E.R. PUCZYŁOWSKI AND H. ZAND

We construct several examples of Jacobson radical rings which are not squares of other rings.

Denote by J and N the classes of Jacobson radical rings and nilpotent rings, respectively. Let $J_2 = \{A \mid \text{there is a Jacobson radical ring } R \text{ such that } A = R^2\}$. Obviously J is equal to the lower radical class determined by $J_2 \cup N$. This was noted in [5], Theorem 1, in the context of a problem of Divinsky [4] to represent the Jacobson radical as a lower radical class. However it is not clear whether the representation is non trivial (that is, whether $J \neq J_2 \cup N$). In [5] an example showing that $N \not\subseteq J_2$ was constructed (which obviously does not clarify the relation between J and $J_2 \cup N$) and the problem of finding more examples in $J \setminus J_2$ was raised. In this note we obtain some results which can be used to construct many such examples. They in particular show that $J \neq J_2 \cup N$.

The question studied in this paper is a special case of the following extension problem: given rings A and B, describe all rings R such that $A \simeq I$, where I is an ideal of R and $R/I \simeq B$. For some results and further references concerning that problem and its applications we refer to [1] and [6].

All rings in this paper are associative. To denote that I is an ideal of a ring R we write $I \triangleleft R$. Given a subset S of a ring A, we denote by $l_A(S)$ and $r_A(S)$ the left and right annihilators of S in A, respectively.

PROPOSITION 1. Suppose that P is a ring with an identity, $p \in P$, $l_{Pp}(Pp) = 0$ and $Pp \triangleleft R$. Then

- (i) for every $r \in R$ and $s \in P$, s(pr) = (sp)r;
- (ii) $S = \{s \in P \mid sp \in pR\}$ is a subring of P;
- (iii) $l_P(p) \triangleleft S$ and $r_R(p) \triangleleft R$;
- (iv) there is an isomomorphism $f: R/r_R(p) \to S/l_P(p)$ such that $f((Pp + r_R(p))/r_R(p)) = (pP + l_P(p))/l_P(p).$

Received 14th June, 1995

This research was supportet by the Technical University of Białystok, Poland and the Open University, England.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/96 \$A2.00+0.00.

PROOF: (i) Take any $x \in Pp$. Since s, p, pr, x and rx are in P, [s(pr)]x = s[(pr)x] and (sp)(rx) = s[p(rx)]. On the other hand p, r, x and sp are in R, so p(rx) = (pr)x and [(sp)r]x = (sp)(rx). Consequently [s(pr) - (sp)r]x = 0. Note also that since $Pp \triangleleft R$, s(pr) and (sp)r are in Pp. These show that $s(pr) - (sp)r \in l_{Pp}(Pp) = 0$, so s(pr) = (sp)r.

(ii) Obviously S is an additive subgroup of P. Take $s_1, s_2 \in S$. There are $r_1, r_2 \in R$ such that $s_i p = pr_i$, i = 1, 2. Now $(s_1 s_2)p = s_1(s_2 p) = s_1(pr_2)$. By applying (i) we get that $(s_1 s_2)p = s_1(pr_2) = (s_1 p)r_2 = (pr_1)r_2 = p(r_1r_2) \in pR$. Hence $s_1 s_2 \in S$.

(iii) Clearly $l_P(p)$ is a left ideal of S. Now if $s \in S$, then there is $r \in R$ such that sp = pr. By applying (i) we get that $(l_P(p)s)p = l_P(p)(sp) = l_P(p)(pr) = (l_P(p)p)r = 0$. Hence $l_P(p)$ is also a right ideal of S.

Since $p \in Pp \triangleleft R$, for every $x \in R$, there is $s \in P$ such that px = sp. By (i), $p(xr_R(p)) = (px)r_R(p) = s(pr_R(p)) = 0$. Consequently $Rr_R(p) \subseteq r_R(p)$, so $r_R(p)$ is an ideal of R.

(iv) Since $p \in Pp$ and $Pp \triangleleft R$, for every $r \in R$ there exists $s \in S$ such that sp = pr. Observe that if s'p = pr for some $s' \in S$, then $s-s' \in l_P(p)$. This shows that on putting $g(r) = s + l_P(p)$ we get a well defined map $g: R \to S/l_P(p)$. Clearly g is an additive homomorphism of R onto $S/l_P(p)$. If $r_1, r_2 \in R$, then by applying (i) we get that $p(r_1r_2) = (g(r_1)p)r_2 = g(r_1)(pr_2) = (g(r_1)g(r_2))p$. Hence $g(r_1r_2) = g(r_1)g(r_2)$ and so g is a ring epimorphism of R onto $S/l_P(p)$. Clearly $g(Pp) = (pP + l_P(p))/l_P(p)$. Moreover ker $g = \{r \in R \mid pr = 0\} = r_R(p)$. The isomorphism $f: R/r_R(p) \to S/l_P(p)$ induced by g is the desired isomorphism.

