1([0,T], \mathbb{R}^n)$ is an absolute retract (for the case when the multivalued contraction has convex values, such a result was obtained by Ricceri [12]), and using this they established that $S'_F(\xi)$ is a retract of the space $L^1([0,T], \mathbb{R}^n)$. As a consequence, one has that the solution set $S_F(\xi)$ turns out to be an absolute retract [7].

A different approach based on the Baire category was used by De Blasi and Pianigiani in [6] to prove the contractibility of the set $S_{\text{ext }F}(\xi)$, where ext F is the set of extreme points of a Lipschitzian, closed convex-valued multifunction F. Other topological properties of

the solution sets were obtained by many authors, and we refer among others to [2, 4, 8, 10, 11, 14].

Let consider the Cauchy problem

$$x' \in F(t, x), x(0) = \xi, \tag{P_{\xi}}$$

where $F : [0, \infty) \times \mathbb{R}^n \to \mathcal{K}(\mathbb{R}^n)$ is a compact-valued multifunction satisfying the following assumptions.

(H₁) F is $\mathcal{L} \otimes \mathcal{B}(\mathbb{R}^n)$ -measurable.

(H₂) There exists $l \in L^1_{loc}([0,\infty),(0,\infty))$ such that, for any $x, y \in \mathbb{R}^n$,

$$d_H(F(t,x), F(t,y)) \leq l(t) ||x-y||, \text{ a.e. } t \in [0,\infty).$$

(H₃) There exists $\beta \in L^1_{loc}([0,\infty),\mathbb{R})$ such that

$$d_H(\{0\}, F(t,0)) \leq \beta(t), \text{ a.e. } t \in [0,\infty).$$

It was recently proved in [13] that under the assumptions $(H_1)-(H_3)$ the set $\mathcal{S}_F(\xi)$ of all solutions of the Cauchy problem (P_{ξ}) is arcwise connected in the space of continuous functions $x : [0, \infty) \to \mathbb{R}^n$ with derivative $x' \in L^1_{loc}([0, \infty), \mathbb{R}^n)$ endowed with the distance

$$d(x,y) = \|x(0) - y(0)\| + \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\int_0^n \|x'(t) - y'(t)\| dt}{1 + \int_0^n \|x'(t) - y'(t)\| dt}$$

Let

$$\mathcal{S}'_F(\xi) = \left\{ u \in L^1_{\text{loc}}([0,\infty), \mathbb{R}^n) : u(t) \in F\left(t, \xi + \int_0^t u(s) \, \mathrm{d}s\right), \text{ a.e. } t \in [0,\infty) \right\}$$

be the set of derivatives of solutions of the problem (P_{ξ}) .

The aim of this paper is to establish a more general topological property of the solution set $S_F(\xi)$, namely the following theorem.

Theorem 1.1. If $F : [0, \infty) \times \mathbb{R}^n \to \mathcal{K}(\mathbb{R}^n)$ is a compact-valued multifunction satisfying (H₁)–(H₃) and $\xi \in \mathbb{R}^n$, then there exists a continuous map $H : L^1_{loc}([0, \infty), \mathbb{R}^n) \to L^1_{loc}([0, \infty), \mathbb{R}^n)$, such that

(i)
$$H(u) \in \mathcal{S}'_F(\xi)$$
, for all $u \in L^1_{\text{loc}}([0,\infty), \mathbb{R}^n)$;

(ii) H(u) = u, whenever $u \in S'_F(\xi)$.

2. Preliminaries

Let \mathbb{R}^n be a real *n*-dimensional Euclidean space with norm $\|\cdot\|$. Denote by $\mathcal{K}(\mathbb{R}^n)$ the family of all compact non-empty subsets of \mathbb{R}^n with the Hausdorff-Pompeiu distance $d_H(\cdot, \cdot)$ defined by

$$d_{H}(A,B) = \max\{\sup_{a \in A} \inf_{b \in B} \|a - b\|, \sup_{b \in B} \inf_{a \in A} \|a - b\|\}$$

Let $\mathcal{B}(\mathbb{R}^n)$ be the family of Borel subsets of \mathbb{R}^n and \mathcal{L} be the σ -algebra of Lebesgue measurable subsets of $[0,\infty)$. We denote by $\mathcal{L} \otimes \mathcal{B}(\mathbb{R}^n)$ the product σ -algebra on $[0,\infty) \times \mathbb{R}^n$, generated by the sets $A \times B$, where $A \in \mathcal{L}$ and $B \in \mathcal{B}(\mathbb{R}^n)$.

