
NOTE ON THE UNIQUENESS OF THE GREEN'S 
FUNCTIONS ASSOCIATED WITH CERTAIN 

DIFFERENTIAL EQUATIONS 

D. B. SEARS 

CONDITIONS to be imposed on q(x) which ensure the uniqueness of the Green's 
function associated with the linear second-order differential equation 

22+{\-q(x)}y = 0, 

the range 0 ^ x < œ, and suitable boundary conditions, have been obtained 
recently by Hartman, Wintner and Titchmarsh. It will be shown in this paper 
that the methods used by these writers may be employed to yield more general 
theorems. Corresponding results are obtained for the analogous partial 
second-order differential equation, for which an uniqueness theorem has been 
obtained by Titchmarsh. 

1. I consider first of all the equation 

(1.1) g + { x - 2 ( x ) } y = 0 

over (0, œ), where q(x) is supposed continuous for 0 ^ x < <», and X is a com­
plex parameter independent of x. The Green's function associated with (1.1) 
and a homogeneous boundary condition at x = 0 will be unique only if the dif­
ferential equation is of limit-point type1; i.e., if, for any X, and so for all2 X, (1.1) 
does not possess two linearly independent solutions of class L2(0, » ). Instead 
of considering the Green's function directly, I shall, therefore, consider the 
number of linearly independent solutions of (1.1) which are of class L2(0, <»). 
This is the procedure adopted by Hartman and Wintner [1], who also take 
X = 0. To keep this paper self-contained I consider general values of X. This 
does not unduly complicate the argument, and avoids appeal to the theory of 
Integral Equations on which Weyl's theorem, by virtue of which one particular 
value of X may be chosen, is based. Solutions of (1.1) will, therefore, be func­
tions of both x and X, but dependence of the symbols on X will not be shown 
explicitly. Primes denote differentiation partially with respect to x. Through­
out A and K will denote constants, not necessarily the same at each appearance. 

Received July 4, 1949. 
'See e.g. [4]§§2.1, 2.9, or [6]. 
2[6] Kap. II, Satz 5. For another proof, see [3] §10. 
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2. If q{x) satisfies any one of the following conditions, then (1.1) cannot 
possess two independent solutions of L2: 

(i) qix) > — Ax2] 

(ii) f'q(t)dt>-Ax*; 

(iii) q(x2) - q(xi) > A(xi — x2) 

for all xu %2 sufficiently large, x\ < JC2; 

(iv) q(x) is monotonie and 

Jœ\q(x)\~h dx = oo ; 

(v) q(x) is differentiable, 

ri«(*)i-*d« = <». î im 
q'(x) 

{q(x)Y 
< » . 

Of these conditions, (i) was given by Titchmarsh [5] and by Hartman and 
Wintner [2], while the remainder are due to Hartman and Wintner, [1], [2], 
Clearly (i) is a special case of (ii). It is easily seen that (iii) is a special case 
of (i), and so also of (ii). 

3. All the above conditions, with the exception of (ii), are contained in 
the following result: 

THEOREM 1. Let q(x) ^ — Q(x) where Q(x) >5 > 0, and 

(3.1) F{Q(x)}-*dx = *>. 

In addition, either 

(3.2) Q'(x) exists and Q(x) is an integral, while 

Q'{x) 
lim 

* - * c o {G(*)| 3/2 < < * > , 

or 

(3.3) Q(x) is monotonie and continuous. 

Then the differential equation (1.1) cannot, for any real or complex value of X, 
possess two linearly independent solutions of class L2(0, oo). 

There is no loss of generality in assuming, when (3.2) holds, that Q(x)>l, 
and when (3.3) holds, that Q(x) —> oo. 

If the theorem is false, then every solution of (1.1) is L2(0, oo). If <j>(x), 6{x) 
denote the solutions satisfying the boundary conditions 

0(0) = 1, 4>'(0) = 0, 0(0) = 0, 0'(O) = 1, 

for all values of X, then, for all x ^ 0, 
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<!>(x)6'(x) - <t>'(x)6(x) = 1, 

and 

n e w } - * dx = n e w } - * {*(*) «'(*) - <t>'(x) 8(x)} dx 

u e w / u C M J 

for some positive K, K1. By (3.1) it will therefore be sufficient to show that for 
any solution y(x) of (1.1) which is of class L2(0, «>), the integral 
(3.4) 00 |y'(«)l* 

e(«) 
dx 

is convergent. Alternately it will be sufficient to show that 

(3.5) r°°bw 
J Q(2x) 

dx 

is convergent. 
Accordingly let X = u + iv be fixed, and let y(x) be any such solution of L2. 

