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IDEALS AND HIGHER DERIVATIONS IN 
COMMUTATIVE RINGS 

WILLIAM C. BROWN AND WEI-EIHN KUAN 

Introduction. In this paper, we wish to generalize the following lemma 
first proven by O. Zariski [5, Lemma 4]. Let 0 be a complete local ring contain
ing the rational numbers and let m denote the maximal ideal of 0. Assume 
there exists a derivation 5 of 0 such that 3(x) is a unit in 0 for some x in m. 
Then 0 contains a ring Oi of representatives of the (complete local) ring 
O/Ox having the following properties: (a) ô is zero o n d ; (b) x is analytically 
independent over d ; (c) 0 is the power series ring Oi[[x]]. In [4], A. Seidenberg 
used Zariski's lemma extensively to study conditions under which an affine 
algebraic variety V over a base field of characteristic zero is analytically a 
product along a given subvariety W oî V. We should like to generalize Zariski's 
lemma by removing the condition that 0 contain the rationals. We could 
then get some conditions under which an arbitrary affine variety V would be 
analytically a product along a subvariety W. 

Unfortunately, Zariski's lemma is false in the characteristic q ^ 0 case. 
That is, if 0 is a complete local ring containing a field k of characteristic 
q ^ 0, and if ô is a derivation of 0 such that 8(x) is a unit for some x in m, 
then there may be no subring 0\ of 0 such that properties (a), (b), and (c) 
hold. An example is given in § II of this paper. Thus there is no hope of a 
straightforward generalization of the lemma. It is well known that in certain 
problems involving fields of characteristic q, higher derivations, i.e., derivations 
of infinite rank, often yield results which are unobtainable for ordinary deriva
tions. So we are led naturally to study higher derivations and their relation
ships to ideals in commutative rings. 

If we replace ô in Zariski's lemma with a higher derivation {oi}, then we do 
get an appropriate generalization of the lemma. This result is given in § II 
of this paper. In § I, we present some general information on the relationship 
between ideals and higher derivations. This investigation is carried out mainly 
in the setting of commutative rings of finitely generated type, i.e., those rings 
which naturally arise in Algebraic Geometry. We have basically tried to 
reproduce the results known for ordinary derivations [4] in the more general 
setting of higher derivations. 

Preliminaries. Throughout this paper, all rings will be assumed to be 
commutative and to contain an identity. A ring 0\ will be called a subring 
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IDEALS AND HIGHER DERIVATIONS 401 

of a ring 0 if Oi C 0 and the identity of Oi is the same as that of 0. We shall 
also assume that all ring homomorphisms take the identity to the identity. 
We shall let k denote a field and Xh . . . , Xn indeterminates over k. We shall 
say that a ring 0 is a finitely generated extension of the field k if 0 is a homo-
morphic image of a polynomial ring k[Xi, . . . , Xn]. We shall often write 
0 = k[xi, . . . , xn] if 0 is not the null ring and is finitely generated extension 
of k. 

Let 0 be a ring. Then a derivation on 0 is an abelian group homomorphism 
8:0 —> 0 such that for all a, b in 0 

<5(a&) = a8(b) + M (a). 

A higher derivation on 0 is an infinite sequence of abelian group homomor
phisms bi'.O —->0, i = 0, 1, . . . such that: 

(1) do is the identity map. 
(2) 8i(ab) = ^j+jc=i 8j(a)8k(b) for all i and all a, b in 0. 
We shall call (2) Leibnitz's rule. We shall let Der(O) denote the collection 

of all derivations of 0 into 0 and H(0, 0) denote the collection of all higher 
derivations of 0 into 0. Note that if D = {Oi} € H(0, 0 ) , then <$i Ç Der(O). 

Let A be an ideal of 0. We shall say that A is differential under Der(O) if 
8(A) C A for all Ô G Der(O). Similarly, A is differential under H(0, 0) if 
for all D = {5i} G # ( 0 , 0 ) , ô,(^) C 4̂ for all i = 0, 1, We note that 
these two ideas are somewhat independent of each other. We shall give an 
example in § I which shows that a derivation ô G Der(O) need not be the 
term of degree one in any higher derivation D = {8i} G H(0, 0). Thus, if 
A is differential under Der(O), it does not necessarily follow that A is differen
tial under H(0, 0) and vice versa. We shall say more about this relationship 
i n § I . 

Let V be an affine algebraic variety over a field k and let 0 denote the 
coordinate ring of V. Let p be a prime ideal in 0. Then we say that V is 
analytically a product along the subvariety W = ^(p) if the completion 
0P of the local ring 0P is of the form 0i[[(]] with 0\ a complete local ring and t 
analytically independent over 0\. 

Finally, we shall assume the reader is familiar with the main results in [4]. 

I. Ideals and higher derivations. Let 0 be a ring and D = {8t} G H(0,0). 
Let 0* = 0[[J]], t an indeterminate. Thus 

0* = { É a^\at G Of 

is the ring of all formal power series in t with coefficients in 0. If 0 is Noetherian 
and A an ideal of 0, then 

AO* = { J a/la^AJ. 
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For each 7 = 0, 1, . . . we may extend the definition of <5; to 0* as follows: 

*)ti. 
/ OO \ OO 

M=0 / i=0 

The ô/s thus extended are clearly a collection of abelian group homomorphisms 
of 0* —> 0*. A routine computation shows that {ôi} actually forms a higher 
derivation on 0*, i.e. , {ôi} satisfies (1) and (2) on 0*. Thus given 
D = {8i} Ç H(0,0) we can construct a higher derivation which we also 
call D in H(0*,0*). 

