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Abstract

We discuss the distribution properties of hybrid sequences whose components stem from Niederreiter–
Halton sequences on the one hand, and Kronecker sequences on the other. In this paper, we give necessary
and sufficient conditions on the uniform distribution of such sequences, and derive a result regarding their
discrepancy. We conclude with a short summary and a discussion of topics for future research.
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1. Introduction

In many applications, for example financial mathematics, one is interested in
numerically approximating the value of the integral of a function f : [0, 1]s→ R,

Is( f ) :=
∫
[0,1]s

f (x) dx.

One way of accomplishing this task is to use a quasi-Monte Carlo (QMC) rule by
which the integral is approximated,

QN ,s( f ) :=
1
N

N−1∑
n=0

f (xn),

where (xn)
N−1
n=0 is a finite sequence (or the portion of the first N points of an infinite

sequence) of deterministically chosen points in [0, 1)s . It is well known in the
theory of QMC methods that point sets which are evenly distributed in the unit cube
yield a low integration error when a QMC algorithm is used (see, among many
others, [1, 3, 11, 13, 16]). Whenever we speak of a point set in the following, we
mean a finite or infinite sequence of points, where points may occur repeatedly.
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Due to the use of uniformly distributed point sets in numerical integration, the
search for point sets which can be effectively constructed and used in QMC integration
rules has been a very active area of mathematical research in recent decades. As
we stated above, the underlying problem is to find point sets with good distribution
properties. Let us, therefore, first give the formal definition of uniform distribution
modulo one.

DEFINITION 1.1. Let S = (zn)n≥0 be a sequence of points in [0, 1)s . We say that S is
uniformly distributed modulo one if, for all subintervals J of [0, 1)s , it is true that

lim
N→∞

#{0≤ n < N : zn ∈ J }

N
= λ(J ),

where λ(J ) denotes the Lebesgue measure of J .

One way of finding out whether a given sequence of points is uniformly distributed
modulo one or not is to use Weyl’s criterion, which we make use of in this paper as
well. For a proof, see, for example, [1, 11].

THEOREM 1.2 (Weyl’s criterion). A sequence S = (zn)n≥0 of points in [0, 1)s is
uniformly distributed modulo one if and only if

lim
N→∞

1
N

N−1∑
n=0

e2π ih·zn = 0

for all nonzero vectors h ∈ Zs .

A very prominent example of a class of uniformly distributed sequences is provided
by the class of Kronecker sequences, which are defined as follows.

DEFINITION 1.3. Let s ∈ N and α = (α1, . . . , αs) ∈ [0, 1)s . Then the sequence
( yn)n≥0, where yn := ({nα1}, . . . , {nαs}), in the sequel often denoted by ({nα})n≥0,
is called a Kronecker sequence. Here {·} gives the fractional part of a real number.

It is a well-known fact (see again [1, 3, 11, 13, 16]) that a Kronecker sequence is
uniformly distributed if and only if 1, α1, . . . , αs are linearly independent over Q.

Another very important class of uniformly distributed sequences are digital (t, s)-
sequences over Zq as introduced by Niederreiter (see [15, 16]) or, more generally,
digital (T, s)-sequences over Zq as introduced by Larcher and Niederreiter [12]. In
this case, T : N→ N0 is a quality function for the uniformity of the sequence. The
smaller the values of T are, the better the distribution properties of the sequence. The
precise definition of a digital (T, s)-sequence is as follows. For the sake of simplicity
we do not distinguish between the set of residue classes modulo q and the set of
integers {0, 1, . . . , q − 1} here and later on.

DEFINITION 1.4. Let s be a dimension and let q be a prime. Let C1, . . . , Cs
be N× N0 matrices over the finite field Zq . We construct a sequence (xn)n≥0,

xn = (x
(1)
n , . . . , x (s)n ), n ∈ N0, by generating the j th coordinate of the nth point, x ( j)

n ,
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as follows. Represent n = n0 + n1q + n2q2
+ · · · in base q . Then we set

C j · (n0, n1, . . .)
>
=: (y( j)

1 , y( j)
2 , . . .)> ∈ ZN

q

and

x ( j)
n :=

y( j)
1

q
+

y( j)
2

q2 + · · · .

For every m ∈ N let T(m), satisfying 0≤ T(m)≤ m, be such that for all
d1, d2, . . . , ds ∈ N0, with d1 + · · · + ds = m − T(m), the (m − T(m))× m matrix
consisting of the

left upper d1 × m-submatrix of C1 together with the
left upper d2 × m-submatrix of C2 together with the
...

left upper ds × m-submatrix of Cs

has rank m − T(m). Then (xn)n≥0 is called a digital (T, s)-sequence over Zq . If T is
minimal with this property, we speak of a strict digital (T, s)-sequence. If T(m)≤ t
for all m, then we speak of a digital (t, s)-sequence.

