H. UmemuraNagoya Math. J.Vol. 77 (1980), 47-60

MODULI SPACES OF THE STABLE VECTOR BUNDLES OVER ABELIAN SURFACES

HIROSHI UMEMURA

Let X be a projective non-singular variety and H an ample line bundle on X. The moduli space of H-stable vector bundles exists by Maruyama [4]. If X is a curve defined over C, the structure of the moduli space (or its compactification) M(X, d, r) of stable vector bundles of degree d and rank r on X is studied in detail. It is known that the variety M(X, d, r)is irreducible. Let L be a line bundle of degree d and let M(X, L, r) denote the closed subvariety of M(X, d, r) consisting of all the stable bundles E with det E = L. We know the global Torelli theorem holds for the mapping $X \mapsto M(X, L, r)$ if the genus g of $X \ge 2$ and (d, r) = 1. Namely, let X' be a non-singular projective curve of genus g and L' be a line bundle of degree d on X'. Then the variety M(X, L, r) is isomorphic to M(X', L', r)if and only if X is isomorphic to X'. In higher dimensional case, very little is known about the moduli space of *H*-stable vector bundles. moduli spaces have been studied only on two types of surfaces. is a hyperelliptic surface, we determined the moduli spaces of H-stable vector bundles with trivial Chern classes in Umemura [14]. In this case the Moduli spaces are not connected when we fixed the numerical Chern classes. Barth [1] proved the moduli space of H-stable vector bundles with $c_1 = 0$ of rank 2 over P_2 is irreducible and rational. In this paper, we work over abelian surfaces A and we study the moduli spaces of some H-stable vector bundles. In the first example, a component of the moduli spaces is isomorphic to $A \times A$ and in the second example, it is birationally isomorphic to the symmetric product $S^n(A)$. In both cases, the local Torelli theorem holds (see for precise statements, Theorem 5 and Theorem 21). We know nothing about the connectedness of the moduli spaces.

Let X be a non-singular algebraic surface defined over an algebraically closed field k and H an ample line bundle over X. We know that, if we

Received November 4, 1978.

fix numerical Chern classes c_1 , c_2 and a number r, the coarse moduli space $M(c_1, c_2)$ of H-stable vector bundles of rank r exists. The moduli space $M(c_1, c_2)$ is a scheme of finite type over k and the Zariski tangent space T_x at a closed point $x \in M(c_1, c_2)$ is isomorphic to $H^1(X, \operatorname{End} E)$ where E is the H-stable vector bundle corresponding to the point x (see Maruyama [4]). The scheme consisting of all the irreducible components of $M(c_1, c_2)$ passing through x is called the moduli space of E and denoted by X(E). From now on, we assume all schemes are defined over C.

LEMMA 1. Let Y be an irreducible non-singular algebraic variety and $\mathscr E$ be a family of H-stable vector bundles over X parametrized by Y, i.e. $\mathscr E$ is a locally free sheaf over $Y \times X$ and for any closed point $y \in Y$, the vector bundle E_y over $y \times X$ is H-stable. Let $f: Y \to M(c_1, c_2)$ denote the map defined by $\mathscr E$. We assume that, for any closed point $y \in Y$, dim $H^1(X, \operatorname{End} E_y) = \dim Y$. If f is injective, then f is an open immersion. In particular Y is birationally equivalent to an irreducible component of $M(c_1, c_2)$.

Proof. In fact, for any closed point $y \in Y$, $\dim H^1(X, \operatorname{End} E_y) = \dim Y \leq \dim X \leq \dim H^1(X, \operatorname{End} E_y)$. Hence $\dim f(Y) = \dim X$ and f(X) is contained in the open subset of nonsingular points of $M(c_1, c_2)$. Therefore the analytic map $f^{an}: X^{an} \to M(c_1, c_2)^{an}$ is an open immersion. It follows from Mumford [9], f is étale. Now the lemma follows.

LEMMA 2. Let A be an abelian surface (abelian variety of dimension 2), H an ample line bundle over A and E an H-stable vector bundle over A. If E is absolutely simple, of type M_0 and a model, then there is an injection $\check{A} \times A \to X(E)$.

Proof. Let \mathscr{L} be the Poincaré line bundle over $A \times \check{A}$, $p: A \times (\check{A} \times A) \to A$ be the map defined by

$$p((a, b, c)) = a + c,$$

 $T_x^*P(E)$ (Umemura [15]). Hence a=a'. We get $E\otimes L\simeq E\otimes L'$. It follows from the absolute simplicity of E that $L\simeq L'$. This proves f is injective. See Umemura [15].

Let F be an V-stable vector bundle with numerical Chern classes c_1 , c_2 and of rank r over an abelian surface A. Let $y \in M(c_1, c_2)$ be the corresponding point. Let us put $\Delta(F) = (r-1)c_1^2 - 2rc_2$. $-\Delta(F)$ is equal to the second Chern class of End F.

Lemma 3. The dimension of the Zariski tangent space at y is equal to $-\Delta(F) + 2$.

Proof. It follows from the Riemann-Roch theorem, dim $H^0(A, \operatorname{End} F) - \dim H^1(A, \operatorname{End} F) + \dim H^2(A, \operatorname{End} F) = -c_2(\operatorname{End} F) = \Delta(F)$. By the Serre duality dim $H^0(A, \operatorname{End} F) = \dim H^2(A, \operatorname{End} F)$. Since a stable bundle is simple, dim $H^0(A, \operatorname{End} F) = 1$. Hence dim $H^1(A, \operatorname{End} F) = -\Delta(F) + 2$ which is equal to the dimension of the Zariski tangent space at y.

