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Robotics and Artificial Intelligence
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Sami Haddadin and Dennis Knobbe

introduction

The rise of artificial intelligence is mainly associated with software-based robotic
systems such as mobile robots, unmanned aerial vehicles, and increasingly, semi-
autonomous cars. However, the large gap between the algorithmic and physical
worlds leaves existing systems still far from the vision of intelligent and human-
friendly robots capable of interacting with and manipulating our human-centered
world. The emerging discipline of machine intelligence (MI), unifying robotics and
artificial intelligence, aims for trustworthy, embodiment-aware artificial intelligence
that is conscious both of itself and its surroundings, adapting its systems to the
interactive body it is controlling. The integration of AI and robotics with control,
perception and machine-learning systems is crucial if these truly autonomous
intelligent systems are to become a reality in our daily lives. Following a review of
the history of machine intelligence dating back to its origins in the twelfth century,
this chapter discusses the current state of robotics and AI, reviews key systems and
modern research directions, outlines remaining challenges and envisages a future of
man and machine that is yet to be built.

1.1 machine intelligence: history in a nutshell

1.1.1 Back to the Roots

The basic vision of robotics and AI can be traced back to twelfth-century Europe.1

Literature from this period mentions a mystical creature called the golem, which
had a human-like shape but was significantly stronger than a normal human. The

1 Wöll, “Der Golem: Kommt der erste künstliche Mensch und Roboter aus Prag?” in Nekula,
Koschmal, and Rogall (eds), Deutsche und Tschechen: Geschichte - Kultur - Politik (Beck 2001)
233–245.
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golem was described as a harmless creature used by its creator as a servant. In the
legend of the golem of Prague, first written down at the beginning of the nineteenth
century, Rabbi Löw created the golem to relieve him of heavy physical work and to
serve humans in general.2 The real-world realization of this idea had a long way to
go.Some of the earliest scientific writings relating to machine intelligence date back
to the fifteenth century, the period of the Renaissance. Leonardo da Vinci
(1452‒1519), the universal savant of his time,3 decisively influenced both art and
science with a variety of inventions, including, for example, a mechanical jumper,
hydraulic pumps, musical instruments, and many more. However, the two inven-
tions that stand out from a robotics point of view were Leonardo’s autonomous flying
machine and his mechanical knight, also known as Leonardo’s robot.4 The latter is a
mechanism integrated into a knight’s armor, which could be operated via rope pulls
and deflection pulleys, enabling it to perform various human-like movements ‒
clearly first steps in robotics. Wilhelm Schickard (1592‒1635)5 developed and built
the first known working mechanical calculator. It was a gear-based multiplication
machine that was also used for some of Kepler’s lunar orbit calculations.

Sir Isaac Newton (1642‒1726), one of the world’s greatest physicists, is best known
for laying the foundations of classical physics by formulating the three laws of
motion.6 He was also an outstanding mathematician, astronomer and theologian.
In the field of mathematics, he developed a widely used technique for solving
optimization problems (nowadays called Newton’s method) and founded the field
of infinitesimal calculus. Gottfried Wilhelm Leibniz (1646‒1716) worked in parallel
with Newton on this topic but conceived the ideas of differential and integral
calculus independently of Newton.7 Leibniz, who is known for various other
contributions to science, is often referred to as one of the first computer scientists
due to his research on the binary number system. Slightly later, Pierre Jaquet-Droz
(1721‒1790) built amazing mechanical inventions such as The Writer, The Musi-
cian and The Draughtsman.8 The Draughtsman, for example, is a mechanical doll
that draws with a quill pen and real ink on paper. The input device was a cam disk
that essentially functions as a programmable memory defining the picture to be
drawn. With three different cam disks, the The Draughtsman was able to draw four
different artworks. In addition to these fascinating machines, Jaquet-Droz and his

2 Grün and Müller, Der hohe Rabbi Löw und sein Sagenkreis (Verlag von Jakob B Brandeis
1885).

3 Grewenig and Otto, Leonardo da Vinci: Künstler, Erfinder, Wissenschaftler (Historisches
Museum der Pfalz 1995).

4 Moran, “The da Vinci Robot” (2006) 20(12) Journal of Endourology 986–990.
5 Nilsson, The Quest for Artificial Intelligence (Cambridge University Press 2009).
6 Westfall, Never at Rest. A Biography of Isaac Newton (Cambridge University Press 1984).
7 Nilsson (n 5).
8 Soriano, Battaïni, and Bordeau, Mechanische Spielfiguren aus vergangenen Zeiten (Sauret

1985).
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business partner Jean-Frédéric Leschot later started to build prosthetic limbs for
amputees.
Another memorable figure in the history of machine intelligence is Augusta Ada

Byron King (1815‒1852).9 The Countess of Lovelace is known to be one of the first to
recognize the full potential of a computing machine. She wrote the first computer
program in history, which was designed to be used for the theoretical analytical
engine proposed by Charles Baggage. The programming language Ada was named
after her. These fundamental technological advances in the areas of mechanics,
electronics, communications and computation paved the way for the introduction
of the first usable computing machines and control systems, which began around
1868. The first automatic motion machines were systematically analyzed, docu-
mented, reconstructed, and taught via collections of mechanisms.
A mechanism can be defined as an automaton that transforms continuous,

typically linear, movements into complex spatial motions. Ludwig Burmester
(1840‒1927) was a mathematician, engineer and inventor, and the first person to
develop a theory for the analysis and synthesis of motion machines.10 Later in this
period, Czech writer and dramatist Karel Čapek (1890‒1938) first used the word
“robot” in his science-fiction work. The word “robot” is derived from robota, which
originally meant serfdom, but is now used in Czech for “hard work.” Through his
1920 play R.U.R. (Rossums Universal Robots), Čapek spread his definition of robot to
a wider audience.11 In this play, the robots were manufactured to industry standards
from synthetic organic materials and used as workers in industry to relieve people
from heavy and hard work.
We now come to the pre-eminent philosopher and mathematician Norbert

Wiener (1894‒1964). From his original research field of stochastic and mathematical
noise processes, he and his colleagues Arturo Rosenblueth, Julian Bigelow and
others founded the discipline of cybernetics in the 1940s.12 Cybernetics combines
the analysis of self-regulatory processes with information theory to produce new
concepts, which can be said to be the precursors of modern control engineering,
thus building significant aspects of the theoretical foundations of robotics and AI.
Wiener developed a new and deeper understanding of the notion of feedback,
which has significantly influenced a broad spectrum of natural science disciplines.
Alan Turing (1912‒1954) worked in parallel with Wiener in the field of theoretical
computer science and artificial intelligence.13 Most people interested in artificial
intelligence today are familiar with his name through the Turing test. This test was

9 Nilsson (n 5).
10 Koetsier, “Ludwig Burmester (1840–1927)” in Ceccarelli (ed), Distinguished Figures in Mech-

anism and Machine Science, History of Mechanism and Machine Science, vol 7 (Springer 2009)
43–64.

11 Nilsson (n 5).
12 Ibid.
13 Ibid.
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devised to determine whether a computer or, more generally a machine, could
think like a human. His groundbreaking mathematical model of an automatic
calculating machine that can solve complex calculations is today known as a Turing
machine. The Turing machine models the process of calculating in such a way that
its mode of operation can be easily analyzed mathematically, making the terms
“algorithm” and “computability” mathematically manageable for the first time.

A similarly renowned researcher and colleague of Turing was John von Neumann
(1903‒1957).14 He developed the von Neumann computer architecture, which still
forms the basis of the operation of most computers today. As well as collaborating
with Turing on AI research, he also worked on other mathematical topics like linear
programming and sorting programs. Von Neumann’s concept of self-reproducing
machines, developed in 1940, testifies to his outstanding capabilities.15 The aim of
this concept was to describe an abstract machine, which, when in operation,
replicates itself. To achieve this goal von Neumann also developed the concept of
cellular automata. According to von Neumann, a cellular automaton is a collection
of states in a two-dimensional grid of cells, which forms a certain pattern. A cell
represents one of twenty-nine possible states, which can change over time. The
change of state of a cell is determined by the states of the neighboring cells from the
previous time step as input. The theory of cellular automata defined the elementary
building blocks responsible for the concept of self-replicating machines. With these
building blocks, von Neumann created the universal constructor, which is a par-
ticular pattern of different cell states. This pattern contains three different sub-units:
an information carrier for storing its own construction plan, a construction arm,
which builds itself up in the free grid according to the construction plan, and a
copying machine for copying the construction plan. This made it possible for von
Neumann to develop a self-replicating machine within the concept of cellular
automata.

A famous mathematician and inventor who also worked in the field of digital
computing is Claude Elwood Shannon (1916‒2001). His groundbreaking ideas on
logical circuit design for digital computers and information theory had an enormous
impact on the research community of his time, and continue to do so today. In 1948,
with his book A Mathematical Theory of Communication,16 he laid important
foundations for today’s high-speed telecommunications and data processing by
mathematically tackling the problem of data transmission via a lossy communication
channel. He developed a coding algorithm that made it possible to restore the
originally transmitted information from previously coded lossy data. In a further

14 Ibid.
15 Von Neumann and Burks, “Theory of Self-Reproducing Automata” (1966) 5(1) IEEE Transac-

tions on Neural Networks 3.
16 Shannon, “A Mathematical Theory of Communication” (1948) 27(3) Bell System Technical

Journal 379‒423.
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publication,17 he developed a complete theory of channel capacity, which defined
the maximum data rate that can be transmitted lossless over a specific communi-
cation channel type. In 1949, he published the formal basics of cryptography, thus
establishing it as a scientific discipline.18

At the beginning of 1941, the engineer and computer scientist Konrad Zuse (1910‒
1995) made headlines with the world’s first functional programmable digital com-
puter, the Z3, built in cooperation with Helmut Schreyer.19 Zuse also demonstrated
that machines can assemble themselves on a variable scale, long before the idea of
robotic assembly systems had been conceived.20 Based on John von Neumann’s
ideas and proofs that it is theoretically possible to build a machine that can
reproduce itself, Zuse published his implementation ideas for such a machine in
the journal Unternehmensforschung under the title “Gedanken zur Automation und
zum Problem der technischen Keimzelle” (“Thoughts on Automation and the
Problem of the Technical Germ Cell”).21 In the 1970s he designed the assembly
robot SRS72 in his own construction workshop as a functional demonstration of this
idea. The SRS72 machine could automatically assemble prefabricated manually
supplied parts by positioning two work pieces and connecting them with screws.
This prototype machine was the starting point for a complete self-reproducing
system. According to Zuse, an entire automated workshop is required to perform
all the complex manufacturing and assembly steps necessary to obtain a self-
producing system.22

Independently of Zuse, the physicist Richard Phillips Feynman (1918‒1988) also
studied von Neumann’s ideas. His own research area was quantum field theory, and
he was awarded the Nobel Prize in 1965 for his work on quantum electro dynamics.
Today, however, he is also regarded as a visionary of self-reproducing machine
technology. His famous lecture, “There’s Plenty of Room at the Bottom,” on the
future opportunities for designing miniaturized machines that could build smaller
reproductions of themselves was delivered in 1959 at the annual meeting of the
American Institute of Physics at the California Institute of Technology and pub-
lished the following year in the journal Engineering and Science.23 Feynman’s
speech is frequently referenced in today’s technical literature in the fields of

17 Shannon, “Communication in the Presence of Noise” (1949) 86 Proceedings of the IRE 10–21.
10.1109/JRPROC.

18 Shannon, “Communication Theory of Secrecy Systems” (1949) 28(4) Bell System Technical
Journal 656‒715.

19 Bauer et al., Die Rechenmaschinen von Konrad Zuse (Springer 2013).
20 Eibisch, “Eine Maschine baut eine Maschine baut eine Maschine. . .” (2011) 1 Kultur und

Technik 48‒51.
21 Zuse, “Gedanken zur Automation und zum Problem der technischen Keimzelle” (1956) 1(1)

Unternehmensforschung 160‒165.
22 Ibid.
23 Feynman, “There’s Plenty of Room at the Bottom,” talk given on 29 December 1959 (1960) 23

(22) Science and Engineering 1–13.
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micro- and nanotechnology, which speaks for the high regard in which his early
vision is held in expert circles.