The traditional approach in using QMC methods is to use the first N points of
uniformly distributed sequences such as the ones outlined above for the numerical
integration algorithm. Modifying this approach, Spanier proposed mixing quasi-
Monte Carlo and Monte Carlo methods in [20]. To be more precise, Spanier proposed
considering sequences of points where s-dimensional vectors of QMC point sets and
d-dimensional (pseudo-)random vectors are concatenated, that is, one obtains an
(s + d)-dimensional ‘mixed’ or ‘hybrid’ sequence.

In this paper, we do not consider the mixture of (pseudo-)random and QMC point
sets, but study a slightly modified concept of a hybrid sequence, namely one that is
obtained by mixing different QMC point sets. Thus, whenever we speak of a hybrid
sequence in the sequel, we refer to a sequence that is obtained by concatenating the
components of two or more quasi-Monte Carlo point sets. One way of doing so is to
consider sequences which are a mixture of digital (t, s)-sequences in different bases.
This type of sequence was studied for the first time in [7]; Hofer and Larcher showed
further results in [5, 6, 9] and introduced the name Niederreiter–Halton sequences,
which we make use of as well.

DEFINITION 1.5. Let v, w1, . . . , wv be positive integers and let q1, . . . , qv be
different primes. For l ∈ {1, . . . , v} and j ∈ {1, . . . , wl}, let C (l, j) be N× N0
matrices over Zql , of the form

C (l, j)
:=


γ
(l, j)
1,0 γ

(l, j)
1,1 γ

(l, j)
1,2 . . .

γ
(l, j)
2,0 γ

(l, j)
2,1 γ

(l, j)
2,2 . . .

γ
(l, j)
3,0 γ

(l, j)
3,1 γ

(l, j)
3,2 . . .

...
...

...
. . .

 ∈ ZN×N0
ql

.
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We denote row r of matrix C (l, j) by γ (l, j)
r = (γ

(l, j)
r,k )k≥0 in ZN0

ql . We define a sequence
(xn)n≥0 in [0, 1)s , s := w1 + · · · + wv , by

xn := (x
(1,1)
n , . . . , x (1,w1)

n , . . . , x (v,1)n , . . . , x (v,wv)n ).

The component x (l, j)
n , for j ∈ {1, . . . , wl}, l ∈ {1, . . . , v}, is generated as follows. Let

n = n(l)0 + n(l)1 ql + n(l)2 q2
l + · · · be the base ql representation of n for l ∈ {1, . . . , v}.

Then we set
C (l, j)

· (n(l)0 , n(l)1 , . . .)
>
=: (y(l, j)

1 , y(l, j)
2 , . . .)

and

x (l, j)
n :=

y(l, j)
1

ql
+

y(l, j)
2

q2
l

+ · · · .

Note that, in Definition 1.5, y(l, j)
r can be interpreted as a weighted sum of digits

s
ql ,γ

(l, j)
r
(n) taken modulo ql , where

s
ql ,γ

(l, j)
r
(n) := n(l)0 γ

(l, j)
r,0 + n(l)1 γ

(l, j)
r,1 + · · · .

For the sake of simplicity we restrict ourselves to generating matrices C (l, j) of finite
column lengths, that is, for each choice of l, j , and k, γ (l, j)

r,k = 0 for all sufficiently
large r ∈ N.

As can be seen from the definition, a Niederreiter–Halton sequence is built by jux-
taposing v wl -dimensional digital (T, wl)-sequences in base ql for pairwise coprime
bases. In [6] all uniformly distributed Niederreiter–Halton sequences were classified
and the astonishing fact was proved that the obviously necessary condition that each
of the v digital component sequences is uniformly distributed is also sufficient.

In this paper, we wish to take up and further advance an idea due to Niederreiter
[17, 18], who studied the distribution properties of sequences obtained by mixing
Halton sequences and Kronecker sequences (see also [8]). The subject of the paper
is hybrid sequences obtained by mixing Niederreiter–Halton sequences (which are a
generalization of Halton sequences; see, for example [7]) and Kronecker sequences.

The rest of the paper is structured as follows. In Section 2 we discuss the
circumstances under which a hybrid sequence made up of a Niederreiter–Halton
sequence and a Kronecker sequence is uniformly distributed. Indeed, we show
necessary and sufficient conditions for uniform distribution. In Section 3 we add a
quantitative result as we show a theorem on the discrepancy of our hybrid sequences.
The discrepancy of a point set, the precise definition of which will be stated in
Section 3, is a way of measuring its quality of distribution. Finally, we conclude
in Section 4 and discuss open problems for future research.

2. Results on uniform distribution

In this section we derive results on the uniformity of distribution of hybrid sequ-
ences which are obtained by mixing Niederreiter–Halton and Kronecker sequences.
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One of the main results in this paper is the following theorem, which states that
whenever we mix a uniformly distributed Niederreiter–Halton sequence with a
uniformly distributed Kronecker sequence we obtain another uniformly distributed
sequence.

THEOREM 2.1. Let (xn)n≥0 be an s-dimensional Niederreiter–Halton sequence
as in Definition 1.5 and ( yn)n≥0 be a d-dimensional Kronecker sequence as in
Definition 1.3. Then the (s + d)-dimensional sequence (zn)n≥0 with zn := (xn, yn),
n ≥ 0, is uniformly distributed modulo one if and only if (xn)n≥0 and ( yn)n≥0 are both
uniformly distributed modulo one.

