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1. Introduction

The ultraspherical polynomial P^ (x) of degree n and order A is defined by

for n = 0, 1, 2, • • •. Of these polynomials, the most commonly used are the
Chebyshev polynomials Tn(x) of the first kind, corresponding to A = 0; the
Legendre polynomials Pn(x) for which A = \; and the Chebyshev polyno-
mials Un{x) of the second kind (A = 1). In the first case the standardisation
is different from that given in equation (1), since

\

The Legendre polynomials and the Chebyshev polynomials Un(x) are ob-
tained directly from equation (1) by substituting A = \ and 1 respectively.
For a given value of A, the polynomials P^(x) for n = 0, 1, 2, • • • form a
complete orthogonal set of functions in the range — 1 gj x ^ 1, with respect
to a weight function w(x) = (1 — x2)x~^. For a full description of the ultra-
spherical polynomials, the reader is referred to Szego [1].

Suppose we are given a function fix) which is continuous in the closed
interval [—1, 1] and we want to expand this in an infinite series of ^
If

!
n=0

then from the orthogonality property, we have,

a = _j -C (1 -*)*-* Pp{x)f(z)dx
y/nT(n + 2A)r(A

In general it is not possible to evaluate the integral occurring in equation (2)
explicitly, and to find an, recourse has to be made to some suitable quadra-
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ture technique. In this paper a method is described whereby the coefficients
an can be determined numerically without using quadrature. We restrict the
functions f(x) to those which can be represented as the solution of a linear
differential equation with appropriate boundary conditions. The solution of
linear differential equations in series of Chebyshev polynomials Tn(x) has
been given by Clenshaw [2]. The method given here is essentially a generali-
sation of this technique for use with any of the ultraspherical polynomials.
By solving the differential equation the expansion of f(x) can be found
directly. In practice we are most interested in expansions in Legendre poly-
nomials and, to a lesser extent, in the Chebyshev polynomials of the second
kind.

We shall now describe briefly Clenshaw's method for the solution of linear
differential equations in Chebyshev polynomials Tn(x).

2. Solution of Linear Differential Equations
in Chebyshev Polynomials

Suppose we have an mth order linear differential equation given by

Together with this differential equation there will be m boundary conditions;
the complete system determining the function y = f(x), uniquely. Then if
f(x) is continuous in the closed interval [—1, 1], we can write

where the coefficients an are to be determined. The sth derivative of y,
y(s){x) is expanded formally as

n=l

for s = 1, 2, • • •, m. It is fairly obvious that even if y = f(x) can be expanded
in a convergent Chebyshev series, it does not necessarily follow that a con-
vergent series can be found for all its derivatives. Consider, for example, the
function y = (1 — x2)^. This function is continuous in [—1, 1] and can
therefore be represented by a convergent Chebyshev series. The derivative,
however, is not continuous in [—1,1], being infinite at the end points,
x = ± 1» so that it cannot be represented by a convergent Chebyshev ex-
pansion. This function satisfies the equation

dv
{l-x*)-? + xy = O with y(0) = 1,

ax
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which is of the form given by equation (3). Each term in this equation is
continuous in [— 1, 1], and the formal use of the divergent series for the first
derivative does lead to the correct series expansion for the function y.

This statement is true in general. Provided each term in equation (3) is
continuous in [—1, 1] we can use the formal expansion for the sth deriva-
tive of y, even though this series might be divergent. If any term in equation
(3) is not continuous in [—1, 1] then the function f(x) is not continuous in
[—1, 1] and so cannot be represented by such an expansion.

The method of determining the coefficients an depends upon two simple
relations. From,

(4) 2 ^ = - J - Tn+1[x) — T^x)
dx n + 1 n — 1

can be found the following equation relating the coefficients of yw to those
of y{s+X),

(5) 2na? = «<««> - a£?
Also, from

(6) 2xTn(x) = Tn+1(x) + Tn_x{x);

if Cn(y) denotes the coefficient of Tn(x) in the expansion for y, then,

(7) Cn{xy) = £(<*„_! + an+1).

From equation (7), the quantities Cn(x
2y), Cn(x

3y) etc. can easily be found
and so in equation (3), Cn(pr(x) (dryjdxT)) can be rapidly written down if pr(x)
is a polynomial in x. In cases where pr(x); r = 0, 1, • • •, m are not polyno-
mials in x it is sometimes best to replace them by suitable polynomial appro-
ximations. By using equations (5) and (7) and equating coefficients of Tn (x)
on each side of equation (3) for all n, we find a system of equations for the
unknown coefficients a® for s = 0, 1, • • •, m and all n. These equations and
those obtained from the boundary conditions can be solved numerically by
either a recurrence or an iterative method (see Section 5).