Let 5K#) denote its conjugate. By (1.1), 

y(x)y"(x) + {\-q(x)} b(x)|2 = 0, 

and, taking the real part, 

(3-6) i £ |y(x)|2 - |y'(*)|* + {« - g(*)} |y(*)|* = 0. 

Assume first of all that (3.1) and (3.2) hold. For any T>0, it follows from 
(3.6) that 

[r(i-^){ç(,)}-{iywi2-i^bwij^ 

= J * ( l - | ) \Q(x)}-> \u - q(x)} \y{x)\*dx 

^ j ^ l - | ) {Q(x)}-> \u + Q(x)} \y(x)\*dx 

^ (1 + |«|) [ |y(*)|*dx<2S: 

as T —> œ , since Q(ac) > 1. Also, writing R(z) for the real part of z, 
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- _ R{y(Q)j'(Q)l , i fr U , | t U/ _ x\QV) _j_) 
0(0) + 2 j . U l y ( ) l A V 1 r M * ) + 7 w r * 

2(0) + K J o ywy w V zV Q«(»)
 d* 

bmi2 

+ 
b(0)|2 + j _ r T |y(*)|*^dx.-

2rÇ(r) 2TQ(0) 2TJ 

Substituting this result in the above inequality, it follows that 

jT
t(l - £){<Kx)}-*\?{x)\*dx 

\T\y(x)y'(x)\(l-£)\^dx 
I o \ L / 02Cx) 

<K+Mni + 
2TQ(T) 

"T 

+ L f r
| y ( , ) | . ] e M I ( f a ; 

IT Jo "v 02(x) 2TJo Q*(x) 

By the inequality 2|oi| ^ a2 + b2, with a2 = |yTQ_1 and b2 = [y|2Ç/2<2-3. 

and, since Q(x) > 1, 

Jo "V \Qi(*) / J ° (? (*) 

so that 

g .. ly(r)l2 , i fVi *yy(*)l2[Q'(*)]2, < 

+ lyC 2r 

b(ni2 

2TQ(T) 

V <23(*) / 
dx 
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by (3.2). Since \y(x)\2 is L(0, <»)•, a sequence of values of T, tending to in­
finity, may be found for which 

\y(T)\*<2KTQ{T), 

and thus, as T —» œ through this sequence, 

J^i - | ) {Q(*)}-I |y(*)|* rfx = o(i). 

It follows that the integral (3.4) is convergent, and hence the first part of the 
theorem has been proved. 

Now let (3.1) and (3.3) hold, and again let y(x) be any solution of (1.1) which 
is of class L2(0, œ ). Integrating by parts, 

J^(i-|)b'(*)N* 

= [y(x) m (i - |)]o
T - JQ

r y(x) | ( i - f) fix) - i $'(*)} dx 

= - y(0) y'(0) - J, (i - f) b(*)l2{s«-x} ^ + r | I y(x) 5'(x) <**• 
Taking real parts, 

- J["(i - r ) {«(*) - «I b(*)M* + ^f{\y(T)\> - |y(0)|*}. 
Now replace T by £, multiply through by 2t, and integrate with respect to t 
over (0, T). Then 
rr 

( r - x)2 \y'(x)\2dx = - r 2 R J3f(0) y'(0)} - r|;y(0)|2 

( r - a:)2 {g(x) - u\ \y(x)\2dx + 
r r 

|;y(x)|2dx. 

It follows that 

o (* ~ t) |y(x)|2 d* < * + J^ M*)l2 Q(x) àx. 
Also 

( I - i y b'^i2 ix ^ j y (i - ^y iy(x)î  jx 
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Hence, replacing T by 2JH, 

CT C2T 

\y'(x)\2dx <K + 4 (3.7) 

It will be convenient to write 

f(r) = X + 4 

CT 

\y(x)\2 Q(x) dx. 

C2T 

\y(x)\2 Q(x) dx, 

v(T) = I \y'(x)\2dx, 
j ° 

so that (3.7) is the inequality ij(r) < t(T). Now 

(•r 
\y(.x)\*{Q(2x)}-^dx = |_ {(2(2x)}-1<i7,(x) 

r f 1 ) 
rj(x) i < > , 

o \ <3(2x)j 

V(T) +
 rT 

Q(2T) 

Since Q(x) is non-decreasing, it follows from (3.7) that 

Jjy'(*)iMe(2*)}_1^^ ?(r) < 
<2(2D 

< X + 8 

+ «0 • * ) d / — — 1 
I 0(2*)J 

o Q(2JC) 

TT 

\y(2x)\2dx <K 

as 7" —> oo, so that the integral (3.5) is convergent. This completes the proof 
of the theorem. 