For every $k \ge 1$ we denote by I_k the interval [0, k] and by $L^1(I_k, \mathbb{R}^n)$ the space of integrable functions $u: I_k \to \mathbb{R}^n$ with the norm

$$\|u\|_{1,k} = \int_0^k \|u(t)\| \,\mathrm{d}t. \tag{2.1}$$

As usual, $L^1_{loc}([0,\infty),\mathbb{R}^n)$ denotes the space of locally integrable functions $u:[0,\infty) \to \mathbb{R}^n$, whose topology is generated by the family of seminorms $\{p_k: k \ge 1\}$, where

$$p_k(u) = \|u|_{I_k}\|_{1,k} = \int_0^k \|u(t)\| \, \mathrm{d}t$$

A subset $K \subset L^1(I_k, \mathbb{R}^n)$ is called decomposable (see [9]) if for any $u, v \in K$ and any Lebesgue measurable subset $A \subset I_k$,

$$u\chi_A + v\chi_{I_k\setminus A} \in K,$$

where χ_A is the characteristic function of A. Denote by $\mathcal{D}(L^1(I_k, \mathbb{R}^n))$ the family of all closed and decomposable subsets of $L^1(I_k, \mathbb{R}^n)$.

Let S be a separable metric space, X be a separable Banach space and let $\mathcal{C}(X)$ be the family of all closed non-empty subsets of X. Let A be a σ -algebra of subsets of S.

A multifunction $\Phi : S \to C(X)$ is said to be lower semicontinuous if the set $\{s \in S : \Phi(s) \subset C\}$ is closed in S for any closed subset $C \subset X$.

We say that $\Phi: S \to C(X)$ is \mathcal{A} -measurable if $\{s \in S : \Phi(s) \cap C \neq \emptyset\} \in \mathcal{A}$ for any closed subset $C \subset X$.

By selection from the multifunction $\Phi: S \to C(X)$ we mean any function $\varphi: S \to X$ such that $\varphi(s) \in \Phi(s)$ for all $s \in S$.

The following lemma follows from Proposition 2.1 in [5].

Lemma 2.1. Let S be a separable metric space and $F^* : I_k \times S \to C(\mathbb{R}^n)$ be a $\mathcal{L} \otimes \mathcal{B}(S)$ -measurable multifunction such that $s \mapsto F^*(t,s)$ is lower semicontinuous. Then the multifunction $s \mapsto G_{F^*}(s)$, defined by

$$G_F(s) = \{ v \in L^1(I_k, \mathbb{R}^n) : v(t) \in F^*(t, s), a.e. \ t \in I_k \},$$

is lower semicontinuous from S into $\mathcal{D}(L^1(I,\mathbb{R}^n))$ if and only if there exists a continuous map $\beta: S \to L^1(I_k,\mathbb{R})$ such that

$$d(0, F^*(t, s)) \leq \beta(s)(t)$$
, a.e. in I_k .

V. Staicu

Theorem 3 and Proposition 4 in [3] imply the following lemma.

Lemma 2.2. If $\Phi : S \to \mathcal{D}(L^1(I_k, \mathbb{R}^n))$ is a lower continuous multifunction with closed, decomposable and non-empty values, $\varphi : S \to L^1(I_k, \mathbb{R}^n)$ and $\psi : S \to L^1(I_k, \mathbb{R})$ are continuous maps, and if, for every $s \in S$, the set

$$H(s) = cl\{v \in \Phi(s) : ||v(t) - \varphi(s)(t)|| < \psi(s)(t), \text{ a.e. } t \in I_k\}$$

is non-empty, then the multifunction $s \mapsto H(s)$ is lower semicontinuous, and, consequently, it admits a continuous selection (cl stands for closure).

