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CATEGORICAL QUANTIFICATION  

CONSTANTIN C. BRÎNCUȘ  

Abstract. Due to Gӧdel’s incompleteness results, the categoricity of a sufficiently 

rich mathematical theory and the semantic completeness of its underlying logic are 

two mutually exclusive ideals. For first- and second-order logics we obtain one of 

them with the cost of losing the other. In addition, in both these logics the rules of 

deduction for their quantifiers are non-categorical. In this paper I examine two recent 

arguments –Warren (2020), Murzi and Topey (2021)– for the idea that the natural 

deduction rules for the first-order universal quantifier are categorical, i.e., they 

uniquely determine its semantic intended meaning. Both of them make use of 

McGee’s open-endedness requirement and the second one uses in addition Garson’s 

(2013) local models for defining the validity of these rules. I argue that the success of 

both these arguments is relative to their semantic or infinitary assumptions, which 

could be easily discharged if the introduction rule for the universal quantifier is taken 

to be an infinitary rule, i.e. non-compact. Consequently, I reconsider the use of the ω-

rule and I show that the addition of the ω-rule to the standard formalizations of first-

order logic is categorical. In addition, I argue that the open-endedness requirement 

does not make the first-order Peano Arithmetic categorical and I advance an argument 

for its categoricity based on the inferential conservativity requirement.   

Keywords: categoricity, inferentialism, open-endedness, local models, ω-rule 

I. Introduction 

Due to Lӧwenheim-Skolem, completeness, and compactness theorems, the first-order 

mathematical theories which have an infinite model are non-categorical and, at the same 

time, due to the results of Carnap (1937, 1943) and Garson (1991, 2013), the standard 

deductive rules for the  first-order quantifiers are also non-categorical, since they allow both 

standard and non-standard models.1 If we move to second-order logic, the deductive rules for 

                                                           
1 There are two different notions of categoricity that are used here: one that applies to theories and the 

other one that applies to logical calculi that underlie these theories. The first one is the standard notion 

of categoricity defined in modern model theory, where a theory T is categorical in a cardinal κ (or κ-

categorical) if and only if it has exactly one model of cardinality κ up to isomorphism. The second 

notion of categoricity goes back to Carnap (1943), who proved that the standard formalizations of 

propositional and first-order logics allow for what he called non-normal interpretations, i.e., binary 

valuations which preserve the soundness of the calculi, but provide the logical symbols with meanings 

that are different from the intended ones (these ideas will be discussed in detail in sections II and III 

below). A general definition of the second notion of categoricity (let us call it Carnap-categoricity) 

could be given following Scott’s (1971: 795–798) terminology: a logical calculus is categorical if and 

only if the only valuations that are consistent with the syntactical relation of logical consequence in 

This is a ``preproof'' accepted article for The Bulletin of Symbolic Logic.
This version may be subject to change during the production process.
DOI: 10.1017/bsl.2024.3

https://doi.org/10.1017/bsl.2024.3 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2024.3


2 
 

its quantifiers are still non-categorical, since they allow both standard and Henkin models, 

but most of the second-order mathematical theories are categorical, if these quantifiers 

receive their standard meanings. If one prefers having categorical mathematical theories, then 

second-order logic seems to be a better option, although the cost is losing the semantic 

completeness with respect to a recursive axiomatization (if Г⊨φ, then Г⊢φ) of the underlying 

logic of these theories and also the deductive completeness of the theory formalized in this 

logic (T⊢φ or T⊢~φ). If one prefers working in semantically complete first-order logic, then 

the cost is losing the categoricity of the first-order mathematical theories with infinite models, 

their deductive completeness, and also the categoricity of the first-order quantifiers. 

Certainly, depending on one’s goal, a certain logical instrument may be proven to be better 

that some others. For the present discussion, I assume that semantic completeness and the 

categoricity of the first-order quantifier rules are valuable properties and, thus, they should be 

retained.   

My aim in this paper is to show that the use of the open-ended natural deduction rules 

for the first-order universal quantifier and of the local models for defining their validity does 

not provide the universal quantifier with its unique intended semantic meaning, unless 

substantial semantic or infinitary assumptions are made. What does this, I argue, is the ω-

rule, whose use provides us in addition with semantic and deductive completeness. The paper 

is organized as follows: I start by defining the categoricity of a system of logic (section II) 

and then I introduce Carnap’s (1937, 1943) and Garson’s (1991, 2013) non-standard 

valuations for the first-order universal quantifier (section III). In sections IV and V, I 

reconstruct the arguments of Warren (2020) and Murzi and Topey (2021) based on open-

endedness and local models for attaining the categoricity of the first-order universal 

quantifier and I argue that the success of both these arguments is relative to their semantic or 

infinitary assumptions. In section VI, I show that the addition of the ω-rule to the standard 

formalizations of first-order logic makes the first-order universal quantifier categorical. 

Although the use of the ω-rule also provides us with semantic and deductive completeness, 

the Lӧwenheim-Skolem theorem prevents us to obtain the categoricity of the first-order 

theories without additional constraints. By generalizing the criticism from sections IV and V, 

I argue (in section VII) that the open-endedness constraint cannot adequately, i.e., 

                                                                                                                                                                                     
that system are the standard ones, where  a valuation ν is consistent with a syntactical consequence 

relation ⊢ if and only if, whenever Γ ⊢ φ, if ν(γ) = ⊤  for all γ ∈ Γ, then ν(φ) =  ⊤. The term “standard 

meaning” will be explained in section II below.  
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inferentially, fulfil this task. Then I end (section VIII) by advancing an argument for the 

categoricity of the first-order Peano Arithmetic based on inferential conservativity.   

II. The Non-categoricity of Logic 

To formulate the categoricity problem for a system of logic in a more precise way, I 

will take as primitive the notions of logic and valuation space.2 

Definition 1    A logic L is a set of arguments of the form Г⊢φ.  

Definition 1.1 If an argument Г⊢φ is in L, we say that it is L-valid.  

Definition 2   A valuation space V is a class of valuations v, where a valuation v is a function 

which maps every well formed formula of the language of L into the set {⊤, ⊥}. 

⊤ is the only designated value (truth), while ⊥ is the only undesignated value 

(falsehood). 

Definition 2.2 A valuation v satisfies an argument Г⊢φ if and only if whenever v(Г)= ⊤, v(φ) 

will also be true. 

Definition 2.3 If an argument Г⊢φ is satisfied by all valuations v∊V, then we say that the 

argument is V-valid.  

Informally, we may say that Definition 1 presents a logic syntactically (or proof-

theoretically), since the central notion that it relies on is the syntactic relation of logical 

consequence (i.e., logical derivability, represented by the sign “⊢”), while Definition 2 

presents a logic semantically (or model-theoretically), since the central notion that it relies on 

is the semantic relation of logical consequence (represented by the sign “⊨”), which is 

defined in terms of valuations, i.e., if the argument Г⊢φ is satisfied by all valuations v∊V, 

then φ is a logical consequence of Г (i.e. Г⊨φ). The following two definitions (3 and 4) will 

connect these two ways of presenting a system of logic.  

Definition 3     L(V) is the set of arguments from L that are V-valid. 

Definition 3.1  A valuation v is L-consistent if and only if v satisfies every argument in L.  

Definition 3.2  V(L) is the set of valuations v that are L-consistent. 

Informally, L(V) is the logic associated with the class of valuations V. For instance, if in V 

we have the valuations obtained on the basis of the normal truth tables (NTTs) for 

propositional logic, then L(V) will be the classical propositional calculus in one of its 

                                                           
2 The reader interested in this terminology is referred to Scott (1971), Dunn and Hardegree (2001), 
Hardegree (2004), Hjortland (2014), Garson (2013), Bonnay and Westerståhl (2016), Murzi and 
Topey (2021).  
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formulations. It can be easily seen that every v from V defined by NTTs is L-consistent in 

this case, since an argument is V-valid if and only if it is satisfied by each valuation from the 

space of valuations V. The question which arises at this point is whether the set V(L) contains 

only the L-consistent valuations which provide the logical terms from L with their standard 

meanings or whether it also contains L-consistent valuations that provide these logical terms 

with meanings that are different from the standard ones.  