Very few people had the knowledge and skills to program complex early comput-
ing machines like the Z3 computer. Unlike today’s programming languages that use
digital sequence code, these machines were programmed with the help of strip-
shaped data carriers made of paper, plastic or a metal-plastic laminate, which store
the information or the code lines in the punched hole patterns. One person who
mastered and shaped this type of programming was American computer scientist
Grace Hopper (1906‒1992).24 She did not work with the Z3, but on the Mark I and II
computers she designed the first compiler called A-0. A compiler is a program that
translates human readable programming code into machine-readable code. She also
invented the first machine-independent programming language, which led to high-
level languages as we know them today.

Returning to robotics in literature, a short story that still exerts a powerful influ-
ence on real-world implementation of modern robotics and AI systems as we know
them today is Isaac Asimov’s (1920‒1992) science-fiction story “Runaround,” pub-
lished in 1942, which contained his famous “Three Laws of Robotics”:25

One, a robot may not injure a human being, or, through inaction, allow a human
being to come to harm. [. . .] Two, a robot must obey the orders given it by human
beings except where such orders would conflict with the First Law. [. . .] And three,
a robot must protect its own existence as long as such protection does not conflict
with the First or Second Laws.

Asimov’s early ideas, including his vision of human‒robot coexistence, paved the
way for the concept of safety in robotics. Asimov’s Three Laws, formulated as basic
guidance for limiting the behavior of autonomous robots in human environments,
are enshrined, for example, in the Principles of Robotics of the UK’s Engineering
and Physical Sciences Research Council (EPSRC)/Art and Humanities Research
Council (AHRC), published in 2011.26 These principles lay down five ethical
doctrines for developers, designers and end users of robots, together with seven
high-level statements for real-world applications.

Shortly before the vast technological advancements in the second half of the
twentieth century began, the first rudimentary telerobotic system was developed in
1945 by Raymond Goertz at the Argonne National Laboratory.27 It was designed to
control, from a shelter, a robot that could safely handle radioactive material. From
the 1950s on, the first complex electronics were developed, further optimized
and miniaturized, and modern concepts of mechanics were created. The first

24 Beyer, Grace Hopper and the Invention of the Information Age (BookBaby 2015).
25 Asimov, Astounding Science Fiction, chapter “Runaround” (Street & Smith 1942).
26 Prescott and Szollosy, “Ethical Principles of Robotics” (2017) 29(2) Connection Science 119‒123.
27 Goertz and Thompson, “Electronically Controlled Manipulator” (1954) 12 Nucleonics (US)

46‒47.
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mechatronic machines, such as fully automated electric washing machines28 or the
first industrial robots,29 were invented, and the concept of AI was further developed.
Through the mathematical work of Jacques S Denavit (1930‒2013), Richard Harten-
berg (1907‒1997) and Rudolf August Beyer (1892‒1960), one of the most important
methods of calculating the direct kinematics of robots was developed around the
year 1955.30 This matrix calculus, known today as the Denavit‒Hartenberg Conven-
tion, calculates how the joints of a robot have to be adjusted in order for it to be able
to approach a specific point in space. In the same year, John McCarthy (1927‒2011),
an American cognitive computer scientist and inventor of the famous programming
language Lisp, introduced the term “artificial intelligence.”31 He also organized the
famous Dartmouth Conference in the summer of 1956, which is considered the
birth of AI as a research field.
Marvin Lee Minsky (1927‒2016) was an American mathematician and cognitive

scientist as well as a colleague of McCarthy in the same AI working group at
Massachusetts Institute of Technology (MIT).32 He is known for the invention of
head-mounted graphical displays and for his work in artificial neural networks.
Together with Seymour Papert, he wrote the book Perceptrons, which is still
required reading for the analysis of artificial neural networks. He introduced several
famous AI models and developed SNARC, the first neural network simulator. The
late 1950s can also be seen as an important opening stage in the modern theory of
optimization and optimal control. The field of optimal control deals with the
process of calculating appropriate control laws for a given system in order to meet
certain desired optimality criteria. In this context, at the end of the 1950s the
mathematicians Lev Semyonovich Pontryagin (1908‒1988) and Richard E Bellman
(1920‒1984) published a series of new fundamental optimization methods, such as
Pontryagin’s maximum principle,33 Bang-Bang control,34 the Hamilton‒Jacobi‒
Bellman equation or the Bellman equation for dynamic programming,35 which
changed the entire field of mathematical optimization and control. These advances
continue to this day to have a major influence on various practical areas from
engineering to economics.

28 Milecki, “45 Years of Mechatronics–History and Future” in Szewczyk, Zieliński, and Kalic-
zyńska (eds), Progress in Automation, Robotics and Measuring Techniques in Szewczyk,
Zieliński, and Kaliczyńska (eds), Progress in Automation, Robotics and Measuring Techniques
(Springer 2015).

29 Nilsson (n 5).
30 Denavit and Hartenberg, “A Kinematic Notation for Lower-Pair Mechanisms Based on

Matrices” Trans. of the ASME (1955) 22 Journal of Applied Mechanics 215‒221.
31 Nilsson (n 5).
32 Ibid.
33 Boltyanskii, Gamkrelidze, and Pontryagin, “Towards a Theory of Optimal Processes”

(in Russian) (1956) 110(1) Reports Acad Sci USSR 1–10.
34 Pontryagin et al., Mathematical Theory of Optimal Processes (in Russian) 1961.
35 Bellman, Dynamic Programming, vol 295 (Rand Corp Santa Monica CA 1956); Bellman,

Dynamic Programming (Princeton University Press 1957).
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In 1957 the first autonomous underwater vehicle, the Self-Propelled Underwater
Research Vehicle (SPURV), was invented at the Applied Physics Laboratory at the
University of Washington by Stan Murphy, Bob Van Wagennen, Wayne Nodland,
and Terry Ewart;36 this system was used to measure the physical properties of the sea.

A few years later, in 1960, electrical engineer and mathematician Rudolf Emil
Kalman (1930‒2016) developed the Kalman filter in cooperation with Richard
S Bucy and Ruslan L Stratonovich.37 This mathematical algorithm is capable of
predicting system behavior based on a dynamic model and suppressing additive
noise at the same time. In the context of this algorithm Kalman introduced two new
system analysis concepts: system observability and controllability.38 The concept of
observability analyzes how well the internal states of a system can be calculated by
measuring its output. Controllability measures how an input signal changes the
internal states of a system. These system analysis methods are crucial for the design
of a Kalman filter, but also provide very important system information for the design
of stable control loops in robots, process machines or driver assistance systems in
cars. The Kalman filter itself is still one of the most important signal-processing tools
in modern robotics, but is also used in various other disciplines such as AI, naviga-
tion, communications and macroeconomics.

The basic theories of robotics continued to expand, with developments in hard-
ware and control, such as electric motor and sensor systems. In 1961 Joseph Engel-
berger (1925‒2015), an American entrepreneur, physicist and engineer known as the
father of industrial robots, developed, together with his company, the first industrial
robot, Unimate.39 A few years later, in 1964, a machine-learning algorithm called
support-vector machine (SVM) was invented by mathematicians Vladimir Naumo-
vich Vapnik and Alexey Yakovlevich Chervonenkis (1938‒2014).40 The original
SVM algorithm is a linear classifier for pattern recognition. In 1992 the original
method was extended to a nonlinear classifier by applying the so-called kernel
trick;41 the algorithm’s final stage of development, still used today, was reached in
1995.42

36 Van Wagenen, Murphy, and Nodland, An Unmanned Self-Propelled Research Vehicle for Use
at Mid-Ocean Depths (University of Washington 1963); Widditsch, “SPURV-The First Decade”
No APL-UW-7215, Washington University Seattle Applied Physics Lab 1973.

37 Kalman, “A New Approach to Linear Filtering and Prediction Problems” Transaction of the
ASME (1960) 82(1) Journal of Basic Engineering 35–45.

38 Kalman, “On the General Theory of Control Systems” (1960) Proceedings First International
Conference on Automatic Control, Moscow, USSR.

39 Nilsson (n 5).
40 Chervonenkis, Early History of Support Vector Machines. Empirical Inference (Springer 2013);

Vapnik and Chervonenkis, Об одном классе алгоритмов обученияраспознаванию
образов (On a Class of Algorithms of Learning Pattern Recognition) (1964) 25(6) Avtomatika
i Telemekhanika.

41 Boser, Guyon, and Vapnik, “A Training Algorithm for Optimal Margin Classifiers” Proceedings
of the Fifth Annual Workshop on Computational Learning Theory (ACM 1992) 144–152.

42 Cortes and Vapnik, “Support-Vector Networks” (1995) 20(3) Machine Learning 273‒297.
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Back in 1966, the computer program ELIZA was developed and introduced at
MIT’s Artificial Intelligence Laboratory under the direction of Joseph Weizen-
baum.43 ELIZA is a program for natural language processing that uses pattern
matching and substitution methodologies to demonstrate communication between
humans and machines by simulating a coherent conversation. Three years later
American engineer Victor Scheinman (1942‒2016) designed the first successful
electrically operated, computer-controlled manipulator.44 This robotic arm had six
degrees of freedom, and was light, multi-programmable and versatile in its motion
capabilities. Later on, the robot was amended for industrial uses such as spot welding
for the automotive industries. In the field of machine learning, David E Rumelhart,
Geoffrey E Hinton, and Ronald J Williams introduced the modern version of the
backpropagation algorithm in 1968.45 This method is used in artificial neural
networks to train networks and is a standard tool in this field today.

1.1.2 The Modern Era of Robotics and AI

The modern era of robotics and AI is characterized by ever greater miniaturization
of electronics and mechatronics and an enormous increase in computing power,
developments that have led to more practical robotic systems. The first humanoid
robot to mimic human motion, the WaBot 1, was introduced by a Japanese research
team from Waseda University in 1973.46 WaBot 1 had very basic capabilities to walk,
grab objects and transport them from one place to another. In 1978 Unimation
released a new and more versatile version of the Unimate, called the Programmable
Universal Machine for Assembly (PUMA).47 PUMA has become very popular in
industry and academia and over time has become an archetype for anthropo-
morphic robots. It remains widely used today as a reference example and benchmark
system in academic robotics books and publications worldwide.48

In the 1980s the modern field of reinforcement learning was founded by combin-
ing different approaches from various disciplines. The starting point was the idea of
trial-and-error learning, which was derived from psychological studies on animal
learning dating from the early eighteenth century.49 Reinforcement is the expression

43 Nilsson (n 5).
44 Scheinman, “Design of a Computer Manipulator” Stanford AI Memo AIM-92, 1 June 1969.
45 Rumelhart, Hinton, and Williams, “Learning Representations by Back-Propagating Errors”

(1986) 323 Nature 533–536.
46 Kato, “of WABOT 1” (1973) 2 Biomechanism 173‒214.
47 Beecher, Puma: Programmable Universal Machine for Assembly, Computer Vision and Sensor-

Based Robots (Springer 1979).
48 Corke, “Robot ArmKinematics” inCorke (ed),Robotics, VisionandControl (Springer 2017);Çakan

and Botsali, “Inverse Kinematics Analysis of a Puma Robot by using MSC Adams” The VIth
International Conference Industrial Engineering and Environmental Protection 2016 193–228.