Lemma 4. Under the same hypothesis as in Lemma 2, moreover if $\Delta(E) = -2$, then X(E) is irreducible and $\check{A} \times A$ is isomorphic to X(E).

Proof. Let $x' \in X(E)$ and E' the corresponding H-stable bundle. By Lemma 3 dim $H^1(A, \operatorname{End} E') = -\Delta(E') + 2$. Since E' has the same numerical Chern classes as E, $-\Delta(E') + 2 = -\Delta(E) + 2 = 4$. Now it follows from Lemmas 1 and 2 that the map f constructed in the proof of Lemma 2 is an isomorphism.

EXAMPLE 1. Let C be a non-singular projective curve of genus 2, P a point of C and J the Jacobian variety of C. Let $C^{(n)}$ be the n-th symmetric product of C. We assume $n \geq 3$. There is a projection $\varphi \colon C^{(n)} \to J$ defined by

$$\varphi(Q_1+\cdots+Q_n)=(Q_1+\cdots+Q_n-nP),$$

where $Q_i \in C$ for $1 \leq i \leq n$. We know that there exists a vector bundle E_{n-1} of rank n-1 over J such that $C^{(n)}$ is J-isomorphic to $P(E_{n-1})$. We proved in Umemura [4] that E is $\mathcal{O}(C)$ -stable, of type M_0 and a model. The number $\Delta(E)$ is also calculated -2. Hence we can apply Lemma 4. The moduli space $X(E_{n-1})$ is isomorphic to $\check{J} \times J$. The determinant defines a map $\check{J} \times J \to \check{J}$ ($y \mapsto \det E_y$). This map is surjective and all the fibers which we denote $X'(E_{n-1})$ are isomorphic to J. Hence we proved:

Theorem 5. The scheme $X'(E_{n-1})$ is isomorphic to J. The local Torelli theorem holds for $C \mapsto X'(E_{n-1})$.

EXAMPLE 2. Let A be an abelian surface and L be a principal polarization of A, i.e., L is ample and $\dim H^0(A,L)=1$. Let $n\geq 3$ be an integer and L_i be a line bundle algebraically equivalent to L and φ_i a non-zero section of L_i , $1\leq i\leq n$. φ_i is uniquely determined up to the multiplication of a non-zero constant. Let $E(L_1,L_2,\cdots,L_n)$ be the coherent sheaf over A defined by the exact sequence:

(i)
$$0 o \mathscr O o L_1\oplus L_2\oplus\cdots\oplus L_n o E(L_1,L_2,\cdots,L_n) o 0$$
 , $1\mapsto (arphi_1,arphi_2,\cdots,arphi_n)$.

The coherent sheaf $E(L_1, L_2, \dots, L_n)$ does not depend on the choice of φ_i . For, let φ_i' be another non-zero section of L_i . There exists a non-zero constant c_i such that $\varphi_i' = c_i \varphi_i$. Hence the diagram

$$egin{aligned} 0 & \longrightarrow \mathscr{O} & \stackrel{\varPhi}{\longrightarrow} L_1 \oplus L_2 \oplus \cdots \oplus L_n \ & & \downarrow \varPsi \ 0 & \longrightarrow \mathscr{O} & \stackrel{\varPhi'}{\longrightarrow} L_1 \oplus L_2 \oplus \cdots \oplus L_n \end{aligned}$$

is commutative where Φ is the injection of the exact sequence (i), Φ' is the injection obtained from Φ by replacing φ_i by φ_i' and Ψ is the \mathcal{O}_A -linear map defined by the diagonal matrix

$$egin{bmatrix} c_1 & & & & & \ & c_2 & & & & \ & & \ddots & & \ & & & c_n \end{pmatrix}$$
 .

Let C be an irreducible non-singular projective curve of genus 2. Let P be a point of C and φ the map of C to J defined by $\varphi(Q) = (Q - P)$. We denote by C the image $\varphi(C)$. Let P_1, P_2, \dots, P_6 be the points of C such that $\mathcal{O}(2P_i)$ is isomorphic to the canonical bundle K of C. Let C_i be the image of C in J defined by $\varphi_i(Q - P_i) = \mathcal{O}(Q - P_i) \in J$ for $Q \in C$.

LEMMA 5. If x is a point of J such that $x \in \bigcup_{i=1}^6 C_i$, then $C \cap (C + x) \cap (C + 2x) = \emptyset$.

Proof. Suppose that $C \cap C + x \cap C + 2x$ is not empty. Then there exist three points Q, Q', Q'' of C such that $\mathcal{O}(Q - P) = \mathcal{O}(Q' - P) + x$, $\mathcal{O}(Q - P) = \mathcal{O}(Q'' - P) + 2x$. Hence $\mathcal{O}(Q - Q') = x$, $\mathcal{O}(Q - Q'') = 2x$. Therefore $\mathcal{O}(2Q - 2Q') = \mathcal{O}(Q - Q'')$. Finally we get $\mathcal{O}(Q + Q'' - 2Q') = \mathcal{O}$. We

study two cases separately.