Definition 4  A logic L is categorical if and only if all valuations v from V(L) are standard.3  

At this point we can introduce the logical inferentialist thesis, according to which the 

formal axioms or rules of inference from a proof-theoretical system of logic determine the 

meanings of its logical terms. In the terminology introduced above, this thesis states that L(V) 

uniquely determines the set of L-consistent valuations V(L) such that it contains only 

standard valuations. 

Since the logical inferentialist thesis sets the theoretical framework of the paper, some 

precisifications of this thesis are thus required. Logical inferentialism is understood in this 

paper, in line with the other approaches discussed in the sections below, as a model-theoretic 

inferentialism (Carnap (1943), Garson (2013)), as a metasemantic thesis (Warren (2020)), 

and as a moderate inferentialism (Murzi and Topey (2021)). Model-theoretic inferentialism 

maintains that the meanings of the logical terms are determined by the formal axioms or rules 

of inference, but these meanings are to be characterized in model-theoretic terms (such as 

truth-conditions, denotation, reference), in opposition to proof-theoretic inferentialism which 

maintains that the characterization of these meanings should be done in proof-theoretic terms 

(such as proof, derivability conditions). Logical inferentialism is a metasemantic thesis in the 

sense that it is primarily concerned with the way in which the logical symbols get their 

meanings from the rules of inference that govern their use and not with what they mean. For 

instance, the semantic question concerning the symbol “∼” is what does “∼” mean?, while 

the metasemantic question is how does “∼” get its meaning from the rules? Logical 

inferentialism is a moderate form of inferentialism, and not an extreme one, because it does 

                                                           
3 The property of categoricity, i.e. Carnap-categoricity (see footnote 1), used in this definition is what 

Dunn and Hardegree (2001:194) call ‘absoluteness’: “Absoluteness is the appropriate analog for 
logics of the much studied property of theories called ‘categoricity’. One can expect of some theories 
that they be categorical in the sense of having abstractly only one model. This is an unreasonable 
expectation of a logic (which might be the logical basis of many different theories), but it still might 
be the case that abstractly the logic has only one class of models, and this is just absoluteness.” This 
property could also be adequately labelled as ‘semantic uniqueness’, but since the term ‘categoricity’ 

has been used by most of the authors in relation to this problem, I shall stick to it.   
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not identify the meanings of the logical symbols with the rules that govern their use, but 

rather it tries to read off from the rules the model-theoretic meanings of these symbols. 

An important presupposition of logical inferentialism thus understood is that the 

logical terms have a previously given semantics which defines their standard or intended 

meanings, and the problem is whether we can read off from the formal rules of inference only 

their standard meanings, or, to express it differently, whether the rules of inference are 

compatible only with valuations (i.e., L-consistent valuations) that provide these terms with 

their standard meanings. For instance, it is very easy to read off the meaning of “&” from its 

introduction and elimination rules. All that we need to assume is that the rules transmit the 

designated value ⊤ when we pass from the premises to the conclusion, and they retransmit 

the undesignated value ⊥ from the conclusion to at least one of the premises, i.e., the rules are 

sound. In this way, the introduction rule for “&” fixes the first line of the NTT for “&” (if 

both p and q are ⊤, then p&q is ⊤), while the elimination rules fix the remaining lines (if p is 

⊥, then p&q is ⊥; if q is ⊥, then p&q is ⊥). Since the rules for “&” uniquely fix its standard 

meaning, there is no non-standard valuation compatible with these rules. 4   This result, 

however, does not also hold for many other logical terms, as we shall see below, in section 

III. For instance, the inference rules for “∼” fix no line from its NTT and, thus, they let open 

the possibility of a non-standard valuation which assigns the designated value ⊤ both to a 

sentence and to its negation.  

As a matter of historical fact, Carnap (1937: xv) initially believed that a system of 

logic could be identified with a set of arguments generated by an arbitrary initial list of 

formal axioms and rules of inference whose validity is taken to be primitive (his famous 

principle of tolerance). However, his later engagement in semantics made him impose a first 

restriction on the arbitrary character of the initial list. Carnap (1942: 218-19) argued that 

when a system of logic L is defined in relation with a semantical system V(L), this logic has 

to be formulated with the aim of matching the semantics previously given. This matching 

requires that all the arguments from L are V-valid (i.e. L is sound), all arguments from L(V) 

are derivable from the initial list of axioms and rules of inference (i.e. L is semantically 

complete) and, in addition, all the logical terms from L preserve their intended semantic 

                                                           
4 A weakened form of model-theoretic inferentialism is Garson’s (2001:114-15, 2013: 49-50) natural 

semantics, which is a method of providing possible semantic values and reading off the semantic 

properties of the logical terms from the deductive rules that govern their use. This way of reading off 

the meanings of the logical terms from the rules does not require the symmetry between the meanings 

that are read off from a certain set of rules for a logical term and its standard semantic meaning that is 

previously defined by a certain semantics.  
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meanings in all the valuations that are L-consistent (i.e. L is categorical). If all these three 

conditions are met, then L is a full formalization of the semantical system previously given. 

Carnap’s (1943) discoveries were negative regarding the third condition, in the sense that 

there are valuations associated with the propositional and first-order standard calculi (i.e. 

calculi with a finite number of premises and a single conclusion) which are L-consistent, but 

provide most of the logical terms with non-standard (or non-normal, in Carnap’s terms) 

meanings.5 

III. Carnap’s and Garson’s Non-standard Valuations for ∀   

Carnap’s method for proving the non-categoricity of the standard formalizations of 

propositional and first-order logics (i.e. formalizations with a finite number of premises and a 

single conclusion) is analogous with Skolem’s (1934, 1955) method for proving the non-

categoricity of Peano Arithmetic, namely, it consists in the construction of a non-standard 

model. For the propositional calculi, Carnap (1943) proved that there are two exclusive kinds 

of non-standard valuations (non-normal interpretations in Carnap’s terms) and provided two 

instances of them: one trivial valuation (v⊤) in which all formulae from L are mapped by v⊤ 

in ⊤, i.e. all sentences are interpreted as true, and the second one (the provability valuation, 

v⊢) in which all and only the theorems from L are mapped by v⊢ to ⊤, i.e., all and only the 

theorems are interpreted as true.   

It can be easily seen that the trivial valuation v⊤ and the provability valuation v⊢ are 

L-consistent valuations, since they satisfy all arguments from L, i.e., they produce no 

counterexamples. Thus, the set {v⊤, v⊢} is a subset of V(L) in the case in which L has the 

form of one of its standard propositional formalizations, i.e., all its arguments are single 

conclusion arguments. Thus, according to Definition 4, the standard formalizations of 

classical propositional logic are non-categorical.  

These non-standard valuations v⊤ and v⊢ arise because the semantic principles of 

excluded middle and of non-contradiction are not syntactically represented by the standard 

single-conclusion propositional calculi. More precisely, the semantical concepts of L-

exclusive (i.e., a sentence and its negation cannot both be true) and L-disjunct (i.e., a sentence 

and its negation cannot both be false) are not formalized by these propositional calculi.  

                                                           
5 Some useful references to Carnap’s Categoricity Problem include: Carnap (1943), Church (1944), 
Shoesmith & Smiley (1978), Garson (1990, 2013), Smiley (1996), Rumfitt (2000), Raatikainen 
(2008), Murzi & Hjortland (2009), Koslow (2010), Hjortland (2014), Bonnay and Westerståhl (2016), 
Warren (2020), Murzi and Topey (2021), Bonnay & Speitel (2021), Brîncuș (2021, 2024).    
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In the case of quantificational first-order logic,  Carnap observed that, due to the fact 

that the rules of inference have a finitary character, i.e., they allow only a finite number of 

premises and conclusions, while a universally quantified sentence can be a semantical 

consequence of a set of premises without being a semantical consequence of any finite subset 

of the initial set, a universal sentence is not syntactically (or proof-theoretically) equivalent 

with its entire set of instances. In other words, there is an asymmetry between logical 

consequence and logical derivability. Certainly, the universal instantiation/universal 

elimination rule allows us to pass from a universally quantified sentence to all its (potentially 

infinite number of) instances, but the universal generalization/universal introduction rule does 

not allow us to make the opposite move, i.e. {φ[t/x]: t is a term of L} ⊬ (∀x)φx. Carnap 

(1937: 231-32; 1943: 140) thus concluded that we can also construct an L-consistent 

interpretation in which (∀x)φx is interpreted as “all objects are φ, and b is ψ”, where b names 

an object from the domain. It should be mentioned that Carnap (1943:136-139) worked with 

the assumption that we have a denumerable infinite domain D, such that all the objects from 

D are named in the language of L (we may think that this is the domain of a Henkin model), 

and that the quantifiers could be treated as potentially infinite conjunctions or disjunctions.  