Now let $F : [0, \infty) \times \mathbb{R}^n \to \mathcal{K}(\mathbb{R}^n)$ satisfy $(H_1)-(H_3)$ and $\xi \in \mathbb{R}^n$ be given. For every $k \ge 1$ and for $u \in L^1(I_k, \mathbb{R}^n)$ define

$$\hat{u}(t) = \xi + \int_0^t u(s) \,\mathrm{d}s, \quad t \in I_k,$$
(2.2)

 and

$$\beta_0(u)(t) = \|u(t)\| + \beta(t) + l(t)\|\hat{u}(t)\|, \quad t \in I_k,$$
(2.3)

where the functions $l, \beta \in L^1_{loc}([0,\infty), \mathbb{R}^n)$ are given by (H₂) and (H₃). Since, for any $u_1, u_2 \in L^1(I_k, \mathbb{R}^n)$,

$$\|\beta_0(u_1) - \beta_0(u_2)\|_{1,k} \leq (1 + \|l|_{I_k}\|_{1,k}) \|u_1 - u_2\|_{1,k},$$

it follows that $\beta_0: L^1(I_k, \mathbb{R}^n) \to L^1(I_k, \mathbb{R})$ is continuous, for any $k \ge 1$.

Moreover, by (H₂) and (H₃) we obtain that for any $k \in \mathbb{N}$ and any $u \in L^1(I_k, \mathbb{R}^n)$:

$$d(u(t), F(t, \hat{u}(t))) \leq \beta_0(u)(t), \quad \text{a.e. } t \in I_k.$$

$$(2.4)$$

Denote

$$S'_{F,I_k}(\xi) = \{ u \in L^1(I_k, \mathbb{R}^n) : u(t) \in F(t, \hat{u}(t)), \text{ a.e. } t \in I_k \}.$$

Then we have the following proposition.

Proposition 2.3. If $\varphi : L^1(I_k, \mathbb{R}^n) \to L^1(I_k, \mathbb{R}^n)$ is a continuous map such that $\varphi(u) = u$ for any $u \in S'_{F,I_k}(\xi)$, then the multifunction $u \mapsto \Phi^k(u)$ defined by

$$\Phi^{k}(u) = \begin{cases} \Psi^{k}(u), & \text{if } u \notin \mathcal{S}'_{F,I_{k}}(\xi), \\ \{u\}, & \text{if } u \in \mathcal{S}'_{F,I_{k}}(\xi), \end{cases}$$

where

$$\Psi^k(u) = \{v \in L^1(I_1,\mathbb{R}^n) : v(t) \in F(t,\widehat{\varphi(u)}(t)), \text{ a.e. } t \in I_k\}$$

is lower semicontinuous with closed decomposable and non-empty values.

Proof. Let $C \subset L^1(I_k, \mathbb{R}^n)$ be a closed subset and let $(u_n)_{n \in \mathbb{N}}$ converge to some u_0 in $L^1(I_k, \mathbb{R}^n)$ and $\Phi^k(u_n) \subset C$ for any $n \in \mathbb{N}$. Let $v_0 \in \Phi^k(u_0)$ and for every $n \in \mathbb{N}$ consider a measurable selection v_n from the measurable multifunction $t \mapsto F(t, \varphi(u_n)(t))$ such that: $v_n = u_n$ if $u_n \in S'_{F,I_k}(\xi)$, and

$$||v_n(t) - v_0(t)|| = d(v_0(t), F(t, \varphi(u_n)(t))), \text{ a.e. } t \in I_k$$

if $u_n \notin \mathcal{S}'_{F,I_k}(\xi)$. In both cases,

$$\begin{aligned} \|v_n(t) - v_0(t)\| &\leq d_H(F(t,\widehat{\varphi(u_n)}(t)), F(t,\widehat{\varphi(u_0)}(t))) \\ &\leq l(t)\|\widehat{\varphi(u_n)}(t) - \widehat{\varphi(u_0)}(t)\|, \end{aligned}$$

which implies

$$||v_n - v_0||_{1,k} \leq ||l|_{I_k} ||_{1,k} ||\widehat{\varphi}(u_n) - \widehat{\varphi}(u_0)||_{1,k}.$$

Then, by the continuity of $\varphi : L^1(I_k, \mathbb{R}^n) \to L^1(I_k, \mathbb{R}^n)$, we obtain that $(v_n)_{n \in \mathbb{N}}$ converges to v_0 in $L^1(I_k, \mathbb{R}^n)$. Since $v_n \in \Phi^k(u_n) \subset C$, $\forall n \in \mathbb{N}$, and since C is closed we get $v_0 \in C$. Therefore, $\Phi^k(u_0) \subset C$ and the lower semicontinuity of Φ^k is proved.

On the other hand, the inequality (2.4), the continuity of β_0 , and Lemma 2.1 imply that Ψ^k has closed, decomposable and non-empty values, and the same holds for the multifunction Φ^k .