The proof will mainly be based on a proposition about exponential sums and
q-additive functions. We call a function g : N0→ R q-additive if g(0)= 0 and

g(n0 + n1q + n2q2
+ · · · )= g(n0)+ g(n1q)+ g(n2q2)+ · · · ∀n ∈ N0,

where n0 + n1q + n2q2
+ · · · is the unique base q representation of n. Furthermore,

we make use of the following notation. For a real number x , we define ‖x‖ to be the
distance to the nearest integer, that is, ‖x‖ is the minimum of {x} and 1− {x}, with {·}
denoting the fractional part of a real number.

PROPOSITION 2.2. Let d ∈ N and q1, . . . , qd ≥ 2 be pairwise coprime integers. For
each i ∈ {1, . . . , d}, let g(i) : N0→ R be a qi -additive function. Then

lim
N→∞

1
N

N−1∑
n=0

d∏
i=1

e2π ig(i)(n)
= 0

if, for at least one i ∈ {1, . . . , d},
∞∑

k=0

τ
(i)
k =∞,

where τ (i)k is defined as follows. We write, for a ∈ {0, . . . , q − 1} and k ≥ 0,

θ
(i)
k (a) := g(i)((a + 1)qk

i )− g(i)(aqk
i )− g(i)(qk

i ),

δ
(i)
k :=max{4‖θ (i)k (a)‖2 : 1≤ a ≤ qi − 2},

and we set δ(i)k := 0 if qi = 2. Now we define

τ
(i)
k :=

{
max{δ(i)k , δ

(i)
k+1}/q

2
i if this expression is different from 0,

‖g(i)(qk+1
i )− qi g(i)(qk

i )‖
2/4 otherwise.

PROOF. See [10, Proposition 1]. 2

PROOF OF THEOREM 2.1. Necessity of uniform distribution of the component
sequences (xn)n≥0 and ( yn)n≥0 is obvious. For the proof of sufficiency we show that
each interval of a certain form contains the correct number of points, that is, the number
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of points is proportional to the volume of the interval. Let

J := Js × Jd

with

Js :=

v∏
l=1

wl∏
j=1

[
a(l, j)

qd(l, j)

l

,
a(l, j)

+ 1

qd(l, j)

l

)
, Jd := [0, η),

where the nonnegative integers d(l, j) and a(l, j) < qd(l, j)

l are fixed for all l ∈
{1, . . . , v}, j ∈ {1, . . . , wl} and [0, η) is a fixed subinterval of [0, 1)d .

At this stage we mention the following condition, based on the base ql

representation of a(l, j)/qd(l, j)

l = (0, a(l, j)
1 a(l, j)

2 · · · a(l, j)
d(l, j))ql and on the weighted sums

of digits related to the rows of the generating matrices, which will be used later.
A point xn lies in Js if and only if n satisfies

s
ql ,γ

(l, j)
r
(n) ≡ a(l, j)

r mod ql ,

∀l ∈ {1, . . . , v}, j ∈ {1, . . . , wl}, r ∈ {1, . . . , d(l, j)
}.

(2.1)

In [6, Proof of Theorem 4] the following exponential sum was used to decide whether
n satisfies (2.1) or not:

1
q1

q1−1∑
z(1,1)1 =0

· · ·
1
q1

q1−1∑
z(1,1)

d(1,1)
=0

· · ·
1
qv

qv−1∑
z(v,1)

d(v,1)
=0

· · ·
1
qv

qv−1∑
z(v,wv)

d(v,wv)
=0

∏
,

where ∏
:=

v∏
l=1

e

( wl∑
j=1

d(l, j)∑
r=1

((s
ql ,γ

(l, j)
r
(n)− a(l, j)

r )z(l, j)
r )/ql

)
,

where we redenote e2π ix by e(x) here and later on. Note that this exponential sum
equals 1 if n satisfies (2.1) and 0 otherwise (for further details we refer the interested
reader to [6]).

For the proof of uniform distribution we have to ensure that

lim
N→∞

#{0≤ n < N : zn ∈ J }

N
= λ(J )= λ(Js)λ(Jd).

From the assumption that the component sequences are uniformly distributed we know
that

lim
N→∞

#{0≤ n < N : xn ∈ Js}

N
= λ(Js).

We define M(N ) := {0≤ n < N : xn ∈ Js} and K (N ) := |M(N )|. Hence we have
limN→∞ K (N )/N = λ(Js), and since λ(Js) > 0, we have K (N ) > 0 for sufficiently
large N . Furthermore, the elements of M(N ) are, in increasing order, denoted
by 0≤ k0 < k1 < k2 < · · ·< kK (N )−1.
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We rewrite

#{0≤ n < N : zn ∈ J }

N
=

K (N )

N

#{0≤ m < K (N ) : ykm ∈ Jd}

K (N )
.