The assumption of a denumerable infinite domain such that all objects are named in 

the language will be preserved throughout the paper. This assumption, however, does not 

limit the generality of the approach and it is also useful in comparing all the other approaches 

discussed below. In particular, the generality of the approach is not lost because, due to 

Löwenheim-Skolem theorem, every satisfiable formula of first-order logic is also satisfiable 

in a denumerable infinite domain. Likewise, the assumption that every object from the 

domain is named in the language is logically unproblematic due to Henkin’s (1949) technique 

for building up a canonical model, i.e. a model in which the objects from the domain are the 

individual constants themselves. Sure, the assumption of nameability erases the distinction 

between the substitutional and the objectual interpretation of the quantifiers, but in the 

present context it is unproblematic. This is so because, on the one side, all the domains that 

are considered are denumerable and, thus, we can use the arithmetical numerals for naming 

all their objects and, on the other side, the open-endedness condition adopted both by Warren 

(2020) and Murzi and Topey (2021) always allows the introduction of individual constants in 

the expansion of the original language to block the possibility of having unnamed objects. In 
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addition, Garson’s (2013: 237-38) also uses Henkin’s (1949) method when he considers 

objectual models that contain variables (or individual constants) in their domains.6 

For expressing Carnap’s result in terms of valuations, we may define two valuations: 

i) a valuation v’ which assigns truth to all the instances φt  (where t is a term that names an 

object from D) of (∀x)φx when it assigns truth to (∀x)φx, and ii) a valuation v+ which assigns 

truth to all the instances φt  of (∀x)φx and simultaneously assigns truth to ψb (where b is one 

of the terms t), when it assigns truth to (∀x)φx. Having in mind for the moment the 

substitutional semantics for the first-order quantifiers, v’ is a standard valuation, while v+ is a 

non-standard valuation. To preserve the duality of the quantifiers, i.e., (∀x)φx⟛~(∃x)~φx, v+ 

will simultaneously assign truth to (∃x)φx when it assigns truth to at least one of the instance  

φt  or to ~ψb. Thus, since v+ is L-consistent, but provides the quantifiers with meanings 

different from the standard ones, the standard formalizations of first-order logic are non-

categorical (according to Definition 4). 

The possibility of the non-standard valuation v+ has a different cause than the non-

standard valuations v⊤ and v⊢ that arise in propositional logic. Thus, v+ is still available even 

if the valuations  v⊤, v⊢ are blocked (for instance by using, as Carnap (1943) did, a refutation 

rule which forbids having all sentences interpreted as true and a multiple-conclusion rule for 

disjunction, which blocks v⊢). The non-standard valuation v+ arises because, in the standard 

formalizations of first-order logic, a universally quantified sentence is not deductively 

equivalent (C-equivalent, in Carnap’s terms) with the class formed by the conjunction of all 

the instances of the operand and an existentially quantified sentence is not C-equivalent with 

the disjunctive class of all the instances of the operand. The deductive implication from the 

universal sentence to the whole conjunction of its instances is guaranteed by the universal 

elimination rule and conjunction introduction, but the other standard rules or axioms do not 

guarantee the converse.  

A more elegant example of a non-standard valuation for the universal quantifier has 

been provided by Garson (1991, 2013). I shall not discuss here all the details of Garson’s 

account7, but I will come back below (in section VI) to some of them when the idea of a local 

                                                           
6 In particular, Garson (2013) uses such an objectual model to show that the non-standard valuation vω 

is also available when the universal quantifier is interpreted objectually (see the discussion below and 
his proof for Theorem 14.3).  
7 For a detailed analysis of Carnap’s (1943), Garson’s (2013), McGee’s (2000, 2006, 2015), Bonnay 
and Westerståhl’s (2016), Warren’s (2020), Murzi and Topey’s (2021) approaches for a categorical 
formalization of the first-order quantifiers see Brîncuș (2024).  
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model will be introduced. Let us define the standard substitutional   ⃦s∀  ⃦ and objectual   ⃦d∀  ⃦ 

semantics for the universal quantifier as follows:  

  ⃦s∀  ⃦   v(∀xφx)= ⊤ iff for all terms t in the set of terms Term of L, v(φ[t/x])= ⊤ 

  ⃦d∀  ⃦  v(∀xφx)= ⊤ iff for all object d in the domain D, v(φ[d/x])= ⊤ 8 

Garson (1991: 171; 2013: 237) observes that the set {φ[t/x]: t is a term of L} ∪ {~(∀x)φx} is 

consistent in first-order logic and, by the Lindenbaum Lemma, we can construct an extension 

of it which is maximal consistent9. However, on pain of inconsistency, this extension cannot 

be omega complete. Thus, we can define a valuation vω which assigns ⊤ to each member of 

{φ[t/x]: t is a term of L}, but assigns ⊥ to (∀x)φx. This valuation provides the same result if 

the objectual semantics is considered and D is taken in this case to be, as in Henkin’s 

construction, the set of terms of L. This valuation vω is L-consistent by definition and thus a 

member of V(L), but since it provides the universal quantifier with a meaning different from 

its standard one, as it is defined by  ⃦s∀  ⃦ and    ⃦d∀  ⃦, the standard formalizations of first-order 

logic are non-categorical. In the following sections I will analyze two recent arguments for 

restoring the categoricity of the universal quantifier and I will argue that the success of both 

these arguments is relative to their semantic or infinitary assumptions, which could be easily 

discharged if the introduction rule for the universal quantifier is taken to be an infinitary rule.. 

In particular, without adding a non-compact infinitary argument Г⊢φ in L, or without using 

an infinitary rule of inference, the valuations v+ and vω cannot be blocked only by purely 

inferential means, i.e. eliminated from V(L).  

IV. Warren’s Open-endedness Argument  for Restoring Categoricity     

 Warren (2020: 85-86) argued that the categoricity of the first-order quantifiers can be 

restored if the natural deduction rules are taken to be open-ended.10 In line with Bonnay and 

                                                           
8 The objectual interpretation of the quantifiers is formulated here by directly substituting objects 
from the domain for variables (see Smullyan (1968/1995: 46-47), Garson (2013:214)).  
9 Garson (2013: 213) uses for this result the introduction and elimination rules for the quantifiers 

formulated with variables and a substitution rule for variables: (∀E): Γ⊢(∀x)φ / Γ⊢φ; (∀I)  Γ⊢φ / 
Γ⊢(∀x)φ, provided that x does not appear free in Γ; (Sub): Γ⊢φ / Γ⊢φ[y/x], provided that x does not 
appear free in Γ.  
10 McGee (2000, 2006, 2015) developed an elaborate open-ended inferentialist approach whose aim 
was precisely to show that the open-ended natural deduction rules for classical propositional and first-
order logic are categorical. A rule of inference is open-ended if it remains valid in all the 
mathematically possible extensions of the original language. Although McGee (2000:66) claims that 
“no simple syntactic test is going to tell us when a new locution is to count as a new sentence” and 
thus syntax and semantics seem to be intertwined from the very beginning, both Warren (2020) and 
Murzi and Topey (2021) take the open-endedness requirement to be a syntactic instrument and this is 
how I shall treat this requirement in this paper. For an analysis and criticism of McGee’s approach -

https://doi.org/10.1017/bsl.2024.3 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2024.3