Case (i) $K \neq \mathcal{O}(2Q')$. In this case, by the Riemann-Roch theorem $\dim H^0(C, \mathcal{O}(2Q')) = 1$. Hence it follows from $\mathcal{O}(Q + Q'' - 2Q') = \mathcal{O}$ that Q + Q'' = 2Q' as divisors. Consequently Q = Q' and Q'' = Q'. This shows x = 0. Hence $x \in C_i$ for every i. This is a contradiction.

Case (ii) $K = \mathcal{O}(2Q')$. Hence there exists an i such that $Q' = P_i$. Therefore $x = \mathcal{O}(Q - Q') = \mathcal{O}(Q - P_i)$ is in C_i . This is impossible.

Let D be the effective divisor on A such that $L \simeq \mathcal{O}(D)$. Such divisors are limited: (a) There exist a non-singular curve C of genus 2 and a point P of C such that the abelian variety A is isomorphic to the Jacobian variety J of C and D coincides with C. (b) There exist two elliptic curves C_1 , C_2 such that the abelian variety A is isomorphic to $C_1 \times C_2$ and D is $C_1 \times 0 \cup 0 \times C_2$ (Weil [18]). Let us study first the case (a).

COROLLARY 6. For any integer N_1 , there exist an integer $N \ge N_1$ and a point $x \in J$ of order N such that $C \cap (C + x) \cap (C + 2x) = \emptyset$.

This is an easy consequence of Lemma 5.

LEMMA 7. Let x be a point of the Jacobian variety J(=A) of order $N \geq 3$ and $L \simeq \mathcal{O}(C)$. If $C \cap (C+x) \cap \cdots \cap (C+(N-1)x) = \emptyset$, then $E(L, T_x^*L, \cdots, T_{(N-1)x}^*L)$ is an L-stable locally free sheaf.

Proof. The locally freeness of $E(L, T_x^*L, \dots, T_{(N-1)x}^*)$ is evident. The cyclic group (x) operates on the exact sequence;

(ii)
$$0 \to \mathcal{O} \to L \oplus T_x^*L \oplus \cdots \oplus T_{(N-1)x}^*L \to E(L, T_x^*L, \cdots, T_{(N-1)x}^*L) \to 0$$
.

Hence there exists an exact sequence of vector bundles over A' = A/(x);

(iii)
$$0 \to \mathcal{O} \to F \to E' \to 0$$

such that π^* (iii) is isomorphic to (ii) where π is the isogeny $A \to A/(x)$. F is nothing but the direct image π_*L (Morikawa [7]). Hence by Takemoto [11], F is det F-stable. The line bundle det F will be denoted by L'. Suppose that E' is not L'--stable. Then there exist a non-zero locally free sheaf G' of rank < N-1 and a morphism g' of $\mathcal{O}_{A'}$ -modules $E' \to G'$ such that g' is surjective on A' — (a subvariety of codimension ≥ 2) and such that

$$\frac{(c_{\scriptscriptstyle \rm I}(E')\cdot L')}{r(E')} \geq \frac{(c_{\scriptscriptstyle \rm I}(G')\cdot L')}{r(G')}\;.$$

Since F is L'-stable,

$$\frac{(c_{\scriptscriptstyle \rm I}(F')\cdot L')}{r(F')}<\frac{(c_{\scriptscriptstyle \rm I}(G')\cdot L')}{r(G')}\;.$$

Let now M' be a line bundle over A'. Then $N(M' \cdot L') = \pi^*(M' \cdot L') = (\pi^* M' \cdot L^{\otimes N}) = N(\pi^* M' \cdot L)$. Hence we proved $(\pi^* M' \cdot L) = (M' \cdot L')$. Applying this rule to the inequalities (iv) and (v), we get

$$\frac{(L^{\otimes N} \cdot L)}{N} < \frac{(c_1(G) \cdot L)}{r(G)} \le \frac{(L^{\otimes N} \cdot L)}{N-1}$$

where $G = \pi^*G'$. Consequently

$$2 < \frac{(c_1(G) \cdot L)}{r(G)} \le 2 + \frac{2}{N-1}$$
.

Since r(G) < N-1, it follows that $(c_1(G) \cdot L) = 2r(G) + 1$. If we put $\tilde{G} = G \otimes L^{-1}$, then $(c_1(\tilde{G}) \cdot L) = 1$. Let φ be the isogeny $y \mapsto Ny$ of A onto A itself. Then, since the morphism induced by $g' \varphi^*(L \oplus T_x^*L \oplus \cdots \oplus T_{(N-1)x}^*L)$

 $\otimes L^{-1} = \widetilde{\mathscr{O} \oplus \cdots \oplus \mathscr{O}} \to \varphi^*G$ is surjective on A — (a subvariety of codimension $\geqslant 2$), $H^{0}(A, \varphi^*G \det \tilde{G}) \neq 0$. On the other hand, since the spectral sequence degenerates, we get $H^{0}(A, \varphi^* \det \tilde{G}) \simeq H^{0}(A, \varphi_*\varphi^* \det \tilde{G}) = \bigoplus_{\varphi^*\mathscr{L} = \emptyset_A} H^{0}(A, \mathscr{L} \otimes \det \tilde{G})$. Therefore, there exists a line bundle \mathscr{L} on A such that $\varphi^*\mathscr{L} \simeq \mathscr{O}_A$, $H^{0}(A, \mathscr{L} \otimes \det \tilde{G}) \neq 0$. Let D be an effective divisor on A such that $\varphi^*\mathscr{L} = \mathscr{O}_A$, $\mathscr{O}(D) = \mathscr{L} \otimes \det \tilde{G}$. Then $(D \cdot L) = 1$. This is impossible as we proved in Umemura [16].

