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IDEALS AND HIGHER DERIVATIONS IN
COMMUTATIVE RINGS

WILLIAM C. BROWN AND WEI-ETHN KUAN

Introduction. In this paper, we wish to generalize the following lemma
first proven by O. Zariski [5, Lemma 4]. Let O be a complete local ring contain-
ing the rational numbers and let m denote the maximal ideal of O. Assume
there exists a derivation § of O such that §(x) is a unit in O for some x in .
Then O contains a ring O; of representatives of the (complete local) ring
0/0x having the following properties: (a) 8 is zero on Oy; (b) x is analytically
independent over Oy; (c) O is the power series ring O;[[x]]. In [4], A. Seidenberg
used Zariski's lemma extensively to study conditions under which an affine
algebraic variety V over a base field of characteristic zero is analytically a
product along a given subvariety W of V. We should like to generalize Zariski’s
lemma by removing the condition that O contain the rationals. We could
then get some conditions under which an arbitrary affine variety V would be
analytically a product along a subvariety .

Unfortunately, Zariski’s lemma is false in the characteristic ¢ % 0 case.
That is, if O is a complete local ring containing a field & of characteristic
g # 0, and if § is a derivation of O such that §(x) is a unit for some x in m,
then there may be no subring O; of O such that properties (a), (b), and (c)
hold. An example is given in § II of this paper. Thus there is no hope of a
straightforward generalization of the lemma. It is well known that in certain
problems involving fields of characteristic ¢, higher derivations, i.e., derivations
of infinite rank, often yield results which are unobtainable for ordinary deriva-
tions. So we are led naturally to study higher derivations and their relation-
ships to ideals in commutative rings.

If we replace § in Zariski’'s lemma with a higher derivation {§;}, then we do
get an appropriate generalization of the lemma. This result is given in § I1
of this paper. In § I, we present some general information on the relationship
between ideals and higher derivations. This investigation is carried out mainly
in the setting of commutative rings of finitely generated type, i.e., those rings
which naturally arise in Algebraic Geometry. We have basically tried to
reproduce the results known for ordinary derivations [4] in the more general
setting of higher derivations.

Preliminaries. Throughout this paper, all rings will be assumed to be
commutative and to contain an identity. A ring O; will be called a subring
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of a ring O if O; C O and the identity of O, is the same as that of 0. We shall
also assume that all ring homomorphisms take the identity to the identity.
We shall let & denote a field and X3, ..., X, indeterminates over k. We shall
say that a ring O is a finitely generated extension of the field k if O is a homo-
morphic image of a polynomial ring k[Xy,...,X,]. We shall often write
O = k[x1,...,x,] if O is not the null ring and is finitely generated extension
of %.

Let O be a ring. Then a derivation on O is an abelian group homomorphism
6:0 — O such that for all @, b in O

5(ab) = ad(b) + bé(a).

A higher derivation on O is an infinite sequence of abelian group homomor-
phisms §;:0 - 0,7 = 0, 1, . . . such that:

(1) 6o is the identity map.

(2) 6:(ab) = Z,45=:0;(a)8;(b) for all 7 and all @, b in O.

We shall call (2) Leibnitz’s rule. We shall let Der (0O) denote the collection
of all derivations of O into O and H (O, O) denote the collection of all higher
derivations of O into O. Note that if D = {§;} € H(O, O), then §; € Der(0).

Let 4 be an ideal of 0. We shall say that 4 is differential under Der(0) if
6(A) C A for all & € Der(0). Similarly, 4 is differential under H (O, O) if
for all D = {6;} € H(O, 0), 6;(4) C A4 for all 2 =0,1,.... We note that
these two ideas are somewhat independent of each other. We shall give an
example in § I which shows that a derivation § € Der(0) need not be the
term of degree one in any higher derivation D = {§;} € H(O, O). Thus, if
A is differential under Der (0), it does not necessarily follow that 4 is differen-
tial under H (0, O) and vice versa. We shall say more about this relationship
in § I.

Let V be an affine algebraic variety over a field 2 and let O denote the
coordinate ring of V. Let p be a prime ideal in O. Then we say that 1 is
analytically a product along the subvariety W = %" (p) if the completion
0, of the local ring O, is of the form O4[[£]] with O; a complete local ring and ¢
analytically independent over O;.

Finally, we shall assume the reader is familiar with the main results in [4].

I. Ideals and higher derivations. Let O be aringand D = {§;} € H(O,O).
Let O* = O[[]], t an indeterminate. Thus

o* = {f} aid'la; € 0}

=0

is the ring of all formal power series in ¢ with coefficients in O. If O is Noetherian
and 4 an ideal of O, then

A0* = {i aidlas € A}.