49 Woodworth, Experimental Psychology (Holt 1938), Department of Psychology Dartmouth
College Hanover, New Hampshire 1937; Woodworth, “Experimental Psychology (Rev edn)”
(1954) 18(5) Journal of Consulting Psychology 386‒387.
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of a certain behavior pattern in connection with an interaction of an animal with its
environment. The animal receives different stimuli in temporal correlation with its
behavior, causing certain behavior patterns to persist even after the stimuli
have subsided. From the technical point of view, this process can be described as
an optimization problem with some stochastic features in terms of incomplete
knowledge of the whole system. A further development of the optimal control
framework already mentioned can be used to describe and solve such a system.
One of the first to implement this idea was Witten, with his adaptive optimal control
approach.50

Another important aspect of the rise of the modern theory of reinforcement
learning is temporal-difference (TD) learning, the origins of which lie in animal
learning psychology. It can be seen as either a subclass or an extension of the general
reinforcement learning idea. In contrast to the standard reinforcement approach, in
TD learning the learner’s behavior or strategy is adjusted not only after receiving a
reward, but after each action before receiving it, based on an estimate of an expected
reward with the help of a state value function. The algorithm is thus controlled by
the difference between successive estimates. In 1959 Arthur Samuel implemented
this approach for the first time in his checkers-playing program.51

In 1983, a further development of this reinforcement learning algorithm, the so-
called actor‒critic architecture, was applied to the control problem of pole balan-
cing.52 The year 1989 can be described as the year of full integration of optimal
control methods with online learning. The time difference and optimal control
methods were fully merged in this year with Chris Watkin’s development of the
Q-Learning algorithm.53

In addition to reinforcement learning, the 1980s saw seminal work in robot
manipulator control. Early in the decade John J Craig and Marc Raibert published
a new hybrid control technique for manipulators. Their system made it possible to
simultaneously satisfy the position and force constraints of trajectories, enabling
compliant motions of robot manipulators.54 In the mid-1980s, Neville Hogan
developed impedance control for physical interaction,55 which was an important

50 Witten, “An Adaptive Optimal Controller for Discrete-Time Markov Environments” (1977)
34(4) Information and Control 286‒295.

51 Samuel, “Some Studies in Machine Learning Using the Game of Checkers” (1959) 3(3) IBM
Journal of Research and Development 210‒229.

52 Barto, Sutton, and Anderson, “Neuronlike Adaptive Elements That Can Solve Difficult
Learning Control Problems” (1983) 5 IEEE Transactions on Systems, Man, and Cybernetics
834‒846.

53 Watkins, Learning from Delayed Rewards PhD Thesis, King’s College 1989.
54 Raibert and Craig, “Hybrid Position/Force Control of Manipulators” (1981) 103(2) Journal of

Dynamic Systems, Measurement, and Control 126‒133.
55 Hogan, “Impedance Control: An Approach to Manipulation: Part I – Theory, Part II –

Implementation, Part III – Applications” (1985) 107 Journal of Dynamic Systems, Measurement
and Control 1‒24.
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step toward enabling the safe human‒robot interactions of today. In 1986,56

Oussama Khatib published his work on real-time obstacle avoidance for manipula-
tors and mobile robots, which was the beginning of time-varying artificial potential
fields for collision avoidance. This concept made real-time robot operations in
dynamic and complex environments possible. A year later Khatib developed a new
operational space framework for unified motion and force control.57 This new
mathematical formulation of robotic manipulators made the modeling and control
of these nonlinear dynamic systems much easier to understand.
With the introduction of its P1 system, Honda entered humanoid research and

development in the early 1990s.58 P1 was 191.5 cm tall, weighed 175 kg and was able
to walk at a speed of up to 2 km/h with his battery lasting for around 15 minutes.
Further developments in the field of telerobotics led to the success of the Rotex
mission in 1993, in which researchers around Gerd Hirzinger developed the first
Earth-controlled space robot.59

In 1995 Ernst Dickmanns and his team pioneered autonomous driving, conduct-
ing a journey from Munich in Germany to Odense in Denmark and back (approxi-
mately 1,758 km) as part of the PROMETHEUS project. They used a Mercedes-
Benz S-class vehicle converted for autonomous driving. About 95% of this distance
could be covered completely autonomously, a milestone in autonomous driving.60

In the following years, IBM developed the Deep Blue system.61 Deep Blue was an
intelligent computer program designed for playing chess. It is known for being the
first computer system that, with the physical support of a human to execute the
actual moves, won a game of chess against reigning world champion Garry Kasparov
under regular time rules.
Following on from the pioneering work of RC Smith and P Cheeseman in 1986

62

and the research group of Hugh F Durrant-Whyte in the early 1990s,63 the next steps
toward autonomous propulsion systems were taken at the beginning of the twenty-
first century with the foundations of modern simultaneous localization and mapping
(SLAM) algorithms for vehicle or robot navigation. As part of this development, in
1998 Wolfram Burgard and colleagues published a new software architecture for an

56 Khatib, Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. Autonomous
Robot Vehicles (Springer 1986).

57 Khatib, “A Unified Approach for Motion and Force Control of Robot Manipulators: The
Operational Space Formulation” (1987) 3(1) IEEE Journal on Robotics and Automation 43‒53.

58 Hirose and Ogawa, “Honda Humanoid Robots Development” (2006) 365(1850) Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 11‒19.

59 Hirzinger et al., “Sensor-Based Space Robotics-ROTEX and Its Telerobotic Features” (1993)
9(5) IEEE Transactions on Robotics and Automation 649‒663.

60 Dickmanns, “Computer Vision and Highway Automation” (1999) 31(5–6) Vehicle System
Dynamics 325‒343; Dickmanns,“Vehicles Capable of Dynamic Vision” (1997) 97 IJCAI.

61 Nilsson (n 5).
62 Thrun, Burgard, and Fox, Probabilistic Robotics (The MIT Press 2005).
63 Ibid.
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autonomous tour-guide robot used in the Deutsche Museum in Bonn.64 These
innovative algorithms for autonomous navigation provided the capability for the
robot to guide museum visitors quickly and safely through a large crowd. In
2005 Thrun and his Stanford University racing team won the DARPA Grand
Challenge with their Stanley autonomous driving system, showing the capabilities
of SLAM. Their self-driving car completed a 212-kilometer off-road circuit in 6 hours
and 54 minutes.65 Nowadays, SLAM algorithms are implemented in some con-
sumer robot vacuum cleaners like the Roomba system from iRobot.66

In the year 2000 a significant technological step forward in humanoid robots
came with Honda’s introduction of its latest humanoid system, Asimo.67 Asimo had
basic abilities to walk and socially interact with people. In the same year Intuitive
Surgical released the Da Vinci robot-assisted surgical system for usage in teleopera-
tive minimally invasive surgery, based on development work at Stanford Research
Institute.68 To this day, this system and its successors are used in hospitals around the
world in a range of surgical procedures ranging from hysterectomies in gynecology
to general surgery.69 In 2002, the German Aerospace Center (DLR) introduced the
lightweight robot III (LWR III), which marked a technological leap forward in the
field of lightweight robotics.70 Its new design paradigms enabled direct measure-
ments and active damping of joint vibrations, together with almost immediate
detection of collisions with the environment.71 The robot was also able to carry
and manipulate loads up to its own weight.

Around the same time, the Mars Exploration Rover (MER) mission was
launched, showing new possibilities in telerobotics and space robotics.72 The year
2010 was the year that drones became commercially available with the launch by

64 Burgard et al., “The Interactive Museum Tour-Guide Robot” Aaai/iaai. 1998.
65 Thrun et al., “Stanley: The Robot that Won the DARPA Grand Challenge” (2006) 23(9)

Journal of Field Robotics 661‒692.
66 Knight, “With a Roomba Capable of Navigation, iRobot Eyes Advanced Home Robots” (2015)

MIT Technology Review. https://www.technologyreview.com/2015/09/16/247936/the-roomba-
now-sees-and-maps-a-home/. Date of consultation: May 2020.

67 Hirose and Ogawa (n 58).
68 Hockstein et al., “A History of Robots: From Science Fiction to Surgical Robotics” (2007) 1(2)

Journal of Robotic Surgery 113‒118.
69 Leung and Vyas, “Robotic Surgery: Applications” (2014) 1(1) American Journal of Robotic

Surgery 1–64.
70 Hirzinger et al., “DLR’s Torque-Controlled Light Weight Robot III-Are We Reaching the

Technological Limits Now?” (2002) 2 Proceedings 2002 IEEE International Conference on
Robotics and Automation (Cat No 02CH37292), Washington, DC 1710‒1716; Albu-Schäffer,
Haddadin, Ott, Stemmer, Wimböck, and Hirzinger, “The DLR Lightweight Robot: Design
and Control Concepts for Robots in Human Environments” (2007) 34(5) Industrial Robot: An
International Journal 376‒385.

71 Haddadin et al., “Collision Detection and Reaction: A Contribution to Safe Physical Human‒
Robot Interaction” 2008 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, 2008, 3356–3363.

72 Squyres, Roving Mars: Spirit, Opportunity, and the Exploration of the Red Planet (Hachette
Books 2005).
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French company Parrot of its Parrot AR Drone, the first ready-to-fly drone available
on the open market.73

After years of basic research in the field of safe physical human‒robot interaction,
ranging from standardized dummy crash tests to injury analysis of human‒robot
impacts by soft-tissue experiments, in 2011 Sami Haddadin published a comprehen-
sive study of how robots could for the first time meet Asimov’s First Law in everyday
situations.74 The study developed the injury analysis, design paradigms and
collision-handling algorithms to ensure that robots could interact safely with
humans. It laid the foundations for the essential international safety standardization
and regulation of physical human‒robot interaction, paving the way for robotics in
everyday life.
In the same year, a new AI system was introduced by IBM.75 Watson was the first

computer system that could answer questions on the American quiz show Jeopardy!
In 2013, IBM made the Watson API available for software application providers. The
system is frequently used today as an assistive system in medical data analysis, for
example in cancer research.76

1.1.3 A Big Step Forward

The year 2012 saw the revival of deep neural networks (DNNs), also referred to as
deep learning, which are further developments from the standard neural network
approaches.77 The idea of DNN was first introduced in 1965 by Oleksiy Ivakhnenko
and Valentin Lapa.78 However, it took decades and substantial progress in comput-
ing technology before this idea could be used in well-functioning applications. In
2012 this stage was reached by Geoffrey Hinton and his team when their algorithm
won the image or object recognition competition ImageNet.79 Other researchers
such as Yoshua Bengio and Yann LeCun also contributed significant papers to
progress in deep learning.80

73 Bristeau et al., “The Navigation and Control Technology inside the ar. drone micro uav” (2011)
44(1) IFAC Proceedings 1477‒1484.