3. Proof of the main result

We shall prove that for every integer $k \ge 1$, there is a continuous map $h^k : L^1(I_k, \mathbb{R}^n) \to L^1(I_k, \mathbb{R}^n)$ with the following properties:

(P₁)
$$h^k(u) = u$$
 whenever $u \in \mathcal{S}'_{F,I_k}(\xi)$;

 $(\mathbf{P}_2) \ h^k(u) \in \mathcal{S}'_{F,I_k}(\xi) \text{ for every } u \in L^1(I_k,\mathbb{R}^n);$

(P₃)
$$h^{k}(u)(t) = h^{k-1}(u|_{I_{k-1}})(t)$$
, for $t \in I_{k-1}$.

Fix $\varepsilon > 0$ and for $n \ge 0$ set

$$\varepsilon_n = (n+1/n+2)\varepsilon.$$

For $u \in L^1(I_1, \mathbb{R}^n)$ and $n \ge 0$ define

$$\beta_0^1(u)(t) = \|u(t)\| + \beta(t) + l(t)\|\hat{u}(t)\|, \quad t \in I_1,$$

and

$$\delta_{n+1}^1(u)(t) = \int_0^t \beta_0^1(u)(s) \frac{[m(t) - m(s)]^n}{n!} \,\mathrm{d}s + \frac{[m(t)]^n}{n!} \varepsilon_{n+1},\tag{3.1}$$

where $m(t) = \int_0^t l(s) ds$ and l is given by (H₂).

V. Staicu

By the continuity of the map $\beta_0^1 = \beta_0$ proved in the previous section we obtain easily that $\delta_n^1 : L^1(I_1, \mathbb{R}^n) \to L^1(I_1, \mathbb{R})$ is continuous. Moreover, by a similar computation to the one provided in [1, p. 122] we get

$$\int_{0}^{t} l(s)\delta_{n}^{1}(u)(s) \,\mathrm{d}s = \int_{0}^{t} \beta_{0}^{1}(u)(s) \frac{[m(t) - m(s)]^{n}}{n!} \,\mathrm{d}s + \frac{[m(t)]^{n}}{n!}\varepsilon_{n}$$

$$< \delta_{n+1}^{1}(u)(t).$$
(3.2)

Set $h_0^1(u) = u$. We claim that for any $n \ge 1$ there exists a continuous map $h_n^1 : L^1(I_1, \mathbb{R}^n) \to L^1(I_1, \mathbb{R}^n)$ satisfying the following conditions:

(i)
$$h_n^1(u) = u$$
 whenever $u \in \mathcal{S}'_{F,I_1}(\xi)$;

(ii)
$$h_n^1(u)(t) \in F(t, h_{n-1}^1(u)(t))$$
, a.e. $t \in I_1$;

(iii)
$$\|h_n^1(u)(t) - h_{n-1}^1(u)(t)\| \le l(t)\delta_{n-1}^1(u)(t)$$
, a.e. $t \in I_1$;

where, for simplicity, $l(t)\delta_0^1(u)(t)$ is understood as $\beta_0^1(u)(t) + \varepsilon_0$.

Indeed, define

$$\Phi_1^1(u) = \begin{cases} \Psi_1^1(u), & \text{ if } u \notin \mathcal{S}'_{F,I_1}(\xi), \\ \{u\}, & \text{ if } u \in \mathcal{S}'_{F,I_1}(\xi), \end{cases}$$

where

$$\Psi_1^1(u) = \{ v \in L^1(I_1, \mathbb{R}^n) : v(t) \in F(t, \hat{u}(t)), \text{ a.e. } t \in I_1 \},\$$

and, by Proposition 2.3 (for $\varphi(u) = u$ and k = 1), we obtain that $\Phi_1^1 : L^1(I_1, \mathbb{R}^n) \to \mathcal{D}(L^1(I_1, \mathbb{R}^n))$ is lower semicontinuous. Moreover, due to (2.4), the set

$$H_1^1(u) = cl\{v \in \Phi_1^1(u) : \|v(t) - u(t)\| < \beta_0^1(u)(t) + \varepsilon_0, \text{ a.e. } t \in I_1\}$$

is non-empty for any $u \in L^1(I_1, \mathbb{R}^n)$. Then a continuous selection h_1^1 from $u \mapsto H_1^1(u)$ exists by Lemma 2.2 and it satisfies (i)-(iii).