10 
 

Westerståhl (2016), Warren treats the first-order quantifiers as generalized quantifiers, i.e. as 

properties of properties, and the problem is, thus, to show that the open-endedness of the 

natural deduction rules guarantees that the only meaning that the universal quantifier receives 

from its introduction and elimination rules is the standard one. If we consider a non-empty 

domain D and take “Ext(x)” to denote the extension of a variable “x” in D, by standard 

Warren means that the extension of the universal quantifier is the entire domain (Ext(x)=D iff 

Ext(x) ∊ Ext(∀)). Let us now consider (Warren 2020: 85-86)’s proof for the categoricity of 

the open-ended natural deduction rules for the universal quantifier. Since the universal 

elimination rule is not responsible for the existence of non-standard valuations, I shall 

consider only the sufficiency direction of the proof:11 

Theorem: Ext(x) =D iff Ext(x) ∊ Ext(∀) 

Proof: (Sufficiency) Let us assume that Ext(x) =D and, for reductio, that Ext(x) ∉ Ext(∀). We 

add the predicate ‘φ’ to our language such that Ext(φ)= Ext(x). Let c be an individual 

constant such that Ext(c)=o, for some member o of D. We are now in an expanded language 

where “φc” is true for some arbitrary ‘c’, but “(∀x)φx” is false. This contradicts the validity 

of open-ended validity of the ∀-introduction rule. Hence, Ext(x) ∊ Ext(∀).  

For better understanding and referring to the individual steps of the reasoning 

involved in this proof, I shall reconstruct it in the form of a Lemmon-style natural deduction 

derivation: 

         1   (1)   Ext(x) = D                                                                                 Premise 

         2   (2)   Ext(x) ∉ Ext(∀)                                                                                  Assumption 

          3   (3)    Let L’ be L ∪ {φ} such that Ext(φ)= Ext(x).                                    Open-endedness                                     

          4   (4)    Let L’’ be L’∪ {c}, such that ext(c)=o, for some o of D.                  Open-endedness 

   1,3,4   (5)   “φc” is true in L’’ for some arbitrary c.                                     1,3,4 Definition 

   1,3,4  (6)   “(∀x)φx” is true.                                                        5 ∀I 

      2,3  (7)   “(∀x)φx” is false.                                                                                 2,3 Definition  

1,2,3,4  (8)      ⋏                         6,7  E~ 

   1,3,4    (9)     ~ (Ext(x) ∉ Ext(∀))        2,8 I~ 

   1, 3,4 (10)    Ext(x) ∊ Ext(∀)         9, Definition 

 The part of reasoning that is relevant for the present discussion is that from (1) to (6), 

but let us consider the whole argument. The idea that the extension of the variable x is 

included in the extension of the universal quantifier (10) follows from the idea that the 

extension of x is the entire domain D (1) and from the open-endedness assumptions (3) and 

(4), according to which we can extend our initial language L to L’’ by adding new individual 

constants and predicates. It should be noted that line (3) made a substantial assumption, 

                                                                                                                                                                                     
understood as offering a solution to Canap’s Categoricity Problem- see Brîncuș (2021, 2024) and 
Murzi and Topey (2021). 
11 I introduce some notational changes in the proof for the overall uniformity of notations in this 
paper. 
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namely, that the extension of the new introduced predicate φ is identical with the extension of 

x, which in conjunction with premise (1) provides us with the intermediary conclusion that 

the Ext(φ)=D. From this intermediary conclusion and (4), it follows –by a substitution rule of 

variables with individual constants- in line (5) that “φc” is true, and, the author adds, “for 

some arbitrary c”. If this is so, then we can apply the universal introduction rule to infer to the 

truth of “(∀x)φx”. The reader may wonder, however, which is the main reason for which 

“φc” is true for arbitrary c and, thus, justifies the application of the ∀I-rule? The individual 

constant c, indeed, was introduced for an arbitrary object from D, but which is the reason for 

which “φc” is true? Is it just the fact that we simply stipulate it to be so? At a closer 

inspection we see that the reason for which “φc is true for some arbitrary c” is that we have 

assumed from the very beginning that φ holds for any object from the domain and c is 

introduced for an object from D. However, this assumption is equivalent with asserting that φ 

expresses a property shared by all objects in the domain (maybe a logical or mathematical 

property). This assumption, however, is not part of the general inferential use of the first-

order quantifiers in logical and mathematical reasoning. Moreover, it is not part of the 

inferentialist thesis that we should know in advance that the formula whose universal closure 

is to be inferred has the entire domain as its extension.12 

 If we do not assume that φ holds for any object from the domain, then although open-

endedness justifies us in introducing the individual constant c, we have no reason to hold that 

“φc is true for some arbitrary c” and, thus, we cannot apply the ∀I-rule. One way to 

inferentially justify the model-theoretic assumption that the predicate φ holds for any object 

from the domain would be to show that each instance of φ is provable. However, as we shall 

also discuss below, we can easily consider a case of reasoning in first-order Peano Arithmetic 

where φ is taken to express a mathematical property which holds for each object from the 

denumerable infinite domain D, but in order to consider φ an inferable formula, we need to 

implicitly assume an infinitary rule of inference that legitimates the derivation of an open 

formula φ, with at most x free, from its denumerably infinite number of instances:   

      {φ[t/x]: t is a term of L} ⊢ φ 

                                                           
12 Warren (2020: 86) also acknowledges that his proofs “assume (more problematically) that we can 

add to our language a name for any object in D, and a predicate for any subset of D.” As we shall see 
in the next section that Murzi and Topey (2021) start with a less strong assumption, namely, that 

Ext(x) ⊆ Ext (φ), and then they argue that permutation invariance, or the open-endedness of the ∀E-
rule, guarantees that the extension of ∀ is the entire domain. However, the assumption that Ext(φ)=D 
is still implicitly embedded in their approach.  
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This rule is needed because there are cases, as the one mentioned, when we can prove that a 

property holds for each object, although we cannot prove that it holds for an arbitrary object. 

The use of this rule makes unproblematic the derivation of “(∀x)φx” from φ in the next step. 

Carnap (1943) also used a rule of this kind in order to block the non-standard valuation v+. 

Once the sentential function φ is derivable from the infinite conjunctive set of all its 

instances, i.e. {φ[t/x]: t is a term of L}, then the rules of (Carnap1943)’s formalism (T28-4b) 

license the derivation of the sentence (∀x)φx from φ, where x is the only free variable in φ 

(T30-2 in Carnap (1943: 146)). Once this rule is present, the non-standard valuation vω is also 

blocked since the set {φ[t/x]: t is a term of L} ∪ {~(∀x)φx} will be inconsistent in the 

presence of this rule.  

In other words, the standard meaning of the first-order universal quantifier is uniquely 

determined by the standard natural deduction rules if we assume that the Ext(φ) is the entire 

domain. However, this is a semantic (or model-theoretic) assumption 13  and its proof-

theoretical counterpart assumption is to accept an infinitary rule of inference that legitimates 

the inference from an infinite set of instances {φ[t/x]: t is a term of L} to φ, since there are 

cases when φ demonstrably holds for each object, but we cannot inferentially prove that it 

holds for an arbitrary object.14 Hence, from an inferential perspective, Warren’s argument 

seems to succeed if the semantic assumptions are inferentially replaced by introducing an 

infinitary rule of inference in the logical calculus that we use. More generally, since by the 

Lӧwenheim-Skolem theorem every first-order theory has an infinite denumerable model, then 

we need to explicitly assume the use of the infinitary ω-rule in order to block the non-

standard valuations v+ and vω  from V(L) and, thus, to make L categorical (we will come back 

to this point in section VI): 

(ω-rule)        Г⊢φt1, φt2, … for all terms t of L 

     Г⊢ ∀xφx  

V. Locally Valid Open-ended Rules for Restoring Categoricity 

Murzi and Topey (2021) argued that the local validity of the natural deduction rules 

for the universal quantifier restores the categoricity of the first-order quantifiers, if these rules 

                                                           
13  Viewed as an inferential constraint, open-endedness only certifies the introduction of new 
predicates φ in the language, but it cannot stipulate the extension of these predicates, which is a 
model-theoretic concern (see also footnote 9).      
14 Sure, if we can prove that a predicate φ holds for an arbitrary object, then it also holds for any 
object. But since there are cases in which we can prove that φ holds for each object without being able 
to prove that it holds for an arbitrary object (see the discussion on the Gӧdelian sentences of Goldbach 
type in section V below), these ideas should be disentangled.   
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are taken to be open-ended. Their approach takes into account Garson’s (2013) precisification 

of the categoricity problem as being relative both to the format of the proof-theoretic system 

for a logic (axiomatic, natural deduction, sequent calculi) and to the way in which the validity 

of the rules of inference is defined (by deductive models, global models or local models).  