=0
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Foreachj = 0, 1, . .. we may extend the definition of §, to O* as follows:
5]<Z aiti> = Z 6j(0£i)ti.
i=0 i=0

The §,'s thus extended are clearly a collection of abelian group homomorphisms
of O* — O*. A routine computation shows that {§;} actually forms a higher
derivation on O%*, ie., {§;} satisfies (1) and (2) on O* Thus given
D = {5;} € H(O,O) we can construct a higher derivation which we also
call D in H(0O*, O%).

If D= {§;} € H(O* O*), then we may define a ring homomorphism
75:0% — O* as follows:

ro(@) = i b.(e)t,

for o € O*.

Note that 8,(1) =0 for all 2= 1 and thus 7,(1) = 1. Thus if D =
{6;} € H(O, O0), we can associate with D a ring endomorphism 7, of O*.
It is well known [1, Theorem 1] that H (O, O) forms a group and that 7, is an
automorphism of O*. We need the following lemma.

LeEmMA 1. Let O be a Noetherian ring and A an ideal in O. Let D =
{6:} € H(O, O). Then A 1is differential under D (i.e., §,(4) C A for all 1) of
and only if 1, (A0*) C AO*.

Proof. Suppose 4 is differential under D. Leta € 40*. Then

©
a = Z a«[ti
=0

witha; € A.Soforallj=0,1,...

Bj(a) = 6](2 aiti> = ;) 6,~(a1)ti € AO*.

=0

Therefore
mpla) = z 8:(a)t* € AO*.
=0

Hence 7,(40*) C AO*. If 75(A0*) C A0*, then 7,(4) C A0*. So let
a € A. Then

(@) = 22 s.(a)t' € AO%.
i=0
Therefore §;(a) € A for each 1.

We can now prove the following theorem.

TaEOREM 1. Let O be a Noetherian ring and let A be an ideal in O with asso-
ciated primes p1, ..., ps. Let D = {8;} € H(O, O) such that A is differential
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under D. Then D1, ..., ps are also differential under D and A can be written
as an irredundant intersection qi1(\...(\qs of primary ideals which are
differential under D.

Proof. This proof is much like A. Seidenberg’s Theorem 1 in [4]. In place
of ¢’?, we use 7p. Since A4 is differential under D, 40* is invariant under 7p,
ie., 1p(40*) C AO*. Now it follows from [1, p. 33], that rp—1 (D1is the
inverse of D in the group H (0, O)) also maps 40* into AO*. Hence 7,(40*) =
AO*. Thus 7, permutes the associated primes 0%, ..., p.O* of A0*. Say
75(p.0*%) = p;0*. Then for a € py, 1p(a) € p,0*. Thus a € p;. So p; C P,
Now 7p-1(p;0*%) = p,0*. So p; C ps. Hence ¢ =j and 7p(p,0*) C p,0*.
Therefore by Lemma 1, p, is differential under D. The rest of the proof follows
exactly as in Seidenberg’s result.

Theorem 1 gives us a sufficient condition for a Noetherian ring O to be an
integral domain. Namely:

COROLLARY. Let O be a Noetherian ring in which (0) s the only ideal which is
differential under H(O, O), then O is an inlegral domain.

The next theorem allows us to pass to a local ring when attempting to decide
whether a prime ideal p C O is differential under H (O, O). We shall denote by
0, the local ring obtained {rom O by localizing at p. If weletn = {x € O|rx=0,
r € O but » ¢ p}, then the compliment of p/n consists of non zero divisors
in O/n and O, is just (0O/n),,,. We need the following proposition:

ProPoSITION 1. Let p be a prime ideal in a ring O and let D = {6,;} € H(O, O).
Then D induces a higher derivation D' = {8/} € H(O,, O,).

Proof. We first note that = {x € Olrx=0, r ¢ p} is differential under D.
We may argue this by induction on z. If x € #n, then there exists an element
7y € O but not in p such that rx=0. Then 0 = 8§ (rx) = r8;(x) + x6:(7).
So 0 = 725;(x) + 7x8:(r) = r26:(x). Thus 8:(x) € n. So = is differential under
81. Assume now that éy, . .., 8, map n inton. Letx € n,7 € p such thatrx = 0.
Then

0 = dprai(rx) = D 8;(r)8(x).
Hh=m+1

So
Pomy1(x) = — (61(r)on(x) + ... + x6pn11(r)) € n.

Hence there exists an #' € O but not in p such that
7 (181 (x)) = 0.

Since 7'r € O, but not p, d,41(x) € n. Thus = is a differential ideal.
We now form O/n. Since # is differential, D induces a higher derivation
D = {5,} € H(O/n,O/n) in the natural way, i.e.,

6i(@+n) = 6:(@) + n (e € 0).
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Let K(O/n) denote the total quotient ring of O/z. Then
O/n C 0y = (0/n)pn C K(O/n).