Assume we have constructed h_0^1, \ldots, h_n^1 satisfying (i)-(iii). Then by (ii), (iii) and (3.2) we get

$$d(h_n^1(u)(t), F(t, \widehat{h_n^1(u)})) \leq l(t) \int_0^t l(s) \delta_{n-1}^1(u)(s) \, \mathrm{d}s \\ < l(t) \delta_n^1(u)(t), \quad \text{a.e. } t \in I_1.$$
(3.3)

Define the multifunction $\Phi^1_{n+1}: L^1(I_1, \mathbb{R}^n) \to \mathcal{C}(L^1(I_1, \mathbb{R}^n))$ by

$$\Phi_{n+1}^{1}(u) = \begin{cases} \Psi_{n+1}^{1}(u), & \text{if } u \notin \mathcal{S}_{F,I_{1}}^{\prime}(\xi), \\ \{u\}, & \text{if } u \in \mathcal{S}_{F,I_{1}}^{\prime}(\xi), \end{cases}$$

where

$$\Psi_{n+1}^{1}(u) = \{ v \in L^{1}(I_{1}, \mathbb{R}^{n}) : v(t) \in F(t, \widehat{h_{n}^{1}(u)}(t)), \text{ a.e. } t \in I_{1} \}.$$

Apply Proposition 2.3 (for $\varphi(u) = h_n^1(u)$) and obtain that Φ_{n+1}^1 is a lower semicontinuous multifunction with closed decomposable and non-empty values. Moreover, by (3.3), the set

$$H_{n+1}^1(u) = \operatorname{cl}\{v \in \Phi_{n+1}^1(u) : \|v(t) - h_n^1(u)(t)\| < l(t)\delta_n^1(u)(t), \text{ a.e. } t \in I_1\}$$

is non-empty for any $u \in L^1(I_1, \mathbb{R}^n)$. Then we can apply Lemma 2.2 and obtain the existence of a continuous selection h_{n+1}^1 from $u \mapsto H_{n+1}^1(u)$, hence satisfying (i)-(iii), proving the claim.

Now, by (iii) and (3.2) one obtains that

$$\|h_{n+1}^1(u) - h_n^1(u)\|_{1,1} \leqslant rac{[m(1)]^n}{n!} [\|eta_0^1(u)\|_{1,1} + arepsilon],$$

and this implies that $(h_n^1(u))_{n\in\mathbb{N}}$ is a Cauchy sequence in the Banach space $L^1(I_1, \mathbb{R}^n)$, hence it converges to some $h^1(u) \in L^1(I_1, \mathbb{R}^n)$. Moreover, since the map $u \mapsto \|\beta_0^1(u)\|_{1,1}$ is continuous, it is locally bounded and the Cauchy condition is satisfied by $(h_n^1(u))_{n\in\mathbb{N}}$ locally uniformly with respect to u, so the map $u \mapsto h^1(u)$ is continuous from $L^1(I_1, \mathbb{R}^n)$ into $L^1(I_1, \mathbb{R}^n)$.

By (i) it follows that $h^1(u) = u$ if $u \in \mathcal{S}'_{F,I_1}(\xi)$ and, by (ii) and the closure of the values of F, we obtain that, for any $u \in L^1(I_1, \mathbb{R}^n)$,

$$h^1(u)(t) \in F(t, \widehat{h^1(u)}(t)),$$

hence $h^1(u) \in \mathcal{S}'_{F,I_1}(\xi)$. Therefore, $h^1: L^1(I_1, \mathbb{R}^n) \to L^1(I_1, \mathbb{R}^n)$ is continuous and satisfies (P_1) and (P_2) .

We shall now construct a continuous map $h^2 : L^1(I_2, \mathbb{R}^n) \to L^1(I_2, \mathbb{R}^n)$ from h^1 , satisfying $(P_1)-(P_3)$.

For this, define $h_0^2: L^1(I_2, \mathbb{R}^n) \to L^1(I_2, \mathbb{R}^n)$ by

$$h_0^2(u)(t) = h^1(u|_{I_1})(t)\chi_{I_1} + u(t)\chi_{I_2\setminus I_1}(t)$$
(3.4)

and state that it is continuous.