Il D = {ôi} G H(0*, 0*), then we may define a ring homomorphism 
TD:0* —> 0* as follows: 

OO 

for a 6 0*. 
Note that 0,(1) = 0 for all i ^ 1 and thus TD(1) = 1. Thus if £> = 

{ôi} Ç 11(0,0), we can associate with D a ring endomorphism rD of 0*. 
It is well known [1, Theorem 1] that H(0, 0) forms a group and that TD is an 
automorphism of 0*. We need the following lemma. 

LEMMA 1. Let O be a Noetherian ring and A an ideal in 0. Let D = 
{ôi} £ H(0, 0). Then A is differential under D (i.e., ôt(A) C. A for all i) if 
and only if TD(A0*) C AO*. 

Proof. Supposed is differential under D. Let a 6 AO*. Then 

OO 

« = X) ait% 

with at G A. So for all j = 0, 1, . . . 

/ OO \ CO 

Therefore 

rD(a) = £ 8,(a)*'6i40*. 

Hence ^ ( 4 0 * ) C AO*. If TDG40*) C AO*, then r I ) ( ^ ) C ^ 0 * . So let 
a Ç i . Then 

T»(a) = J ôifât* £ AO*. 

Therefore 8t(a) £ A for each i. 

We can now prove the following theorem. 

THEOREM 1. Let 0 be a Noetherian ring and let A be an ideal in 0 with asso
ciated primes pi, ... , ps. Let D = {ôi} £ H(0, 0) such that A is differential 
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under D. Then pu . . . , ps are also differential under D and A can be written 
as an irredundant intersection gi C\ . . . C\ qs of primary ideals which are 
differential under D. 

Proof. This proof is much like A. Seidenberg's Theorem 1 in [4]. In place 
of etD, we use TD. Since A is differential under D, AO* is invariant under TD, 
i.e., rD(AO*) C AO*. Now it follows from [1, p . 33], t ha t rD-i (D'1 is the 
inverse of D in the group H(0, 0)) also maps .40* into AO*. Hence rD(AO*) = 
AO*. T h u s rD permutes the associated primes p±0*, . . . , ps0* of AO*. Say 
rD(piO*) = pjO*. Then for a G pu rD{a) G PjO*. T h u s a G pjt So pt C pj. 
Now rD-i(pjO*) = pt0*. So pjCPi. Hence i =j and TD(pt0*) CPU*. 
Therefore by Lemma 1, pt is differential under D. The rest of the proof follows 
exactly as in Seidenberg's result. 

Theorem 1 gives us a sufficient condition for a Noetherian ring 0 to be an 
integral domain. Namely: 

COROLLARY. Let 0 be a Noetherian ring in which (0) is the only ideal which is 
differential under H(0, 0 ) , then 0 is an integral domain. 

T h e next theorem allows us to pass to a local ring when a t tempt ing to decide 
whether a prime ideal p C O is differential under H(0, 0). We shall denote by 
Op the local ring obtained from 0 by localizing a t p. If we let n = {x G 0\rx = 0, 
r G O bu t r^p}, then the compliment of p/n consists of non zero divisors 
in 0/n and 0V is just (0/n)v/n. We need the following proposition: 

PROPOSITION 1. Let p be a prime ideal in a ring 0 and letD = {ôt} 6 H(0, 0). 
Then D induces a higher derivation Df = {<5/} G H(0P1 0V). 

Proof. W7e first note tha t n = {x G O|rx = 0, r Q p) is differential under Z>. 
We may argue this by induction on i. If x G w, then there exists an element 
r G 0 bu t not in p such tha t rx = 0. Then 0 = b\(rx) = rôi(x) + xô±(r). 
So 0 = r2ôi(x) + rxôi(r) — r2ô±(x). Thus <5i(x) G n. So n is differential under 
ôi. Assume now tha t 8\, . . . , ôm map n into w. Let x (z n, r Q p such t h a t rx = 0. 
Then 

0 = ôm+1(rx) = X àj(r)àk(x). 

So 

rôm+1(x) = — (<5iO)<5m(x) + . . . + xôm+i(r)) G n. 

Hence there exists an r' G 0 bu t not in p such t ha t 

r'(rôm+i(x)) = 0. 

Since rV G O, bu t not p, ôm+1(x) G w. T h u s n is a differential ideal. 
We now form O/n. Since n is differential, .D induces a higher derivation 

5 = {ô*} G H(0/n, O/n) in the natural way, i.e., 

Ô*(a + n) = ôï(a) + n (a G 0 ) . 
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Let Kip In) denote the total quotient ring of O/n. Then 

O/n COp= (0/n)p/n C K(0/n). 

Thus D can be considered as an element of H (O/n, K{0/n)) ; i.e., we may view 
D as a higher derivation of O/n into K (O/n). We may now apply [1, Lemma 2] 
to uniquely extend D to a higher derivation Df = {8/} £ H(Op, K(0/n)). 
It remains to show that Df £ H(Op,Op). 