Thus D can be considered as an element of H(O/n, K(O/n));i.e., we may view
D as a higher derivation of O/n into K (O/n). We may now apply [1, Lemma 2]
to uniquely extend D to a higher derivation D’ = {6/} ¢ H(0,, K(O/n)).
It remains to show that D’ € H(O,, 0,).

Now D = {§;} € H(O/n, K(O/n)) gives rise to an isomorphism
15: 0/n — K(O/n)[[t]] (¢t an indeterminate) as follows:

5(b) = 20 5,000 (b e o/m).

We have the following diagram which we wish to complete with a map 7.
T

O/n d » K(O/n)[f]

(O/n)pm

So we define

D(b) = 15O ()}
where ¢, b € O/n,c ¢ p/n. Then

() = 2 5/ (),

i.e., {6/} are just the component parts of the isomorphism 7.
Now if

©

a= 2 at' € O/nll]

1=0
with a¢ ¢ p/m, then @ is a unit in K(0/#)[[£]] and has inverse o~ ! € O,[[]].
Hence it follows that 7, actually maps O, — O,[[t]]. Thus D’ =
{6/} € H(Op, Op).
THEOREM 2. Let p be a prime ideal in a ring O. If pO, is differential under
H(O,, 0,), then p is differential under H(O, O).

Proof. Here pO, of course means the maximal ideal of the local ring O,.
Suppose p is not differential under H (O, O). Then there exists a higher deriva-
tion D = {§;} € H(O, O) such that 6;(p)  p for some j = 1. Using Proposi-
tion 1, we may extend D to D' € H(O,,0,) by D —D — D’. One easily
checks that D = {8;} € H(O/n, O/n) has the property that &;(p/n) ¢ p/n.
Thus, §;(p0,) Z pO,. But this is a contradiction, since p0, was assumed
differential under H(0,, 0,).
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Proposition 1 and Theorem 2 show that higher derivations like derivations
can be extended in a canonical way from O to 0,. Going the other way seems
to be harder. In the case of rings finitely generated over a field £ of character-
istic zero, the converse of both Proposition 1 and Theorem 2 follows from
[2, Theorem 5] and [4, Theorem 2]. The general case remains unknown.

We specialize to rings which are finitely generated extensions of k. Any
sequence 0o, . . . , 6, of abelian group homomorphisms from O to O such that

(1) 6o = identity, and

(2) 8:(ab) = X 8;(@)a(b)  G=1,...,m),
k=i

will be called a higher derivation of rank m on O.

If O = k[xy, ..., x,], weshall denote by H; (O, O) the set of all higher deriva-
tions D = {8;} on O which consist of k-linear mappings 6,;:0 — O. Similarly,
a higher derivation of rank m on O will be called a higher k-derivation if it
consists of k-linear maps.

We need the following lemma:

LEMMA 2. Let O be a finitely generated extension of the field k and p a prime
ideal of O. Letn = {x € O,vx =0,r € p}and D = {5;} € Hy(0,, O,). Then for
every positive integer m, there exist elements k; € O/n, k; & p/n, 2 =1,...,m,
such that {8o, k101, . . . , kudn} 1s a k-higher derivation of rank m on O/n.

Proof. Since O is a finitely generated extension of the field k2, O/n is also a
finitely generated extension of k. Hence O/n has the form k[#i, ..., %] for
some field k. Now let m be a positive integer. Then for each j = 1,...,m

_ Uij
57(961) = ﬁy
1]

where u,;,v,; € O/n and v;; € p/n. So set

S
l; = H Vije
i=1

Then I; € O/n but I, ¢ p/n. We also note that for each j =1,...,m,
(4™ ... I";_41,)8; is an abelian group homomorphism of O/n — O/n. The
fact that (/;™...I"™;_1l;)6; maps O/n into O/n can be proven by successive
applications of Leibnitz’s rule (2).

If we now set k; = {l,™... ", 1l,}* for 2 =1,...,m, then {8, kb1,
ksds, . . ., kudy} forms a k-higher derivation of rank m on O/x.

We may now prove the following partial converse to Theorem 2:

THEOREM 3. Let O = k[xy,...,%,] be a finitely generated extension of the
field k and let p be a prime ideal of O. Suppose that for any positive integer m, p
is differential under all k-higher derwations of rank m. Then pO, is differential
under all k-derivations of finite or infinite rank.
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Proof. We use the notation that appears in [4, Theorem 2].

In O, let (0) =¢g:MN...MN g5 be an irredundant primary decomposition
of (0). O/n = k[&:,...,%]. Let ¢ Cp for 2 =1,...,t and ¢; C p for
i=t+1,...,s. Let R = k[Xy, ..., X;], and let IT be the natural mapping
of R onto O. Let ¢/ = II"'(¢;) for e = 1,...,s. Set A =q¢'MN...Ng
and N=¢g/ N ...Ng/.

