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1. Introduction

The original motivation for this work was an attempt to understand an unpublished
manuscript of J. Rathmann in which he proves the following nontrivial result via a
fairly lengthy calculation on the triple product C � C � C:

THEOREM 1.1 ([15]). Let C � Pn be a smooth curve embedded by a line bundle of
degree at least 2g þ 3. Then HiðPn;i2

CðkÞÞ ¼ 0 for kX 3, i > 0. &

This result was used by A. Bertram to obtain the following:

THEOREM 1.2 ([4, 4.2]). Let C � Pn be a smooth curve embedded by a line bundle of
degree at least ð8g þ 2Þ=3. Then HiðPn;ia

CðkÞÞ ¼ 0 for kX 2a � 1, i > 0. &

Bertram proceeds quite differently than Rathmann: using the GIT £ip construction
of Thaddeus [18], as well as results from [2, 3], he constructs useful log canonical
divisors on the blow up of Pn along C, and then obtains vanishing results from
a Kodaira-type vanishing theorem.
We work in the same general context as Bertram, though we mostly avoid the

explicit use of £ips and of generalized Kodaira-type vanishing, to give a new
proof (Corollary 3.10) of Rathmann’s result and then to prove an extension of
Theorem 1.2 suggested in [4]:

THEOREM 1.3.Let C � Pn be a smooth curve embedded by a line bundle of degree at
least 2g þ 3. Then HiðPn;ia

CðkÞÞ ¼ 0 for kX 2a � 1, i > 0. &
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See Theorem 4.1 for a slightly more general statement.
As the title suggests, we use these to make statements regarding the regularity of

powers of ideal sheaves (Corollary 3.10). We also include some statements for
canonical curves (Proposition 2.5) which should not be considered at all optimal.
Finally, we mention a closely related conjecture of Wahl, toward which we hope to

adapt these techniques:

CONJECTURE 1.4 ([23]). Let C � Pg�1 be a canonically embedded curve with
CliffCX 3. Then H1ði2

Cð3ÞÞ ¼ 0. &

Note that many of the results in Section 2 (Corollary 2.2 though Proposition 2.5)
can be derived from more general results on point sets [9, 10]. Further, these results,
along with Rathmann’s Theorem 1.1, can be used to derive Theorem 4.1 (and, hence,
Theorem 1.3). However, we have chosen to retain these results and their proofs as
they give context to the main results and illustrate that fact that only the k ¼ 3 state-
ment in Theorem 1.1 is not elementary. Speci¢cally, the proofs in Section 2 are quite
short and are in much the same spirit as the proof of the main result, Theorem 3.3.

2. Elementary Vanishing

In this section, we collect a few fairly elementary vanishing statements that are some-
what broader than those mentioned in the introduction. The ¢rst is due to Lazarsfeld
(cf. [22, 2.3]):

LEMMA 2.1.Let C � Pn be a smooth curve, scheme theoretically de¢ned by forms of
degree r. If H1ðC;OCðtÞÞ ¼ 0, then H1ðC;N	
a

ðkÞÞ ¼ 0 for kX ra þ t. &

We do not present a proof, as we will next describe a direct extension of the
technique. Let C � Pn be a smooth curve scheme theoretically cut out by hyper-
surfaces of degree r. Tensor the resolution of the ideal sheaf:

!
M

i

OPnð�aiÞ ! GðiCðrÞÞ 
 OPn ð�rÞ ! iC ! 0

by OCðkÞ, and break the sequence into two short exact sequences:

0 ! k2 !
M

i

OCðk � aiÞ ! k1 ! 0;

0 ! k1 ! GðiCðrÞÞ 
 OCðk � rÞ ! N	
CðkÞ ! 0:

Suppose ai X aiþ1 for all i. If H1ðOCðk � a1ÞÞ ¼ 0, then GðiCðrÞÞ 
 GðOCðk � rÞÞ !
GðN	

CðkÞÞ is surjective (note that H1ðOCðk � aiÞÞ ¼ 0 because C is a curve and by
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maximality of a1). Now if H1ðiCðk � rÞÞ ¼ 0, we have the diagram

GðiCðrÞÞ 
 GðOPðk � rÞÞ ���! GðiCðkÞÞ???y
???y

GðiCðrÞÞ 
 GðOCðk � rÞÞ ���! GðN	
CðkÞÞ ���! 0???y

0

where the ¢rst vertical map is surjective by the normality hypothesis just mentioned,
and the second horizontal map is surjective by the above discussion. Therefore, the
second vertical map is surjective and we have:

COROLLARY 2.2. Let C � Pn be a smooth curve scheme theoretically cut out by
hypersurfaces of degree r, with syzygies generated by forms of degree at most s.
If H1ðiCðk � rÞÞ ¼ H1ðOCðk � r � sÞÞ ¼ 0, then H1ði2