Now D = {ôi} G H (O/n, K(0/n)) gives rise to an isomorphism 
TD: O/n —> K(0/n)[[t]] (t an indeterminate) as follows: 

oo 

rnib) = £ 5,(6)*4 (6 g O/n). 
i=0 

We have the following diagram which we wish to complete with a map TD>. 

O/n *1 • K(P/n)M\ 

/ 

(P/n)., V/n 

So we define 

M ; i = rn(b){r3(c)y 

where c, b £ O/n, c £ p/n. Then 
CO 

i.e., {5/} are just the component parts of the isomorphism TD>. 
Now if 

oo 

a = £ a / £ 0/n[[/]] 

with a0 $ £/w, then a is a unit in K(0/n)[[t]] and has inverse or1 Ç Op[[/]]. 
Hence it follows that TD> actually maps Op —» Op[[/]]. Thus D' = 
{«/} eH(Qp,Op). 

THEOREM 2. Le£ p be a prime ideal in a ring 0. If pOp is differential under 
H(Op, Op), then p is differential under H(0, 0). 

Proof. Here pOp of course means the maximal ideal of the local ring Op. 
Suppose p is not differential under H(0, 0). Then there exists a higher deriva
tion D = {8i} G H(0,0) such that 8j(p) (£_ p for some j ^ 1. Using Proposi
tion 1, we may extend D to D' £ H(Ov,Op) by D—>D-^Dr. One easily 
checks that D = {8t} £ H (O/n, O/n) has the property that 8j(p/n) (£ p/n. 
Thus, 8/(pOp) Çt pOp. But this is a contradiction, since pOp was assumed 
differential under H(Op, Ov). 
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Proposition 1 and Theorem 2 show tha t higher derivations like derivations 
can be extended in a canonical way from 0 to Ov. Going the other way seems 
to be harder. In the case of rings finitely generated over a field k of character
istic zero, the converse of both Proposition 1 and Theorem 2 follows from 
[2, Theorem 5] and [4, Theorem 2]. T h e general case remains unknown. 

W e specialize to rings which are finitely generated extensions of k. Any 
sequence ôo, . . . , ôm of abelian group homomorphisms from 0 to 0 such t ha t 

(1) ô0 = identi ty, and 

(2) dt(ab) = £ ôs(a)ôk(b) (i = 1, . . . , m), 
j+k=i 

will be called a higher derivation of rank m on 0. 
If 0 = k[x±, . . . , xn], we shall denote by Hk (0, 0) the set of all higher deriva

tions D = {8i} on 0 which consist of ^-linear mappings ô*:0 —> 0. Similarly, 
a higher derivation of rank m on 0 will be called a higher ^-derivation if it 
consists of ^-linear maps. 

W e need the following lemma: 

L E M M A 2. Let 0 be a finitely generated extension of the field k and p a prime 
ideal of 0. Let n = {x G O, rx = 0, r (? p} and D = {8i} G Hh (Op, Op). Then for 
every positive integer m, there exist elements kt Ç 0/n, kt (? p/n, i = 1, . . . , m, 
such that {ôo, feiôi, . . . , kmôm} is a k-higher derivation of rank m on 0/n. 

Proof. Since 0 is a finitely generated extension of the field k, 0/n is also a 
finitely generated extension of k. Hence 0/n has the form k[xi, . . . , xs] for 
some field k. Now let m be a positive integer. Then for each j = 1, . . . , m 

°Axi) = „ » 

where uijy vtj (E 0/n and vtj Q p/n. So set 

s 

h = n vtj. 
Then lj Ç 0/n bu t l3- € p/n. We also note t ha t for each j = 1, . . . , m, 
(lim . . . Zmy_iZy)ô^ is an abelian group homomorphism of 0/n —» 0/n. T h e 
fact t ha t (lim . . . lmj-ilj)ôj maps 0/n into 0/n can be proven by successive 
applications of Leibnitz 's rule (2). 

If we now set kt = {hm . . . lm
m-ilmY for i — 1, . . . , m, then {ôo, W i , 

W2 , • . . , &m£m} forms a ^-higher derivation of rank m on 0 / ^ . 

We may now prove the following partial converse to Theorem 2: 

T H E O R E M 3. Let 0 = k[xi, . . . , xn] be a finitely generated extension of the 
field k and let p be a prime ideal of 0. Suppose that for any positive integer m, p 
is differential under all k-higher derivations of rank m. Then pOv is differential 
under all k-derivations of finite or infinite rank. 
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Proof. W e use the notat ion t ha t appears in [4, Theorem 2]. 
In 0 , let (0) = gi H . . . H gs be an i r redundant pr imary decomposition 

of (0). O/n = k[xu . . . , xh]. Le t qt C P for i = 1, . . . , t and q{ <£ p for 
i = t + 1, . . . , s. Let R = k[Xi, . . . , Xh], and let II be the natura l mapping 
of R onto 0 . Let q/ = I I " 1 ^ ) for i = 1, . . . , s. Set A = g / P . . . P q/ 
and N = g / H . . . P i g / . 

Now suppose ^?0p is not differential under Hk(Ov, 0P). Then there exists a 
£> = {5.} £ ff^Op, Op) such t h a t ôj(pOp) (£ pOv for some 7 ^ 1. Hence it 
suffices to prove pOv is differential under all ^-derivations of finite rank. 