LEMMA 8. Using the same notation as in the preceding lemma, we assume moreover $N \ge 4$ and $C \cap (C+x) \cap (C+2x) = \emptyset$. Then $E(L, T_x^*L, \dots, T_{mx}^*L)$ is an L-stable locally free sheaf for $3 \le m \le N$.

Proof. We put $E_r = E(L, T_x^*L, \cdots, T_{(r+1)x}^*L)$ for $2 \le r \le N-1$. The local freeness of E_r follows from the hypothesis $C \cap (C+x) \cap (C+2x) = \emptyset$. Now we prove the L-stability of E by the descending induction on r. Lemma 7 shows that E_{N-1} is L-stable. Let us assume E_r is L-stable for an r, $3 \le r \le N-1$ and show E_{r-1} is L-stable. The diagram

is commutative where $\Phi_r(1) = (\varphi, T_x^*\varphi, \cdots, T_{rx}^*\varphi), \ 0 \neq \varphi \in H^0(A, L), \ \Phi_{r-1}(1) = (\varphi, T_x^*\varphi, \cdots, T_{(r-1)x}^*\varphi)$ and Ψ_r is the projection onto the first r factors. The projection Ψ_r induces a surjection: $\psi_r \colon E_r \to E_{r-1}$ and the Ker $\psi_r = T_{rx}^*L$. Hence we get an exact sequence

$$0 \rightarrow L' \rightarrow E_r \rightarrow E_{r-1} \rightarrow 0$$
,

where $L' = T_{rx}^*L$. Tensoring L'^{-1} with the exact sequence, we obtain a new exact sequence

$$0 \to \mathcal{O} \to E'_r \to E'_{r-1} \to 0$$
.

Our induction hypothesis is that E'_r is L-stable and we have to show E'_{r-1} is L-stable. Let G be a non-zero locally free sheaf of rank $\leq r-1$ and $E'_{r-1} \to G$ be a morphism which is surjective on X – (a subvariety of codimension ≥ 2). By the stability of E'_r , $(c_1(E'_r) \cdot L)/r(E'_r) < (c_1(F) \cdot L)/r(G)$. Since $c_1(E'_r)$ is algebraically equivalent to L, we get $2/r < (c_1(F) \cdot L)/r(G)$. If $(c_1(F) \cdot L) \geq 2$, then

$$\frac{(c_{1}(E'_{r-1})\cdot L)}{r(E'_{r-1})} = \frac{2}{r-1} < \frac{2}{r(G)} \le \frac{(c_{1}(F)\cdot L)}{r(G)}.$$

Hence we may assume $(c_1(F) \cdot L) = 1$. Then there is a generically surjective homomorphism $(L \oplus T_x^*L \oplus \cdots \oplus T_{rx}^*L) \otimes T_{rx}^*L^{-1} \to G \otimes T_{rx}^*L^{-1}$. The argument of the proof of Lemma 7 shows this is impossible.

Let us now examine the case (b).

LEMMA 9. Let C_1 , C_2 be elliptic curves. $A = C_1 \times C_2$ and $L = \mathcal{O}(C_1 \times 0 + 0 \times C_2)$. Let r be an integer ≥ 2 and x_i be a point of order r+1 of C_i , $1 \leq i \leq 2$. If we put $x = (x_1, x_2)$, then $E(L, T_x^*L, \dots, T_{rx}^*L)$ is an L-stable locally free sheaf.

Proof. Let us put $E=E(L,\,T_x^*L,\,\cdots,\,T_{rx}^*L)$, $C_1\times 0\cup 0\times C_2=D$. Since $D\cap T_x^*D\cap T_{2x}^*D=\varnothing$, E is locally free. Let us show the restriction $E|_{C_1\times 0}$ (resp. $E|_{0\times C_2}$) on $C_1\times 0$ (resp. $0\times C_2$) of E is stable. We need

Sublemma 10. Let C be an elliptic curve and M a line bundle of degree 1 on C. Let s be an integer ≥ 2 and y be a point of C of order s+1. Let E be the coherent sheaf defined by the following exact sequence;

(vi)
$$\begin{array}{c} 0 \to \mathscr{O} \to L \oplus T_{y}^{*}L \oplus \cdots \oplus T_{sy}^{*}L \to E \to 0 \\ 1 \mapsto (\psi, T_{y}^{*}, \, \cdots, \, T_{sy}^{*}\psi) \end{array}$$

where $0 \neq \psi \in H^0(C, L)$. Then E is locally free and stable.

Proof of the sublemma. For the same reason as in the proof of the lemma, E is locally free. As in the proof of Lemma 7 the cyclic group (y) operates on the exact sequence and there exists a exact sequence of vector bundles

(vii)
$$0 \to \mathcal{O} \to F \to E' \to 0$$

over C'=C/(y) such that $\pi^*(\mathrm{vii})$ is isomorphic to (vi) where π is the isogeny $C\to C/(y)$. For the same reason as before, F is stable. Let $E'\to G'$ be a non-trivial quotient vector bundle. Since F is stable, 1/(s+1)=d(F)/r(F)< d(G')/r(G'). Hence $d(G')\geq 1$. Since r(E')>r(G'), d(E')/r(E')=1/r(E')< d(G')/r(G'). This shows E' is stable. Since the degree of π is s, and s is relatively prime to r(E)=s-1, $\pi^*E'=E$ is stable.