74 Haddadin, Towards Safe Robots: Approaching Asimov’s 1st Law, PhD Thesis, RWTH Aachen
2011; published by Springer 2014.

75 Markoff, “Computer Wins on ‘Jeopardy!’: Trivial, It’s Not” New York Times (16 February 2011).
76 Somashekhar et al., “Watson for Oncology and Breast Cancer Treatment Recommendations:

Agreement with an Expert Multidisciplinary Tumor Board” (2018) 29(2) Annals of Oncology
418‒423.

77 Parloff, “Why Deep Learning Is Suddenly Changing Your Life” (2016) Fortune.
78 Ivakhnenko and Lapa, “Cybernetic Predicting Devices” (1965) CCM Information Corporation.
79 Krizhevsky, Sutskever, and Hinton, “Imagenet Classification with Deep Convolutional Neural

Networks” (2012) Advances in Neural Information Processing Systems.
80 LeCun, Bottou, Bengio, and Haffner, “Gradient-Based Learning Applied to Document Rec-

ognition” (1998) 86(11) Proceedings of the IEEE 2278‒2324; LeCun, Bengio, and Hinton,
“Deep Learning” (2015) 521(7553) Nature 436.
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Boston Dynamics, founded by ex-MIT professor Marc Raibert, first made the
news in 2012 with its four-legged robot BigDog.81 BigDog was a dynamically stable
four-legged military robot that could withstand strong physical hits and remain
stable. In 2013 Boston Dynamics unveiled their two-legged humanoid robot, Atlas.82

Its humanoid shape was designed to allow it to work with tools and interact with the
environment. The system has since been further developed and equipped with
increasingly complex acrobatic skills.

In the same year a team from Johns Hopkins University and DLR conducted a
telepresence experiment in which a Da Vinci master console in Baltimore, USA
controlled a DLR lightweight robot in Oberpfaffenhofen, Germany, over 4,000
miles away.83 This marked a milestone in telerobotics by combining telepresence
via standard internet with the slave robot system’s local AI capabilities.

In 2014, a major step forward in certification and standardization of personal
care robot safety requirements was taken with the publication of the ISO 13482

standard, a catalogue of requirements, protective measures and guidelines for the
safe design and use of personal care robots, including mobile servant robots, physical
assistant robots and person-carrier robots, generally earthbound robots for nonmedi-
cal use.84

The next step in software-based AI was demonstrated a year later, in 2015, by
DeepMind’s AlphaGo system.85 AlphaGo’s learning algorithms included a self-
improvement capability through which it could master highly complex board
games, such as Go, chess and shogi, by playing the games with itself.

By 2016, virtual assistants had finally arrived in everyday life.86 In 2011, Apple
started to deliver smartphones with a beta version of their virtual assistant Siri.
Further systems have been launched, including Cortana from Mirosoft, Alexa from
Amazon and finally Google Assistant from Google. Virtual assistants in general
are designed to perform tasks given by a user, usually by voice command, and
reflect current state-of-the-art speech-based human‒machine communication
technologies.

81 Playter, Buehler, and Raibert, “BigDog, Unmanned Systems Technology VIII” vol 6230 Inter-
national Society for Optics and Photonics, 2006.

82 Fukuda, Dario, and Yang, “Humanoid Robotics – History, Current State of the Art, and
Challenges” (2017) 13(2) Science Robotics, eaar4043.

83 Bohren, Papazov, Burschka, Krieger, Parusel, Haddadin, Shepherdson, Hager, and Whitcomb,
“A Pilot Study in Vision-Based Augmented Telemanipulation for Remote Assembly over High-
Latency Networks” (2013) Proceedings of IEEE ICRA 3631‒3638.

84 ISO, ISO 13482:2014: Robots and Robotic Devices ‒ Safety Requirements for Personal Care
Robots (International Organization for Standardization, 2014); Jacobs and Virk, “ISO 13482:
The New Safety Standard for Personal Care Robots” ISR/Robotik, 41st International Sympo-
sium on Robotics 2014.

85 Silver et al., “Mastering the Game of Go without Human Knowledge” (2017) 550 Nature
354‒359.

86 Goksel and Emin Mutlu, “On the Track of Artificial Intelligence: Learning with Intelligent
Personal Assistants” (2016) 13(1) Journal of Human Sciences 592‒601.
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The next level of underwater robotics and telerobotics was introduced by Khatib
and his research team at Stanford University in 2016. The teleoperated underwater
humanoid robot system OceanOne demonstrated its bimanual manipulation cap-
abilities in an underwater research mission to study the wreck of La Lune, King
Louis XIV’s flagship, off the Mediterranean coast of France in 2016.87 In 2017 Franka
Emika’s human-centered industrial robot system Panda was introduced.88 This next-
generation industrial robot is the first sensitive, networked, cost-effective and adap-
tive tactile robot. It is operated via simple apps on personal devices like tablets or
smartphones. This first mass-produced robot is self-assembled, showing the potential
for versatile manufacturing and marking the first step into the future of self-
replicating machines.89

One year later Skydio launched its Skydio R1 drone, a further step in the direction
of intelligent flying robots. This system has stable flying capability in windy environ-
ments, can follow its user reliably and while following avoids obstacles in its way.90

A new concept in neural networks was also published in 2018.91 First-order
principles networks (FOPnet) use basic physical assumptions to build a physically
informed neural network. With the application of this new concept, it has already
been shown that both the body structure and dynamics of a humanoid can be
learned on the basis of basic kinematic laws as well as the balance of force and
moments acting on this kind of multi-body system. This can be regarded as the first
step toward machines able to learn self-awareness.
The lighthouse initiative Geriatronics from the School of Robotics and Machine

Intelligence at the Technical University of Munich was launched in 2018 with the
aim of developing robot assistants for independent living for the elderly.92 This
initiative is sustainably supported by the Bavarian State Ministry of Economic
Affairs, Energy and Technology and LongLeif GaPa Gemeinnützige GmbH.
In early 2019, Haddadin, Johannsmeier, and Ledezma published a paper in which

they discussed a concept they called Tactile Internet as the next-generation Internet
of Things.93 They propose that 5G communication infrastructures combined with
rich tactile feedback and advanced robotics provide the potential for a meaningful

87 Khatib et al. “Ocean One: A Robotic Avatar for Oceanic Discovery” (2016) 23(4) IEEE Robotics
& Automation Magazine 20‒29.

88 Franka Emika GmbH, Franka Emika <https://www.franka.de/>, 17 January 2019.
89 Franka Emika GmbH, “Franka Emika R:Evolution” <https://www.youtube.com/watch?v=_

FbhNsRjqdQ, 04/05/2019>.
90 Skydio Inc, Skydio <https://www.skydio.com>, 4 May 2019.
91 Díaz Ledezma and Haddadin, “FOP Networks for Learning Humanoid Body Schema and

Dynamics” (2018) 2018 IEEE-RAS 18th International Conference on Humanoid Robots
(Humanoids), Beijing, China 1‒9.

92 Technische Universität München MSRM – Munich School of Robotics and Machine Intelli-
gence, “Lighthouse Initiative Geriatronics” <https://www.msrm.tum.de/en/geriatronics/>,
5 May 2019.

93 Haddadin, Johannsmeier, and Díaz Ledezma, “Tactile Robots as a Central Embodiment of the
Tactile Internet” (2019) 107(2) Proceedings of the IEEE 471‒487.
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and immersive connection to human operators via advanced “smart wearables” and
Mixed Reality devices, effectively making real avatars a reality.

1.2 key technologies in modern robotics and

artificial intelligence

This section reviews the progress in key technologies that has paved the way for
robotics and AI technologies to integrate perception, AI and robotics into a trust-
worthy, embodiment-aware artificial intelligence system driving intelligent robots.

1.2.1 Trustworthy Artificial Intelligence

Artificial intelligence (AI) is a superordinate term for the discipline that creates
intelligent algorithms and systems, which can be software-based or actual physical
systems, or combinations of the two. An AI system uses sensors to perceive its
surroundings, may use actors to interact with it, and collects and analyzes large
amounts of partly unstructured data, processing and interpreting it to uncover latent
knowledge and skills. Using this knowledge, it supports decision-making to reach the
desired objectives of humans, for example, by acting as a software-based advisor or by
adjusting its embodiment with actuators. AI systems are capable of learning from
their previous actions and the corresponding responses, making them self-
optimizing. AI has wide fields of application and great potential to help with the
challenges of, for example, improving medical diagnostics and therapy, finding
ethically acceptable ways to cope with demographic change and reducing the effects
of environmental problems such as climate change or pollution. Other useful
applications are promoting sustainability in everyday life, for example by optimizing
transport and logistics, promoting sustainable agriculture, or reducing strenuous
physical labor in the workplace.

In order for AI to find its way into people’s everyday lives as a useful helper, it is
important that this technology is trustworthy. AI is often used where humans reach
their limits, such as when analyzing and interpreting large amounts of unstructured
data. Trust in this context means that the human can rely on the correctness and
unbiasedness of the resulting information, and is therefore able to make informed
decisions. Among the many examples of the importance of trust in the evaluation of
data by AI are the security of private data, human rights, respect for the rule of law
and the preservation of democratic freedoms. If AI does not consider these aspects,
its output may lead, among other things, to diversity and inclusion issues. In a
nutshell, trustworthy AI has to be human centered and have human values and well-
being at its core. It has to comply with human rights, the rule of law and democratic
freedoms. From a technological point of view, its robustness and reliability need to
be guaranteed, which has significant effects on transparency and explainability.
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1.2.2 Safety in Physical Human‒Robot Interaction

Safety in robotics and AI has been and still is a widely researched topic. For a very
long time, it was assumed that safety between humans and robots could only be
ensured by installing protective safety systems on or near the robot, such as a safety
fence for workspace segregation. However, such protective enclosures are very
obstructive in general physical and intuitive human‒robot interactions and real
collaboration. The practical goal is to enable the safe coexistence of humans and
robots in the same workspace, where interactions may occur intentionally and safely.
A variety of potential risks can arise that depend on the dynamically changing system
state and its environment.
The first approach to safe robotics was to quantify mechanical hazards inducing

potential injuries during human‒robot interactions. Dummy crash-test and soft-
tissue collision experiments were performed. Impact scenarios can be simulated
and analyzed using information from impact experiments already carried out in
areas such as injury biomechanics or forensics, combined with suitable mathemat-
ical models. Characteristic force profiles can then be defined for specific parts of the
human body representing targeted physical collisions between a human and a robot.
These force profiles in turn serve as the basis for defining safety limits for robot
velocities so that safe human‒robot interaction is guaranteed.94

Based on injury analyses from various impact scenarios with robots, international
safety standards for human‒robot interaction were devised, such as the ISO 13482

standard. This is the first non-industrial standard to specify safety requirements for
personal care robots such as mobile servant or physical assistant robots. It defines the
guidelines for safe design and general safety measures for the operation of earth-
bound nonmedical robots in non-industrial applications. However, there are still
many research questions to be solved before complete standardization of robot safety
is achieved.95

1.2.3 Robot Mechatronics As AI Embodiment

The physical parts of a robotic system are an example of an AI embodiment. The
physical body, which is the mechatronic design of such systems, must be specifically
designed for safe physical human‒robot interaction, which requires human-
centered development for optimal security and performance in human-centered
environments. Research in this field has led to new and innovative design paradigms
based on active and/or passive compliance in combination with lightweight design
principles.