Now suppose 0, is not differential under H;(0,, O,). Then there exists a
D = {8;} € H:(0,, 0,) such that §;(p0,) Z pO, for some j = 1. Hence it
suffices to prove pO, is differential under all k-derivations of finite rank.

Suppose p0, is not differential under all k-derivations of finite rank. Then
there exists a k-higher derivation {8, ...,68,} of rank m such that
on (p0,) T p0O,. Without loss of generality, we may assume §,(p0,) C p0O,
for2=0,...,m—1. By lemma 2, we can find elements ky,..., %k, € O/n
such that bk, ¢ p/n, i =1,...,m, and {do, kidy, . .., kudn} is a k-higher
derivation of rank m on O/n. If © < m, then k:6,(p/n) C pO, N\ O/n = p/n.
We also know there exists an & € p/n and 5 € O/n (y ¢ p/n) such that
6n(x/5) ¢ pO,. But B

on(®/3) = 2. 8;(x)8:(1/7).

J+k=m
Hence 68, (%) ¢ pO,. So kb, (%) ¢ p/n. Thus using Lemma 2, we have con-

structed a k-higher derivation {@of1, ..., fn} (&: = k:#;) of rank m on O/n
such that

En(p/n)  p/n.

We next note that R/N = O/n. Let I, denote the natural mapping of R onto

O/n given by I,(X ;) = &;. We now define a k-higher derivation {u, ..., un}
of rank m on R as follows: Let a;; € R such that Io(a,;) = a;(%;) for 7 =
1,...,mj=1,...,h Defineforz=0,...,m p;:R— R by uy = identity

and u;(X;) = a4y This gives us a well defined k-higher derivation {u;} on
R [2, Proposition (2)]. (One uses Leibnitz’s rule to extend u; to all of R.)
Note that if f(X1,...,Xs) is any polynomial in R, then Iy{u,;(f)} =
g, (0 (f)) = m;(f(&y, ..., %)) for j = 0,...,m. From this fact, we imme-
diately get that NV is differential under {uo, . .., w.}.

Now let p’ be the pull back of p to R, ie., p’ = II"1(p). Let a € ¢’ 111
N...Ng — P, ie., let a be an element in ¢’ ;41 C ... C ¢/ which is not
in p’. Now consider {po, api, ..., a"u,}. The {a'u;}™;—¢ clearly form a
k-higher derivation of rank m on R. If x € 4, thenforall =0,...,m

ai“i(x) E Ny

since N is differential under p;. Hence a’u;(x) € ¢/ M ...MN ¢q,/. Since
a€qguiMN...Ng’ we get a’p;(x) €Eg’MN...MN¢g/ = A. Hence 4 is
differential under {po, ..., a"u,}. We also note that u,(p’) Z p’ since
Bn(p/n) C p/n. Thus a"u,(p") Z p'.
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We have now constructed a k-higher derivation {a’u;} of rank m on R
such that 4 is differential under {a’u;} but ¢™u, (') Z p’. Thus we get an
induced k-higher derivation {8;}™;—o on R/A = O such that é,(p) Z p. This
is a contradiction and the proof is complete.

We shall finish this section by presenting some theorems which will give
us examples of ideals which are not differential and ideals which are differential
under higher derivations. We note that in [4, Theorem 3], A. Seidenberg
proved the following result:

Let O = k[xy, ..., x,] be a finitely generated extension of the field k and p
a non-minimal prime ideal of O such that O is regular. Then p is not differential
under Der (0).

This theorem does not yield an immediate result for higher derivations
since every derivation §:0 — O cannot necessarily be embedded as the term
of degree one in a higher derivation on O. To see this, consider the following
example which appears in [3].

Example 1. Let & be a field of characteristic ¢ # 0 and let X, ¥V be
indeterminates over k. Consider the irreducible polynomial Y? — X¢ —
Xt ¢ p[X, V]. Let O = k[X, V]/(V? — X? — X%*1) = k[x,y]. Then there
exists a & € Der(0) such that 6(x) =0 and 6(y) = 1. Let O denote the
integral closure of O in its quotient field. Then 6(0) ¢ O. It & could be em-
bedded as the term of degree one in a higher derivation {8, 81, 82, 83, . . .}
€ H(0, 0), then 6(0) C O. For, Seidenberg has shown [3, p. 173] that the
following result is true for higher derivations:

Let O be an integral domain with quasi-integral closure O'. If D = {6} is
a higher derivation on X, the quotient field of O, such that 6,(0) C O for all
1=1,2,...,then6,(0") C O foralli =1,2,....

Now for Noetherian rings, the quasi-integral closure is equal to the integral
closure. Hence 6§ is an example of a derivation which cannot be imbedded in
a higher derivation.