Let us come back to the proof of Lemma 9. Let G be a non-zero locally free sheaf of rank r on A and $E(L, T_x^*L, \dots, T_{rx}^*L) \to G$ be a morphism which is surjective on A — (a subvariety of codimension ≥ 2). Since the restrictions are stable,

$$\frac{(c_{1}(E) \cdot C_{1} \times 0)}{r(E)} = \frac{d(E \mid C_{1} \times 0)}{r(E)} < \frac{d(G \mid C_{1} \times 0)}{r(G)} = \frac{(c_{1}(G) \cdot C_{1} \times 0)}{r(G)}$$

and

$$\frac{(c_1(E)\cdot 0\times C_2)}{r(E)}<\frac{(c_1(G)\cdot 0\times C_2)}{r(G)}.$$

Therefore

$$\frac{(c_1(E) \cdot L)}{r(E)} = \frac{(c_1(E) \cdot C_1 \times 0)}{r(E)} + \frac{(c_1(E) \cdot 0 \times C_2)}{r(E)} < \frac{(c_1(G) \cdot C_1 \times 0)}{r(G)} + \frac{(c_1(G) \cdot 0 \times C_2)}{r(G)} = \frac{(c_1(G) \cdot L)}{r(G)}.$$

Lemma 11. Let us assume that $E(L_1, L_2, \dots, L_n) = E$ is locally free. Then the number $\Delta(E) = (r(E) - 1)c_1(E)^2 - 2r(E)c_2(E)$ is equal to -2n.

Proof. The first Chern class $c_1(E)$ is numerically equivalent to $L^{\otimes n}$ and the second Chern class $c_2(E)$ is numerically equivalent to $(n(n-1)/2)L^2$. Hence,

$$egin{aligned} arDelta(E) &= (n-2)n^2L^2 - 2(n-1) \frac{n(n-1)}{2}L^2 \ &= 2(n-2)n^2 - 2(n-1)^2n = -2n \ . \end{aligned}$$

Remark 12. We do not know whether all $E(L_1, L_2, \dots, L_n) = E$ is L-stable. We can prove the following assertion which will be used in the sequel.

LEMMA 13. Suppose that if i = j, $L_i \neq L_j$. If $E(L_1, L_2, \dots, L_n) = E$ is locally free, E is simple $(\dim H^0(A, \operatorname{End} E) = 1)$.

Sublemma 14. For $1 \leq i \leq n, \ H^0(A, \check{E} \times L_i) = 0$.

Proof. We have an exact sequence;

(viii)
$$0 \to \check{E} \to \check{L}_1 \oplus \check{L}_2 \oplus \cdots \oplus \check{L}_n \to \emptyset \to 0$$
.

Tensoring with L_i , we get

(ix)
$$0 \to \check{E} \oplus L_i \to (\check{L}_1 \oplus \cdots \check{L}_n) \otimes L_i \to L_i \to 0.$$

The long exact sequence of cohomology group is;

$$0 \to H^0(\check{E} \otimes L_i) \to H^0((\check{L_1} \oplus \check{L_2} \oplus \cdots \oplus \check{L_n}) \otimes L_i) \to H^0(L_i) \to \cdots.$$

From the hypothesis $H^0((\check{L_1} \oplus \check{L_2} \oplus \cdots \oplus \check{L_n}) \otimes L_i) \simeq H^0(\mathscr{O})$ and the homomorphism $H^0((\check{L_1} \oplus \check{L_2} \oplus \cdots \oplus \check{L_n}) \otimes L_i) \simeq H^0(\mathscr{O}) \to H^0(L_i)$ is not zero. Hence $H^0(A, \check{E} \otimes L_i) = 0$.

Sublemma 15.
$$H^{l}(A, E \otimes L_{l}) \simeq H^{l}(\mathcal{O}), \text{ for } l = 1, 2.$$

Let us write the long exact sequence of cohomology of (ix) again;

$$0 \to H^0((\check{L}_1 \oplus \check{L}_2 \oplus \cdots \oplus \check{L}_n) \otimes L_i) \to H^0(L_i) \to H^1(\check{E} \otimes L_i)$$

$$\to H^1((\check{L}_1 \oplus \check{L}_2 \oplus \cdots \oplus \check{L}_n) \otimes L_i) \to H^1(L_i) \to H^2(\check{E} \otimes L_i)$$

$$\to H^2((\check{L}_1 \oplus \check{L}_2 \oplus \cdots \oplus \check{L}_n) \otimes L_i) \to H^2(L_i).$$

Now the assertion follows from the following;

- (1) $H^{j}((\check{L}_{1} \oplus \check{L}_{2} \oplus \cdots \oplus \check{L}_{n}) \otimes L_{i}) = H^{j}(\emptyset)$ for any j.
- (2) $H^{1}(L_{i}) = 0$ for 1 = 1, 2.