COROLLARY 1. Under the notation of Proposition 1, if $R^2 = Pp$, then $S^2 = pP + l_P(p)$. In particular if $l_P(p) = 0$, then $S^2 = pP$.

By applying the above Corollary one can easily find examples of rings in $J \setminus (J_2 \cup N)$.

EXAMPLE 1. Let A be a ring with an identity and $P = A\{x\}$ be the power series ring over A in the indeterminate x. For p = x, $Pp \in J$ and $l_P(p) = 0$. We claim that $Pp \notin J_2$. Indeed, assuming that $Pp \triangleleft R$ and $R^2 = Pp$ we would get by Corollary 1 that there is a subring S of P such that $S^2 = pP$, which is impossible.

EXAMPLE 2. Let P be a commutative local ring with the maximal ideal M. Obviously $M \in J$. Since P/M is a field, it follows from Corollary 1 that if M is a principal ideal of P generated by a regular element p, then $M \notin J_2$ or $M = M^2$. However if $M = M^2$, then $p = p^2 x$ for some $x \in P$. Consequently p(1 - px) = 0 and since p is regular, 1 = px. Thus M = P, a contradiction.

As a particular P one can take any commutative principal ideal domain localised

at a maximal ideal.

Observe that if F is a field, then $P = F + x^2 F\{x\}$ is a local ring whose maximal ideal $M = x^2 F\{x\}$ is not principal. Since $M = (xF\{x\})^2$, $M \in J_2$.

Proposition 1 can be also applied to some other cases of the extension problem. For instance we have:

COROLLARY 2. Suppose that P is a ring with an identity and p is a central regular element of P such that the ring P/pP is reduced. If $pP \triangleleft R$ and R/pP is a nil ring, then $R = pP \oplus I$ for a nil ideal I of R.

PROOF: By applying Proposition 1 we get that there is a subring S of P such that $pP \subseteq S$ and $S/pP \simeq R/(pP + r_R(p))$. However S/pP is a reduced ring and $R/(pP + r_R(p))$, being a homomorphic image of R/pP, is a nil ring. Hence both of them are equal to zero. Consequently $R = pP + r_R(p)$. Since p is a central element of P, by applying Proposition 1 (i), we get that $(pP \cap r_R(p))p = 0$. However p is a regular element of P, so $pP \cap r_R(p) = 0$. Consequently $R = pP \oplus r_R(p)$ and, since $R/pP \simeq r_R(p)$, $r_R(p)$ is a nil ideal of R.

Now we shall present another method of finding rings in $J \setminus J_2$.

An algebra over a ring D is called a *left chain algebra* if the left D-ideals of the algebra form a chain. In the case when D is the ring of integers left chain algebras are called *left chain rings*. Obviously every D-algebra which is a left chain ring is a left chain D-algebra but not conversely. Commutative left chain algebras are called simply chain algebras.

Many examples of left chain rings can be found in [2,3].

PROPOSITION 2. Suppose that $A \in J$ is a left chain algebra over a field F. If for a ring R, $A \triangleleft R$ and $R^2 = A$, then $A^2 = A$ or $A^2 = 0$.

PROOF: Take $0 \neq a \in A$. Suppose first that $a \in F(Ra)$. Then for every $b \in A$, $ab \in F(Ra)b = RaFb = F(Rab)$ and further $ab \in F(Rab) \subseteq F(R(RaFb)) = R^2 aFb = AaFb = Aab$. Hence, since $A \in J$, ab = 0. Consequently aA = 0.

Suppose now that $a \notin F(Ra)$. Then $I = Aa + Fa \notin F(Ra)$. Since I and F(Ra) are left F-ideals of A and A is a left chain F-algebra, $Aa \subseteq F(Ra) \subset I$. Since dim_F I/Aa = 1, Aa = F(Ra). This implies that $Aa \subseteq Ra \subseteq F(Ra) = Aa$, so Ra = Aa. Now $Aa = R^2a = R(Ra) = R(Aa) \subseteq Aa$. Thus Aa = RAa and further $RAa = R^2Aa = A^2a$, which imply that $Aa = A^2a$. Consequently for every $x \in A$ there exists $y \in A^2$ such that xa = ya. This gives that $A = A^2 + l_A(a)$. Since $l_A(a)$ and A^2 are left F-ideals of A, $l_A(a) \subseteq A^2$ or $A^2 \subseteq l_A(a)$. In the former case $A = A^2$ and we are done. In the latter $A = l_A(a)$. This and the conclusion of the last paragraph imply that if $A \neq A^2$, then for every $a \in A$, Aa = 0 or aA = 0. Thus $l_A(A) \cup r_A(A) = A$. Consequently $l_A(A) = A$ or $r_A(A) = A$. The result follows. EXAMPLE 3. Let $A = xF[x]/x^nF[x]$, where *n* is an integer > 2 and F[x] is the polynomial ring over a field *F* in the interminate *x*. It is easy to check that *A* is a chain *F*-algebra. Obviously $0 \neq A^2 \neq A$, so by Proposition 2 $A \in J \setminus J_2$.