From the fact that limN→∞ K (N )/N = λ(Js) we see that it remains to be shown that

lim
N→∞

#{0≤ m < K (N ) : ykm ∈ Jd}

K (N )
= λ(Jd).

To this end we prove that the subsequence ( ykm )m≥0 is uniformly distributed modulo
one and estimate the exponential sums that occur in Weyl’s criterion. We fix h ∈ Zd ,

h 6= 0, and consider, for N large enough such that K (N ) > 0,

1
K (N )

K (N )−1∑
m=0

e(h · ykm )

=
1

K (N )

K (N )−1∑
m=0

e(h · {kmα})

=
1

K (N )

K (N )−1∑
m=0

e((h · α)km)

=
N

K (N )

1
N

N−1∑
n=0

e((h · α)n)

×
1
q1

q1−1∑
z(1,1)1 =0

· · ·
1
q1

q1−1∑
z(1,1)

d(1,1)
=0

· · ·
1
qv

qv−1∑
z(v,1)

d(v,1)
=0

· · ·
1
qv

qv−1∑
z(v,wv)

d(v,wv)
=0

∏
,

where
∏

is defined as above.
In the latter expression, we exchange the summation order and prescind terms which

are independent of N . Having done so, we see that we essentially need to deal with
the following exponential sums depending on the values of z(l, j)

r (note that there are
just finitely many different choices of the z(l, j)

r ):

1
N

N−1∑
n=0

(
e((h · α)n)

v∏
l=1

e

( wl∑
j=1

d(l, j)∑
r=1

z(l, j)
r s

ql ,γ
(l, j)
r
(n)/ql

))
. (2.2)

In order to conclude the proof of Theorem 2.1 it remains to prove that, for each
admissible choice of the z(l, j)

r , the sum (2.2) tends to zero as N increases. We
distinguish several cases.

Case 1. Assume first that all z(l, j)
r equal zero. Then the sum (2.2) reduces to

(1/N )
∑N−1

n=0 e((h · α)n), which tends to zero as N increases by using the assumption
that ( yn)n≥0 is uniformly distributed and Weyl’s criterion.
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Case 2. Suppose now that at least one of the z(l, j)
r is greater than zero. For each

l ∈ {1, . . . , v}, we introduce a sequence χ (l) = (χ (l)k )k≥0 with

χ
(l)
k :=

wl∑
j=1

d(l, j)∑
r=1

z(l, j)
r γ

(l, j)
r,k /ql .

Note that the elements of the sequence χ (l) either are integers or have fractional parts
contained in the set {1/ql , . . . , (ql − 1)/ql}.

We observe that f (n) := (h · α)n is q-additive in any base q , since it is even
additive (that is, f (a + b)= f (a)+ f (b) for all integers a, b ≥ 0). We choose a
prime qv+1 that is different from q1, . . . , qv and regard f as a qv+1-additive function.

Furthermore,
wl∑
j=1

d(l, j)∑
r=1

z(l, j)
r s

ql ,γ
(l, j)
r
(n)/ql =: g

(l)(n)

is a ql -additive function because the weighted sums of digits are all in base ql . Hence
we can write (2.2) as

1
N

N−1∑
n=0

(
e( f (n))

v∏
l=1

e(g(l)(n))

)
,

where each of the functions f, g(1), . . . , g(v) is additive with respect to a different
prime.

We distinguish two subcases.

Case 2.1. Suppose first that for each l the sequence χ (l) contains only finitely many
entries that are not integers. In this case the value of the term

∏v
l=1 g(l)(n) depends

only on finitely many digits of the base ql representations of n, say the first bl ,
for all l. We partition the set N0 into the residue classes modulo qb1

1 · · · q
bl
l =: µ.

Let 0≤ ρ < qb1
1 · · · q

bl
l be fixed. We consider the exponential sum

lim
N→∞

1
N

N−1∑
n=0

n≡ρ (mod) µ

(
e((h · α)n)

v∏
l=1

e(g(l)(ρ))

)

= lim
N→∞

C(ρ, α, h)
1
N

b(N−1−ρ)/µc∑
n=0

e((h · µα)n)

where C(ρ, α, h) is a constant independent of n. From our assumption that ( yn)n≥0
is uniformly distributed we know that h · α is irrational and hence h · µα is also
irrational. This implies that the latter limit equals zero (see, for example, [11, p. 8]).
As this holds for any admissible choice of ρ, the result follows.

Case 2.2. Assume, finally, that for at least one l the corresponding sequence χ (l)

contains infinitely many entries that are not integers. We choose such an l and examine
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the parameter τ (l)k in Proposition 2.2. We have

θ
(l)
k (a)= g(l)((a + 1)qk

l )− g(l)(aqk
l )− g(l)(qk

l )= χ
(l)
k (a + 1)− χ (l)k a − χ (l)k = 0.

Hence
τ
(l)
k = ‖g

(l)(qk+1
l )− ql g

(l)(qk
l )‖

2/4= ‖χ (l)k+1‖
2/4.