94 Haddadin and Croft, “Physical Human‒Robot Interaction” in Bruno, Siciliano, Oussama and
Khatib (eds) Springer Handbook of Robotics (Springer 2016) 1835–1874.

95 For a deeper insight into this topic, please refer to Haddadin and Croft (n 94).
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Lightweight concepts involve the whole system and the moving parts are designed
to be as light as possible to reduce possible collision metrics. Generally, there are
two major approaches, the mechatronic approach and the tendon-based approach.96

In both, the robot structure consists of light and strong materials such as light metal
alloys or composites. In order to optimize power consumption and to meet safety
standards, both motors and moving parts are designed to have low inertia.

The mechatronic approach is based on a highly modular structure. To achieve
this, the majority of the robot’s electronics are integrated into its joints. This
modularity enables the development of highly complex, self-contained robotic
systems that can be controlled efficiently. An important feature of the motors used
in this approach is that they can generate high torque, enabling the system to act and
react fast and dynamically. One characteristic that stands out in the mechatronic
approach is the use of a redundant sensor. Normally only motor-position sensors are
used, but with this concept, additional sensors for measuring torque, force or current
are integrated into the system. These additional sensors can be used to increase the
measuring accuracy and/or to provide certain safety features.

In contrast to the mechatronic approach, tendon-based robots use remotely located
motors to reduce weight. The motors are connected to the parts to be moved via a
cable. One disadvantage of this approach is that the motors required to move such a
system are quite large: the weight of the moving parts is reduced but the total weight
of the system remains relatively high. Further information on robot design concepts
and other important classes of robot structures can be found in the literature.97

1.2.4 Multimodal Perception and Cognition

Perception technologies are the artificial sense organs of machines and are indis-
pensable for interacting with the world. The human example shows that to cope
well with dynamically changing environments in daily life it is also important to use
more than one sense at a time. Multimodal perception combines, for example,
tactile with visual perception. Three common types of perception in close physical
human‒robot interaction and general robotics are explained in the following
sections: force/torque sensing, tactile perception and visual perception.98

Taken together, standard proprioceptive position sensing and force/torque meas-
urement provide a sense of touch to sensitively grasp and hold very fragile objects. The

96 Bicchi and Tonietti, “Fast and Soft Arm Tactics: Dealing with the Safety Performance Trade-
off in Robot Arms Design and Control” (2004) 11 IEEE International Conference on Robotics
and Automation Magazine; Albu-Schäffer et al., “Soft Robotics” (2008) 15(3) IEEE Robotics
and Automation Magazine 20‒30.

97 Khatib, “Inertial Properties in Robotic Manipulation: An Object-Level Framework” (1995) 14(1)
International Journal of Robotics Research 19‒36; Bicchi and Tonietti (n 96); Haddadin and
Croft (n 94).

98 Siciliano and Khatib (eds) Springer Handbook of Robotics (Springer 2016).
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most commonly used sensing techniques are strain gauges within a measuring bridge
or implicit deflection-based measurement. This perceptual technique enables force-
regulated manipulations and sensitive haptic interactions with humans.
The tactile perception approach was inspired by the properties of human skin.

Here, the entire robot is enveloped in a tactile skin consisting of many small-
networked sensor elements. In contrast to the previous type of sensing, contacts
occurring in close proximity to each other can be specifically measured by the
sensor skin during the completion of a task. The skin can give the robots significant
sensory capabilities, but also increases complexity and computational cost. Distrib-
uted data processing could help here. If each sensor element was equipped with its
own microcontroller, which prepared the sensor data in such a way that the central
computer only has to process simple high-level signals, the high computing effort for
the main controller could be reduced. Such systems still require a lot of research
work in order to be fully mature and robust.
Visual perception is a quite common non-contact sensor technology, often used

for the autonomous execution of robotic tasks without interaction with humans or
for preparatory activities, such as identifying humans or objects in the environment,
in connection with a human‒robot interaction. One technique in this field, marker-
based visual sensing, is used as a high-resolution tracking system, for example to
navigate drones safely through a room. These systems usually consist of infrared
cameras, which measure the positions of the highly reflective markers in a room
even during very fast movements. The use of such a system is not always practicable
or universally applicable, since markers must always be positioned and calibrated
beforehand. In addition, this principle is often sensitive to interference, for example
from sunlight, or has problems with sensor shading. Another type of visual percep-
tion is the use of inexpensive 3D RGB depth cameras in combination with AI
algorithms for the visual tracking of objects or people or for general navigation in
space during everyday operations. However, from a robustness and performance
point of view, visual perception with 3D RGB depth cameras still needs several years
of research before it can be used reliably in all everyday conditions.

1.2.5 Navigation and Cognition

Research into autonomous navigation has been a high priority for several decades.99

Particularly in the field of mobility and transport or logistics, it promises to finally
give robotic systems such as autonomous vehicles the ability to relieve people of the
mostly strenuous and tiring work at the wheel of vehicles. In order to achieve
autonomous navigation capability in space, an intelligent robotic system needs
robust algorithms for self-localization, route planning and mapping as well as map
interpretation.Self-localization is the ability of a robot to determine its own position

99 Nilsson, “Shakey the Robot” SRI International – Technical Note 323, 1984.
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in the reference system. There are several techniques to do this as Global Position-
ing System (GPS)-based techniques are quite accurate for outdoor self-localization
but not suitable for indoor applications. For indoor navigation, visual perception-
based techniques combined with inertial sensors are more promising. Once the
robot has its position, it must plan the route to the target position. The first step is to
calculate the distance between the robot’s position and its destination. The next step
is map generation, which in general terms means the analysis of the environment
between the robot’s own position and the destination. The subsequent interpretation
of this generated map is crucial in order to execute the overall task of movement.
Here, the algorithm performs a semantic recognition of the environment, for
example recognizing obstacles on the map as non-movable areas between the robot’s
own position and the target.

A more specific application area is indoor navigation and cartography without a
comprehensive decentralized tracking system. A quite simple and robust method of
solving the navigation problem is the use of line markings on the ground that are
recognized and tracked by the robotic system’s sensors and controls. This is a rather
static method, since the predefined paths ‒ the environment map ‒ are fixed on an
abstract level. Dynamic changes, which can occur frequently when interacting with
humans, are difficult to update online with this approach.

The SLAM algorithm100 is more suitable for use in environments with fast
dynamically changing conditions. This algorithm can simultaneously determine
the robot’s own position and create an online map of the previously unknown
environment using sensing systems such as 3D RGB depth cameras or LIDAR (laser
detection and ranging) systems.101 The robot performs relative measurements of its
own motion and of features in its environment to obtain the necessary information
for navigation. Both measurements are often noisy due to disturbances, so the
SLAM algorithm now tries to reconstruct a map of the environment from these
noisy measurements and to calculate the distance the robot has covered during the
measurement.102 The biggest issue with using SLAM is that the complexity of
constantly changing dynamic environments leads to a high computing effort, thus
the real-time capability of the overall system cannot always be guaranteed.

1.2.6 Modern Control Approaches in Robotics

The goal of modern control in robotics is to develop approaches that enable the
robot to act optimally on its own but also to handle potentially physical interactions

100 Thrun, Burgard, and Fox (n 62).
101 Henry, Krainin, Herbst, Ren, and Fox, “RGB-D Mapping: Using Depth Cameras for Dense

3D Modeling of Indoor Environments” (2012) 31(1) The International Journal of Robotics
Research 1–28.

102 For more detailed information on how the SLAM algorithm works, see Thrun, Burgard, and
Fox (n 62).
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with humans gently and in a human-centered way. A very common approach to
control physical interaction is impedance control or compliance control.103 This
approach is based on controlling the connection between force and position on
interaction ports, such that the robot has the ability to interact compliantly with the
environment. For this purpose, the contact behavior between the robotic system and
the object it is to interact with is modeled by a mass-spring-damper system, whereby
the controller can adjust the stiffness and damping of this system. Classical imped-
ance control quickly reaches its limits in dynamic, rapidly changing processes,
which include human‒robot interactions. The impedance control parameters must
be known in advance and are usually set by experiments and calibration. In order to
avoid this limitation, adaptive impedance control (AIC) was developed, whereby
these parameters can also be changed online.104 New approaches combine AIC with
approaches from machine learning to teach the robot certain impedance behaviors
as well as how to deal with disturbances in the system. One example is the combined
use of AIC and artificial neural networks to map complex disturbances that cannot
be modeled analytically.

1.2.7 Machine-Learning Algorithms

When one thinks of machine learning, certain keywords like deep learning, neural
networks or pattern recognition immediately come to mind. This section, which
provides a brief overview of the topic of machine learning, aims to shed light on
these and other terms.
Machine learning originated in computer science with the aim of developing

algorithms to efficiently process complex signals and data.105 The main problem in
signal processing remains the handling of uncertainties caused, for example, by
measurement noise or low data density. Another problem is the analysis and
interpretation of extremely high amounts of data, which mostly represent very
complex and highly dynamic systems. One of the central foundations on which
machine learning to deal with these kinds of problems is based is stochastic
theory. With stochastic theory as the baseline, general machine learning can be
split into (semi-)supervised learning, unsupervised learning and reinforcement
learning. Before applying machine-learning algorithms, the raw data must often
be pre-processed, for example by feature extraction algorithms such as filter algo-
rithms, dimensionality reduction algorithms or other approaches to build up a
“feature space.”

103 Hogan (n 55); Craig and Raibert, “A Systematic Method for Hybrid Position/Force Control of a
Manipulator” (1979) IEEE Computer Software Applications Conference 446‒451.

104 Haddadin and Croft (n 94).
105 Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics)

(Springer 2006).
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The first type of learning concept to be discussed here is supervised or semi-
supervised learning, which attempts to train a model with labeled training data
(input‒output is known). Semi-supervised learning is the harder variant of this
training phase. It has only incomplete training data for the training phase, which
means that the sample inputs lack some desired outputs. After sufficiently long
training, the quality and generalization abilities of the model can be tested using a
data set that contains new and slightly different data. This type of machine learning
is mostly used for classification tasks like pattern recognition. Unsupervised learning
uses only input data for the training without any knowledge of the desired outputs.
One goal here is to discover new information such as similar structures in the data
set, known as clustering. The last type are reinforcement learning algorithms, which
are based on the principle of goal-directed trial-and-error learning, where an
improvement is rewarded or a deterioration is penalized.106 The difference between
this and other approaches is that reinforcement learning uses direct interaction with
the environment for the learning process. These algorithms are not based on
experience-based supervision or an overall model of the environment. Typical
applications are self-optimizing systems such as in game theory or control theory.
Next we look at some of the models which use these training concepts.