Definition 5 V is a local model of a rule R iff R preserves V-satisfaction; where a rule R 

preserves V-satisfaction iff for each member v of V, v satisfies R. A valuation v 

satisfies R iff whenever v satisfies the inputs of R, it also satisfies the output of 

R. 

 

Garson (2013: 42-43) argued that the use of the local models makes the introduction 

rule for the universal quantifier unsound since a valuation may satisfy the premise Г⊢φt 

without satisfying ipso facto the conclusion Г⊢(∀x)φx, even if t does not occur in Г15. In 

addition, if all valuations v from a local model V would simultaneously satisfy both the 

universal introduction and elimination rules, then we would have a collapse of quantification, 

i.e. φx↔∀xφx. Thus, Garson abandoned the local models for the global ones16. Murzi and 

Topey (2021:3403) consider this abandonment to be made too quickly and argue that the 

local models could be used, with some emendations of the formalism, even for the 

quantifiers. They introduce a form of the ∀I-rule that allows open sentences in the premise 

sequent:  

 (∀I)      Г⊢φ 

  Г⊢∀xφ,  where x does not appear free in Г.       

Their strategy for obtaining the categoricity of the first order quantifier has two steps: 

first they argue for a weakened thesis and then this thesis is generalized for obtaining the 

result that the local validity of the open-ended natural deduction rules for the universal 

quantifier is a necessary condition for their categoricity, i.e., all valuations from V(L) are 

such that ∀xφx is true in v iff Extv(φ) in v is the entire domain. The generalized thesis is 

inferentially obtained by using the open-endedness of the universal elimination rule, but since 

I take this step to be unproblematic for the existence of the non-standard valuations for ∀, let 

                                                           
15 For this result, Garson (2013: 43) uses standard natural deduction rules for the universal quantifier 
formulated in terms of individual constants. See Murzi and Topey (2021: 3403) for a discussion of 
this result.  
16 In the global models the rules are meant to preserve the sequent’s V-validity, i.e. if the premises are 
V-valid, then so is the conclusion. The difference between the local and global models amounts to a 
difference in the scope of the quantification over the valuations v from V. In the local models, the 
quantification has a wide scope, while in the global ones has narrow scope. Thus, every local model is 
also a global one (see Garson (2013:18-19)).    
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us take a look at the proof for the weakened thesis. Likewise, for the same reason, I shall 

consider only the necessity direction of the proof.  

Weakened First Order Thesis. The rules of FOL are locally valid with respect to a class of 

valuations V∖{v⊤, v⊢} only if all v ∊ V are such that, for any φ, ∀xφ is true in v iff Extv(x) ⊆ 

Extv(φ).17  

Proof: (Necessity) Supose the first-order rules are satisfaction-preserving in v, and let φ be 

any formula with at most x free. First, suppose every object in the range of x in v is in 

Extv(φ). Then v satisfiess ⊢φ for any variable assignment s, in which case v satisfies ⊢φ. So, 

since ∀I is satisfaction-preserving, v satisfies ⊢∀xφ as well –i.e. ∀xφ is true in v.  

For better referring to the individual steps of the reasoning involved in this proof, I 

shall also reconstruct it as a Lemmon-style natural deduction derivation: 

1      (1) ∀I-rule is satisfaction preserving.           Premise (Local Validity) 

2      (2) Extv(x) ⊆ Extv(φ),                                   Premise 

2      (3) v satisfies ⊢φ                                          2 Definition 

1, 2  (4) v satisfies ⊢∀xφ, i.e., ∀xφ is true in v    1, 3  ∀I 

 

The step that is philosophically problematic in this reasoning can be located in the inference 

from (3) to (4), but before coming back to this, let us take a look at the whole reasoning. If 

the extension of the variable x is included in the extension of φ, then the open sentence φ will 

be satisfied by any variable assignment (associated with the valuation v). From this idea it is 

inferred that the valuation v satisfies the argument ⊢φ, since φ is satisfied under any variable 

assignment (every object over which x ranges being in the extension of φ). In the next step, 

from (3) to (4), ∀I-rule is meant to preserve this satisfaction. The problem that Murzi and 

Topey associate with this weakened thesis is that it is consistent with the possibility that the 

variable x ranges only over a subset of D and, thus, there might be an object in D such that no 

variable assignment assigns it to a variable. This is why the thesis has to be enforced.  

 The full first-order thesis, i.e. ∀xφ is true in v iff  Extv(φ) = D, is obtained by using 

the open-endedness of  the ∀E-rule. Since the open-endedness of this rule guarantees that we 

can extend our language by adding new names, the validity of the open-ended ∀E-rule is 

incompatible with the possibility that the weakened thesis lets open. Consider for instance 

that there would be an object in D which is not in the range of ∀. By open-endedness we can 

                                                           
17 This thesis is formulated here such that the non-standard propositional valuations v⊤ and v⊢ are 

excluded from V. They are excluded because in the propositional case Murzi and Topey (2021) rely 
on a formalism developed by (Murzi 2020) in which classical reductio ad absurdum is formulated as 

a structural metarule and, thus, the non-standard valuations v⊤ and v⊢ are inferentially blocked. 

Consequently, these non-standard valuations do no longer appear in the class of valuations V 
associated with first-order logic.  

https://doi.org/10.1017/bsl.2024.3 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2024.3


15 
 

name this object by introducing an individual constant c in an extension of the initial 

language. However, if ∀xφ is true, then φc also has to be true, otherwise the ∀E-rule would 

be unsound. Thus, Extv(φ) = D.   

 The argument for the full first-order thesis is identical with the necessity direction of 

Warren’s (2020: 85-86) proof for the idea that Ext(x)=D iff Ext(x)∊Ext(∀) and, as I 

mentioned, I take it to be unproblematic. Basically, the reformulation of the natural deduction 

rules for the quantifiers in terms of variables has to be ‘suspended’ by Murzi and Topey in 

order to obtain the full first-order thesis. This is so because the open-ended ∀E-rule is 

necessary for obtaining the full first-order thesis and its application requires the use of 

individual constants. 

Since the ∀I-rule is responsible for the existence of the non-standard valuations v+ and 

vω, let us come back to its use in the reasoning for the weakened thesis. We should emphasize 

from the very beginning that the ∀I-rule is meant to be a first-order rule and, thus, it has to be 

a finitary rule, i.e., if a conclusion φ is derivable from a set of premises Г, then it has to be 

derivable from a finite subset Г’ of  Г. Now, if we take for granted the local validity of the 

∀I-rule, then we know that if “Г⊢φ” is satisfied by a valuation v, then “Г⊢∀xφx” will also be 

satisfied. In particular, the valuation vω which assigns ⊤ to each member of {φ[t/x]: t is a 

term of L}, also has to assign ⊤ to (∀x)φx in order to preserve the local validity of the rule. 

But this means that the set {φ[t/x]: t is a term of L} ∪ {~(∀x)φx} is inconsistent in Murzi and 

Topey’s formalization of quantificational logic. If this is so, however, we have to 

acknowledge the presence of an infinitary rule of inference, which guarantees the 

inconsistency of this set. In other words, ∀I-rule is implicitly taken to be an infinitary rule.  