Thus we must work a little harder to obtain a result analogous to
[4, Theorem 3].

Let 2 be an arbitrary field and Xy, ..., X, be indeterminates over k.
Let = denote the quotient field of k[X:, ..., X,] and {uylj=1,...,n,
2=1,2,...,00} and T be indeterminates over =. Foreach7 = 1,2, ..., we
define a k-linear mapping ¢::k[Xy, ..., X,] = k[X,, ..., X,][usy] as follows:
Given any monomial X, ...X,” in k[X....,X,], we define
g:«(X, ™ ...X,™) to be the coefficient of 7% in the following power series in
(k[X1, . .., Xo]luo DT

[=°) mi o
{Xl + > uﬂTf} {X + > u,.an}
j=1 j=1

mn
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Thus ¢, is well defined on the monomials of k[X3, ..., X,]. We extend the
definition of ¢; to all of k[X}, ..., X,] by linearity. If we define g, = 1, then

a routine computation shows that {go, ¢1, ¢z, . . .} forms a k-higher derivation
from k[ X4, ..., X,] to k[ Xy, ..., Xo][ul

Now suppose =’ = k(x1, ..., %,) is a finitely generated field extension of k.
Let {#,;, € 2|j=1,...,m,1=1,2,...0} be a collection of elements of

>’. Then we have a natural k-algebra homomorphism
I:R[Xy, ooy Xollw] — k[, .oy 2] [845] C 27

given by I(X,;) = x; and M(us) = @ U f(Xy, ..., X)) € R[Xy, ..., X,
we shall say that the {#;} solve ¢;(f) = 0 if IIg;(f) = 0. Thus {#,;} solve
q:(f) = 0 if, when we substitute for Xy, ..., X,, x1,..., %, and for u,; the
i:;in ¢;(f), we get zero. We can now prove the following lemma:

LemMmA 3. Let 2/ = k(xy, ..., %,) be a finitely generated field extension of
kE with relations fi, ...,fr € k[X1,..., X,). If D = {8;} € H(Z', Z"), then

(i, =0,(x))li=1,...,m 1=1,2,...0} is a system of elements of Z'
which solve the equations
(3) gz(fk)=0 (k=1,...,r,i=1,2,...,00).

Conversely, if {ylj =1,...,n,71=1,...,0} is a collection of elements of

3! which solve (3), then there exists a higher derivation D = {8,} € Hy(Z', Z')
such that 5,(x]) = 7/7/1']‘.

Proof. fi, ..., [, being the relations of =’ of course means that fi, ..., f;
generate an ideal 4 C k[Xy, ..., X,] such that

Ood—kXy ... . X Xkl ..., %]—0

is exact. Thus fx(x1,...,%,) = 0fork =1,...,7. Hence if D € H,(Z', 2’),
then i,;; = §;(x;) satisfy (3) by repeated applications of Leibnitz’s rule.

Thus let us suppose we have a collection of elements {@;; € Z'|j = 1,...,,
1=1,...,00} which solve the equations (3). We define k-linear maps
8iklx1,...,%,) = 2 as follows: Given any g(xi,...,x,) € klx1, ..., %]
define

6i<g(x11 LI 7xn)) = ﬁ{qi(g<X1) e ey Xn))} (7‘ g 1)'
Thus 8, is defined by the following diagram:
X1,y Xl =2 kX, e oo Xolls]
O, 6; = gy " 1%1

klx1, o .., %] klxy, « ooy %))

It is not obvious that §; is well defined. So suppose (X1, ..55%;) =
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glxy, ..., x,) in klx1,...,%,]. Then I(Xy,...,X,) —g(Xy,...,X,) € 4.
So there exists ki, ..., k, € k[X1, ..., X,] such that

Xy, ..o, X)) — gXy, .0, X,) = k; I (X 3) f (X 4).
Thus, since the ¢,'s form a higher derivation, we have

51(1(36'1, sy xn)) - 6i(g(xl: LR sxn))
{qi(Xy, ..., X))} — M{gu(g(Xy, - . ., X))}
=H (Z(Xl,... Xn)—g(Xl,.,Xn))}

fifo (5 1)}
0}

2 g (fk)}

A+he=1

||
z-v’\‘\/-’\-\”"

Il
=

N s

1
=1
/W\

T

= Z ﬁgh(hk)ﬁ%z(fk) =0

k=1 Ai1+\2=1i

since by hypothesis, the i,; solve ¢;(fy) = 0 for all & =1,...,7 and all
1=1,2,...,00.Note

ﬁao(fk) = I0f; = fi(x1, ..., %) = 0.

Hence the 6; are all well defined. It is now clear that {§;} form a k-higher
derivation of k[xy, ..., x,] into 2’. By [1, Lemma 2], we may uniquely extend
the {8} to a higher derivation D = {§;} € H;(Z’, 2’). Finally, we note that
8:(x;) = #,;; by construction.