Commonly used machine-learning models are artificial neural networks,107

support-vector machines,108 Bayesian networks,109 and genetic algorithms.110 The
most popular model approach in the field of machine learning is neural networks,
often used in supervised learning. The idea behind this approach is to simulate aspect
of the behavior of neurons in the human brain using the so-called perceptron
algorithm.111 A perceptron or neural network consists of several artificial digital
neurons that are networked along different layers: the input layer, hidden layer and
output layer. This approach is also known as a black-box algorithm because interpret-
able information about the dynamics between input and output layer is not available.
An artificial digital neuron is represented by a nonlinear function, the activation
function and a weight function (transfer function) with variable weight parameters.
The special feature of the nonlinear function is that it has a threshold. If this threshold
value is exceeded by the input value of the function, the function outputs a one, and
otherwise a zero. This behavior can be used to train a specific input-output mapping

106 Sutton and Barto, Reinforcement Learning: An Introduction (MIT Press 2018).
107 Haykin, Neural Networks: A Comprehensive Foundation (Prentice Hall PTR 1994); Bishop,

Neural Networks for Pattern Recognition (Oxford University Press 1995).
108 Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage and Organization

in the Brain” (1958) 65(6) Psychological Review 386.
109 Judea Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Elsevier

2014).
110 Dan, Evolutionary Optimization Algorithms (John Wiley & Sons 2013).
111 Rosenblatt, “Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms”

No VG-1196-G-8. Cornell Aeronautical Lab Inc Buffalo NY, 1961; Minsky and Papert, Percep-
trons (MIT Press 1969).
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between the input and output layer of this type of network. If a specific network
structure is then designed for a desired application, the network can be trained to a
desired behavior, using the backpropagation algorithm and training data, by setting
the parameters of the network accordingly. In this context, a deep neural network is a
more complex variant of a normal neural network, where, for example, a higher
number of hidden layers are used.112 The hidden layers can generally be seen as a not
directly reachable layer with encoded information after the training phase. The
dynamics and properties of these layers are not yet fully understood.
Another machine-learning model is the support-vector machine, which is often

used as a classifier or regressor for pattern recognition tasks. This mathematical
algorithm tries to calculate so-called hyperplanes (decision boundaries) to separate
and therefore classify two or more objects in the feature space, using labeled training
data. Important training data is the data that is close to the transition from one object
to the neighboring object and only this data is needed to span the hyperplane
mathematically. These data points are called support vectors and give this model
approach its name.
Bayesian networks are used for decision-making. They are basically directed

acyclic graphs, but each node represents a conditional probability distribution of a
random variable and each edge, the associated conditional relationships or depend-
encies between the random variables. If one now considers a random variable that is
not conditionally independent, that is, it has relations to other random variables
represented by the connected edges, one can easily recognize the functionality of a
Bayesian net. This node gets input values for its probability function via the edges
directed to it, then the probability of the random variable belonging to the probabil-
ity function is obtained as an output. If you calculate this for the whole network, you
get a compact representation of the common probability distribution of all variables
involved. From this a conclusion or inference about complex problems such as
unobserved variables can be obtained. Not every Bayesian network is fully specified
because some conditional probability distributions may be unknown. These missing
pieces can be obtained by learning the probability distribution parameters from data,
for example by using maximum likelihood estimation (MLE). Sometimes the
relations between the random variables are unknown. In this case, structure learning
is applied to estimate the structure of the network and the parameters of the local
probability distributions from data. Various optimization-based search approaches
such as the Markov chain Monte Carlo algorithm can be used.
The last machine-learning model to be presented here is the genetic algorithm,

which belongs to the evolutionary class of algorithm. This algorithm works with
metaheuristics and is based on the idea of natural selection. In general, the algorithm
starts with a population of possible solutions, where each solution has certain
parameters that can be used to mutate or vary it. At the beginning, individuals are

112 Goodfellow et al., Deep Learning, vol 1 (MIT Press 2016).
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randomly selected from the starting population, from which the strongest individuals
are then selected using an object function. Now the parameters of these individuals
are changed according to a measure given by the number of remaining individuals in
this generation. From this, the new generation is created, from which the fittest ones
are selected again. This continues until a previously defined number of generations
or a specific fitness level is reached.

1.2.8 Learning in Intelligent and Networked Machines

Now that we have discussed some approaches from the field of machine learning,
we next examine how some of them are used in robotics. One field of application
previously considered is in combination with adaptive impedance control. In
addition to the control of robots, machine learning is also used to avoid complex
manual programming of robotic task execution. One approach is apprenticeship
learning, where the human acts as teacher for the robot system by demonstrating the
task to it.113 The robot then tries to imitate what is shown in order to learn the skills
needed to complete the task. After a short training phase, the system should improve
itself independently, completing the task optimally after some time. Today,
reinforcement learning is often used for this autonomous self-improvement.114 An
explicit application of these learning algorithms is the robotic gripping and manipu-
lation of objects. Here, automatic development of complete scene understanding
using object-centric description is necessary to find generalizable solutions for more
complex manipulation tasks.115 The learned processes are not complete imitations,
but only the interaction points and movements with the object are modeled, which
makes generalization for applications to other systems possible. Another important
technological advance making complex manipulation tasks in robotics autono-
mously solvable was the further development of image-processing algorithms in
combination with powerful object localization in a dynamic environment.116

113 Asfour, Azad, Gyarfas, and Dillmann, “Imitation Learning of Dual-Arm Manipulation Tasks in
Humanoid Robots” (2008) 5(2) International Journal of Humanoid Robotics 183–202; Ijspeert,
Nakanishi, and Schaal, “Learning Attractor Landscapes for Learning Motor Primitives” in
Becker, Thrun, and Obermayer (eds), Advances in Neural Information Processing Systems 15
(MIT Press 2003).

114 Theodorou, Buchli, and Schaal, “A Generalized Path Integral Control Approach to Reinforce-
ment Learning” (2010) 11 Journal of Machine Learning Research 3137‒3181; Peters and Schaal,
“Reinforcement Learning of Motor Skills with Policy Gradients” (2008) 21(4) Neural Networks
682‒697.

115 Van Hoof, Kroemer, Ben Amor, and Peters, “Maximally Informative Interaction Learning for
Scene Exploration” (2012) Proceedings of the International Conference on Robot Systems
(IROS); Petsch and Burschka, “Representation of Manipulation-Relevant Object Properties
and Actions for Surprise-Driven Exploration” (2011) Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems 1221‒1227.

116 Mair, Hager, Burschka, Suppa, and Hirzinger, “Adaptive and Generic Corner Detection Based
on the Accelerated Segment Test” (2010) Computer Vision-ECCV 2010 183‒196; Burschka and
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However, to achieve the next step in robotic manipulation or in the field of
learning machines generally, approaches are needed that are even more general and
scalable. A promising approach is the concept of collective learning. This concept is
based on the prediction of a dramatic increase in robots in society over the coming
decades117 and on the idea of ever greater interconnectedness. Today, almost
everyone walks around with a smartphone that can be interpreted as part of a huge
networked cluster of small supercomputers. This trend will not stop at robotics
either, producing networked robots operating via the internet or bringing up entire
robot clusters with possibly highly complex hierarchical network structures. New
communication architectures, planning and control methods will become necessary
for the optimal use of these highly networked robot clusters. A new capability of
such robot clusters would be, for example, to exchange learned information with
each other while they perform complex manipulation or interaction tasks. In this
way, the robots would learn from each other as in a collective, by exchanging already
acquired knowledge about different but similar tasks. This transfer of knowledge, a
crucial aspect of the collective learning concept, will help the networked robots to
master new problems in everyday life more easily or to learn much faster.

1.3 man and machine in the age of machine intelligence

Let us now take a closer look at intelligent systems that are already available. On the
one hand, purely software-based AI systems are becoming more and more prevalent.
These primarily internet- and smart device-based services provide us with useful
knowledge in the best case, and with vast amounts of unsorted and at least partially
questionable information and data in the worst. On the other hand, the types of
robotic systems that we find in the private sector are mobile robots, such as lawn
mowers, vacuum-cleaning systems, unmanned aerial vehicles, and increasingly,
semi-autonomous cars. Due to safety issues when interacting with humans as well
as highly complex and task-specific programming processes, so far articulated robots
are still only found in the industrial sector. Clearly, we are a long way away from
intelligent, complex, and human-friendly robotic systems capable of interacting with
and manipulating our human-centered world.
In order to bridge this gap, a far more effective integration of the algorithmic and

physical worlds is necessary. The emerging discipline of machine intelligence (MI)
provides a new holistic paradigm to address this issue. This discipline, which is the

Hager, “V-gps (slam): Vision-Based Inertial System for Mobile Robots” (2004) 1 Robotics and
Automation ICRA’04. IEEE International Conference 409‒415.

117 Wilkinson, Bultitude, and Dawson, “Oh Yes, Robots! People Like Robots; The Robot People
Should Do Something: Perspectives and Prospects in Public Engagement with Robotics”
(2011) 33(3) Science Communication 367–397; Pineau, Montemerlo, Pollack, Roy, and Thrun,
“Towards Robotic Assistants in Nursing Homes: Challenges and Results” (2003) 42(3) Robotics
and Autonomous Systems 271–281.
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reunification of perception (sensing), AI (planning) and robotics (acting) with
pervasive control and machine-learning roles, is critical to enabling truly autono-
mous AI robots, autonomous cars, flying taxis, networked cyber-physical systems,
molecular robots for drug delivery and other intelligent systems in our home, work
and healthcare spaces to become a reality.

The long-term vision of the MI discipline is a trustworthy, embodiment-aware
artificial intelligence that is aware both of itself and of its surroundings, and not only
drives, but also adapts its methods of control to the (intelligent) body it is supposed to
control. This advancement will fundamentally redefine the way in which we use and
interact with robotic systems in our daily lives. A human-centered development
approach as well as a strong focus on ensuring the trustworthiness of such increasingly
capable AI systems will be critical. Nevertheless, what is the starting point and what
are the next steps for these systems to reach the stated long-term goal? The following
sections seeks to shine some light on these questions from the systems viewpoint.

1.3.1 Flying Robots

Ever cheaper and more powerful computer hardware in ever smaller forms, together
with advances in sensors and real-time signal-processing algorithms, has brought
enormous progress in the field of flying robots. Not only do these small unmanned
aircraft vehicles (UAVs) have the ability to stay in the air longer than previous systems,
but their autonomy capabilities have also increased drastically. What does autonomy
mean in the field of flying robots? In general, autonomy in robotics means the ability
of robots to work in unknown, unsafe and unpredictable environments without the
intervention of a human operator. Many aspects of navigation already mentioned in
the section on key technologies play a role here. These include estimating the robot’s
position, mapping the environment, creating trajectories and deciding or interpreting
the createdmaps. Especially in the field of flying robots, computational algorithms for
aerodynamic modeling and wind estimation are important. Novel sensor systems are
crucial to ensure that the flying robot can use these algorithms in real time. The focus
here is on the fusion of exteroceptive sensors such as cameras and laser rangefinders
with proprioceptive sensors such as an inertial measurement unit, to form a multi-
modal sensor system. Modern UAVs today have the capability to use six stereo
cameras simultaneously in real time combined with various other sensors to perform
occupancy grid mapping, motion planning, visual odometry, state estimation and
person tracking using deep learning algorithms. These high-tech systems come with
actuators, sensors and computing systems that are integrated in a lightweight structure
to a weight of about one kilogram and manage a flight time of about 16minutes. The
purchase price of these systems is around €2,500. Less intelligent flying robots, those
with limited or non-existent obstacle avoidance, cost about €200‒1,000, weigh several
hundred grams and have an average flight time of 10–30 minutes.