Sublemma 16.
$$H^0(A, \check{E}) = 0$$
, $H^1(A, \check{E}) \simeq H^0(\mathcal{O})$, $\dim H^2(A, \check{E}) = n + 1$.

The first two assertions follow easily from the long exact sequence of cohomology groups of the exact sequence (viii). The last assertion follows from the Riemann-Roch theorem for \check{E} .

Proof of Lemma 13. Tensoring E with the exact sequence (viii), we get

$$(x) 0 \to \check{E} \otimes E \to \check{L}_1 \otimes E \oplus \check{L}_2 \otimes E \oplus \cdots \oplus \check{L}_n \otimes E \to E \to 0.$$

The last terms of the exact sequence are;

$$\cdots \to H^1(E) \to H^2(\check{E} \otimes E)$$

$$\to H^2(\check{L}_1 \otimes E \oplus \check{L}_2 \otimes E \oplus \cdots \oplus \check{L}_n \otimes E) \to H^2(E).$$

By the Serre duality and Sublemmas 15 and 16,

$$egin{aligned} \dim H^{\scriptscriptstyle 1}(E) &= \dim H^{\scriptscriptstyle 1}(\check{E}) = 1 \;, \ \dim H^{\scriptscriptstyle 2}(L_{\scriptscriptstyle 1} \otimes \check{E} \oplus L_{\scriptscriptstyle 2} \otimes \check{E} \oplus \cdots \oplus L_{\scriptscriptstyle n} \otimes \check{E}) \ &= \dim H^{\scriptscriptstyle 0}(\check{L}_{\scriptscriptstyle 1} \otimes E \oplus \check{L}_{\scriptscriptstyle 2} \otimes E \oplus \cdots \oplus \check{L}_{\scriptscriptstyle n} \otimes E) = 0 \;. \end{aligned}$$

Hence dim $H^{\circ}(\check{E} \otimes E) \leq 1$. By the Serre duality dim $H^{\circ}(\check{E} \otimes E) \leq 1$. But $H^{\circ}(\check{E} \otimes E)$ contains k as homothesies. Hence dim $H^{\circ}(A, \check{E} \otimes E) = 1$.

LEMMA 17. If $E(L_1, L_2, \dots, L_n) \simeq E(L'_1, L'_2, \dots, L'_n)$, the set $\{L_1, L_2, \dots, L_n\}$ coincide with the set $\{L'_1, L'_2, \dots, L'_n\}$ counted with multiplicity.

In fact let M be a line bundle algebraically equivalent to L. Tensoring M^{-1} with the exact sequence, we get

(xi)
$$0 \to M^{-1} \to (L_1 \oplus L_2 \oplus \cdots \oplus L_n) \otimes M^{-1} \\ \to E(L_1, L_2, \cdots, L_n) \otimes M^{-1} \to 0.$$

Since M is ample, $H^0(A, M^{-1}) = H^1(A, M^{-1}) = 0$. Hence $H^0((L_1 \oplus L_2 \oplus \cdots \oplus L_n) \otimes M^{-1}) \simeq H^0(E(L_1, L_2, \cdots, L_n) \otimes M^{-1})$. Since the dimension of $H^0((L_1 \oplus L_2 \oplus \cdots \oplus L_n) \otimes M^{-1})$ is the number of times that M appears is the set L_1, L_2, \cdots, L_n , the lemma follows.

LEMMA 18. Let M, M' be line bundles algebraically equivalent to 0. If $E(L_1, L_2, \dots, L_n) \otimes M \simeq E(L'_1, L'_2, \dots, L'_n) \otimes M'$, then $M \simeq M'$ and $E(L_1, L_2, \dots, L_n) \simeq E(L'_1, L'_2, \dots, L'_n)$.

Tensoring M^{-1} , we may assume $M' \simeq \emptyset$. Suppose that M is not isomorphic to \emptyset . Then tensoring M with the exact sequence (i), we get

$$0 o M o (L_1 \oplus L_2 \oplus \cdots \oplus L_n) \otimes M o E(L_1, L_2, \cdots, L_n) \otimes M o 0$$
 .

Since M is algebraically equivalent to 0, $H^{i}(A, M) = 0$ for any i and

$$H^{\circ}((L_1 \oplus L_2 \oplus \cdots \oplus L_n) \otimes M) \simeq H^{\circ}(E(L_1, L_2, \cdots, L_n) \otimes M)$$
.

Hence dim $H^0(E(L_1, L_2, \dots, L_n) \otimes M) = n$. On the other hand, from the exact sequence (i),

$$0 \to H^0(\mathcal{O}) \to H^0(L_1' \oplus L_2' \oplus \cdots \oplus L_n') \to H^0(E(L_1', L_2', \cdots, L_n'))$$

$$\to H^1(\mathcal{O}) \to H^1(L_1' \oplus L_2' \oplus \cdots \oplus L_n') = 0.$$

Hence dim $H^0(E(L_1', L_2', \dots, L_n')) = n + 1$ and $E(L_1, L_2, \dots, L_n) \otimes M$ is not isomorphic to $E(L_1', L_2', \dots, L_n')$.

