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ON SQUARES OF JACOBSON RADICAL RINGS

E.R. PUCZYLOWSKI AND H. ZAND

We construct several examples of Jacobson radical rings which are not squares of
other rings.

Denote by J and N the classes of Jacobson radical rings and nilpotent rings,
respectively. Let J2 = {A | there is a Jacobson radical ring R such that A = R2}.
Obviously J is equal to the lower radical class determined by J2\J N. This was noted
in [5], Theorem 1, in the context of a problem of Divinsky [4] to represent the Jacobson
radical as a lower radical class. However it is not clear whether the representation is
non trivial (that is, whether J ^ J2UN). In [5] an example showing that N <£ J2 was
constructed (which obviously does not clarify the relation between J and J2 U N) and
the problem of finding more examples in J \ J2 was raised. In this note we obtain some
results which can be used to construct many such examples. They in particular show
that J ^ J2 U N.

The question studied in this paper is a special case of the following extension
problem: given rings A and B, describe all rings R such that A ~ I , where I is
an ideal of R and R/I ~ B. For some results and further references concerning that
problem and its applications we refer to [1] and [6].

All rings in this paper are associative. To denote that / is an ideal of a ring R we
write I<R. Given a subset S of a ring A, we denote by IA(S) and rA(S) the left and
right annihilators of 5 in A, respectively.

PROPOSITION 1. Suppose that P is a ring with an identity, p 6 P, lpp(Pp) =
0 and Pp<R. Then

(i) for every r £ R and s £ P, s(pr) = (sp)r;
(ii) S = {s £ P I sp 6 pR} is a subring of P;

(iii) lP(p) o 5 and rR(p) < R;
(iv) there is an isomomorphism f : R/r^p) —> S/lp(p) such that

f((Pp + rR(p))frR(p)) = (pP
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PROOF: (i) Take any x £ Pp. Since s, p, pr, x and rx are in P, [s(pr)]x =

s[(pr)x] and (sp)(rx) — s\p(rx)]. On the other hand p, r, x and sp are in R, so
p(rx) = (pr)x and [(.sp)r]x — (sp)(rx). Consequently [.s(pr) — (sp)r]x = 0. Note
also that since Pp < R, s(pr) and (sp)r are in Pp. These show that s(pr) — (sp)r £
ipp(Pp) = 0, so s(pr) = (sp)r.

(ii) Obviously S is an additive subgroup of P. Take si,S2 £ 5 . There are
fi,r2 £ i? such that s,p = pr-j, i = 1,2. Now («is2)p = 5i(«2P) = •s1(pr2). By
applying (i) we get that (s!S2)p = Si(pr2) - {sip)r2 = (pri)r2 = p(r1r2) £ pR. Hence
•si-S2 6 5 .

(iii) Clearly lp(p) is a left ideal of S. Now if s £ S, then there is r £ R such that
sp = pr. By applying (i) we get that (lP(p)s)p = lp(p)(sp) = lp{p){pr) = {lp(p)p)r =
0. Hence lp(p) is also a right ideal of 5.

Since p £ Pp < R, for every x E R, there is s 6 P such that px = sp. By (i),
P(XT-H(P)) = (px)rH(p) = .s(prfl(p)) = 0. Consequently RrR(p) C r f i (p), so 7-fl(p) is an
ideal of R.

(iv) Since p G Pp and Pp<R, for every r £ R there exists s G. S such that sp = pr.

Observe that if s'p = pr for some s' £ S, then s—s' 6 fp(p) • This shows that on putting
g(r) = s + lp(p) we get a well defined map g : R —> S/lp(p). Clearly g is an additive
homomorphism of R onto S/lp(p). If Ti,r2 £ R, then by applying (i) we get that
p(rir2) = (g(ri)p)r2 = g{ri){pr2) = (g{ri)g(r2))p. Hence g(nr2) = ^ ( n M ^ ) and
so g is a ring epimorphism of R onto S/lp(p). Clearly g(Pp) — (pP + lp(p))/lp{p)-

Moreover ker </ = {r 6 R | pr = 0} = 7\R(P) • The isomorphism / : R/ra{p) —> S/lp(p)

induced by <7 is the desired isomorphism. D

COROLLARY 1 . Under the notation of Proposition 1, if R2 = Pp, then S2 -

pP + lP{p) . In particular if lP(p) = 0, <Jien S2 = pP.

By applying the above Corollary one can easily find examples of rings in J \

(J2UN).

EXAMPLE 1. Let A be a ring with an identity and P = A{x} be the power series ring
over A in the indeterminate x. For p = x, Pp £ J and lp(p) = 0. We claim that
Pp $ J2 • Indeed, assuming that Pp < R and R2 = Pp we would get by Corollary 1
that there is a subring S of P such that S2 = pP, which is impossible.

EXAMPLE 2. Let P be a commutative local ring with the maximal ideal M. Obviously

M £ J. Since P/M is a field, it follows from Corollary 1 that if M is a principal ideal of

P generated by a regular element p , then M £ J2 or M = M2. However if M — M2,

then p = p2x for some a; £ P . Consequently p(l — px) — 0 and since p is regular,

1 = px. Thus M = P, a contradiction.

As a particular P one can take any commutative principal ideal domain localised
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at a maximal ideal.

Observe that if F is a field, then P = F + x2F{x} is a local ring whose maximal

ideal M = x2F{x} is not principal. Since M = (xF{x}) , M 6 3i.

Proposition 1 can be also applied to some other cases of the extension problem.

For instance we have:

COROLLARY 2 . Suppose that P is a ring with an identity and p is a central
regular element of P such that the ring P/pP is reduced. If pP < R and R/pP is a nil
ring, then R = pP ® I for a nil ideal I of R.