Observe that for n = 2 the algebra A belongs to J_2 . Indeed, in that case $A \simeq x^2 F[x]/x^3 F[x]$ and $x^2 F[x]/x^3 F[x] = (xF[x]/x^3 F[x])^2$.

EXAMPLE 4. Let G be a linearly ordered Abelian group (written multiplicatively) and let P be the semigroup of positive elements of G. Let $R = F[P \cup \{1\}]$ be the semigroup algebra of the semigroup $P \cup \{1\}$ over a field F. Observe that F[P] is a maximal ideal of R, so for $S = R \setminus F[P]$, $A = S^{-1}R$ is a local F-algebra with the maximal ideal $M = S^{-1}F[P]$. Every principal proper ideal of A is of the form Ap for some $p \in P$ and if $p, q \in P$, $p \leq q$, then $Aq \subseteq Ap$. Hence A is a chain ring. All F-ideals of M are ideals of A, so M is a chain F-algebra. Observe that $A^2 = A$ if and only if $P^2 = P$. Thus Proposition 2 implies that if $P^2 \neq P$, then $A \in J \setminus J_2$.

The algebra A in Example 4 is a chain ring. However its ideal M is a chain ring if and only if F is a finite prime field. It is a consequence of the following more general observation.

PROPOSITION 3. If an algebra R over a field F is a Jacobson radical left chain ring, then F is a finite prime field.

PROOF: Let K be the subring of F generated by 1. It suffices to show that K = F. Take $0 \neq r \in R$ and $f \in F$. Observe that Kfr + Rr and Kr + Rr are left ideals of the ring R. Thus $Kfr + Rr \subseteq Kr + Rr$ or $Kr + Rr \subseteq Kfr + Rr$. In the former case $fr \in kr + Rr$ for some $k \in K$. If $f \neq k$, then $r \in Rr$, which contradicts the assumption that $R \in J$. Thus $f = k \in K$. In the later case, $r \in kfr + Rr$ for some $k \in K$. Hence $(1 - kf)r \in Rr$. If $kf \neq 1$, then $r \in Rr$, a contradiction. Thus $k = f^{-1} \in F$. Consequently K = F and the result follows.

It is natural to ask whether if $A \in J_2$ is a left chain ring, then $A = A^2$ or $A^2 = 0$. We close by showing that the answer to this question is negative.

EXAMPLE 5. Let R be the ring of integers localised at the set of odd integers. Clearly R is a commutative local ring with the maximal ideal M = 2R. Every non-zero ideal of R is of the form $2^k R$ for a non-negative integer k. Moreover for every k, the additive group of $R/2^k R$ is cyclic of order 2^k . Let $A = M^2$. Take an ideal I in A and put $\overline{I} = RI$. Obviously \overline{I} and $4\overline{I}$ are ideals of R, so the additive group of $\overline{I}/4\overline{I}$ is cyclic of order 4. However $4\overline{I} = 4RI = M^2I \subseteq I \subseteq \overline{I}$, so $I = \overline{I}$ or $I = 2\overline{I}$ or $I = 4\overline{I}$. In all cases $I \triangleleft R$. Hence A is a chain ring. Clearly $A \in J_2$ and $A \neq A^2 \neq 0$.

References

[1] K.I. Beidar, 'On essential extensions, maximal essential extensions and iterated maximal

essential extensions in radical theory', in *Theory of Radicals (Proc. Conf. Szekszard, 1991)*, Colloq. Math. Soc. J. Bolyai **61** (North Holland, Amsterdam, 1993), **pp.** 17–26.

- [2] C. Bessenrodt-Timmerscheidt, H.H. Brungs and G. Törner, Right chain rings, Part 1, Schriftenreihe des FB Mathematik 74 (Universität Duisburgi, 1985).
- [3] C. Bessenrodt-Timmerscheidt, H.H. Brungs and G. Törner, *Right chain rings*, Schriftenreihe des FB Mathematik 101 (Universität Duisburg, 1990).
- [4] N.J. Divinsky, Rings and radicals (Allen and Unwin, 1965).
- [5] Y. L. Lee, 'A note on the Jacobson radical', Proc. Amer. Math. Soc. 118 (1993), 337-338.
- [6] E. R. Puczyłowski, 'On essential extensions of rings', Bull. Austral. Math. Soc. 35 (1987), 379-386.

Faculty of Mathematics University of Warsaw 02-907 Warsaw, Banach 2 Poland e-mail: edmundp@mimuw.edu.pl IET and Faculty of Mathematics and Computing The Open University Walton Hall, MiltonKeynes MK7 6AA England e-mail: h.zand@open.ac.uk