Alternatively, consider now the reasoning from (1) to (4) in the particular first-order 

case in which we have an infinite denumerable domain and φ expresses a mathematical 

property which is true of each object from the domain. In this case, φ will be satisfied by the 

valuation v (due to Premise 2), but φ is not provable unless we assume an infinitary rule of 

the following type: {φ[t/x]: t is a term of L} ⊢ φ. Likewise, if we assume that φ is provable, 

then we can assert that (∀x)φ is also provable only if the ∀I-rule is taken to be an infinitary 

rule. To be more clear on this point, by assuming that an arbitrary first-order open formula φ 

is generally satisfied by a valuation v is to implicitly assume that v satisfies φ even in the case 

in which φ is a logical consequence of an infinite number of premise, without being a 

consequence of any finite subset of them. This assumption, however, is inferentially justified 

if and only if we can prove that φ holds for each individual object from the domain.  
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 In their proof of the weakened thesis, Murzi and Topey (2021: 3407) use a restricted 

form of the ∀I-rule:          

                                      ⊢φ 

                          ⊢(∀x)φx  

The fact that Г=⌀ means that if φ is provable, then its universal closure will also be provable. 

However, the general inferential use of the first-order universal quantifier is not limited only 

to its uses in pure first-order logic, but also in the application of first-order logic in the 

formalization of mathematical theories, such as Peano Arithmetic. Thus, if (∀x)φx is taken to 

be a Gӧdelian sentence of Goldbach type18, the sentence will be true, but to derive it from φ 

one needs to assume the applicability of an infinitary rule of inference. Hence, the local 

validity of the ∀I-rule makes this rule generally sound and blocks the non-standard valuations 

v+ and vω if and only if we inferentially take this rule to have an infinitary powers.  In other 

words, the infinitary features of the rule are hidden by under the local conception of validity.  

 We may thus conclude that the standard, i.e. finite, formalizations of quantificational 

logic, with or without individual constants in the formulation of the rules, are non-categorical 

since the valuations v+ and vω defined in section III above will be members of V(L), where L 

is a standard formalization of first-order logic, i.e. finite formalization. These valuations are 

L-consistent, but they provide the universal quantifier with semantical meanings different 

from the intended ones. These valuations are proof-theoretically blocked if and only if the ∀I-

rule is taken to be non-compact, i.e., infinitary.   

VI. The ω-rule and the Categoricity of the First-order Universal Quantifier  

Both Carnap’s non-standard valuation v+ and Garson’s valuation vω are made possible 

by the fact that there is a lack of symmetry between the semantical meaning of the universal 

quantifier (“for all”) and the expressive power of the inferential rules or axioms that govern 

the use of the sign “∀” in a standard formalization of first-order logic. It seems natural, thus, 

to obtain a categorical formalization of the universal quantifier by using an infinitary rule of 

inference such as the ω-rule.19 

                                                           
18 A Gӧdelian sentence of Goldbach type is a sentence γ such that, given PA’s soundness, PA ⊬ γ and 

PA ⊬ ∼γ, i.e. γ is undecidable. Syntactically, γ is a Π1 sentence of the form (∀x)φx, where φx 
expresses a recursive function that is provable in PA.  Thus, a Gӧdelian sentence of Goldbach type is 
a universally quantified sentence such that PA, formalized in a finitary first-order logic, proves all its 
instances, but it does not prove the universal sentence itself. In the technical jargon, this means that 
PA is ω-incomplete (see Smith (2020: Ch.21) for a discussion of these and related issues). This easily 
explains why formalizing PA in ω-logic makes PA complete with respect to negation, i.e., deductively 
complete (see also section VI below).  
19 Carnap (1943: 145) is the first one who introduced an infinitary rule of inference to obtain a 
categorical formalization of the first-order universal quantifier. For a discussion of Carnap’s use of the 
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Theorem: The result of adding the ω-rule in the standard formalizations of logic, i.e. Lω, is 

categorical, i.e., all valuations v from Lω(V) are standard.    

Lemma:  A valuation v is standard if and only if: 

(1)    v(∀xφx) is true if and only if for all terms t in Term v(φ[t/x])=⊤ 

(2)    v(∀xφx)= ⊤ iff for all object d in D, v(φ[d/x])=⊤ 

As we already mentioned, condition (2) is equivalent to condition (1) if every object in the 

domain is named (or at least nameable) in the language under consideration. Thus, assuming 

nameability, (2) reduces to (1). 20  

Proof:  (Sufficiency) Let us assume that v(∀xφx) is true and let us assume, in addition, that 

every object in the domain is nameable. By the ∀E-rule, every instance of (∀x)φx is true, i.e. 

v(φ[t/x]) is true for all terms t in Term. As a consequence, every object from the domain will 

be in the extension of the universal quantifier. (Necessity) Let us assume that v(φ[t/x]) is true 

for each term t in Term. The, by the ω-rule, v(∀xφx) will also be true.  

Probably the main problem with the achievement of the categoricity of the first-order 

universal quantifier in this simple, maybe too simple, way is a philosophical one, namely, that 

the ω-rule is an infinitary rule and, thus, it cannot be systematically followed in practice. One 

may say that the ω-rule is a rule for … angels! As a matter of historical fact, this criticism 

was initially raised by Church (1944) for Carnap’s (1943) proposal of a full formalization of 

first-order logic. The problem of following the omega rule was recently addressed by 

Warren21 (2021), who argued for the possibility of following this rule (at least in the case in 

which its premises are recursively enumerable). Since my aim in this paper was only to 

address the categoricity of the universal quantifier in an abstract manner, i.e. to see which 

                                                                                                                                                                                     
ω-rule see also de Rouilhan (2009) and Peregrin (2020). Garson (2013:233) also acknowledges that 
the substitutional semantics is the “natural semantics” for the ω-rule, i.e., the semantics that can be 
read off from the rule, but his interest is in reading the meanings of the quantifiers from the natural 
deduction rules as they are standardly formulated. For this reason, Garson (2013: 217) introduces the 

sentential interpretation as the natural semantics for the quantifiers – a semantics which has an 
intensional character and invalidates the ω-rule (see Brîncuș (2024) for a brief discussion). My 
interest is in the opposite direction, namely, to find out which are the adequate rules for fully 
formalizing the standard semantic meaning of the universal quantifier –meaning which has an 
inherently infinitary nature in my view. Thus, in opposition to Garson, I do not take the intended 
meaning of the universal quantifier to be finitary and intensional, but rather infinitary and extensional.   
20 The nameability assumption may be considered problematic when a theory with an infinite super-

denumerable domain is under investigation, for instance, the theory of the real numbers. However, if 
this theory is formalized in first-order logic, then the Lӧwenheim-Skolem theorem guarantees us that 
it will also have a denumerable model and, thus, an infinite denumerable number of names will be 
sufficient. Sure, the same theorem will prevent us to obtain first-order categorical theories without 
additional constraints even when the proof-theoretic ω-rule is present.   
21 Although Warren (2020) does not use the ω-rule for obtaining the categoricity of the first-order 
universal quantifier, he still makes use of it for obtaining the deductive completeness of the first-order 
Peano Arithmetic and arguing thus for the determinacy of arithmetical sentences. 
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formalization of first-order logic is such that all valuations in V(L) are standard, I shall not 

advance here an argument for the followability of the omega rule. However, since in the 

ordinary mathematical practice we do find pieces of infinitary reasoning, then the logical 

inferentialists should embed infinitary rules in their theoretical framework if they aim to 

provide an account for the entire field of deductive reasoning. For the time being, I simply 

acknowledge the necessity and usefulness of the ω-rule for attaining some useful and 

desirable meta-theoretical properties (such as the deductive completeness of PA and, thus, the 

determinacy of arithmetical sentences). I join Fraenkel, Bar-Hillel and Levy’s (1973: 286) 

stance in considering Church’s criticism of the use of non-effective rules of inference as not 

suitable for the purposes of communication as being not very convincing, since:  

Communication may be impaired by this non-effectiveness but is not destroyed. 

Understanding a language is not an all-or-none affair. Our quite efficient use of 

ordinary language shows that a sufficient degree of understanding can be obtained in 

spite of the fact that “meaningfulness”, relative to ordinary language, is certainly not 

effective.  

Although the meaningfulness of ordinary language is non-effective, in spite of usual 

inconveniences, we can make good use of it and understand each other most of the time. 