Indeed, fix any $u_0 \in L^1(I_2, \mathbb{R}^n)$. Since h^1 is continuous at $u_0|_{I_1}$ for any $\sigma > 0$, there exists $\zeta_{\sigma} > 0$ such that $\zeta_{\sigma} < \frac{1}{2}\sigma$ and, for every $v \in L^1(I_1, \mathbb{R}^n)$:

$$||v - u_0|_{I_1}||_{1,1} < \zeta_{\sigma} \Rightarrow ||h^1(v) - h^1(u_0|_{I_1})||_{1,1} < \frac{1}{2}\sigma.$$

Then, for any $u \in L^1(I_2, \mathbb{R}^n)$ with $||u - u_0||_{1,2} < \zeta_{\sigma}$, one has that

$$\|h_0^2(u) - h_0^2(u_0)\|_{1,2} = \|h^1(u|_{I_1}) - h^1(u_0|_{I_1})\|_{1,1} + \int_1^2 \|u(t) - u_0(t)\| \, \mathrm{d}t < \sigma,$$

which implies the continuity of h_0^2 .

Moreover, since $h^1(u) = u$ for $u \in \mathcal{S}'_{F,I_1}(\xi)$, by (3.4) we obtain that

$$h_0^2(u) = u$$
, whenever $u \in \mathcal{S}'_{F,I_2}(\xi)$.

V. Staicu

For any $u \in L^1(I_2, \mathbb{R}^n)$, define

$$arPsi_1^2(u) = egin{cases} \Psi_1^2(u), & ext{ if } u
otin \mathcal{S}'_{F,I_2}(\xi), \ \{u\}, & ext{ if } u \in \mathcal{S}'_{F,I_2}(\xi), \end{cases}$$

where

$$\begin{split} \Psi_1^2(u) &= \{ w \in L^1(I_2, \mathbb{R}^n) : w(t) = h^1(u|_{I_1})(t)\chi_{I_1}(t) + v(t)\chi_{I_2 \setminus I_1}(t), \\ v(t) \in F(t, \widehat{h_0^2(u)}(t)), \text{ a.e. } t \in I_2 \setminus I_1 \}. \end{split}$$

We can apply Proposition 2.3, for k = 2, $\varphi(u) = h_0^2(u)$, and obtain that Φ_1^2 is lower semicontinuous from $L^1(I_2, \mathbb{R}^n)$ into $\mathcal{D}(L^1(I_2, \mathbb{R}^n))$. Moreover, for any $u \in L^1(I_2, \mathbb{R}^n)$,

$$d(h_0^2(u)(t), F(t, \widehat{h_0^2(u)}(t))) = d(u(t), F(t, \widehat{h_0^2(u)}(t)))\chi_{I_2 \setminus I_1}(t)$$

$$\leq \beta_0^2(u)(t), \quad \text{a.e. } t \in I_2,$$
(3.5)

where

$$\beta_0^2(u)(t) = [\|u(t)\| + \beta(t) + l(t)\|\widehat{h}_0^2(u)(t)\|], \quad t \in I_2.$$

Since

$$\beta_0^2(u)(t) = \beta_0(u)(t) + l(t) \|h^1(u|_{I_1}) - u\|_{1,1} \chi_{I_2 \setminus I_1}(t),$$

by the continuity of β_0 and h^1 we obtain that $\beta_0^2 : L^1(I_2, \mathbb{R}^n) \to L^1(I_2, \mathbb{R})$ is continuous. Set

$$\delta_{n+1}^2(u)(t) = \int_0^t \beta_0^2(u)(s) \frac{[m(t) - m(s)]^n}{n!} \, \mathrm{d}s + \frac{[m(t)]^n}{n!} \varepsilon_{n+1},$$

and, by the continuity of the map β_0^2 , we easily obtain that $\delta_n^2: L^1(I_2, \mathbb{R}^n) \to L^1(I_2, \mathbb{R})$ is continuous. Moreover, as in (3.2) with $\beta_0^2(u)$ instead of $\beta_0^1(u)$, we have

$$\int_{0}^{t} l(s)\delta_{n}^{2}(u)(s) \,\mathrm{d}s = \int_{0}^{t} \beta_{0}^{2}(u)(s) \frac{[m(t) - m(s)]^{n}}{n!} \,\mathrm{d}s + \frac{[m(t)]^{n}}{n!}\varepsilon_{n}$$
$$< \delta_{n+1}^{2}(u)(t).$$
(3.6)

We shall prove that for any $n \ge 1$ there exists a continuous map $h_n^2 : L^1(I_2, \mathbb{R}^n) \to L^1(I_2, \mathbb{R}^n)$ satisfying