Note that if χ (l)k+1 /∈ Z then ‖χ (l)k+1‖
2/4≥ 1/(4q2

l ). Since we assumed infinitely many

elements in the sequence χ (l) to be noninteger, we obtain
∑
∞

k=0 τ
(l)
k =∞, and

invoking Proposition 2.2 we see that the exponential sum (2.2) tends to zero as N
increases. 2

The proof of Theorem 2.1 is mainly based on the distribution properties of special
subsequences of a Kronecker sequence and yields the following corollary.

COROLLARY 2.3. Let α ∈ [0, 1)d and let ({nα})n≥0 be the corresponding Kronecker
sequence. Let (kn)n≥0 be the increasing sequence of nonnegative integers obtained by
solving the following system of equations. For v ∈ N let q1, . . . , qv be different primes
and let y1, . . . , yv be positive integers. For every pair (i, k) with i ∈ {1, . . . , v},
k ∈ {1, . . . , yv}, we consider

(ρ
(i,k)
0 , ρ

(i,k)
1 , . . .) · (x (i)0 , x (i)1 , . . .)T = b(i,k)

over ZN0
qi , with fixed b(i,k) ∈ Zqi and fixed ρ

(i,k)
h ∈ Zqi for all h ≥ 0. We call a

nonnegative integer n a solution of this system of equations if, for each i ∈ {1, . . . , v},
the digit-vector (n(i)0 , n(i)1 , . . .)

T corresponding to the base qi representation of

n = n(i)0 + n(i)1 qi + · · · solves all the yi equations over ZN0
qi . If the system of equations

is solvable, then the subsequence ({knα})n≥0 obtained by the infinitely many solutions
is uniformly distributed if and only if the sequence ({nα})n≥0 is uniformly distributed.

The method of proof used for Theorem 2.1 can also be applied to other hybrid
sequences, as the following example shows. Let q1, . . . , qv be different primes.
Moreover, let (α1, . . . , αd) := α ∈ [0, 1)d and p1, . . . , pd be integers greater than
or equal to two, which are pairwise either equal or coprime, and also pairwise coprime
with q1, . . . , qv . For n ≥ 0, we define wn := ({α1sp1(n)}, . . . , {αdspd (n)}), where
spi (n) denotes the nonweighted sum of digits in base pi , that is, spi (n)= spi ,(1)k≥0(n).
We can then derive the uniform distribution of the sequence (xn, wn)n≥0, where
(xn)n≥0 is a uniformly distributed Niederreiter–Halton sequence in bases q1, . . . , qv
as in Definition 1.5, and where (wn)n≥0 is uniformly distributed. The distribution of
the sequence (wn)n≥0 was investigated in [2]. To show the uniform distribution of this
hybrid sequence, we can apply the method of proof of Theorem 2.1, and the problem
reduces to dealing with a term of the form

lim
N→∞

1
N

N−1∑
n=0

d∏
i=1

(e(hiαi spi (n)))
v∏

l=1

e

( wl∑
j=1

d(l, j)∑
r=1

z(l, j)
r s

ql ,γ
(l, j)
r
(n)/ql

)
.
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Again, we can use Proposition 2.2 to show that this limit is zero and deduce uniform
distribution of (xn, wn)n≥0. Note that this method could be further generalized to
hybrid sequences made up of those considered in [4, 19] and of Niederreiter–Halton
sequences.

3. Discrepancy estimates

As we have seen in Section 2, a hybrid sequence obtained by mixing a Niederreiter–
Halton sequence and a Kronecker sequence is uniformly distributed whenever its
component sequences are uniformly distributed. This is a qualitative result. Needless
to say, we are also interested in quantitative results, that is, we would like to have
information about the quality of the distribution of a sequence. One way of measuring
the extent to which a sequence is uniformly distributed is to consider its discrepancy.
In order to define discrepancy, we first define a local discrepancy function.

For given N ≥ 1, a point set P of N points in [0, 1)s , and an interval I ⊆ [0, 1)s ,
we write

1(P, I ) := AN (P, I )− Nλ(I )

for the local discrepancy function, where AN (P, I ) denotes the number of points of P
in I , and λ denotes the (s-dimensional) Lebesgue measure.

Using the function 1, we now define the discrepancy, which is sometimes also
referred to as extreme discrepancy, of a point set.

DEFINITION 3.1. For given N ≥ 1, and a point set P of N points in [0, 1)s , we define
the discrepancy of P by

DN (P) := sup
I⊆[0,1)s

∣∣∣∣1(P, I )

N

∣∣∣∣,
where 1 is defined as above. For an infinite sequence S, DN (S) denotes the
discrepancy of the first N points of S.

It is well known that a sequence S is uniformly distributed modulo one if and
only if DN (S) tends to zero as N increases. Therefore, knowledge of how fast this
convergence takes place is valuable, that is, one is interested in discrepancy bounds.
One classical result with respect to discrepancy bounds is the Erdős–Turán–Koksma
inequality. See, for example, [1, 3, 11], for further details.