Looking at the missing pieces of these systems from a scientific point of view,
generalizable approaches to aerodynamic modeling are still lacking. Developing
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generally valid models would reduce the development time and the costs of these
systems. Another problem is to find an elegant and at best purely model-based
approach to distinguish aerodynamic forces from collision and interaction forces.
A secure physical human‒flying-robot interaction interface still requires a lot of
research before it could enter the market in a product. Flight time would also have
to be extended to reach a level suitable for everyday use. This could be achieved, for
example, by further reducing the total weight with new materials or structural
approaches. This development would also increase the safety of human‒robot
interaction, since less energy would be transferred to the human body in the event
of a collision. It is clear from all these factors that there is still a long way to go before
small and affordable fully autonomous flying robots become ubiquitous.

1.3.2 Mobile Ground Robots

In the history of mobile robotics, the Shakey system can be seen as the first mobile
robotic system to be used in practice. This system laid the foundations for technolo-
gies such as hierarchical control architecture more than 40 years ago. Since then
much research has been done in the field of mobile robot platforms and many
different approaches for these systems have been developed for uses ranging from
industrial applications to applications in disaster zones or in general environments
dangerous to humans. In order for mobile robots to move from the laboratory
environment to applications for everyday life, research and development must focus
on the safe human‒robot interaction capabilities of these systems. One robot
developed specifically for safe human‒robot interaction is called Rollin’Justin. This
system is very powerful but its development did not focus on cost-effective produc-
tion and it therefore cannot be easily commercialized in the near future. One key
element to enabling safe human‒robot interaction is the use of impedance control
in mobile platforms. Until now, this approach has been rare and can only be found
in research work, if at all. If the research focus were to be increasingly directed
toward safe human‒robot interaction with the goal of bringing mobile robot tech-
nology to an affordable product, these systems could become much more common
in everyday life and contribute to shaping our society. A comparison of the available
mobile platforms is shown in Figure 1.1.

1.3.3 Tactile Robots

For more than 50 years, position-controlled rigid robots have been supporting
assembly and welding in industry. Since these robots were developed to perform
heavy work requiring high force, their systems are inappropriate for safe close
interaction with humans and they are therefore usually separated from humans by
a safety fence. In recent decades, the paradigm for the use of robots has changed.
Sensitive manipulation and close physical human‒robot interaction have become
the order of the day. To achieve this, highly integrated lightweight designs with low
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robot TIAGo Base TORU KMP 1500 Turtlebot LD Platform Vector
manufacturer PAL Robotics Magazino KUKA AG Yujin Robot OMRON Corporation Waypoint Robotics
country of origin Spain Germany Germany South Korea Japan USA
dimensions Ø 54 x 30 cm 138 x 69 x 300 cm 200 x 80 x 67 cm Ø 35 x 50 cm 70 x 50 x 38 cm 67 x 50 x 31 cm
speed ≤ 1 m/s² ≤ 1.5 m/s² ≤ 1m/s² ≤ 0.7 m/s² ≤ 1.35 m/s² ≤ 2 m/s²
payload 50 kg 60 kg 1500 kg 5 kg 90 kg 136 kg
sensor technology laser

scanner
IMU (6 DoF) 

laser scanner
bumper
distance sensors
(3D) cameras

2x laser
scanner

bumper
clip sensor
Kinect
IMU (1DoF)

laser scanner
bumper
sonar

GPS
laser scanner

capabilities autonomous
navigation

autarkic robot
central fleet
management

autonomous
navigation

open source
open hardware
modular design

autonomous
navigation

autonomous
navigation
3D optional
perzeption

mobility leveled floor leveled floor leveled floor leveled floor leveled floor leveled floor

usability expert knowledge 
required

expert knowledge
required

expert knowledge
required

expert knowledge
required 

expert knowledge
required

expert knowledge
required 

figure 1 .1 Overview of available mobile robotic systems
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inertia and high active compliance have been developed and implemented. The
result is systems such as the Barrett WAM arm118 and the DLR lightweight robot
series,119 whose arm technology later led to the LWR iiwa robot from the company
KUKA. One of the most modern, human-centered lightweight robot systems
developed to date is Franka Emika’s Panda system.120 A high-precision force and
impedance control system allows the system to perform sensitive and accuratemanipu-
lation and enables a high degree of compliance, which, in conjunction with safety
aspects already considered in the design phase of this robot, guarantee safe human‒
robot collaboration. One of the most important pragmatic aspects of human‒robot
collaboration besides safety is the operating, programming and interaction interface
between human and robot. Many collaborative robots use a tablet computer and
complex software as operating, programming and interaction interface. The Panda
system offers an elegantly designed interface in which the human can interact with the
robot in a natural way via haptic interactions such as tapping on the robot gripper to
stop the robot or to give a process confirmation. In addition, in the teachingmode, it is
possible to teach the compliant robot various work processes by taking it by the hand
and guiding it extremely smoothly through the process. Once the process has been
shown, it can be played repeatedly by simply pressing a button. This kind of program-
ming is extended by apps representing two levels of interaction with the robot: the
expert-level robot apps programmer and the user who does not need any special
robotics knowledge. The expert provides the basic robot capabilities, which are
assembled and operated by the user for complex processes and solutions. These basic
robot apps will be shared over a cloud-based robotic app store and made available to a
broad range of users. With the growth of this robotics skills database, many new
applications will emerge, bringing robotics more and more into our daily lives.

1.4 applications and challenges of robotics and

ai technologies

1.4.1 From Cleaning Robots to Service Humanoids

Drones in the park, vacuum-cleaning robots at home or lawn-mowing robots in the
backyard, all these robotic systems are nowadays nothing special to look at. However,

118 Townsend and Salisbury, “Mechanical Design for Whole-Arm Manipulation, Robots and
Biological Systems: Towards a New Bionics?”; Barrett Technology, “Barrett Arm” <http://
barrett.com/products-arm.htm>, 25 September 2017.

119 Hirzinger et al., “A Mechatronics Approach to the Design of Lightweight Arms and Multi-
fingered Hands” Robotics and Automation, 2000. Proceedings, ICRA’00. IEEE International
Conference on Robotics and Automation, vol 1 IEEE, 2000; Albu-Schäffer et al., “The DLR
Lightweight Robot: Design and Control Concepts for Robots in Human Environments” (2007)
34(5) Industrial Robot: An International Journal 376‒385.

120 Franka Emika GmbH, Franka Emika, <https://www.franka.de/>, 17 January 2019.
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finding extraordinary intelligent service robots, which can act in a similar social
manner to humans, for example while supporting elderly people in their everyday
life, still presents a gap in the technology. Furthermore, technologies available today
are not able to adapt to short-term changes, are not user friendly in terms of
“programmability” and do not learn from experience. In addition, unlike the case
of industrial robots, security aspects have not been considered in these systems.

Early approaches in this direction can already be seen, for example in the user
interface developed by Franka Emika for their robotic arm system. Nevertheless,
what is still missing in these systems is the possibility of improving learned abilities
autonomously. Intelligent service robots have to be able to adapt to new conditions.
They have to meet the “lifelong learning” paradigm in order to be also accepted by
older people, who may be more skeptical about new technologies. In addition,
specific design and technology decisions regarding the acceptance and usability of
these robots need to be made in the development phase of these systems if they are
to be usable in the private sector.

A promising subfield of service robots are humanoids. As we have seen, service
robots should be human centered from the beginning of their development, espe-
cially from the point of view of safety. For this reason, systems like the NASA
Robonauten, DLR’s Justin or Boston Dynamics’ Atlas System are not considered
here. Figure 1.2 gives a current overview of existing service-oriented humanoid
systems or those under development.

One of the first complex service humanoids available was the PR2 system from
Willow Garage.121 It consists of a mobile motion platform, two grab arms and
numerous sensors to navigate in space by using position control. In addition to
“pick-and-place” tasks, the user can teach this humanoid simple motion sequences.
PR2 has relatively simple interaction channels such as motion control via a gamepad
or tablet. Other service robots such as the Care-O-Bot 4 from Fraunhofer IPA,122 the
Tiago system from PAL Robotics123 and the HSR robot from Toyota124 have similar
capabilities to the PR2, but some systems also have additional human interaction
channels such as voice command input. The Care-O-Bot 4 can even gesticulate and
interact with people via facial expressions or by touch from its built-in display.
Furthermore, all of the humanoids mentioned here can be teleoperated to a certain
extent. Two systems that stand out here are the Twendy-One robot from Waseda

121 Willow Garage Inc, PR2, <www.willowgarage.com/pages/pr2/overview>, 25 September 2017;
Bohren et al., “Towards Autonomous Robotic Butlers: Lessons Learned with the pr2” 2011 IEEE
International Conference on Robotics and Automation (ICRA) 2011.

122 Fraunhofer-Gesellschaft, Fraunhofer-Institut für Produktionstechnik und Automatisierung,
Care-O-Bot 4, <www.care-o-bot-4.de/>, 25 September 2017.

123 PAL Robotics, SL, TiaGo, <http://tiago.pal-robotics.com/>, 25 September 2017.
124 Toyota Motor Corporation, Human Support Robot (HSR), <www.toyota-global.com/innov

ation/partner_robot/family_2.html>, 25 September 2017; Hashimoto et al., “A Field Study of
the Human Support Robot in the Home Environment” 2013 IEEE Workshop on Advanced
Robotics and Its Social Impacts (ARSO) 2013.
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system PR2 Care-O-Bot 4 Tiago HSR Twendy-One RIBA II GARMI
manufacturer Willow Garage Fraunhofer IPA PAL Robotics Toyota Sugano Lab. RIKEN FRANKA EMIKA
year 2008 2015 2015 2012 2009 2011 under development
technology
control concept position control position control position 

control
force control SEA control position control 

+ tactile sensors
torque sensors
whole-body control

teaching ability simple 
movements

-- simple 
movements

simple 
movements

simple 
movements

guiding, simple 
movements

complex two-arm or full-body processes

navigation for mobile 
platform

for mobile 
platform

for mobile 
platform

for mobile 
platform

-- -- Full-body navigation, collision avoidance, 
Human Aware Motion Planning

manipulation skills pick & place, 
connecting the 
mains plug

pick & place pick & place pick & place pick & place,
complex tactile 
manipulation

no one- and two-armed sensitive manipulation, 
assembly, pick & place

learning ability movement 
learning

-- -- -- -- -- Tasks, movement patterns, handling & assembly 
tasks, sensitive interaction

HRI
human and 
environmental 
observation

-- -- -- -- -- voice location kinematic human model, face recognition, 
environmental recognition

active physical
interaction

-- -- -- -- Help to get up lifting 
bedridden

ambidextrous help with complex processes

interaction channels,
indication of internal 
status

no display, LEDs, 
sound, text-to-
speech, gestures

voice 
commands

display, voice 
commands

LEDs, 
voice commands,
tactile skin

voice 
commands, 
tactile sensors

display, LEDs, speech, gestures, robot actions 
understandable

external devices gamepad touchscreen -- tablet, mobile 
phone, joystick

-- joystick touchpad / tablet, virtual reality / augmented 
reality glasses, audiovisual and haptic 
teleoperation console

robot gestures -- body gestures -- -- -- -- whole body gesture engine
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figure 1 .2 Overview of existing and upcoming service-oriented humanoid systems
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University125 and the RIBA II robot from Riken.126 Both systems have special features
making human‒robot interactions possible. Twendy-One has the ability to actively
help a person to stand up from seated. It also has a tactile skin, which enables
complex tactile manipulations. The RIBA II system is designed to be able to lift and
relocate bedridden people, reducing the burden on medical staff.