4. A similar theorem may be proved for the partial differential equation 

(4.1) V2w + {X - q(x, y)} w = 0 

d2 d2 

where V 2 = TT-<> + —2 , and the region to be considered is the whole (x, y) 
dy dx2 

plane. Polar coordinates will be written (r, 0), and denoted in the functional 
symbols by square brackets, thus q(x, y) = q[r, 0], With this notation it has 
been shown by Titchmarsh [5] that the Green's function is unique when 
q(x, y) > — Ar2 — B, where A, B are constants. This is the analogue of 
condition (i) of §2, and is the only result known for the equation (4.1). 

For the partial differential equation no analogues are known for the limit-
point and limit-circle cases of (1.1), so now the theorem must be formulated in 
terms of the Green's function. For the properties of this function and for 
certain theorems in two-dimensional analysis required for the proof, I refer to 
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[5, §4]. It will be assumed that q(x, y) is continuous and has continuous partial 
derivatives of the first order, and that X = u + iv, v ^ 0. Then the Green's 
function G(x, y, £, 77, X) exists, satisfies (4.1) except at x = £, y = 77, and 

|G(x, y, £, i?f \)\2dxdy 
j _oo j -00 

is convergent. 

THEOREM 2. Le/ g(x, y) ^ — Q(r), w/*ere Q(r) > Ô > 0, and 

(4.2) riow}"*^-». 
In addition, either 

(4.3) (?'(r) is continuous and 

Q'(r) 
lim 

r - * 00 {Q(0} 3/2I 
< 0 0 , 

or 

(4.4) Q(r) is monotonie and continuous, /or 0 < r < 00. 

Then, /or any X which is not real, no solution g(x, y,\) of (4.1) which has 
d2Q d22 

bounded second-order partial derivatives -r-= , ^ 4 can be L2 over the whole plane. 
dx2 dy2 

In particular, the Green's function is unique. 

If there exist two Green's functions, let g(x, y) = g(x, y, X) denote their 
difference, where now g is L2 over the whole plane. Alternatively let g denote 
any solution of L2 with the specified properties. For either case, 

(4.5) / / \g(x, y)\*dxdy-\l ft' g[R, 6) gR [R, 0] Rd6 

for any R > 0, g being the conjugate of g, and suffixes denoting partial differ­
entiation [5, p. 196]. 

It must be shown that g(x, y) is identically zero. Let/(x) denote (tempor­
arily) a positive function, integrable over any finite interval (0, T), and 

HT) = fT
0f(x) dx. 

Multiply (4.5) by/(i?), and integrate over (0, T). Then 

/ / {F(T)~ F(r)) \g(x,y)\*dxdy = \ l / / g[r,d}gr[r,e]rf(r)drdd: 

R being now replaced by r. It follows that, as T —> oo , 

https://doi.org/10.4153/CJM-1950-029-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1950-029-9


UNIQUENESS OF THE GREEN'S FUNCTIONS 321 

(4.6) 
r<T 

= 0 ^fj J]" r\g [r, fl|* dr dd J J rf(r)\gr[r, $\\'dr <»}* 

- 0 { ] £ ^ J J rf(r)\gr [r, 0]|* dr dd}*. 

Now if g(x, y) is not identically zero, constants 2C, 2?0 may be found such that, 
for all R > Ro, 

JT \g(x,y)\*dxdy> K>0. 

Multiply by f(R)> and integrate with respect to 2? between RQ and T, where 
T > Ro. Then 

K {F(T) - TW} ^ jT
RJ(R) dR JJR \g [r, 6]\*rdrd6 

^ f0 f(R)dR / J \g[r,t\\*rdrd0 

< /J r{F(r)-F(r)} |gM]|*r<*r<W. 

Hence 

(4.7) JJ{.-^}ufc,>|.fc*>r{,-™>}. 
If a function/(x) may be found such that F(T) —>» as r —• œ, and 

JT r/2(f)|gr[r^]|Mr^ = 0(l), 

then (4.6), (4.7) lead to a contradiction, so that g must vanish identically. 
Actually/(x) will be chosen as either {(?(x)}"~* or {(?(2*)}"~*, so that, in order 
to prove the theorem, it will be sufficient to show that either 

(4.8) 

or 

(4.9) 

fJTr{Q(r)}-i\gr[r,e]\*drdd = 0(l), 

JT r{Q(2r)}-i\gr[r,d]\*drde = 0(l). 