Let now $p_{i_{n+1}}: A \times \cdots \times A \to A \times A \ (1 \leq i \leq n)$ be the projection onto the product of i-th and (n+1)-th factors. Let $m: A \times A \to A$ be the group law of A. Let \mathcal{L}_i be the inverse image $(m \circ p_{i_{n+1}}) * L$ and $\Theta_i = (m \circ p_{i_{n+1}}) * (\theta)$ where θ is a fixed non-zero section of L. The coherent sheaf \mathscr{E} on $A \times \cdots \times A$ is defined by the exact sequence;

(xii)
$$0 \to \mathcal{O} \to \mathcal{L}_1 \oplus \mathcal{L}_2 \oplus \cdots \oplus \mathcal{L}_n \to \mathcal{E} \to 0$$
$$1 \mapsto (\Theta_1, \Theta_2, \cdots, \Theta_n)$$

The coherent sheaf $\mathscr E$ is considered as a family of coherent sheaves on the last A parametrized by the first $\overbrace{A \times \cdots \times A}^n$. Let (x_1, x_2, \cdots, x_n) be a point of $\overbrace{A \times \cdots \times A}^n$. The restriction of the exact sequence (xii) to the fibre $(x_1, \cdots, x_n) \times A$ is

$$0 \to \mathscr{O} \to T_{x_1}^*L + T_{x_2}^*L + \cdots + T_{x_n}^*L \to E(T_{x_1}^*L, T_{x_2}^*L, \cdots, T_{x_n}^*L) \to 0$$

 $1 \mapsto (T_{x_1}^*\Theta_1, T_{x_2}^*\Theta_2, \cdots, T_{x_n}^*\Theta_n)$

The symmetric group \mathfrak{S}_n operates on $A \times \cdots \times A$ hence on $(A \times \cdots \times A) \times A$. There is an operation of \mathfrak{S}_n on $\mathscr{L}_1 \oplus \mathscr{L}_2 \oplus \cdots \oplus \mathscr{L}_n$ covering its operation on $(A \times \cdots \times A) \times A$. This operation is compatible with the injection $0 \to \mathscr{L}_1 \oplus \mathscr{L}_2 \oplus \cdots \oplus \mathscr{L}_n$. Hence \mathfrak{S}_n acts on \mathscr{E} . It follows from the descent theory that there exists a coherent sheaf \mathscr{E} over $S^n(A) \times A$ such that $\pi^* \mathscr{E}' \simeq \mathscr{E}$ where $S^n(A)$ is the n-th symmetric product of A and $\pi: A \times \cdots \times A \to S^n(A)$ is the projection.

Let \mathscr{P} be the Poincaré line bundle over $\check{A} \times A \simeq A \times A$ and $p_{23} \colon S^n(A) \times A \times A \to A \times A$ the projection. We put $p_{23}^*\mathscr{P} = \mathscr{P}'$ and $\mathscr{E}' \otimes \mathscr{P}' = \mathscr{E}''$. Then \mathscr{E}'' is a family of coherent sheaves on A parametrized by $S^n(A) \times A$. Let $(x, y), (x', y') \in S^n(A) \times A$. If $\mathscr{E}''|_{(x,y)\times A}$ is isomorphic to $\mathscr{E}''|_{(x,y)\times A}$, then (x, y) = (x', y') by Lemma 17 and Lemma 18.

PROPOSITION 19. There exists a non-empty open subset U of $S^n(A)$ such that (i) $\mathscr{E}'' \mid U \times A \times A = \mathscr{E}^{(3)}$ is locally free, (ii) for any point $(x, y) \in U \times A$, $\mathscr{E}'' \mid (x, y) \times A$ is L-stable.

Proof. Let $X = \{(x, y, z) \in S^n(A) \times A \times A \mid \Theta_i(x, z) = 0 \text{ for any } 1 \leq i \leq n.$ Then X is a closed subset of $S^n(A) \times A \times A$. The coherent sheaf \mathscr{E}'' is locally free outside X. Let $p_1 \colon S^n(A) \times A \times A \to S^n(A)$ be the projection onto the first factor. Since p_1 is proper, $p_1(X)$ is a proper closed subset of $S^n(A)$ by Corollary 6. Let $U' = S^n(A) - p_1(X)$. Then $\mathscr{E}'' \mid U' \times A \times A$ is locally free. By Corollary 6, Lemma 8 and Lemma 9, there exists a point $x \in U'$ such that $\mathscr{E}^{(3)} \mid (x, y) \times A$ is L-stable for any point $y \times A$. Since the stability is an open condition by Maruyama [4], there exists non-empty open subset U of U' satisfying the condition (i) and (ii) of the proposition.

THEOREM 20. The algebraic variety $S^n(A) \times A$ is birationally isomorphic to a component of the moduli space of L-stable vector bundles.

Proof. Since $U \times A$ parametrizes a family of L-stable bundles, we get a morphism from $U \times A$ to a component of the moduli space. This map is injective by Lemma 17 and Lemma 18. The theorem now follows from Lemma 1, Lemma 3 and Lemma 11.

This component will be denoted by $X_n(A; L)$. Let $g: X_n(A; L) \to \check{A} = A$ be the map such that $g(x) = (\det E) \otimes L^{-1}$. Since this map is birationally equivalent to $S^n(A) \times A \to A$, $((x_1, \dots, x_r), y) \mapsto \sum x_j + (n-1)y$ for $x \in \check{A} = A$, the fibre $g^{-1}(z) = Y_n(A; L)$ is birational to $Z^n(A) = \{((x_1, \dots, x_n), y) \in S^n(A) \times A \mid \sum x_i + (n-1)y = 0\}$.