THEOREM 3.2 (Erdős–Turán–Koksma inequality). For given N ≥ 1 and a point set P
of N points x0, . . . , xN−1 in [0, 1)s , the inequality

DN (P)≤

(
3
2

)s( 2
m + 1

+

∑
h∈Zd

0<‖h‖∞≤m

1
r(h)

∣∣∣∣ 1
N

N−1∑
n=0

e(h · xn)

∣∣∣∣)

holds, where m is an arbitrarily chosen positive integer, ‖h‖∞ :=max1≤ j≤d |h j |, and
r(h) :=

∏d
j=1 max{1, |h j |}.
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Apart from the extreme discrepancy, one frequently also considers the star
discrepancy of a point set, which is defined as follows.

DEFINITION 3.3. For given N ≥ 1, and a point set P of N points in [0, 1)s , we define
the star discrepancy of P by

D∗N (P) := sup
I ∗⊆[0,1)s

∣∣∣∣1(P, I ∗)

N

∣∣∣∣,
where 1 is defined as above, and where the supremum is extended over all intervals
I ∗ ⊆ [0, 1)s with lower left corner at the origin. For an infinite sequence S, D∗N (S)
denotes the star discrepancy of the first N points of S.

It is well known in the theory of uniform distribution (see, for example, [11]) that
the extreme and the star discrepancy of a given s-dimensional point set can be bounded
by means of each other,

D∗N ≤ DN ≤ 2s D∗N .

Hence, the Erdős–Turán–Koksma inequality trivially also holds for the star
discrepancy.

For classical point sets, such as (T, s)-sequences or Kronecker sequences, many
discrepancy bounds are known (see, for example, [1, 3, 11, 15, 16]). Accordingly,
an obvious question regarding the class of hybrid sequences studied in Section 2 is
whether it is possible to give discrepancy bounds for these point sets. In this section
we show such results for special cases.

To make the notation easier, we use the following convention throughout the rest of
the paper. We say that a number x ∈ [0, 1) is m-bit (in base q ≥ 2), for m ≥ 1, if x is
of the form

x =
m∑

r=1

xr

qr , xr ∈ {0, 1, . . . , q − 1}.

Assume that we are given an s-dimensional Niederreiter–Halton sequence S =
(xn)n≥0 as in Definition 1.5. Furthermore, assume that there exist constant integers
Kl, j , l ∈ {1, . . . , v}, j ∈ {1, . . . , wl}, such that the elements in the rows of the
generating matrices of S satisfy

γ
(l, j)
r,k = 0 if k ≥ r + Kl, j , ∀l ∈ {1, . . . , v}, j ∈ {1, . . . , wl}. (3.1)

If (3.1) holds, we say that the generating matrices of S are bounded over the
diagonal. If wl = 1 we write, for the sake of simplicity, Kl for the constants Kl,1
in condition (3.1).

We now show the following proposition, which is inspired by [8, Proposition 1].

PROPOSITION 3.4. Let v ≥ 1 and let q1, . . . , qv be different primes. Assume
that we are given an s-dimensional Niederreiter–Halton sequence S1 = (xn)n≥0 =

(x (1)n , . . . , x (s)n )n≥0 with w1 = · · · = wv = 1 (that is, s = v). Furthermore, assume
that the generating matrices of S are bounded over the diagonal.
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Assume also that, for each l ∈ {1, . . . , s} and each r ≥ 1, the row vectors
γ
(l,1)
1 , . . . , γ

(l,1)
r are linearly independent over Zql .

Let S2 = ( yn)n≥0 = ({nα})n≥0, α ∈ [0, 1)d , be a d-dimensional uniformly
distributed Kronecker sequence. Then the hybrid sequence S = (zn)n≥0 :=

((xn, yn))n≥0 satisfies the following upper bound on its star discrepancy:

ND∗N (S)≤ C
m1−K1∑

j1=1

· · ·

ms−Ks∑
js=1

∑
h∈Zd

0<‖h‖∞≤N

1
r(h)

1

‖
∏s

l=1 q jl+Kl
l h · α‖

+O((log N )s),

(3.2)
where C > 0 is a constant independent of N , ml = dlogql

Ne, 1≤ l ≤ s, and ‖ · ‖
denotes the distance to the nearest integer.

PROOF. First of all, we note that, due to the assumptions made, our sequence S is
uniformly distributed modulo one. This follows by combining results in [6] and the
results in Section 2.

Now let [0, β)× [0, η)⊆ [0, 1)s+d with

β = (β1, . . . , βs), η = (η1, . . . , ηd).

Let S be defined as above and let SN := (zn)
N−1
n=0 . We are aiming for a bound on

1(SN , [0, β)× [0, η)).

For each l ∈ {1, . . . , s}, choose ml as the minimal integer such that N ≤ qml
l . For

the rest of the proof, we assume that N is large enough such that ml > Kl for all l ∈
{1, . . . , v}. The result follows easily for smaller N by adjusting the constants in (3.2).