CðkÞÞ ¼ 0.
Proof. This follows by the above discussion and the sequence

0 ! i
2
CðkÞ ! iCðkÞ ! N	

CðkÞ ! 0

(note that the vanishing of H1ðiCðkÞÞ is implied by our assumptions). &

TERMINOLOGY 2.3. For the remainder of the paper, we will be interested in
curves that are at least projectively normal and whose homogeneous ideals are gen-
erated by quadrics. This is usually referred to as Green’s condition ðN1Þ. If, further,
the syzygies among the de¢ning quadrics are generated by linear relations, we have
condition ðN2Þ. Recall that a smooth curve embedded by a line bundle of degree
at least 2g þ 1þ p satis¢es condition ðNpÞ ([11]). &

Proceeding inductively, we just as easily deduce vanishing statements for higher
powers of the ideal sheaf. We will assume, however, that H1ðOCð1ÞÞ ¼ 0; the more
general case may be similarly worked out. In particular, tensoring the resolution
of the ideal by SaN	

Cð2a þ 1Þ and applying Lemma 2.1, we see that the map

GðiCð2ÞÞ 
 GðSaN	
Cð2a þ 1ÞÞ ! GðSaþ1N	

Cð2a þ 3ÞÞ

is surjective. There is an analogous diagram

GðiCð2ÞÞ 
 Gðia
Cð2a þ 1ÞÞ ���! Gðiaþ1

C ð2a þ 3ÞÞ???y
???y

GðiCð2ÞÞ 
 GðSaN	
Cð2a þ 1ÞÞ ���! GðSaþ1N	

Cð2a þ 3ÞÞ ���! 0???y
0

where the ¢rst vertical map is surjective by the previous stage.
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PROPOSITION 2.4. Let C � Pn be a smooth curve with H1ðOCð1ÞÞ ¼ 0.

(1) If C satis¢es ðN1Þ, then:
(a) H1ðia

CðkÞÞ ¼ 0 for kX 2a þ 1
(b) H2ðia

CðkÞÞ ¼ 0 for kX 2a � 1 hence i
a
C is ð2a þ 2Þ-regular

(2) If C satis¢es ðN2Þ, then:
(a) H1ðia

CðkÞÞ ¼ 0 for kX 2a;
(b) i

a
C is ð2a þ 1Þ-regular.

Proof. The ¢rst part follows directly from the discussion above and Lemma 2.1.
The second part follows from the fact that the Oð�4Þ term in the second stage
of the resolution of the ideal may be removed. &

For the sake of completeness, we include a result not covered by the above
statements, but which may be of interest:

PROPOSITION 2.5 (cf. [23]). Let C � Pg�1 be the canonical embedding of a smooth
curve with CliffCX 3. Then H1ðia

CðkÞÞ ¼ 0 for kX 2a þ 1 and H2ðia
CðkÞÞ ¼ 0 for

kX 2a � 1.
Proof. This follows exactly as above taking into account:

(1) H1ðOCð2ÞÞ ¼ 0,
(2) C � Pg�1 satis¢es condition ðN2Þ ([16, 21]),
(3) H1ðSaN	

CðkÞÞ ¼ 0 for kX 2a þ 1 ([6, Thm 2; 17]). &

We conclude this section by recalling a pair of basic lemmas; the ¢rst describes
some situations where the cohomology of powers of ideal sheaves vanishes
‘automatically’, the second gives the relationship between powers of ideal sheaves
and divisors on the blow-up along the subvariety.

LEMMA 2.6. Let X � Pn be a nondegenerate smooth variety of dimension r. Then

(1) HiðPn;ia
X ðkÞÞ ¼ 0 for iX r þ 2 and a; kX 1

(2) If Hrþ1ðPn;ia
X ðkÞÞ ¼ 0 then Hrþ1ðPn;ia

X ðk þ sÞÞ ¼ 0 for sX 0, aX 1
(3) H0ðPn;ia

X ðkÞÞ ¼ 0 for kW a

Proof. The ¢rst two statements follow immediately from the basic sequence

0 ! i
aþ1
X ! i

a
X ! SaN	

X ! 0:

The third is just the statement that a form of degree k cannot vanish k times on a
nondegenerate variety. &

LEMMA 2.7. ([5, 1.2,1.4]). Let Y � X be a smooth subvariety of codimension e of a
smooth projective variety, L an invertible sheaf on X, p:B ¼ BlY ðX Þ ! X the blow
up along Y with exceptional divisor E. Then
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(1) If 0W tW e � 1, then HiðB; p	LðtEÞÞ ¼ HiðX ;LÞ, 8i
(2) p	p	Lð�kEÞ ¼ i

k
Y 
 L and Rip	ðp	Lð�kEÞÞ ¼ 0 for kX 0, i > 0; hence

(3) H	ðX ;ik
Y 
 LÞ ¼ H	ðB; p	Lð�kEÞÞ, kX 0 &

3. The Square of the Ideal Sheaf

This section is devoted to the proof of Theorem 1.1 stated in the Introduction. We
denote the ith secant variety to an embedded curve C by SiC, or just by Si when
no confusion will result. The following construction and ‘Terracini Recursiveness’
result of A. Bertram provides the means for our vanishing results. Recall that a
line bundle L on a curve C is said to be. k-very ample if h0ðC;Lð�ZÞÞ ¼