In general, service robots in nursing have the potential to partially solve the lack of
applicants and to enable older people to live independently as long as possible. The
value of direct human‒robot interactions, apart from these approaches to physical
interaction with the patient, has so far gone largely unnoticed. The systems pre-
sented here are not yet equipped with the necessary capabilities to perform smaller
pick-up and delivery services or even sensitive manipulation tasks such as tying shoe
laces. In general, there is great potential for helping humans in daily tasks and for
human‒robot communication through haptic gestures.

The company Franka Emika is currently working on a humanoid service robot
called GARMI, which will provide a sensitive human‒robot interaction. GARMI
will be equipped with two multi-sensorial robotic arms, which will have soft-robotic
features and the solutions required for direct human interaction and safe human‒
robot interaction. In addition, the small robot will have a multisensory “head” and
an agile platform, allowing it to move from a standing position in the desired
direction. It should be able to perform both simple tasks and pick-up services, but
also to be remotely controlled by relatives and professional helpers.

1.4.2 Production and Logistics

Low-cost and flexible national production of the next generation of industrial robots
will eliminate the need to exploit developing countries. Robotics will finally live up
to its original credo of freeing humanity from slavery. These new industrial robots
will be highly networked and mobile with extensive sensory capabilities enabling
them to autonomously perform a wide range of complex manipulation tasks and
safely collaborate with humans. Innovative design concepts with extreme light-
weight construction combined with new control approaches will lead to very low
energy consumption by these systems. Mutual exchange of information and know-
ledge between robots in a collective set-up can lead to a rapid increase in learning
speed. New complex tasks can thus be learned not over weeks, but over hours or
even minutes.

125 Sugano Laboratory, TWENDY-ONE<www.twendyone.com/concept_e.html>, 25 September
2017; Iwata and Sugano, “Design of Human Symbiotic Robot TWENDY-ONE” ICRA’09.
IEEE International Conference on Robotics and Automation 2009.

126 Riken, RIBA-II, <www.riken.jp/en/pr/press/2011/20110802_2/>, 25 September 2017; Mukai
et al., “Development of a Nursing-Care Assistant Robot RIBA That Can Lift a Human in Its
Arms” 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) 2010.
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In the coming decades, the development of autonomous vehicles will also create
major changes. Autonomous vehicles are already widely used today, but mostly in
closed warehouses or in confined areas that have been completely mapped in
advance. These application areas are also predominantly shielded from dynamic
sources of interference such as humans. One example is American online retailer
Amazon’s warehouse system. In a completely systematic environment, hundreds of
robots arrange themselves autonomously to select goods or goods shelves and drive
them to the parcel assembly. Simply put, these robots are nothing more than
powerful cleaning robots that can carry up to 300 kg. A lot of research will still be
required to move this technology on from the retail environment to transporting
people autonomously in our world. However, this next generation of autonomous
ground and air vehicles will not only be able to navigate safely in the real world, but
will also provide much more energy-efficient and environmentally friendly drives.
The interconnectedness of these systems now makes it possible to automate com-
plete logistics chains, and passengers can now be transported on demand, optimally
in terms of both time and energy. Through the temporary networking and coordin-
ation of heterogeneous vehicle fleets, the fundamental principles of public transport
are being redefined.

1.4.3 Robotic Disaster Relief

The application of robots in unsafe environments will be of great importance in our
future world. It will allow us to use technology instead of risking human lives to save
buried or trapped people or to perform highly risky maintenance tasks. The key
technology for these applications is called telerobotics. A technology originally
developed for space applications in the space agencies of the USA, Germany and
Japan, telerobotics has been designed to enable a transparent (bilateral) remote
control of robots in human-unfriendly environments. The first use of such a
technology was in 1993, when the Rotex mission used Shared Autonomy/Supervised
Autonomy on the first Earth-controlled space robot.127 Recently, a Da Vinci master
console (in Baltimore, USA) controlled a DLR lightweight robot (in Oberpfaffen-
hofen, Germany), over 4,000 miles away. The robot was able to recognize its
environment independently and perform selectable semi-autonomous functions
on site with perceptual support. It could initiate the most likely actions desired by
the user, such as gripping an object or inserting it, semi-automatically.128 The aim of
this research was to investigate functional tasks that lie between pure teleoperation
and full autonomy. In order to enable a more natural teleoperation that can also
handle long delays, model-based teleoperation approaches use environmental

127 Hirzinger et al., “Sensor-Based Space Robotics-ROTEX and Its Telerobotic Features” (1993)
9(5) IEEE Transactions on Robotics and Automation 649‒663.

128 Bohren et al. (n 83).
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models generated from knowledge gained a priori and updated step by step during
manipulation.129 Thus, the teleoperation remains applicable even in the presence of
delays of up to 4 seconds, as an approach with model-based teleoperation and haptic
feedback has shown.130 Franka Emika goes one step further with the market launch
of the first cloud and distributed telerobotic-capable commercial robot system
Panda. The possibilities of this system were demonstrated in late 2018, when
37 Panda systems were connected in real time, with twelve operating in Düsseldorf
(Germany) and twenty-five in Munich (Germany). As a result, thirty-six robots could
be successfully teleoperated with one robot as an input device, with a maximum
distance of approximately 600 km between them.

The future benefits of this technology will be available in various applications
enabled by its high level of robustness, such as operating in space, defusing bombs,
firefighting or rescue and containment in the event of a nuclear catastrophe.

1.4.4 Multimodal Communication for AI-Enabled Telemedicine

Telemedicine is a technology that has emerged from telerobotics in combination
with real-time 3D visualization of the human body and multimodal communication
technologies.

Multimodal communication represents the future of communications. Instead of
communicating purely via voice, text or video, additional information channels are
used to increase the transparency and interactivity between communicators. One
channel, for example, would be the telepresence channel. This channel can be
attached to a haptic input device with force feedback on one side and a robotic
output device on the other. The robotic system moves according to the user’s input,
but also returns information on haptic interaction to the input device. The user does
not have direct access to the robot’s motion control system via the input device, but
instead gives more abstract high-level commands, which are then translated into the
desired motion. A framework for predictive and semi-autonomous interaction con-
trol in combination with a robot-side action recommendation system makes sugges-
tions to the user for further action based on the local information. This telepresence
channel is also available to be used for telemedicine. If an authorized physician uses
this interface, a module will be unlocked which enables the use of diagnostic
devices at the patient’s site, intelligent processing and visualization, and secure
handling of sensitive medical data.

Crucial to the process of justifiable diagnosis at a distance is real-time 3D
visualization of the human body, one element of which is the acquisition of the

129 Sayers, Paul, Whitcomb, and Yoerger, “Teleprogramming for Subsea Teleoperation Using
Acoustic Communication” (1998) 23(1) IEEE Journal of Oceanic Engineering 60‒71; Stoll,
Letschnik, Walter, Artigas, Kremer, Preusche, and Hirzinger, “On-Orbit Servicing” (2009)
16(4) Robotics Automation Magazine IEEE 29‒33.

130 Bohren et al. (n 83).
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kinematics of the body. Today, motion-capturing systems equipped with infrared
cameras for 3D detection of retroreflective markers positioned on anatomical land-
marks are used for this purpose. By synchronizing the real-time data of human
movements with musculoskeletal biomechanical models131 and dynamic models of
the internal organs, as well as 3D visualization models of the patient, it is now
possible to provide the physician with the patient’s digital twin. The medical data
obtained during examination by diagnostic devices, such as ultrasound, are then
displayed and synchronized with the digital twin.
The next paragraph describes a typical telemedicine scenario (see Figure 1.3).

Here, the humanoid GARMI is used as a teleoperated robot on the patient’s
premises.
Telemedicine emergency: shortly after his daily nap, Heinz suddenly feels

unwell. He calls out to GARMI: “I don’t feel well. Please call a doctor.” GARMI
comes immediately and establishes contact with the emergency doctor. At the
doctor’s office, Heinz’s emergency call appears on the user avatar remote station
display. The doctor can react immediately to the emergency as he is connected to
GARMI. After a brief analytical dialog, the doctor lets GARMI perform an ultra-
sound and ECG examination. The ultrasound images and the ECG are transmitted
to the doctor in real time. From the analysis of the transmitted data, which is
supported by machine-learning algorithms, the doctor is able to quickly identify
an emergency and immediately call the emergency service.

1.4.5 The Future of Medicine with Molecular Robots

The next step in medicine will be in the direction of personalized diagnostics and
therapy locally at the site of the disease. The vision is to develop an intelligent
medical machine that can perform measurements in the human body on the
cellular level and, if necessary, treat directly. Such treatment could be performed
in the future by molecular robots.

figure 1.3 Telemedicine case scenario

131 Cavallaro, Rosen, Perry, and Burns, “Real-Time Myoprocessors for a Neural Controlled
Powered Exoskeleton Arm” (2006) 53(11) IEEE Transactions on Biomedical Engineering
2387–2396; Jäntsch, Non-linear Control Strategies for Musculoskeletal Robots, PhD Thesis,
Technische Universität München 2014.
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Molecular robots are small autonomous synthetic systems that can be used for
numerous medical purposes. Different molecule chains can map both structural
and functional properties of the molecular robot. Internal sensors will make it
possible to explore the human body and explore areas of medical interest. Through
controlled movement, they can penetrate the body, move to the treatment site (such
as a tumor) and perform medical treatment only where it is needed. In addition,
these robots will be able to take tissue samples and control the delivery of drugs
based on sophisticated micro sensors. The movement and control mechanisms used
here can be chemical, electromagnetic, bio-hybrid cell-driven or completely new
mechanisms that are yet to be researched. Robotic theory should be translated to
molecular and cellular-level systems, the dynamics of which are explained via first-
order principle-based machine-learning algorithms. In addition, the practical closed-
loop control and analysis of these systems via macro-robotic human‒machine
interaction technologies should be explored, enabling a multitude of applications
ranging from basic understanding of cellular dynamics and control to various
medical applications such as targeted drug transportation.

Cellular manipulation is one field of research that will serve as an indispensable
basis for molecular robotics. The mechanisms to be researched may be used to
communicate with cells in a natural way and, if necessary, to control them. For
example, it will be possible to have cells targeting certain positions, proliferating,
producing certain proteins or, if the cell is harmful to the body, to have it removed
through the body’s own degradation system. This research field combines concepts
from biology research (cell biology, genetics, biochemistry, biophysics, etc.) with
approaches from modern engineering sciences (systems theory, control engineering,
computer science, information theory, robotics, AI, etc.) to create a standardized
analysis environment for cell research. Over the next few years, this field will provide
completely new insights into how cells function or communicate and can be
expected to deliver new technologies.

1.5 conclusion

This chapter has shown the current technological status of robotics and AI and has
examined current problems, as well as providing an insight into the possible future
of these technologies in the age of machine intelligence. MI will change our
everyday life and our society. It offers a lot of potential to deal with existing problems
as well as those that society can already anticipate. The responsibility that comes
with this technology should not be underestimated. The focus must be on a
trustworthy, safe and human-centered development of this technology. Framework
conditions, for example, must be created that prohibit the exploitation of this
technology to the detriment of individuals and humanity as a whole.
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