- (i) $h_n^2(u)(t) = h^1(u|_{I_1})(t)$, for $t \in I_1$;
- (ii) $h_n^2(u) = u$ whenever $u \in \mathcal{S}'_{F,I_2}(\xi)$;
- (iii) $h_n^2(u)(t) \in F(t, \widehat{h_{n-1}^2(u)})$, a.e. $t \in I_2$;

(iv)
$$||h_n^2(u)(t) - h_{n-1}^2(u)(t)|| \leq l(t)\delta_{n-1}^2(u)(t)$$
, a.e. $t \in I_1$;

where $l(t)\delta_0^2(u)(t)$ is understood as $\beta_0^2(u)(t) + \varepsilon_0$. Define

$$H_1^2(u) = \mathrm{cl}\{v \in \varPhi_1^2(u) : \|v(t) - h_0^2(u)(t)\| < \beta_0^2(u)(t) + \varepsilon_0, \text{ a.e. } t \in I_2\},$$

and, by (3.5), the set $H_1^2(u)$ is non-empty for any $u \in L^1(I_2, \mathbb{R}^n)$. Since Φ_1^2 is lower semicontinuous, and the functions h_0^2 and β_0^2 are continuous, Lemma 2.2 can be applied and obtain the existence of a continuous selection h_1^1 from $u \mapsto H_1^2(u)$, which satisfies (i)-(iv).

Assume we have constructed h_0^2, \ldots, h_n^2 satisfying (i)-(iv). Then, by (H₂), (iv) and (3.6), one obtains

$$d(h_n^2(u)(t), F(t, \widehat{h_n^2(u)})) \leq l(t) \int_0^t l(s) \delta_{n-1}^2(u)(s) \, \mathrm{d}s < l(t) \delta_n^2(u)(t), \quad \text{a.e. } t \in I_2.$$
(3.7)

Define the multifunction $\Phi^2_{n+1}: L^1(I_1, \mathbb{R}^n) \to \mathcal{C}(L^1(I_1, \mathbb{R}^n))$ by

$$\varPhi^2_{n+1}(u) = egin{cases} \Psi^2_{n+1}(u), & ext{ if } u
otin \mathcal{S}'_{F,I_2}(\xi), \ \{u\}, & ext{ if } u \in \mathcal{S}'_{F,I_2}(\xi), \end{cases}$$

where

$$\begin{split} \Psi_{n+1}^2(u) &= \{ w \in L^1(I_2,\mathbb{R}^n) : w(t) = h^1(u|_{I_1})(t)\chi_{I_1}(t) + v(t)\chi_{I_2 \setminus I_1}(t), \\ &\quad v(t) \in F(t,\widehat{h_n^2(u)}(t)), \text{ a.e. } t \in I_2 \setminus I_1 \}, \end{split}$$

and, by Proposition 2.3, we obtain that it is lower semicontinuous with closed decomposable and non-empty values. Moreover, by (3.7), the set

$$H_{n+1}^2(u) = \operatorname{cl}\{v \in \Phi_{n+1}^1(u) : \|v(t) - h_n^2(u)(t)\| < l(t)\delta_n^2(u)(t), \text{ a.e. } t \in I_1\}$$

is non-empty for any $u \in L^1(I_2, \mathbb{R}^n)$. By applying Lemma 2.2 we obtain the existence of a continuous selection h_{n+1}^2 from $u \mapsto H_{n+1}^1(u)$, satisfying (i)-(iv). We need to prove that the sequence $(h_n^2(u))_{n \in \mathbb{N}}$ is a Cauchy sequence in the Banach space $L^1(I_2, \mathbb{R}^n)$ with norm $\|\cdot\|_{1,2}$, locally uniformly with respect to u. But this follows by a similar reasoning to the one made for $(h_n^1(u))_{n \in \mathbb{N}}$ and the remark that (iv) and (3.6) imply

$$\|h_{n+1}^2(u) - h_n^2(u)\|_{1,2} \leqslant \frac{[\|l\|_{I_2}\|_{1,2}]^n}{n!} [\|\beta_0^2(u)\|_{1,2} + \varepsilon].$$