The use of this method depends only upon equations (5) and (7), which in
turn were derived from equations (4) and (6). For the expansion in ultra-
spherical polynomials P^ (x) of order X, we start with the relations,

» ) L
2(» + A) dx 2(» + A) dx

and

both of which are valid for n > 1.
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3. Solution in Ultraspherical Polynomials
Following Clenshaw [2], we write

(10) y-f
n=0

and for the sth derivative of y,

(H) yw = | a^P^(x), for s = 1, 2, • • •, m.
71=0

Then,

"= f r a^V affi1' "I dP^jx)
n=i L2n + 2A — 2 2M + 2A + 2J dz

on using equation (8). On differentiating equation (11), we find,

,rZ<f
n=l UX

from which, on equating coefficients we have

(12) aw = ^ ^±i , for n > 1.
' " 2w + 2A - 2 2w + 2A + 2 ~

This equation is the generalisation of equation (5). For computing purposes,
this equation is not as easy to use as equation (5), since the coefficients on the
right hand side are functions of n. To simplify the computing, we define a
related set of coefficients b^ by writing,

(13) a<?> = (n + A)JW; all n ^ 0, s = 0, 1, • • •, m.

The equation then takes the simpler form

(14) 2(n + A)&w = &<?«> - fi^1', n ^ 1.

Again, let Cn(y) denote the coefficient of P£](x) in the expansion of y.
Then,

xy = J. anxPM (x)

=, f r
»t) L2(« + A - 1) ̂  2(n + A +

on using equation (9) and rearranging terms. Thus,

> 0

and in terms of the coefficients bn, we find
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(16) Cn(xy) = 16n_j + \{n + 2X)bn+1, n ^ 0.

By continued application of equation (15), we can find Cn(x
2y), Cn(x

3y) etc.
Equation (15) is considerably more cumbersome than equation (7), and
even in terms of the coefficients bn, the equation for Cn(xy) is not arithmeti-
cally simple. No further simplification appears to be possible.

In general, equations (12) and (14) are only valid for n 5: 1, since an, bn

have not yet been defined for negative values of n. [For the Chebyshev
polynomials Tn(x), a_n = an for all values of n~\. It will be shown later
(Section 7) that for all X except those for which 2X is an integer, we must
take a_n = b_n = 0 for n ^ 1.

4. Boundary conditions
These are generally given at either x = 0 o r x = ± l . For completeness,

the values of P^A) (x) at these points are given here.

r(n + 2X)

(17)

These results are valid for all values of X, except X = 0.
If we know that y is either an odd or an even function of x, then since

(x) is even when « is even and odd when n is odd, we have,

= 0 , n

(for
(for

y
y

even,
odd,

a2n+:

a2n

t and
and

hn+l = o,
= o,

(18) (
\ior y odd a and b = 0 n ^ 0

5. Method of solution

From the differential equation with associated boundary conditions, we
obtain an infinite set of linear algebraic equations in the unknowns &<?>;
s = 0, 1, 2, • • •, m, all n ^ 0. The numerical solution of these equations can
be performed by the two methods described in detail by Clenshaw [2] for
X = 0. These are the method of recurrence and the iterative method. In the
recurrence method it is assumed that b^ = 0 for n S; N, where iV is not
known a priori. Guessing a suitable N and giving arbitrary values to &$', the
equations can be solved to give b$iv b$_2, •••,&£'. In general the boundary
conditions are not satisfied by one such solution, and linear combinations
have to be made of two or more such solutions with different values of 6jj\
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The method is in general fairly quick, the main disadvantage being that N
may be chosen either too small or too large. In the former case the required
accuracy for the coefficients may not be obtained, in which case the com-
putation must be repeated with a larger N. If N is chosen too large, more
computation than necessary will have been done. In general a solution by
recurrence is direct and rapid although care must be taken that figures are
not lost from the most significant end when linear combinations of solutions
are taken. If this does occur, the solution may be improved using the iterative
method.