Suppose pOp is not differential under all ^-derivations of finite rank. Then 
there exists a ^-higher derivation {<50, . . . , ôm} of rank m such t h a t 
Sm(pOv) (jL pOp. Wi thou t loss of generality, we may assume ôi(pOp) C pOp 

for i = 0, . . . , m— 1. By lemma 2, wre can find elements k±, . . . , km G O/w 
such t h a t &Î (? £/w, i = 1, . . . , m, and {<50, kibi, . . . , km8m} is a fe-higher 
derivation of rank m on 0/w. If i < m, then ktôtip/n) C ^Op P 0/ra = £/?z. 
W e also know there exists an x G p/n and J G O/w (y (? p/n) such t h a t 
Bn(x/y) £ pOp. Bu t 

Sm(x/y) = X) aj(x)ok(l/y). 
j-\-k=m 

Hence ôm(x) (L pOp. So kmôm(x) ^ p/w. T h u s using Lemma 2, we have con
structed a ^-higher derivation {/Z0/Z1, . . . , j2m} (jit = k^/) of rank m on O/n 
such t ha t 

UjiP/n) C £ / « (j = 0, 1, . . . , m - 1 ) 

Um(p/n) <t P/n. 

We next note t ha t R/N ~ O/n. Let n 0 denote the natural mapping of 7? onto 
O/n given by n 0 (X*) = #*. W e now define a ^-higher derivat ion {/z0, . . . , /xm} 
of rank m on R as follows: Let a ^ G i? such t h a t I lo(a^) = Jxi{x/) for 2 = 
1, . . . , m, j = 1, . . . , h. Define for i = 0, . . . , m ixt'.R —» R by /x0 = ident i ty 
and Hi{Xj) = atj. This gives us a well defined ^-higher derivation {/x̂ } on 
R [2, Proposition (2)]. (One uses Leibnitz 's rule to extend ixt to all of R.) 
Note t h a t if f(Xi, . . . , Xh) is any polynomial in R, then n0{Mj(f)} = 
/Zy(n0(/)) = Pj(f(xi, . . . , xh)) for 7 = 0, . . . , m. From this fact, we imme
diately get t h a t N is differential under {iz0, . . . , /xm}. 

Now let £ ' be the pull back of p to i?, i.e., p' = I T " 1 ^ ) . Le t a G q't+i 
r\ . . . r\ q/ — p', i.e., let a be an element in q't+\ C • • . C q/ which is not 
in p'. Now consider {/x0, a/*i, . . . , am\xm\. T h e {a*/Zi}w*=o clearly form a 
^-higher derivation of rank m on i^. If x G A, then for all i = 0, . . . , m 

a^tipc) G N, 

since TV is differential under M*- Hence aV^(x) £ qi C\ . . . C\ q/. Since 

a G g V i P • • • P 2 / w e g e t û^Vi(^) G g / P . . . P g / = ^4. Hence yl is 
differential under {/xo, . . . , amnm}. W e also note t h a t iim{pr) ÇL P' since 
/ZmteAO ÇZ />/». T h u s cFpnlp') (Z p'. 

https://doi.org/10.4153/CJM-1972-033-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-033-1


IDEALS AND H I G H E R DERIVATIONS 407 

We have now constructed a ^-higher derivation {a^z} of rank m on R 
such that A is differential under {a*/z*} but amij,m(p') (£_ p'. Thus we get an 
induced ^-higher derivation {8i}m

i=o on R/A — 0 such that lm(p) ÇL P> This 
is a contradiction and the proof is complete. 

We shall finish this section by presenting some theorems which will give 
us examples of ideals which are not differential and ideals which are differential 
under higher derivations. We note that in [4, Theorem 3], A. Seidenberg 
proved the following result: 

Let 0 = k[xi, . . . , xn] be a finitely generated extension of the field k and p 
a non-minimal prime ideal of 0 such that Ov is regular. Then p is not differential 
under Der(0). 

This theorem does not yield an immediate result for higher derivations 
since every derivation 8:0 —> 0 cannot necessarily be embedded as the term 
of degree one in a higher derivation on 0. To see this, consider the following 
example which appears in [3]. 

Example 1. Let k be a field of characteristic a ^ 0 and let X, Y be 
indeterminates over k. Consider the irreducible polynomial YQ — Xa — 
X^ e k[X, Y]. Let 0 = k[X, Y]/(Y« - X* - X^) = k[x,y]. Then there 
exists a 8 G Der(O) such that 8(x) = 0 and 5(y) = 1. Let 0 denote the 
integral closure of 0 in its quotient field. Then 5(0) QL 0. If ô could be em
bedded as the term of degree one in a higher derivation {50, ôi, 82, 53, . . .} 
e H(0, 0 ) , then 0(0) C 0. For, Seidenberg has shown [3, p. 173] that the 
following result is true for higher derivations: 

Let 0 be an integral domain with quasi-integral closure 0''. If D = {8i) is 
a higher derivation on 2, the quotient field of 0, such that 5^(0) C 0 for all 
i = 1, 2, . . . , then ôt(0') C 0' for all i = 1, 2, 

Now for Noetherian rings, the quasi-integral closure is equal to the integral 
closure. Hence 8 is an example of a derivation which cannot be imbedded in 
a higher derivation. 

Thus we must work a little harder to obtain a result analogous to 
[4, Theorem 3]. 