Likewise, it is quite clear that the ω-rule provides us with a clear-cut understanding of the 

universal quantifier, despite of its non-effective character. The notions “φ is meaningful” and 

“φ is a logical consequence of Γ” are similar with respect to the fact that they are both non-

effective. However, we can understand most of the expressions φ and we can derive most of 

the sentences φ from Γ in an effective way. If we want to ideally grasp all the meaningful 

sentences and formally derive all the logical consequences, then the price that we have to pay 

is the appeal to non-effective instruments, like the ω-rule. In addition, the ω-logic is a sound 

and complete system of logic22 and also provides us with the deductive completeness of 

Peano Arithmetic 23 . The Lӧwenheim-Skolem theorem prevents us in also obtaining the 

categoricity of the first-order theories without additional constraints, but, certainly, we cannot 

obtain so easily all desired properties at once. 

 Finally, I want to stress the fact that since we are eager to obtain desirable meta-

theoretical properties (such as semantic completeness, categoricity, deductive completeness), 

then we should probably not follow Hilbert’s reaction to Gӧdel’s first incompleteness 

                                                           
22  See Chang and Keisler (2012: 81-83) for a discussion of the ω-logic. Although at page 82 
Proposition 2.2.13 is called ω-Completeness Theorem, it is actually a soundness and completeness 
theorem (see also LeBlanc et al. (1991: 220)). 
23 See Shoenfield (1959), Frazén (2004: 376), Warren (2020:274-75) for a proof of the deductive 
completeness of the first order Peano Arithmetic augmented with the (recursive) ω-rule.  
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theorem and try to dress the ω-rule in finitary clothes –whatever these may be. Consider for 

instance Hilbert’s version of this rule: 

ωH-rule      φ(t) for each numeral t 

            (∀x)φx  

Hilbert took this rule to be a finitary one and understood it in the sense that if we have a 

finitary meta-mathematical method for establishing φ(t) for each numeral t, then we can 

conclude (∀x)φx. However, if we accept that there are no finitary rules not-formalizable in 

the system of Principia Mathematica, then we have to accept that we cannot prove the 

premise of ωH-rule in an inferentially finitary way. For instance, for reductio, consider that 

we can establish in a finitary manner the premise of ωH-rule. Then, one application of the ωH-

rule leads us to (∀x)φx. This conclusion, however, will be based on the same finitary grounds 

on which the premise is based. But then, by successive applications of the ∀E-rule, we can 

ideally obtain an infinite number of premises, each of them being based on the same finitary 

grounds. However, in this way the difference between the ωH-rule, as a finitary rule, and the 

standard ω-rule, which is an infinitary rule, vanishes:  

    Finitary grounds    (1)      φ(t) for each numeral t             Assumption 

    Finitary grounds    (2)      (∀x)φx             ωH-rule    

    Finitary grounds    (3)      φt1             2, ∀E 

    Finitary grounds    (4)      φt2             2, ∀E 

                                   ………….. 

    Finitary grounds    (n)      φtn             2, ∀E 

    Finitary grounds    (n+1) (∀x)φx                                     3…n, ω-rule     

  

This is so because we can obtain the premises of the ω-rule, which are denumerably infinite 

(3 to n), from the ωH-rule. From this fact, Potter (2000:248) draws the conclusion that “the 

scope of what is to count as the finitary part of arithmetic is therefore inherently 

unformalizable”, in the sense that there is no effective test for deciding whether the schematic 

sentence φ(t) has been established by finitary methods. By analogy, we can say that the 

existence of a finite meta-mathematical justification or proof for φ is implicitly assumed in 

the arguments of both Warren and Murzi and Topey discussed above. This meta-

mathematical proof is implicitly assumed when Warren stipulates that φ has as extension the 

entire domain and it is also assumed when Murzi and Topey consider that if φ is satisfied by 

the valuation v, then we can assert that φ is finitary provable and, thus, (∀x)φx                                     

is also finitary provable. As we repeatedly mentioned, when φ expresses a mathematical 

property shared by each object in a denumerable infinite domain, Gӧdel’s reasoning 

guarantees us that the finitary rules of inference are insufficient.  
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VII. The Categoricity of  Peano Arithmetic  

Although both Warren (2020) and Murzi and Topey (2021) also use an open-

endedness requirement for securing the categoricity of Peano Arithmetic, they follow 

different paths. Warren uses open-ended first-order induction (and the open-ended ω-rule) to 

obtain the categoricity of the first order Peano Arithmetic, while Murzi and Topey argue that 

the open-ended natural deduction rules for the second-order quantifiers make them 

categorical by uniquely determining their standard interpretation and, thus, the categoricity of 

second-order Peano Arithmetic is inferentially secured. The previous discussion of their 

arguments will make the analysis of their arguments easier. Warren’s argument, I contend, 

inferentially fails because it assumes that we can legitimately introduce a predicate which 

stands exactly for the standard natural numbers, while Murzi and Topey’s argument succeeds 

only if, in addition to nameability, we assume that the introduction natural deduction rule for 

the second-order quantifier (∀2) is, likewise, an infinitary rule.  

a) Open-ended first-order induction and ω-rule    

Warren (2020: 225) explicitly states his argument for the categoricity of first-order 

Peano Arithmetic (PA): 

P1. Our open-ended arithmetical practice rules out any non-standard interpretation of arithmetic 

that can, in principle, be communicated to us. 

P2. Any non-standard interpretation of arithmetic can, in principle, be communicated to us. 

C1.  Any non-standard interpretation of arithmetic is inadmissible. 

C2.  Arithmetic is categorical.  

The central point of the argument is that any non-standard interpretation can be 

communicated to us. Considering a non-standard interpretation 𝓜 of PA, Warren takes P2 to 

imply the possibility of extending our initial language L to L+ by adding two new predicates, 

one for the standard portion of 𝓜 (STM) and the other for the entire domain of 𝓜 (M), and 

also the possibility of possessing an ability of seeing 𝓜 as non-standard. Now, in L+ the 

following sentence will be true: (∃x)(Mx & ~STMx), since it asserts the existence of a non-

standard number in 𝓜. However, we are pre-committed to the open-ended induction rule, 

which applied to the predicate STM tells us that: 

  (STM0 & (∀x)(STMx ⟶ STMsx)) ⟶ (∀x)STMx) 
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Still, since 𝓜 ⊨ STM0 & (∀x)(STMx ⟶ STMsx) and, also, 𝓜 ⊨  ~(∀x)STMx, it follows that 

M does not satisfy the open-ended induction rule, and since we are pre-committed to it, we 

have to reject 𝓜.24  

Warren (2020: 256-257) asserts, with no further intermediate steps, that the 

communicability assumption prevents the reasoning conducted above to be a petitio principii. 

The reader may wonder, however, why the reasoning is not begging the question. One should 

bear in mind that we work in an inferential, i.e. syntactic, framework which forbids us to use 

semantic assumptions which are not inferentially justified. The open-endedness requirement 

justifies the introduction of the predicate STM, but do we have any inferential guarentee that 

this predicates really stands for all and only for the standard natural numbers? The answer 

seems to be: No! The validity of induction does its work only if we already assume that STM  

stands for all and only for the standard numbers. Consider for support the following analogy: 

assume that the non-standard interpretations for negation and disjunction can be 

communicated to us. This means that we have a way of distinguishing the normal truth-tables 

(NTTs) from the non-NTTs. But for this we need semantic predicates whose extensions have 

to be stipulated from the very beginning. Likewise, the extension of the predicate STM is 

stipulated from the very beginning and it is not the result of reading off its meaning from the 

rules –as the inferentialist point of view would require. 

Someone may say that the dismissal of this argument is too quick and that the non-

standard model M is inferentially blocked by the open-endedness of the induction rule by 

itself.  For as soon as there is a predicate φ such that φ holds of 0 and whenever φ holds of n 

then it also holds of n+1, yet (∀x)φx does not hold, then one already knows that we are in a 

model that is inferentially inadmissible –since it violates the validity of open-ended 

induction. Another way of formulating this reply25 is to say that the open-ended induction 

rule is applied to arbitrary predicates and when there is a predicate φ such that the induction 

rule becomes invalid, then we know that the model is inferentially inadmissible. 