We now define

S̃N := (̃zn)n≥0 := ((x̃n, yn))n≥0 = (((̃x
(1)
n , . . . , x̃ (s)n ), yn))n≥0,

where each x̃ (l)n consists of the first (ml − Kl) bits of x (l)n in the corresponding base ql
representation, and is therefore, with respect to ql , an (ml − Kl)-bit number. Since, in
the transition from SN to S̃N , we changed the values of the points by at most q Kl

l /(qml
l )

for the lth component, straightforward arguments (see also [1, Proposition 3.15])
lead to

|ND∗N (SN )− ND∗N (S̃N )| ≤ c1,

where c1 is a constant that might depend on s, K1, . . . , Ks , and q1, . . . , qs , but does
not depend on N . Hence it is sufficient to consider S̃N instead of SN in the following.

On the other hand, from the structure of S̃N and the fact that N ≤ qml
l for all l ∈

{1, . . . , s}, it is easily deduced that

|1(S̃N , [0, β)× [0, η))−1(S̃N , [0, β̃)× [0, η))| ≤ c2,

where
β̃ = (β̃1, . . . , β̃s),
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each of the β̃l consisting of the first ml − Kl bits of βl . The constant c2 in the above
inequality might depend on s, the Kl , and the ql , but is independent of N , since the
sequence S is uniformly distributed modulo one. Indeed, the volume of the interval
as well as the number of points we might lose by restricting ourselves to β̃ can be
bounded independently of N , due to the fact that we chose the ml such that N ≤ qml .
We refer the reader to [7, 8] for further details.

Hence we study
1(S̃N , [0, β̃)× [0, η))

in the following. We write the interval I := [0, β̃)× [0, η) as the disjoint union of
intervals

Ĩ ( j1, . . . , js, η)

:=

s∏
l=1

[ jl−1∑
r=1

β
(r)
l

qr
l
,

jl∑
r=1

β
(r)
l

qr
l

)
× [0, η), 1≤ jl ≤ ml − Kl , ∀l ∈ {1, . . . , s}.

Note that each Ĩ ( j1, . . . , js, η) can again be written as the disjoint union of intervals

s∏
l=1

[ jl−1∑
r=1

β
(r)
l

qr
l
+

kl

q jl
l

,

jl−1∑
r=1

β
(r)
l

qr
l
+

kl + 1

q jl
l

)
× [0, η),

with 1≤ jl ≤ ml − Kl , 0≤ kl ≤ β
( jl )
l − 1.

Now let 1≤ l ≤ s be fixed. By the construction principle of (̃x (l)n )n≥0, we see that

x̃ (l)n ∈

[ jl−1∑
r=1

β
(r)
l

qr
l
+

kl

q jl
l

,

jl−1∑
r=1

β
(r)
l

qr
l
+

kl + 1

q jl
l

)
=: J ( jl , kl)

if and only if 
γ
(l,1)
1,0 . . . γ

(l,1)
1, jl+Kl−1

γ
(l,1)
2,0 . . . γ

(l,1)
2, jl+Kl−1

...
...

γ
(l,1)
jl ,0

. . . γ
(l,1)
jl , jl+Kl−1

 ·


n(l)0

n(l)1
...

n(l)jl+Kl−1

=

β
(1)
l

β
(2)
l
...

β
( jl−1)
l
kl

, (3.3)

where the numbers n(l)i are the digits of n in base ql . Due to our assumptions on the

regularity of the rows γ (l,1)1 , . . . , γ
(l,1)
jl

, the system (3.3) has exactly q Kl
l solutions

over Zql .

Hence we can identify q Kl
l remainders R(l)i , i ∈ {1, . . . , q Kl

l }, modulo q jl+Kl
l such

that x̃ (l)n ∈ J ( jl , kl) if and only if n ≡ R(l)i mod q jl+Kl
l for an i ∈ {1, . . . , q Kl

l }.

Invoking the Chinese remainder theorem, there exist
∏s

l=1 q Kl
l =: K remainders

R1, . . . , RK modulo Q( j1, . . . , js)= Q :=
∏s

l=1 q jl+Kl
l such that x̃n ∈

∏s
l=1 J ( jl , kl)

if and only if n ≡ Ri mod Q for one i ∈ {1, . . . , K }.
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We now deduce an estimate for∣∣∣∣1(S̃N ,

s∏
l=1

J ( jl , kl)× [0, η)
)∣∣∣∣.

The Lebesgue measure of such an interval is η1 · · · ηd/(q
j1

1 · · · q
js

s ) and, as already
noted, zn is included in such an interval if and only if n ≡ Ri mod Q for one i ∈
{1, . . . , K } and {nα} ∈ [0, η). The first of these conditions is fulfilled if and only
if n is contained in one of the disjoint sets

{uQ + Ri : 0≤ u ≤Ui (Q, Ri )},

where Ui (Q, Ri ) := bN/Qc + θi , for a certain θi ∈ {0, 1}. Altogether we obtain∣∣∣∣1(S̃N ,

s∏
l=1

J ( jl , kl)× [0, η)
)∣∣∣∣≤ 2K +

K∑
i=1

Ui (Q, Ri )DUi (Q,Ri )(S
(i)
2 ),

where, for 1≤ i ≤ K , S(i)2 := ({(uQ + Ri )α})u≥0. Now we use the Erdős–Turán–
Koksma inequality to obtain