Let k be an arbitrary field and X±, . . . , Xn be indeterminates over k. 
Let 2 denote the quotient field of k[Xi, . . . , Xn] and {ui3\f = 1, . . . , n, 
i = 1, 2, . . . , oo } and T be indeterminates over 2. For each i = 1, 2, . . . , we 
define a ^-linear mapping qt:k[Xlf . . . , Xn] —> k[Xly . . . , Xn][uij] as follows: 
Given any monomial Xxmi . . . Xn

mn in k[Xu . . . , Xn], we define 
qi(Ximi . . . Xn

mn) to be the coefficient of Tl in the following power series in 
(k[Xu . . . , Xn][UiJ])[[T]]: 

I oo J ml \ oo 
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T h u s q_i is well defined on the monomials of k[Xi, . . . , Xn]. We extend the 
definition of qi to all of k[Xi, . . . , Xn] by linearity. If we define g0 = 1, then 
a routine computa t ion shows t h a t {q0j qu q2, . . .} forms a ^-higher derivat ion 
from k[Xi, . . . , Xn] to k[Xh . . . , X J [ z ^ J . 

Now suppose 2 ' = fe(xi, . . . , xn) is a finitely generated field extension of fe. 
L e t {^i; £ 2 ' | j = 1, . . . , n, i = 1, 2, . . . oo } be a collection of elements of 
2 ' . Then we have a natural ^-algebra homomorphism 

U:k[Xh . . . , Z „ ] [ M ^ ] -> k[xu . . . , *„][«, J C 2 ' 

given by TL(Xi) = xt and S ( w ^ ) = w^. If /(X^i, . • • , ^ n ) € &[Xi, . . . , Xn], 
we shall say t h a t the {utj} solve #*(/) = 0 if 11(7* (f) = 0. T h u s {ûtj} solve 
<Z*(/) = 0 if» when we subst i tu te for X i , . . . , X n , Xi, . . . , xn and for utj the 
ûtj in qi(f), we get zero. W e can now prove the following lemma: 

L E M M A 3. Let 2 ' = k(x\f . . . , xn) be a finitely generated field extension of 
k with relations fu... ,fr € k[Xlt . . . , X»]. If D = {<5,} Ç i ?* (2 ' , 2 ' ) , *Aew 
{^.;. = oi(x^)|i = 1, . . . , w, i = 1, 2, . . . oo } is a system of elements of 2 ' 
which solve the equations 

(3) <z,(f*) = 0 (* = 1, . . . , r, * = 1, 2, . . . , oo ) . 

Conversely, if {ùij\j = 1, • . . , n, i = 1, . . . , oo } is a collection of elements of 
2 ' which solve (3), then there exists a higher derivation D = {<5*} £ Hk(2'', 2 ' ) 

Proof. / i , . . . , / r being the relations of 2 ' of course means t h a t / i , . . . , / r 

generate an ideal 4̂ C &PG, . • . , Xn] such t h a t 

0—>^4 —>k[Xu . . . ,XW] —> k[xh . . . , x j —>0 

is exact. Thus/^Cxi , . . . , xw) = 0 for & = 1, . . . , r. Hence if D £ Hk(2', 2 ' ) , 
then w^ = 8i(Xj) satisfy (3) by repeated applications of Leibnitz 's rule. 

T h u s let us suppose we have a collection of elements {utj Ç 2 ' | j = 1, . . . , n, 
i = 1, . . . , oo } which solve the equations (3). W e define ^-linear maps 
di'.klxiy . . . , xn] —» 2 ' as follows: Given any g(xi, . . . , xn) £ &[xi, . . . , xn] 
define 

ài(g(xl9...,Xn)) = n { g i ( g ( X i , . . . f X n ) ) } (i è 1). 

T h u s ôf is defined by the following diagram: 

k[Xi, . . . , Xn] > k[Xh . . . , Xn][Uij] 

n 0 ôi = n g j i o n 
K[Xlj • • . , XWJ /C[Xl , • . • , Xn\[Uij\ 

I t is not obvious t h a t ôt is well defined. So suppose l(xif.. • , xn) = 
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g(xi, . . . , xn) in k[xi, . . . , xn]. Then l(Xh . . . , Xn) - g(Xl9 . . . , Xn) G A. 
So there exists Ai, . . . , Ar 6 fe[-X\, . . . , X J such that 

/(Xx, ...,Xn)- g(Xlt ...,Xn)=i, hiXJftiXt). 
1=1 

Thus, since the qîs form a higher derivation, we have 

8t(l(xi, . . . , xn)) - ô4(g(xi,. . . , xn)) 

= n{qt(l(Xi, . . . ,Xn))} - n{qt(g(Xi Xn))\ 

= n{qi(i(x1,...,xn)-g(x1>...,xn))} 

=4'(s ***)} 
= ï ï j É ff*(A*/*)| 

= E S ngx̂ AOSgx̂ /*) = 0 

since by hypothesis, the ûtj solve <?*(/*;) = 0 for all k = 1, . . . , r and all 
i = 1, 2, . . . , oo. Note 

nff0(/*) = n/* = /*(*i, ...,xn) = o. 
Hence the 8t are all well defined. It is now clear that {of} form a ^-higher 
derivation of k[x\, . . . , xJ into 2 ' . By [1, Lemma 2], we may uniquely extend 
the {ôi\ to a higher derivation Z> = {<5*} Ç Hk(2', 2 ' ) . Finally, we note that 
ôi(x;) = ^i;- by construction. 