Consequently, there seems to be no previous presupposed semantic grasping of what the 

standard numbers are.  

It should be mentioned, however, that the induction rule –as all the other arithmetical 

laws- is valid in all the models of PA and, thus, even in the non-standard ones. Hence, the 

                                                           
24 The argument has the same effect if instead of open-ended induction the open-ended ω-rule is used 
(see Warren (2020: 271). 
25 I would like to thank one reviewer for this journal and Jared Warren for their useful comments on 
this idea.  

https://doi.org/10.1017/bsl.2024.3 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2024.3


22 
 

predicate φ that invalidates the induction rule cannot be an ordinary arithmetical predicate 

from the extended object language of PA. Sure, we find out at the end of the day that φ is –

magically- precisely the predicate which holds for all and only for the standard numbers. The 

reader may thus wonder: do we have any inferential justification to introduce in our language 

a predicate φ as long as we are inferentially blind in seeing the distinction between standard 

and non-standard natural numbers? Is the introduction of the predicate φ in an extension of 

the initial language inferentially justified? Is φ a predicate that an inferentialist can 

intelligibly formulate in his language?  

I think that it is quite reasonable to believe that a logical inferentialist would extend 

his language by adding a predicate that is intelligible for him/her. If φ is such a predicate, 

then –roughly expressed- it makes sense for the inferentialist. But if it makes sense, then its 

meaning is determined by some inferential rules. From an inferentialist perspective, however, 

the distinction between standard and non-standard is non-transparent, since the standard and 

the non-standard models are indiscernible for the inferentialist. Thus, in order for the 

argument from open-ended induction to work, we need to be able to formulate or to express 

what Warren calls the STM predicate. However, to formulate it, we already need to 

presuppose that this predicate is inferentially intelligible. But this is precisely the problem at 

issue, namely, that from an inferential point of view we cannot differentiate between the 

standard and the non-standard models of PA. This distinction is inferentially nonexistent. 

Warren assumes however, in P2, that any non-standard interpretation is communicable to us 

and, thus, this justifies the introduction of the predicate STM. However, the communicability 

requirement introduces on the back door the semantic distinction between standard and non-

standard. Hence, the argument form open-ended induction to the categoricity of PA works if 

and only if we are inferentially justified to apply induction to the predicate STM. However, 

since this predicate is inferentially unintelligible, then the inferentialist cannot use it without 

presupposing a previous semantic grasp of its meaning. The predicate STM would not occur 

in the language we use unless the distinction between standard and non-standard natural 

numbers is already inferentially presupposed.   

b)  Open-ended natural deduction rules for the (∀2) 

  Murzi and Topey (2021) generalize their reasoning for the first-order quantifiers to 

second-order logic. Structurally, their argument is identical to the first-order case: the 

weakened second-order thesis is enforced by open-endedness for obtaining the result that the 

rules for SOL are locally valid relative to a class of valuations V only if all valuations from V 
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obey the standard interpretation of ∀2. Consider again the necessity direction for the 

weakened second order thesis: 

1      (1) ∀2I-rule is satisfaction preserving.             Premise (Local Validity) 

2      (2) Extv(X) ⊆ Extv(φ),                                     Premise 

2      (3) v satisfies ⊢φ                                              2 Definition 

1, 2  (4) v satisfies ⊢(∀2X)φ, i.e., (∀2X)φ is true in v    1, 3  ∀2I 

 

The ∀2I-rule used in this argument has the following form:      ⊢φ 

                                                                                        ⊢(∀2X)φ  

By generalising Garson’s reasoning from section III above, one can easily see that the set 

{φ[t/x]: T is a relational term of L} ∪ {~(∀2X)φ} is consistent in the deductive system of 

SOL, since the ∀2I-rule is supposed to be a finitary rule. This allows us to define a valuation 

v2
ω which assigns ⊤ to each member of {φ[t/x]: T is a relational term of L}, but assigns ⊥ to 

(∀2X)φ. As in the reasoning conducted for the first-order case, this valuation is blocked only 

if the ∀2I-rule is taken to be an infinitary one. Sure, having such an infinitary rule is necessary 

for blocking the valuation v2
ω, but it is not by itself sufficient for obtaining categoricity since 

the second order domain of quantification will be uncountable when the domain of 

individuals is denumerably infinite and, thus, a denumerable omega rule would, by itself, not 

be sufficient. However, since the categoricity of mathematical theories in SOL is obtained 

with the cost of losing the semantic completeness of this logic, and I take the semantic 

completeness with respect to a recursive axiomatization to be a desirable property, I shall not 

pursue further the categoricity of the second-order quantifiers. 

VIII.  Categoricity by Inferential Conservativity  

We have seen thus far that the arguments for the categoricity of the first-order 

universal quantifier, based on the open-endedness requirement, work if the introduction rule 

for this quantifier is taken to be an infinitary rule, in particular, the ω-rule. By using this rule 

we still work in a first-order framework and, thus, the Lӧwenheim-Skolem theorem prevents 

us to obtain the categoricity of the first-order Peano Arithmetic. Since I dismissed Warren’s 

argument based on the communicability of the non-standard models, the reader may wonder 

how an inferentialist may still obtain the categoricity of the first-order Peano Arithmetic. 

Building up on some ideas of Dummett (1991: 217-220) and Brandom (2000: 66-73), I think 

that the inferentialist has a powerful instrument at his disposal, namely, the requirement of 

inferential conservativity. I shall briefly present here how the requirement of inferential 
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conservativity works, while I plan to fully develop and defend the argument in another 

context.  

The requirement that the rules of inference for a logical term should introduce only 

inferentially conservative extensions is well known from Belnap’s (1962) discussion of the 

tonk operator. Although this discussion is limited to the introduction of logical terms, it could 

very well be extended to the introduction of non-logical expressions. As Brandom (2001: 68) 

emphasizes: 

Unless the introduction and elimination rules are inferentially conservative, the 

introduction of the new vocabulary licences new material inferences, and so alters 

contents associated with the old vocabulary. 

This means that the requirement of conservativity for the introduction of a logical 

term in a language is a necessary condition for blocking new material inferences licensed by 

the introduction of new vocabulary. However, this condition is not at the same time a 

sufficient one. New material inferences are possible if the language of a non-categorical 

mathematical theory is extended.    

The problem with the non-standard models for Peano Arithmetic is that they contain 

non-standard numbers. This idea may be expressed by saying that the first-order 

formalizations of Peano Arithmetic have models that do not omit the set: {c≠0, c≠1, c≠2 ….}, 

i.e., there are non-standard models that realize this set26. In other words, they allow us to 

extend the language by introducing a new constant c which is different from all the other 

numerical individual constants of the initial language. The introduction of this constant 

simultaneously means that the following inference ⊢(c≠0 & c≠1 & c≠2 …) is inferentially 

justified in the extended language. However, the introduction of this constant licences a 

material inference which destroys the inferential conservativity of the system, i.e., it allows 

inferences which are not inferentially justified on the basis of the axioms and rules previously 

accepted in the system. For instance, by existentially quantifying over ⊢(c≠0 & c≠1 & c≠2 

…), we obtain the material inference ⊢(∃x)(x≠0 & x≠1 & x≠2 …) which is a written in the 

old language. This inference, however, alters the meanings of the expressions from the old 

vocabulary.  

Thus, if the requirement of inferential conservativity is at work, then all the models of 

the first-order formalizations of Peano Arithmetic will omit the set: {c≠0, c≠1, c≠2 ….} and 

categoricity will thus be easily obtained. In other words, the requirement of inferential 

conservativity guarantees us that the only admissible models of first-order Peano Arithmetic 

                                                           
26 See Chang and Keisler (2012: 77-87) for a discussion of the omitting types theorem. 
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are the ω-models. Sure, the requirement on inferential conservativity is a very powerful one, 

although very reasonable for logical and mathematical languages, and it has to be justified 

that imposing it is not something arbitrarily done and, thus, just begging (again) the question.   
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