PROOF: By applying Proposition 1 we get that there is a subring S of P such
that pP C S and S/pP ~ R/(pP + T\R(P)) . However S/pP is a reduced ring and
R/(pP +rR,(p)), being a homomorphic image of R/pP, is a nil ring. Hence both of
them are equal to zero. Consequently R = pP + rn(p). Since p is a central element
of P, by applying Proposition 1 (i), we get that (pP nrn(p))p — 0. However p is a
regular element of P, so pP ("1 TR(P) = 0. Consequently R — pP © TR{P) and, since
R/pP ^ rB.(p), TR(P) is a nil ideal of R. D

Now we shall present another method of finding rings in J \ Ji.
An algebra over a ring D is called a left chain algebra if the left .D-ideals of the

algebra form a chain. In the case when D is the ring of integers left chain algebras are
called left chain rings. Obviously every D-algebra which is a left chain ring is a left
chain D -algebra but not conversely. Commutative left chain algebras are called simply
chain algebras.

Many examples of left chain rings can be found in [2,3].

PROPOSITION 2 . Suppose that A £ J is a left chain algebra over a field F. If
for a ring R, A<iR and R2 = A, then A2 = A or A2 = 0.

PROOF: Take 0 ^ a € A. Suppose first that a € F(Ra). Then for every b € A,
ab £ F(Ra)b = RaFb = F{Rab) and further ab G F{Rab) C F(R(RaFb)) = R2aFb =
AaFb — Aab. Hence, since A £ J , ab — 0. Consequently a A ~ 0.

Suppose now that a £ F(Ra). Then I = Aa + Fa <£ F(Ra). Since I and
F(Ra) are left F-ideals of A and A is a left chain F-algebra, Aa C F(Ra) C / .
Since dimp I/Aa = 1, Aa = F(Ra). This implies that Aa C Ra C F(Ra) — Aa, so
Ra = Aa. Now Aa - R2a = R(Ra) - R(Aa) C Aa. Thus Aa = RAa and further
RAa — R2 Aa = A2a, which imply that Aa = A2a. Consequently for every x € A there
exists y £ A2 such that xa — ya. This gives that A = A2

 +IA(O). Since IA(&) and A2

are left F-ideals of A, /^(a) C A2 or A2 C lA(a). In the former case A = A2 and we
are done. In the latter A = IA{O) • This and the conclusion of the last paragraph imply
that if A ^ A2, then for every a £ A, Aa = 0 or aA = 0. Thus lA(A) U rA{A) = A.
Consequently iyi(A) = 4 or rA{A) = A. The result follows. D
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EXAMPLE 3. Let A = xF[x]/xnF[x], where n is an integer > 2 and F[x] is the
polynomial ring over a field F in the interminate x. It is easy to check that A is a
chain F-algebra. Obviously 0 ^ A2 ^ A, so by Proposition 2 A £ J \ J2-

Observe that for n = 2 the algebra A belongs to J2. Indeed, in that case A ~
x2F[x]/x3F[x] and x2F[x]/x3F[x] = (xF[x)/x3F[x))2.

EXAMPLE 4. Let G be a linearly ordered Abelian group (written multiplicatively) and
let P be the semigroup of positive elements of G. Let R = F[PL){1}] be the semigroup
algebra of the semigroup P U {1} over a field F. Observe that F[P] is a maximal ideal
of R, so for S = R\ F[P], A = S~1R is a local F-algebra with the maximal ideal
M = S~1F[P}. Every principal proper ideal of A is of the form Ap for some p £ P
and if p, q £ P, p ^ q, then Aq C Ap. Hence A is a chain ring. All F-ideals of M are
ideals of A, so M is a chain .F-algebra. Observe that A2 = A if and only if P2 = P.
Thus Proposition 2 implies that if P2 ^ P, then A £ J \ J2 •

The algebra A in Example 4 is a chain ring. However its ideal M is a chain ring
if and only if F is a finite prime field. It is a consequence of the following more general
observation.

PROPOSITION 3 . If an algebra R over a field F is a Jacobson radical left chain
ring, then F is a finite prime field.

PROOF: Let K be the subring of F generated by 1. It suffices to show that
K — F. Take 0 ^ r e R and / 6 F. Observe that Kfr + Rr and Kr + Rr are left
ideals of the ring R. Thus Kfr + Rr C Kr + Rr or Kr + Rr C Kfr + Rr. In the
former case fr £ kr + Rr for some k £ K. If / ^ k, then r £ Rr, which contradicts
the assumption that R £ J. Thus / = k £ K. In the later case, r £ kfr + Rr for
some k £ K. Hence (1 — kf)r £ Rr. If kf ^ 1, then r 6 Rr, a contradiction. Thus
k = f'1 £ F. Consequently K — F and the result follows. D

It is natural to ask whether if A £ J2 is a left chain ring, then A = A2 or i 2 = 0 .
We close by showing that the answer to this question is negative.

EXAMPLE 5. Let R be the ring of integers localised at the set of odd integers. Clearly
R is a commutative local ring with the maximal ideal M — 2R. Every non-zero ideal of
R is of the form 2hR for a non-negative integer k. Moreover for every k, the additive
group of R/2kR is cyclic of order 2*. Let A = M2. Take an ideal I in A and put
/ — RI. Obviously / and 41 are ideals of R, so the additive group of I/AI is cyclic
of order 4. However 4/ = ARI = M2I C / C I, so I = I or / = 2/ or / = 47. In all
cases I < R. Hence A is a chain ring. Clearly A £ J2 and A ^ A2 ^ 0.
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