We note that the equations which appear in (3) have the following form: 
For fixed i = 1, 2, . . . , oo 

Qiific) =0 (k = 1, . . . , r ) 

can be written as 

X AijcjUij + Bk = 0 (& = 1, . . . , r), 

with ^ y , i ^ G &[^i, . . . , Xn][uij\l = 1, . . . , i — 1 j = 1, . . . , ri\. Hence for 
each i the equations are linear in the UijfJ = 1, . . . , n). We can now prove 
the main result. 

THEOREM 4. Let 0 = k[xi, . . . , xn] be a finitely generated extension of the field 
k and p a non-minimal prime ideal in O such that Ov is regular. Then pOP is not 
differential under Hk(Op, Ov). 

https://doi.org/10.4153/CJM-1972-033-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-033-1


410 W. C. BROWN AND W.-E. KUAN 

Proof. Set n = {x G 0\rx = 0, r G p) and form O/n. Since 0^ is a regular 
local ring, it is an integral domain. T h u s O/n is an integral domain. Set 
O/n = &[xi, . . . , xn] and let 2 ' denote the quot ient field of O/n. T h e n we have 
O/n C Op C 2 ' = fe(xi, . . . , xn). Le t Op denote the completion of Ov. Then 
Op is a complete regular local ring of equal characteristic. Hence Op has the 
form K[[ti, . . . , tr]] where K is the residue class field of Ov and t\, . . . , tT are 
a system of parameters of pOv. T h e elements h, . . . , tT are analytical ly inde
pendent over K and X contains an isomorphic copy of k. W e m a y assume 
t h a t K D k wi thout loss of generality. 

Since the elements t\, . . . , tT are analytically independent over K, we may 
easily construct higher derivations on Op. T h u s there exists a D = 
{ht) G H(ÔP, Ôp) such tha t : (a) 8t(K) = 0 for i ^ 1; (b) 8x{h) = 1 and 

bxitt) = Ofor i = 2, . . . , r ; (c) b^t/) = 0 for all j > 1 and for all i = 1, . . . , r. 
T o construct such a higher derivation, one uses [2, Proposition 2] and 
[1, Lemma 2 and Proposition 2]. Wi thou t any loss of generality, we may assume 
t h a t the tt lie in O/n and t h a t h = x\. W e shall now construct a ^-higher 
derivat ion D' = {8/} on Ov such t ha t 8/(xi) = 1. 

Let / i , . . . , / m 6 fet-X'i, . . . , -X'n] be the generators of the kernel of the 
mapping k[X] —> k[x]. Then by Lemma 3, to construct any ^-higher derivation 
of O/n into 2 ' , we mus t find a collection of elements {ûtj G 2 ' | i = 1, . . . , n, 
i = 1, . . . , oo } which solve the equations 

Qtifg) = 0 (q = I, . . . ,tn,i = 1, . . . ,co). 

If ûij G Op for all i and 7, then D' G Hk(0/n, 0p), i.e., Z>r will be a ^-higher 
derivation of O/n into 0V. W e may then extend D' by the usual localization 
technique to a ^-higher derivation on 0V. T h u s to construct a ^-higher deriva
tion Z)' on Op such t h a t a/O^i) = 1, we mus t find elements \ûii G 0p\j = 
1, . . . , n, i = 1, . . . , 00 } which solve g*(/ff) = 0 and have un = 1. We shall 
show t h a t for any fixed i there exist elements {ûij\l = 1, . . . , i,j = 1, . . . , n} 
in 0P which solve 

Çtiifg) = 0 (/ = 1, . . . , i, q = 1, . . . , m) 

and have un = 1. 
W e proceed by induction on i. If i = 1, we seek a solution to gi(fç) = 0. 

As noted after Lemma 3, qi(fq) = 0 is a system of w linear equat ions in Uij. 
Now this linear system has a solution with « n = 1 in Op. In [4, Lemma, p . 39], 
A. Seidenberg showed t h a t if a system of linear equat ions with coefficients 
in 0P has a solution in Op, then the system has a solution in Op. Hence it follows 
t h a t there exist elements M^ G 0P which solve qi(fQ) = 0. W e may still take 
iZu = 1. Let us assume we have constructed {ûij G 0v\l = 1, . . . , N < i\ 
j = 1, . . . , n) which solve qi(fQ) = 0 for / = 1, . . . , N and have ûu = 1. 
Then we have ^-linear maps 1, <5i, . . . , 8N:0/n —» Op which form a higher deriva
tion of rank N on O/n. W e may then extend these maps to a higher derivat ion 
•{So, 81, . . . , 8N} of rank N on 0P. Since Op = K[[ti, . . . , / J ] , one easily sees 
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that ôo, ôi, . . . , 8N can be imbedded as the first TV + 1 terms in a ^-higher 
derivation on Op. In particular, there exists a ^-linear map ôN+i on Op such 
that 1, Si, . . . , Sjv+i forms a higher derivation of rank TV + 1. 