Therefore, $(h_n^2(u))_{n \in \mathbb{N}}$ converges in $L^1(I_2, \mathbb{R}^n)$ to some $h^2(u) \in L^1(I_2, \mathbb{R}^n)$ and the map $u \mapsto h^2(u)$ is continuous from $L^1(I_2, \mathbb{R}^n)$ into $L^1(I_2, \mathbb{R}^n)$. Moreover, by (i) it follows that

$$h^{2}(u)(t) = h^{1}(u|_{I_{1}})(t), \text{ for } t \in I_{1};$$

by (ii),

$$h^1(u) = u, \quad \text{if } u \in \mathcal{S}'_{F,I_1}(\xi);$$

and by (iii) and the closure of the values of F we obtain that for any $u \in L^1(I_2, \mathbb{R}^n)$

$$h^2(u)(t)\in F(t,\widehat{h^2(u)}(t)), \quad ext{a.e.} \ t\in I_2.$$

Therefore, h^2 satisfies properties $(P_1)-(P_3)$.

Similarly, for any k > 2, we obtain a continuous map $h^k : L^1(I_k, \mathbb{R}^n) \to L^1(I_k, \mathbb{R}^n)$ from $h^{k-1} : L^1(I_{k-1}, \mathbb{R}^n) \to L^1(I_{k-1}, \mathbb{R}^n)$, satisfying properties (P₁)-(P₃). Define $H : L^1_{loc}([0, \infty), \mathbb{R}^n) \to L^1_{loc}([0, \infty), \mathbb{R}^n)$ by

$$H(u)(t) = h^k(u|_{I_k})(t), \quad k = 1, 2, \dots$$

By using (P₃) and the continuity of each h^k it is easy to see that H is well defined and continuous. Moreover, for each $u \in L^1_{loc}([0,\infty), \mathbb{R}^n)$, by (P₂) we have

$$H(u)|_{I_k}(t) = h^k(u|_{I_k})(t) \in \mathcal{S}'_{F,I_k}(\xi), \text{ for each } k = 1, 2, \dots,$$

hence

$$H(u) \in \mathcal{S}'_F(\xi).$$

References

- 1. J. P. AUBIN AND A. CELLINA, Differential inclusions (Springer, Berlin, 1984).
- A. BRESSAN, A. CELLINA AND A. FRYSZKOWSKI, A class of absolute retracts in space of integrable functions, *Proc. Am. Math. Soc.* **112** (1991), 413–418.
- 3. A. BRESSAN AND G. COLOMBO, Extensions and selections of maps with decomposable values, *Studia Math.* **102** (1992), 209-216.
- 4. A. BRESSAN AND G. CRASTA, Extremal selections of multifunctions generating a continuous flow, Ann. Polon. Math. 40 (1994), 101-117.
- R. COLOMBO, A. FRYSZKOWSKI, T. RZEZUKOWSKI AND V. STAICU, Continuous selections of solution sets of lipschitzian differential inclusions. *Funkcial. Ekvac.* 34 (1991), 321-330.
- F. S. DE BLASI AND G. PIANIGIANI, On the solution sets of nonconvex differential inclusions, J. Diff. Eqns 128 (1996), 541-555.
- 7. F. S. DE BLASI, G. PIANIGIANI AND V. STAICU, Topological properties of nonconvex differential inclusions of evolution type, *Nonlinear Analysis* **24** (1995), 711-720.
- 8. L. GORNIEWICZ, On the solution sets of differential inclusions, J. Math. Analysis Appl. 113 (1986), 235-244.
- 9. F. HIAI AND H. UMEGAKI, Integrals, conditional expectations and martingales of multivalued maps, J. Multivariate Analysis 7 (1977), 149–182.
- O. NASELLI RICCERI AND B. RICCERI, Differential inclusions depending on a parameter, Bull. Pol. Acad. Sci. 37 (1989), 665-671.
- 11. N. S. PAPAGIORGIOU, A property of the solution set of differential inclusions in Banach spaces with Carathéodory orientor, *Applic. Analysis* 27 (1988), 279–286.
- 12. B. RICCERI, Une proprieté topologique de l'ensemble des points fixes d'une contraction multivoque à valeurs convexes, *Rend. Accad. Naz. Lincei* 81 (1987), 283-286.
- 13. V. STAICU, Arcwise connectedness of solution sets to differential inclusions, technical report CM/I 41 (Aveiro University, 1998).
- 14. A. A. TOLSTONOGOV, On the structure of the solution sets for differential inclusions in Banach spaces, *Mat. USSR Sb.* 46 (1983), 1–15.