THEOREM 21. The map $(A, L) \mapsto Y_n(A, L)$ separates locally the moduli space of the principally polarized abelian surfaces.

Proof. Let A, B be abelian varieties of any dimension. We put

$$Z^n(A) = \{((x_1, \dots, x_n), y) \in S^n(A) \times A \mid \sum x_i + (n-1)y = 0\},$$

 $Z^n(B) = \{((x_1, \dots, x_n), y) \in S^n(B) \times B \mid \sum x_i + (n-1)y = 0\}.$

It is sufficient to show that, if $Z^n(A)$ is birational to $Z^n(B)$, then A is

It is sufficient to show that, if Z''(A) is birational to Z''(B), then A is isomorphic to B. This will be proved in Proposition 24.

Let X be an algebraic variety and n>0 an integer. The symmetric group \mathfrak{S}_n acts on the product $X \times \cdots \times X$. The quotient variety $X \times \cdots \times X/\mathfrak{S}_n$ is the n-th symmetric product of X and denoted by $S^n(X)$.

LEMMA 22. Let A be an abelian variety. The closed subvariety $\{(x_1, x_2, \dots, x_n) \in A \times \dots \times A \mid \sum_{i=1}^n x_i = 0\}$ of $S^n(A)$ will be denoted by $T^n(A)$.

LEMMA 23. Any rational map f from $\tilde{T}^n(A)$ to B is trivial, i.e., $f(\tilde{T}_n)$ is a point.

Proof. Blowing up the given $\tilde{T}^n(A)$ if necessary, we may assume f regular. Suppose that the dimension of $f(T^n(A))$ is positive. Then there exist a holomorphic 1-form ω on B such that $f^*\omega \neq 0$ which conducts Lemma 22.

PROPOSITION 24. Let A, B be abelian varieties. If $Z^n(A)$ is birationally isomorphic to $Z^n(B)$, then A is isomorphic to B.

Proof. If n=1, then $Z^1(A)=A$, $Z^1(B)=B$ and the assertion is well known (see. Weil [17]). We assume $n\geq 2$. Let $f\colon Z^n(A)\to Z^n(B)$ be a birational map. Let π_A (resp. π_B) be the map from $Z^n(A)$ to A(resp. from $Z^n(B)$ to B) defined by $\pi_A((x_1,\dots,x_n),y)=\sum_{i=1}^n x_i$ (resp. $\pi_B((x_1,\dots,x_n),y)=\sum_{i=1}^n x_i$). Then by Lemma 23, f induces a birational map $\bar{f}\colon A\to B$ such that $\pi_B\circ f=\bar{f}\circ \pi_A$. Hence A is biregularly isomorphic to B.

In our examples, the moduli spaces have irregularity 4. The abelian variety $A \times \hat{A}$ operates on the moduli spaces; $E \mapsto T_x^* E \otimes L$, $x \in A$, $L \in \hat{A}$. In most cases this operation is effective modulo finite group and hence by a theorem of Matsumura-Nishi [6], the irregularity of the moduli space ≥ 4 .

QUESTION 25. When is the irregularity of the moduli space 4?

REFERENCES

- [1] Barth, W., Moduli of vector bundles on the projective plans, Inventiones Math., 42 (1977), 63-91.
- [2] Maruyama, M., Stable vector bundles on an algebraic surface, Nagoya Math. J., 58 (1975), 25-68.
- [3] —, Openness of a family of torsion free sheaves, J. Math. Kyoto Univ., 16 (1976), 627-637.
- [4] —, Moduli of stable sheaves, I, II, J. Math. Kyoto Univ., 17 (1977), 91-126, preprint.
- [5] —, Boundedness of semi-stable sheaves of small rank, preprint.
- [6] Matsumura, H., On algebraic groups of birational transformations, Lincei Rend. Sc. fis. e nat., 34 (1963), 151-155.
- [7] Morikawa, H., A note on holomorphic vector bundles over complex tori, Nagoya Math. J., 41 (1971), 101-106.
- [8] Mukai, S., Duality between D(X) and $D(\hat{X})$ with its application to the Picard sheaves, preprint.
- [9] Mumford, D., Introduction to algebraic geometry, to appear.
- [10] —, Abelian Varieties, Oxford Univ. Press 1970.
- [11] Takemoto, F., Stable vector bundles on algebraic surfaces II, Nagoya Math. J., 52 (1973), 29-48.
- [12] Ueno, K., Classification theory of algebraic varieties and compact complex spaces, Lecture notes in Math. 439, Springer (1975).
- [13] Umemura, H., Some result in the theory of vector bundles, Nagoya Math. J., 52 (1973), 173-195.
- [14] —, Stable vector bundles with numerically trivial Chern classes over hyperelliptic surfaces, Nagoya Math. J., 59 (1975), 107-134.
- [15] —, On a certain type of vector bundles over an abelian variety, Nagoya Math. J., 64 (1976), 31-45.
- [16] —, On a property of symmetric products of a curve of genus 2, Proc. Int. Symp. Algebraic Geometry, Kyoto (1977), 709-721.
- [17] Weil, A., Variétés abéliennes et courbes algebriques, Hermann, Paris 1948.
- [18] —, Zum Beweis des Torellishen Satzes, Nachr. Akad. Wiss. Göttingen 1957.

Nagoya University