Now if we substitute uXj for Uijt I = 1, . . . , N and j = I, . . . ,n into the 
system of equations q^+iifa) = 0> w e obtain a system of linear equations in 
uN+itj with coefficients in Op. Since ôN+i exists on C%, this system has a solution 
in 0P. Hence it has a solution ûN+itj G Op. Thus for each i there exist elements 
{ûij G Op|/ = 1, . . . , i, j = 1, . . . , w} which solve gz(/ff) = 0 and have 
wn = 1. 

It now easily follows that there exist elements {Uij G Op\i = 1, . . . , co, 
j = 1, . . . , n\ which solve qi(fQ) = 0 for all i and have «n = 1. Thus there 
exists a ^-higher derivation {ôt} G Hk(Opi Op) such that 5i(xi) = 1. Hence 
àiifiOp) (Z pOp and pOp is not differential. 

For examples of ideals which are differential, we have the following result: 

THEOREM 5. Let 0 be a ring containing a field of characteristic zero. If an 
ideal A in 0 is differential under Der(O), then A is differential under H(0, 0). 

Proof. Let D = {dt} G H(0, 0). Then by [2, Theorem 5] each bt has the 
form 

z { ^ r ^ l i x + ...+jr = *) 
with {di) a sequence of derivations on 0. Hence if A is differential under 
Der(O), A is differential under H(0, 0 ) . 

COROLLARY. Let V be an irreducible affine variety over afield k of characteristic 
zero. Let k[x] denote the coordinate ring of V. Let p be the prime ideal in k[x] of 
a component of the singular locus of V. Set 0 = k[x]. Then pOp is differential 
under H(OPJ 0P). 

Proof. The result follows from Theorem 5 and [4, Theorem 5]. 

I I . Zariski 's L e m m a . In this section, we shall give a generalization of 
Zariski's lemma. We noted in the introduction that the lemma does not 
permit a straightforward generalization to the characteristic g ^ O case. 
That is, if 0 is a complete local ring containing a field k of characteristic 
q 9^ 0 and ô G Der(O) such that ô(x) is a unit for some x G m, the maximal 
ideal of 0, then there may be no subring 0\ C 0 such that Oi[[x]] = 0, 
à (Pi) = 0, and x is analytically independent over 0\. To see this, consider 
the following example: 

Example 2. We use the same example as in Example 1. Let k[x, y] = 
k[X, Y]/(Y« - X« - Xq+1). Let 0 be the localization of k[x, y] at the origin 
(0) and let 0 be the completion of 0. As pointed out in Example 1, there 
exists a derivation 5 G Der(O) such that 8(x) = 0 and d(y) = 1. Extend ô by 
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the usual techniques to a derivation on 0. Then ô takes the element y in the 
maximal ideal of 0 into 1. We shall now show that there exists no su bring 
0\ of 0 such that y is analytically independent over Oi, 8(Oi) = 0 and 

0i[M] = °-
Suppose such a subring 0\ existed in O. Then x = J^aiy

i with at ^ 0\. 
Therefore 0 = b(x) = Y,^iy

i~l. Since 0± is a subring of 0, i 6 Oi. Since y is 
analytically independent over Oi, we must have ia* = 0 for i = 1, 2, . . . . 
Thus «i = 0 if i ^ 0(g). Hence 

oo 

with anff G Oi. Now yQ = xQ + xQ+1. Hence 

\n=0 J \n=0 J \n=0 J 

Using the fact that y is analytically independent over 0\ again, we geta0
gaq = 1. 

Hence a0 is a unit in 0. But 

oo 

a0 = x — X) anQym £ (x, y)Ô. 

Since (#, ;y)0 is the maximal ideal of 0, we reach the desired contradiction. 

Thus the natural extension of Zariski's lemma to the characteristic g ^ O 
case is false. However, if we replace 8 £ Der(0) by D = {dt} £ H(0, O) we 
-can obtain some partial results. 

THEOREM 6. Let 0 be a complete local ring with maximal ideal m. Let x £ m 
and D = {ôi} £ H(0, 0) such that 8i(x) is a unit in O and ot(x) = 0 for all 
i > 1. Then there exists a subring 0\ of 0 such that: (a) 0\ is a complete local 
ring; (b) x is analytically independent over Oh- and (c) 0 = Oi[[x]]. 

Proof. If di(x) = e-1, then {e*<5*} is a higher derivation on 0 such that 
-eôi(x) = 1 and e^iix) = 0 for i > 1. Hence we may assume that ôi(x) = 1. 
Set rx = X(— 1)V5*, i.e., TX is a ring endomorphism on 0given by rx(a) = 
X ( — 1 ) ^ 6 i ( a ) . Let 0\ = rx(0). Since rx is a ring homomorphism, 0\ is a 
complete local ring contained in O. 

Now TX(X) = 0. Therefore x £ ker rx. If y £ ker r* Pi Oi, then there exists 
a s Ç O such that y = ^(z) = 2 — xôi(z) + . . . = z — xlior some / £ 0. Thus 
.z = y -{- xl £ ker rx. Therefore 0 = TX(Z) = y. Hence ker TX C\ 0\ = (0). 

We now show that x is analytically independent over 0\. Since x is not zero, 
x is not in 0\. Suppose 

oo 

X) «*#* = o 
i=0 
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for some coefficients at in 0\. Then a0 G Oi C\ ker TX. Thus a0 = 0. Assume 
we have shown that ao = ai = . . . = an = 0. Then we have 

*:0 = an+1x
n+i + an+2x

n+* + . . . . 