We note that the equations which appear in (3) have the following form:
For fixedz=1,2,...,0

Qi(fk)=0 (k=1,...,1’)

can be written as

ZlAikjltij‘l‘Bk: k=1,...,r),
j=

with Ay, By € B[ Xy, ..., Xuyll =1,...,7—1j7=1,...,n]. Hence for
each 7 the equations are linear in the #;;(j = 1,...,#n). We can now prove
the main result.

THEOREM 4. Let O = k[xy, . . ., x,] be a finitely generated extension of the field
k and p a non-minimal prime ideal in O such that O, is regular. Then pO, is not
differential under Hy(O,, Op).
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Proof. Set n = {x € Olrx =0, r € p} and form O/n. Since O, is a regular
local ring, it is an integral domain. Thus O/z is an integral domain. Set
O/n = k[xi, ..., %, and let 2’ denote the quotient field of O/#. Then we have
O/n C0,C 2 =k(#,...,&). Let O, denote the completion of 0,. Then
0, is a complete regular local ring of equal characteristic. Hence O, has the
form K[[t1, ..., t]] where K is the residue class field of O, and ¢4, . . ., ¢, are
a system of parameters of pO,. The elements {1, . . ., {, are analytically inde-
pendent over K and K contains an isomorphic copy of k. We may assume
that K D k without loss of generality.

Since the elements ¢y, . . ., f, are analytically independent over K, we may
easily construct higher derivations on O0,. Thus there exists a D =
{6;} € H(O,, 0,) such that: (a) 6,(K) =0 for ¢ = 1; (b) 6,(4) = 1 and
8:(t;) = O0fori =2,...,7;(c)d;(¢;) = Oforallj > landforall: =1,...,7r.
To construct such a higher derivation, one uses [2, Proposition 2] and
[1, Lemma 2 and Proposition 2]. Withoutany loss of generality, we may assume
that the ¢; lie in O/n and that t; = &;. We shall now construct a k-higher
derivation D’ = {8/} on O, such that §/(%;) =

Let fi,...,fn € k[X1,...,X,] be the generators of the kernel of the
mapping k[X] — k[x]. Then by Lemma 3, to construct any k-higher derivation
of O/n into 2’, we must find a collection of elements {#i;; € 2'|j = 1,...,n,
¢ =1,...,0} which solve the equations

¢(f) =0(@=1,...,mi=1...,0).

If 4,; € O, for all 7 and j, then D’ € H,(O/n, 0,), i.e., D’ will be a k-higher
derivation of O/n into O,. We may then extend D’ by the usual localization
technique to a k-higher derivation on O,. Thus to construct a k-higher deriva-
tion D’ on O, such that §;/(%1) = 1, we must find elements {i;; € O,|j =

1,...,n,7=1,...,0} which solve ¢;(f,) = 0 and have 4;, = 1. We shall
show that for any fixed ¢ there exist elements {#,|l = 1,...,4,7=1,...,n}
in O, which solve

af)=00=1,...,4,¢g=1,...,m)

and have 45, = 1.

We proceed by induction on 2. If ¢ = 1, we seek a solution to ¢:(f,) = 0.
As noted after Lemma 3, ¢:1(f,) = 0 is a system of m linear equations in u ;.
Now this linear system has a solution with 7;; = 1in O,. In [4, Lemma, p. 39],
A. Seidenberg showed that if a system of linear equations with coefficients
in 0, has a solution in 0, then the system has a solution in O,. Hence it follows
that there exist elements #;; € O, which solve ¢i(f,) = 0. We may still take
@1, = 1. Let us assume we have constructed {i,, € O/l =1,...,N < 4;
j=1,...,n} which solve ¢;(f,) =0 for I =1,..., N and have 4, = 1.
Then we have k-linear maps 1, 61, . . ., 65:0/n— O, wlnch form a higher deriva-
tion of rank N on O/n. We may then extend these maps to a higher derivation
{30, 01, .+ . . , ox} of rank N on O,. Since O, = K[[t, . .., t,]], one easily sees
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that 8o, 1, . . ., oy can be imbedded as the first N + 1 terms in a k-higher
derivation on O,. In particular, there exists a k-linear map 8y,; on O, such
that 1, 31, - ,3N+1 {orms a higher derivation of rank N + 1.