The iterative scheme starts with some initial guess for the bn which satis-
fies the boundary conditions. From these values equation (14) can be used
to compute b'n, b'^ etc. When all b%] have been found, these values can be
used to compute a new bn from the recurrence relation, again satisfying the
boundary conditions. This procedure is continued until the desired accuracy
is reached. However, the iterative scheme does not always converge, or it
may only converge slowly. In such cases the recurrence method must be used.

6. Expansion in Legendre Polynomials
We shall now consider in some detail the expansion of a function f(x) in

terms of the Legendre polynomials Pn{x). Writing

n=0

equations (13) —(16), become

(13A) a« = (n + !)&<?»; all n, all s.

(14A) (2n + 1)6<S> = &<£« - &£+«, n ^ 1

(ISA) Cn{xy) = ^—^ an_, + £ ± i an+i, n ^ 0

(16A) Cn(xy) = j bn_x + \ { n + l ) b n + 1 , n ^ O

respectively.
For an expansion in Legendre polynomials, a meaning can be given to

a_n, b_n for n = 1, 2, 3, • • • From equation (9), with A = \, we have

(9A) , P . i ± i i, P . W j M W + i w W

This relation can be used to recur forwards i.e. to find Pn+1(x) given Pn(x)
and Pn_i(a;)) or to recur backwards to find Pn_i(a;) in terms of Pn{x) and
Pn+-y[x). With n = 0, we see from equation (9A) that P-i{x) is indeterminate.
We define
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P_t(x) = -P0(x)

Putting n successively equal to — 1, — 2, • • • we find that P_2(#) = —P^x),
P_3(x) = — Pa(x) and in general

P_B(*) = -P»_i(*).

For the coefficients a^ and b^ we must have

(18) «W, = - 4 S i i

whence

for « = 0, 1, 2, • • • and all values of s.
EXAMPLE 1. Suppose we want to find the expansion of e? in [—1, 1] in

terms of Legendre polynomials. This function satisfies the equation

dv
— — 2xy = 0 with y(0) = 1
dx

Then with y™ = 2~=o ain P*(x) f o r s = 0, 1 and using equations (13A) —

(16A), we have,

(« + i)K ~ [«6»-i + (» + l)6n+1] = 0.

With this equation in the form

(19) 6,-i = ~ [(2» + 1)6; - 2(« + l)6n+1]

and using equation (14A) in the form

(20) C i = K+1 + (2n + \)bn

we can readily compute bn, b'n and hence an by the recurrence method. Since
e** is an even function,

b2n+1 = 0 and b'2n = 0 for all n.

The complete computation is shown in Table 1.
As a starting point we have taken b12 = 1, bu = 616 = • • • = 0 and

b'13 = b'16 = • • • = 0. With these starting values, equations (19) and (20)
can be used to compute bn, b'n for all n < 12, and hence an. These values of an

have to be multiplied by a constant y which is determined from the as yet
unsatisfied boundary condition. This gives

y2«.P«(0) = i

from which we find y = 0.286 545 x 10~6. The coefficients an are given to
5D. As a check we find that for x — 1, e = 2.71828.
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TABLE 1
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n

0
1
2
3
4
5
6
7
8
9
10
11
12

b«

102 08866

14 68505

1 42339

10030

553

25

1

K

87 63917

14 21392

1 40341

9951

550

25

I an = (n + i)K
51 04433.0

36 71262.5

6 40525.5

65195.0

4700.5

262.5

12.5

true an

1.46265

1.05198

0.18354

0.01868

0.00135

0.00008

•P.(O)

+ 1.000 000

-0.500 000

+ 0.375 000

-0.312 500

+ 0.273 438

-0.246 094

+ 0.225 586

e** = 1.46265P0(a:) + l.O5198P,(x) + 0.18354P4(a:) + 0.01868P,(a:) + 0.00135P8(z) +
+ 0.00008P10(x).

7. The coefficients a^.b® for negative n

The use of equations (14) and (16) gives rise to recurrence relations where
we might have to assign a meaning to an or bn for negative values of n. We
have seen for the Legendre polynomials that a^n = — a^Lx and b^n = b^
for all values of n. A similar analysis can be used for all ultraspherical poly-
nomials of order A, when 2X is an integer.

Suppose 2A = m, where m is an integer. From the recurrence relation,
equation (9), we find

with pM,(a;) being indeterminate. Defining

then,

For the coefficients a®, we have,

x) for all r ^ 0.