Ui (Q, Ri )DUi (Q,Ri )(S
(i)
2 )

≤

(
3
2

)d Ui (Q, Ri )

N + 1
+

(
3
2

)d ∑
h∈Zd

0<‖h‖∞≤N

1
r(h)

∣∣∣∣Ui (Q,Ri )−1∑
u=0

e(h · {(uQ + Ri )α})

∣∣∣∣
≤ c3 + c4

∑
h∈Zd

0<‖h‖∞≤N

1
r(h)

∣∣∣∣Ui (Q,Ri )−1∑
u=0

e(h · {(uQ + Ri )α})

∣∣∣∣,
where c3, c4 are positive constants independent of N . Using methods similar to those
in [14, 17], we obtain∣∣∣∣Ui (Q,Ri )−1∑

u=0

e(h · {(uQ + Ri )α})

∣∣∣∣= ∣∣∣∣Ui (Q,Ri )−1∑
u=0

e(h · ((uQ + Ri )α))

∣∣∣∣
=

∣∣∣∣Ui (Q,Ri )−1∑
u=0

e(u(h · Qα))
∣∣∣∣

≤
2

|e(h · Qα)− 1|

=
1

sin(π‖h · Qα‖)

≤
1

2‖Qh · α‖
,

where, as above, ‖ · ‖ denotes the distance to the nearest integer.
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Summing up, we obtain

|1(SN , [0, β)× [0, η))|

≤ c1 + c2 + |1(S̃N , [0, β̃)× [0, η))|

≤ c1 + c2 +

m1−K1∑
j1=1

· · ·

ms−Ks∑
js=1

K

×

(
2+ c3 + c4

∑
h∈Zd

0<‖h‖∞≤N

1
r(h)

1

2‖
∏s

l=1 q jl+Kl
l h · α‖

)

= C
m1−K1∑

j1=1

· · ·

ms−Ks∑
js=1

∑
h∈Zd

0<‖h‖∞≤N

1
r(h)

1

‖
∏s

l=1 q jl+Kl
l h · α‖

+O((log N )s),

with C > 0 independent of N , as claimed. 2

From Proposition 3.4, we derive the following theorem, which is an analogue of [8,
Theorem 1].

THEOREM 3.5. Let S1 = (xn)n≥0 be defined as in Proposition 3.4. Then for almost
all α ∈ [0, 1)d the sequence S = (zn)n≥0 := ((xn, yn))n≥0, where S2 = ( yn)n≥0 =

({nα})n≥0 is the d-dimensional Kronecker sequence corresponding to α, satisfies, for
every ε > 0,

ND∗N (S)=O((log N )s+d+1+ε),

with the implied constant independent of N .

PROOF. Using Proposition 3.4,

ND∗N (S)≤ C
m1−K1∑

j1=1

· · ·

ms−Ks∑
js=1

∑
h∈Zd

0<‖h‖∞≤N

1
r(h)

1

‖
∏s

l=1 q jl+Kl
l h · α‖

+O((log N )s)

≤ C
m1∑

j1=1

· · ·

ms∑
js=1

∑
h∈Zd

0<‖h‖∞≤N

1
r(h)

1

‖
∏s

l=1 q jl
l h · α‖

+O((log N )s).

In the latter expression, we can separate out those components of h which are different
from zero and then make use of [8, Proposition 3], which yields the result. 2

4. Conclusion and outlook

In this paper, we have discussed necessary and sufficient conditions for uniform
distribution of hybrid sequences that are built from Niederreiter–Halton and Kronecker
sequences. We have shown in Theorem 2.1 that combining a uniformly distributed
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Niederreiter–Halton sequence and a uniformly distributed Kronecker sequence
automatically yields a uniformly distributed hybrid sequence. Regarding discrepancy,
Theorem 3.5 gives a probabilistic result. However, we need to assume that the
generating matrices of the Niederreiter–Halton sequence involved are bounded over
the diagonal. An obvious question is whether or to what extent this condition on the
generating matrices can be relaxed, and which discrepancy bounds then hold.

As an open question for future research we pose the following problem.

QUESTION 4.1. Let S1 = (xn)n≥0 be a one-dimensional sequence, which is generated
by the matrix 

1 1 1 1 1 . . .

0 1 0 0 0 . . .

0 0 1 0 0 . . .

0 0 0 1 0 . . .

0 0 0 0 1 . . .
...

...
...

...
...

. . .


over Z2. Furthermore, let S2 = (yn)n≥0 = ({nα})n≥0 be a one-dimensional Kronecker
sequence. Do there exist any α such that the sequence S = ((xn, yn))n≥0 satisfies a
discrepancy bound like the one in Theorem 3.5? If so, what is the Lebesgue measure
of the set of such α? To answer this question we would at least need good lower and
upper bounds for the discrepancy of the subsequence ({knα})n≥0, where the increasing
sequence (kn)n≥0 runs through all nonnegative integers with an even sum of digits in
base 2.
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