Now if we substitute 4%,;; for u;;,/ =1,...,Nand j=1,...,#n into the
system of equations gy11(f,) = 0, we obtain a system of linear equations in
tx41,; with coefficients in O,. Since dy,1 exists on O,, this system has a solution
in O,. Hence it has a solution 7iyy1,; € O,. Thus for each 7 there exist elements

{d,, €051l =1,...,4, 7=1,...,n} which solve ¢;(f,) =0 and have
1211 = 1

It now easily follows that there exist elements {#;; € Ot = 1,..., 0,
7 =1,...,n} which solve ¢,(f,) = 0 for all z and have #%;; = 1. Thus there

exists a k-higher derivation {8,} € Hy(O,, O,) such that §,(%:) = 1. Hence
81(p0,) Z p0, and pO, is not differential.

For examples of ideals which are differential, we have the following result:

THEOREM 5. Let O be a ring containing o field of characteristic zero. If an
ideal A in O is differential under Der(0), then A s differential under H (O, O).

Proof. Let D = {§,} € H(O, O). Then by [2, Theorem 5] each §, has the
form

Z{d—uﬁd&ijﬁ...ﬂsi}

with {d;} a sequence of derivations on O. Hence if 4 is differential under
Der(0), A4 is differential under H (O, O).

COROLLARY. Let V be an irreducible affine variety over a field k of characteristic
zero. Let k|x] denote the coordinate ring of V. Let p be the prime ideal in k[x] of
a component of the singular locus of V. Set O = k[x]. Then pO, is differential
under H(0,, O).

Proof. The result follows from Theorem 5 and [4, Theorem 5].

II. Zariski’'s Lemmma. In this section, we shall give a generalization of
Zariski’'s lemma. We noted in the introduction that the lemma does not
permit a straightforward generalization to the characteristic ¢ # 0 case.
That is, if O is a complete local ring containing a field 2 of characteristic
g # 0 and 6 € Der(0) such that §(x) is a unit for some x € m, the maximal
ideal of O, then there may be no subring O; C O such that O4[[x]] =0,
§(01) = 0, and x is analytically independent over O;. To see this, consider
the following example:

Example 2. We use the same example as in Example 1. Let k[x,y] =
kX, Y]/(V? — X — X1), Let O be the localization of k[x, y] at the origin
(0) and let O be the completion of O. As pointed out in Example 1, there
exists a derivation & € Der(0O) such that é(x) = 0 and 6(y) = 1. Extend § by
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the usual techniques to a derivation on O. Then & takes the element y in the
maximal ideal of O into 1. We shall now show that there exists no subring
0; of O such that y is analytically independent over Oi, §(0;) = 0 and
Oillyl] = 0. R

Suppose such a subring O; existed in 0. Then x = > a;y* with a; € Oy.
Therefore 0 = §(x) = Yiay ™. Since O; is a subring of 0,7 € O;. Since y is
analytically independent over O;, we must have 7a; = 0 for ¢ = 1, 2, .
Thus a; = 0if 7 = 0(¢). Hence

)

X = Z O‘nqynq

n=0

with a,, € O1. Now y? = x? 4 x?1. Hence

7 A it {8 s {E wor.
n= n= n=»
Using the fact that y is analytically independent over O, again, we get ag%a, = 1.
Hence g is a unit in O. But

o

ay =X — 21 Y™ € (x,)0.

n=

Since (x, )0 is the maximal ideal of O, we reach the desired contradiction.

Thus the natural extension of Zariski’s lemma to the characteristic ¢ = 0
case is false. However, if we replace § € Der(0) by D = {6;} € H(O, O) we
can obtain some partial results.

THEOREM 6. Let O be a complete local ring with maximal ideal m. Let x € m
and D = {8,} € H(O, O) such that §:(x) is a unit in O and §,(x) = 0 for all
1 > 1. Then there exists a subring O1 of O such that: (a) Oy is a complete local
ring; (b) x is analytically independent over Oy and (c) O = O4[[x]].

Proof. If 8:(x) = ¢!, then {e%;} is a higher derivation on O such that
eb1(x) = 1 and €%;(x) = 0 for 7 > 1. Hence we may assume that §;(x) = 1.
Set 7, = > (—1)%%;, i.e., 7, is a ring endomorphism on O given by 7,(a) =
S (—1)%x%;(a). Let Oy = 7,(0). Since 7, is a ring homomorphism, O; is a
complete local ring contained in O.

Now 7.(x) = 0. Therefore x € ker 7,. If y € ker r, M Oy, then there exists
ag € Osuchthaty = 7,(2) = 2 — x6:(2) + ... =2 — xlfor some [ € O. Thus
2z = vy + xl € ker 7,. Therefore 0 = 7,(z) = y. Hence ker 7, N\ 0, = (0).

We now show that x is analytically independent over O;. Since x is not zero,
x is not in O;. Suppose

i
ax = 0
i=0
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for some coefficients a; in O;. Then «y € O1 N ker 7,. Thus ag = 0. Assume
we have shown thatag = a3 = ... = o, = 0. Then we have

*:0 = @™ 4 appox™ 4 ...
By induction on k, one can easily show that
S (x") = 1(x) (k 2 1)

and
5:(x*) = 0(x) (z < k).