(21) = - « « , r ^ 0
I with a^[ = a% = • • • = a ^ ^ = 0

and for the coefficients &<">,

(22) °-(m+r) — °r > r = u

wi th 6 ^ = ftlfj = • • • = b{j),m_1) = 0.

When IX is not an integer,

(23) aifj, = 6<!j, = 0 for w ^ 1.
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8. Summation of Series
In this section we suppose that a series expansion for /(#), to the required

accuracy, has been found, and is given by

n=0

In order to evaluate f(x) for a given value of x, we can sum this series by
evaluating -Pj,A'(x) for the given x and n = 0, 1, • • •, N. There is, however,
an ingenious method due to Clenshaw [3] where the series can be summed
without evaluating the polynomials. This is done by constructing a sequence
dN- dN-i> ' ' •> do where ,

(24)
2(n + X) (n + 2X)

dN+1 = dN+2 = 0I
For all X ̂  0, the function f(x) is then given by

f(x) = d0.

To investigate the effect of round-off errors in dn and the subsequent error in
f(x), suppose that en is the error in dn. Then sn satisfies the recurrence rela-
tion,

2(w + X) In + 2X)
(25) - v — '

n + i w ' » + 2 """

This is a second order recurrence relation with two linearly independent
solutions given by

*| x P£? (*) and "' x g i t f (x).

P[n'a) ix) is the Jacobi polynomial of degree n with /? = a = X — £ and
Q{n'a)(x) is the Jacobi function of the second kind, (see [1]). A rounding
error of e(M) in either dM or aM introduces an error sr(M) in dr [r 5S M),
given by

where /, m are constants which cau be determined from the conditions

Aft

and
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Solving these two equations for I and m, we find that

( 2 6 )

The error in f(z) due to this error in dM or aM is then given simply by eo(M).
Before putting r = 0 in equation (26), we write P^ (x) in terms of P{

r
a-a) (x)

and P%?{x) and ^ • ' ( x ) in terms of <?<">B)(x) and Qft^fc). then putting
r = 0, we find

e (M) -
£o(M) -

from the definition of the ultraspherical polynomials in terms of the Jacobi
polynomials. This analysis is valid for all A ^ 0 and Clenshaw [3] has shown
for this case that eo(M) = e(M)TM(x).

This error is exactly the same as that found from summing the series for
f(x) using values of the ultraspherical polynomials. The use of the recurrence
relation, equation (24), provides a rapid method for evaluating /(x) without
recourse to tables of P{^ (x). This will be most useful in electronic computers
where storage space is at a premium.

In particular, for series expansions in Legendre polynomials, since
\Pn(x)\ ^ 1 for all x in [ - 1 , 1] then

|eo(M)| ^ \e{M)\.

9. Conclusion
In this paper we have described a method whereby the coefficients in the

expansion of an arbitrary function f(x) in an infinite series of ultraspherical
polynomials P^(x), may be obtained to any required degree of accuracy
without using quadrature. The function f(x) is assumed to satisfy some linear
differential equation with associated boundary conditions. This differential
equation can then be solved directly to give the unknown coefficients.

Of all ultraspherical polynomials, the most useful in numerical analysis are
the Chebyshev polynomials of the first kind. It has been shown [4] that of all
expansions of a given function in ultraspherical polynomials, the coefficients
converge most rapidly in this case. Bernstein [5] has defined the polynomial
pN{x) of degree N of "best fit" to f(x), to be that polynomial for which,

max ]eN(x)\ is least,
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where eN(x) = f(x) — pN(x). He shows that eN(x) obtains its greatest
numerical value at least (iV + 2) times in — 1 ^ x 5S 1 and changes sign
successively at these points. For the expansion of f(x) in terms of the Tn(x)
polynomials, if the remainder can be closely approximated by aN+1TN+1{x)
(and this is often the case due to the convergence of the coefficients), then
this term satisfies the conditions on the function eN(x). Thus, in particular,
if f{x) is a polynomial of degree (2V + -). then the Chebyshev expansion of
degree N gives exactly the polynomial of best fit.

An expansion in Legendre polynomials gives the "best" polynomial ap-
proximation to f(x) in the least squares sense. The use of such expansions in
the numerical solution of integral equations is given in [6].

An analysis similar to that given above could be made for expansions in
terms of Jacobi polynomials P^>fi)(x), (see [1]). However for a ^ j 5 , and
for all ultraspherical polynomials other than those corresponding to A = 0,
\, and 1, the problem is one of academic interest only.
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