By induction on k, one can easily show that 

bk(x
k) E= l(x) (k ^ 1) 

and 
ô.(xfc) = 0(x) (i < k). 

Thus applying bn+i to *, we get 0 = an+i + z\ for some element 
Z\ G Ox C ker r*. Therefore an+i = 0. Thus x is analytically independent 
over Oi. 

Finally if 3/ G 0, then rx(y) = y — xbi(y) + x2b2(y) — . . . . So y = 
rx(y) - *«i(y) - . . . . But Tx(«i(y)) = b^y) - xb^(y) + . . . . So 

y = rx(y) + T,(5i(y))x + (b^(y) - ô2(3;))x2 + . . . . 

If we continue expanding in this manner, we obtain y = ^aix
i with at G 0i. 

Hence 0i[[x]] = 0. 

COROLLARY 1. Zariski's original lemma. 

Proof. If 0 is a complete local ring containing the rationals and b G Der(0) 
such that <5(x) is a unit for some x G m, then e_1<5 £ Der(0) such that e-1ô(x) = 
1. Then 

{ ^ } G ff(Of 0) 

and satisfies the hypotheses in our theorem. The rest follows easily. 

COROLLARY 2. Let V be an affine algebraic variety over a field k. Let k[x] 
denote the coordinate ring of V. If p is a prime ideal of k[x] such that the local 
ring 0 = {k[x])v admits a higher derivation D = {bt} G H(0,0) such that 
b\(x) = 1 and bt(x) = 0, i > 1, for some x G pOp, then V is analytically a 
product along the subvariety 'f (p). 

Proof. We may extend D to the completion Op and apply Theorem 6. 

COROLLARY 3. Let 0 be a complete local ring containing the rationals. Let m 
denote the maximal ideal of 0. If m is not differential under 11(0,0), then there 
exists an element x G m and a subring 0\ of 0 such that x is analytically inde
pendent over Oi and 0i[[x]] = 0. 

Proof. If m is not differential under H(0, 0 ) , there exists a higher derivation 
D = {bi} G H(0, 0) such that 8j(m) <£ m for some.7 è 1. By [2, Theorem 5], 
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where {dt} is a sequence of derivations of 0. Hence the result follows from 
Zariski 's original lemma. 

W e note t h a t Corollary 3 implies t ha t if m is not differential under H(0, 0), 
then there exists an element x G m and a higher derivation D = {ôt} G H(0, 0) 
such t h a t ôi(x) = 1 and ôi(x) = 0, i > 1. For, we m a y define 

**<*> = {©; *• > i, 
and 

5<(Oi) = 0 (i^ 1). 

T h u s in the characteristic zero case, the hypotheses of Theorem 6 are not so 
restrictive as they look. 

In Zariski 's original lemma, if there exists an x G m with <5(x) G m, then 
there exists a subring 0\ of 0 such t h a t Oi[[x]] = 0 and x is analytically 
independent over 0\. This suggests the following conjecture concerning higher 
derivations: Suppose 0 is a complete local ring and D = {ot} G H(0,0). 
Let x G m such t h a t <5 (̂x) G w for some j ^ 1. Then does there exist a subring 
Oi of 0 such t h a t d [ [ x ] ] = 0 and x is analytically independent over Oi? 
We give an example which shows t h a t no such subring 0\ need exist. 

Example 3. Le t & denote the prime field of characterist ic 2. Le t X and F 
be indeterminates over k. By [1, Proposition 2], there exists a higher derivation 
£> = {di} G # (&[X, F ] , &[X, F]) such t h a t 

5 i (X) = d1(Y) = 0 

and 

Ô,(X) = 5 , (F) = 1 (i > 1). 

A simple calculation shows t ha t the principle ideal (X2 + F2) in k[X, Y] is 
differential under D, i.e., 5,(X2 + F2) C ( ^ 2 + F2) for all i. T h u s Z) induces 
a higher derivation D ' on 0 = k[X, Y]/(X2 + F2) = k[x, y]. Let /> = (x, y ) . 
Then >̂ is a prime ideal in 0. Le t w = {r G 0 | r s = 0, z G £ } . Then none of 
the elements x, y or x + 3/ is in n. Since w is differential under D', we may 
extend D' to a higher derivation on Ov = (P/n)v/n and then to a higher deriva
tion on the completion Ov. T h u s we have a complete local ring Ov and a higher 
derivat ion D' = {ô/} G H(0P1 Op) such t h a t 82 (x) = 1. T h e example will 
be complete if we show t h a t no subring Oi of Ov exists such t h a t x is analytically 
independent over 0\ and Oi[[x]] = 0 . 

Suppose such a subring did exist. Then y = 2atx
l with at in Oi. Therefore 

2at
2x2i = y2. Bu t y2 = x2. Hence 0 = a0

2 + (1 + «i)2x2 + a2
2x4 + 

T h u s at = 0 iî i 9e 1 and a.\ = 1. Bu t this says x = y, which is a contradict ion. 

In conclusion, we note t ha t Theorem 6 can also be proven under the slightly 
more general hypothesis t h a t there exists an x G m such t ha t <5i(x) = 1 and 
TX(X) = J^(—l)iôi(x)xi = 0, when 0 is an integral domain. 
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