One further preliminary result will be required. Let 4>(x) denote a real 
function with continuous first derivative in any finite interval (0, T). Then, 
proceeding as in [5, p.197] and omitting for brevity the arguments (x, y), 

https://doi.org/10.4153/CJM-1950-029-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1950-029-9


322 D. B. SEARS 

| (l - -Ç) <t>(r) g V 2I dx dy 

= " I f i1 " f) *(r) (lgx|2 + '̂ |2) dxdy + T J ] r<t>{r)g[r> e]~gr[r>e] dr de 

- f J ( l - y ) r *'(r) g[r, 0] Ir[r, 0] dr d*. 

Substituting from (4.1), and taking real parts, 

^(l--£)4>ir)(\gx\* + \gv\*)dxdy 

= - j j ( l - £) <Kr){q{x, y) - u} \g(x, y^ dx dy 

r<T 

(4.10) 

+ 
J_ 
IT 

r<T 

T<T 

r <t>(r){g[r, e]gr[r, 0] + g[r, 0]gr[r, 0]} dr (20 

( 1 - Ù r <t>'(r){g[r, 0] gr[r, 0] + g[r, 6] gr[r, 6}} dr d$. 

r<T 

Assume now that Q{r) satisfies (4.2) and (4.3). As before, there is no loss 
of generality in taking Q(r) > 1. Then 

(l-£)r{Q(r)}-*\gT[r,e)\'drde 

^ J J ( l ~f)r {Q(r)}-*{\gr[rt 0]|2 + r^\ge[r, 0]|*} dr dd 

< JJ (l - f ) {OW}-1 {U2 + |g*!2} dxdy. 

By (4.10) with <f>(x) = {Ç(x)}_1, this cannot exceed 

If 0 " T) {Q(r)}~1 ^(r) + M*|g(x-y)|2 rf* dy 
r<T 

r<T 
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Since g is U and Q > 1, this, in turn, cannot exceed 

K+w\\r {<2(r)}_l {£|g[r- *]|2}dr M 
+ i J H 1 - f ) 8 $ «*•'••*>** 

323 

r<T 

The first of these integrals is now integrated by parts, and to the second is 
applied the inequality 2\ab\ ^ a2 + b2, with a2 = \gr\

2Q~l and b2 = \g\2Q'2Q~\ 
Then 

^r(l-^{Q(r)}-i\gr[r,6)\2drde 

K K+2T JTfe'*• *]|2I" - 24 JJw'. « i fe - w!}dr " 
4 . 1 f L A ^ / ^ [ r . f l l ' | \i[r,e]\W(r)n , . , 

r<T 

It follows from (4.3) that 

^r(l-^{Q(r)}^\gr[r,0\\*drdO 

1 
r<r 

<x + GCOJ lrii\fl|»<». 

Omitting the Q(T) appearing on the right, replace T by R, multiply by 2R 
and integrate again with respect to R over (0, 7"). Then 

SS r(T-r)*{Q(r)}-*\gr[rt0\\*drde 
r<T 

<KT2 + 2 / / r |rir,-flNriW f 

and hence, as r —» °°, 

J J r ( l — £ Y {G(r)}-» |«r[rf 0]|2 <Zr <M = 0(1). 

Thus (4.8) holds, and the theorem is true in this case. 
Now assume the conditions (4.2) and (4.4), and let Q(r) —> œ a s r - ^ œ . 

Taking <j>(r) = 1 in (4.10), the last term vanishes, so that, on integrating the 
second term on the right-hand side by parts, 
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\\ (* ~ i)(|gx'2+ig"i2) dx dy ^ If (* ~ T) ̂ (r)+**k{2 dx dy 

+ \ f* \g[T, *]|2 de - 1 , J 2 ^ |g[r, fl|« dr de 

$ K + JJ" ( l - £) Q(r)\g\* dxdy + ± J** |g[rf 0]|2 (W. 

Now replace T by 2?, multiply by 21?, and integrate again. Then it follows 
immediately that 

if o • ?y( |g*12+|g, , |2) ̂  ̂  < *+ij Q{r)\g\*ûxdy. 

Writing 

« D = £ + / / 0(r)|«|*d*dy, 
r<2T 

l ( r ) - i / J HgrM]|2<W0, 

it follows that 

i » ( r ) ^ i / J (\i*\2 + ku\2)dxdy 
r<T 

jjo-»y (lfol1 + l«irl ,)&iy<«r). 
r<2T 

Now, since Q(r) is non-decreasing, 

t!J{Q{2r)}^r\gr[r,9]\*drd8 

= HTjQVr)}-irdrP0*\gr[r,e)\*d8 

Jo<2(2r) 

Q(2r) + Io"(r)d(-êàô) 

Jif)+j„f(r)d(-ëàô) 
<2i: + 4/o

rf<irfo
T|g[2r,e>]h 

< - K + / J r|«[r,flH«<*rd». 
r<2r 
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