Thus applying 6,1 to *, we get 0 = a,y1+ 2/ for some element
21’ € Ox C ker 7,. Therefore a,4+1 = 0. Thus x is analytically independent

over O;.
Finally if v € O, then 7,(y) =y — x6:(y) + x2:(y) —.... So y =
m2(y) — x8:1(y) — ... But 7 (8:1(y)) = 61(y) — x6:>(y) + .... So

y=10)+ 6:0)x + 6:2@) — s(¥))x* 4+ .. ..

If we continue expanding in this manner, we obtain y = > a;x? with a; € O;.

Hence Oy[[x]] = O.
CoRrROLLARY 1. Zariski’s original lemma.

Proof. If O is a complete local ring containing the rationals and § € Der(0)
such that é(x) is a unit for some x € m, then €16 € Der(0) such that e 16 (x) =

1. Then
{L;—a")—} € H(0,0)

1!
and satisfies the hypotheses in our theorem. The rest follows easily.
COROLLARY 2. Let V be an affine algebraic variety over o field k. Let k[x]
denote the coordinate ring of V. If p is a prime ideal of k[x] such that the local
ring O = {k[x]}, admits a higher derivation D = {5;} € H(O, O) such that
01(x) =1 and 8,(x) = 0, < > 1, for some x € pO,, then V is analytically a
product along the subvariety ¥V (p).

Proof. We may extend D to the completion O, and apply Theorem 6.

COROLLARY 3. Let O be a complete local ring containing the rationals. Let m
denote the maximal ideal of O. If m is not differential under H (O, O), then there
exists an element x € m and a subring Oy of O such that x is analytically inde-
pendent over Oy and O4[[x]] = O.

Proof. If m is not differential under H (O, O), there exists a higher derivation
D = {8;} € H(O, O) such thaté,(m) Z m for some j = 1. By [2, Theorem 5],

dy . .. . . .
6,=E{—i‘-7!—ﬂ|11+...+z,=]},
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where {d;} is a sequence of derivations of O. Hence the result follows from
Zariski’s original lemma.

We note that Corollary 3 implies that if m is not differential under H (O, O),
then there exists an element x € m and a higher derivation D = {§;} € H(O,0)
such that 6;(x) = 1 and é,(x) = 0,z > 1. For, we may define

1,i=1
51(x)={0i>1

and
8:(01) =0@G = 1).

Thus in the characteristic zero case, the hypotheses of Theorem 6 are not so
restrictive as they look.

In Zariski’'s original lemma, if there exists an x € m with 6(x) ¢ m, then
there exists a subring O; of O such that Oy[[x]] = O and x is analytically
independent over O;. This suggests the following conjecture concerning higher
derivations: Suppose O is a complete local ring and D = {§;} € H(O, O).
Letx € m such that §;(x) ¢ m for some j = 1. Then does there exist a subring
O: of O such that Oy[[x]] = O and x is analytically independent over O;?
We give an example which shows that no such subring O; need exist.

Example 3. Let k denote the prime field of characteristic 2. Let X and ¥V
be indeterminates over k. By [1, Proposition 2], there exists a higher derivation
D = {§;} € H(R[X, V], k[X, Y]) such that

81(X) = 8:(Y) =0
and
;X)) =6,(Y)=1(@G>1).

A simple calculation shows that the principle ideal (X2 4 ¥?) in kX, V] is
differential under D, i.e., §,(X2% 4+ V2) C (X2 + ¥?2) for all 7. Thus D induces
a higher derivation D" on O = k[X, V]/(X?*+ V?) = k[x, y]. Let p = (x, y).
Then p is a prime ideal in O. Let n = {r € Olrz = 0, z ¢ p}. Then none of
the elements x,y or x 4 ¥ is in #. Since # is differential under D’, we may
extend D’ to a higher derivation on O, = (0/n),,, and then to a higher deriva-
tion on the completion 0,. Thus we have a complete local ring O, and a higher
derivation D’ = {6/} € H(O,, 0,) such that 8, (x) = 1. The example will
be complete if we show that no subring O; of 0, exists such that x is analytically
independent over O; and O,[[x]] = O.

Suppose such a subring did exist. Then y = Za;x? with «; in O;. Therefore
Sa2x?t = y2 But y? =x% Hence 0 = a¢® 4+ (1 + a1)2x? + ax2x?! + .. ..
Thusa; = 0if z % 1 and @y = 1. But this says x = y, which is a contradiction.

In conclusion, we note that Theorem 6 can also be proven under the slightly
more general hypothesis that there exists an x € m such that 6;(x) = 1 and
r(x) = 2 (—1)%,;(x)x* = 0, when O is an integral domain.
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