h0ðC;LÞ � k for all Z 2 SkC.
Let C � X0 ¼ PðH0ðC;LÞÞ be a smooth curve embedded by a 2k-very ample line

bundle L. Construct a birational morphism f :eXX ! X0 which is a composition of
the following blow-ups:

f 1:X1 ! X0 is the blow up of X0 along C ¼ S0,
f 2:X2 ! X1 is the blow up along the proper transform of S1,

..

.

f k:eXX ¼ Xk ! Xk�1 is the blow up along the proper transform of Sk�1.

We then have:

THEOREM 3.1 ([2, Theorem 1], [3, 3.6]). Hypotheses as above:

(1) For iW k � 1, the proper transform of each Si in Xi is smooth and irreducible of
dimension 2i þ 1, transverse to all exceptional divisors, and so in particular eXX
is smooth. Let Ei be the proper transform in eXX of each f i-exceptional divisor. Then
E1 þ � � � þ Ek is a normal crossings divisor on eXX with k smooth components.

(2) Suppose iW k � 1 and x 2 Si n Si�1. Then the ¢ber ð f iÞ
�1
ðxÞ � Xi is naturally

isomorphic to PðH0ðC;Lð�2ZÞÞÞ, where Z is the unique divisor of degree i þ 1
whose span contains x. Moreover, the ¢ber f �1ðxÞ � Eiþ1 � eXX is isomorphic toeXXZ, the variety obtained by applying the above construction to the line bundle
Lð�2ZÞ. &

Write PiceXX ¼ ZHþZE1 þ � � � þZEk. We collect a few technical implications of
the construction:

LEMMA 3.2. Hypotheses and notation as above:

(1) Si � X0 is normal for iW k � 1,
(2) f :E1 ! C is a smooth morphism,
(3) f	OeXX ¼ OX0 and Rjf	OeXX ¼ 0 for jX 1,
(4) f	OEi ¼ OSi�1 .
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Proof. The ¢rst statement follows from the fact that Ei is smooth and f :Ei ! Si�1

has reduced, connected ¢bers. The second follows from the smoothness of C and the
description of the ¢bers f �1ðxÞ ffi eXXZ � E1 above.
For the third, f	O ~XX ¼ OX0 is Zariski’s Main Theorem. Rjf	O ~XX ¼ 0 follows from

the fact that HjðeXX ; f 	OX ðmHÞÞ ¼ 0 for m; j > 0 (cf. [13, 2.69]).
To show f	OEi ¼ OSi�1 , note that f :Ei ! Si�1 is the composition of birational

morphisms to smooth varieties, followed by a projective bundle, followed by a
birational morphism to Seci�1C which is normal by the ¢rst statement. &

We recover Rathmann’s result (Corollary 3.10) from the main result of this
section:

THEOREM 3.3. Let C � Pn be a smooth curve embedded by a nonspecial line bundle
L. Suppose there exists a point p 2 C such that Lð2pÞ is 6-very ample and such
that C � PH0ðC;Lð2p � 2qÞÞ satis¢es condition ðN2Þ for all q 2 C. Then
HiðPGðC;Lð2p � 2qÞÞ;i2

CðkÞÞ ¼ 0, kX 3, i > 0.

The idea of the proof is to take weak (i.e. asymptotic) vanishing statements on the
spaces Xi from Bertram’s construction and to descend them to effective vanishing
results along the ¢bers of f :eXX ! X0. For this we need the following special case
of [12, III.12.11b]:

PROPOSITION 3.4 ([14, p. 52, Cor 1 1
2]). Let r:X ! Y be a £at morphism of pro-

jective varieties, F a locally free sheaf on X . If Rir	F ¼ 0 for all iX i0, then
HiðXy;F yÞ ¼ 0 for all y 2 Y and all iX i0. &

Aside from Lemma 3.6, the proof of Theorem 3.3 is fairly straightforward. We
hope to clarify the idea by giving the proof now, referencing the necessary lemmas
below:

Proof of Theorem 3.3. The case i > 2 is automatic by Lemma 2.6. The case i ¼ 2 is
contained in Proposition 2.4. For i ¼ 1, by Proposition 2.4 we need only prove the
result for k ¼ 3.
First note that as Lð2p � 2qÞ is 4-very ample, we can apply Theorem 3.1

to Lð2p � 2qÞ to obtain f : X2 ! X0. Furthermore, as the restriction of
OX1 ð3H � 2E1Þ to a ¢ber of the P1 bundle eS1S1 ! S2C isOP1 ð�1Þ, we see immediately

HiðX2;Oð3H � 2E1 � E2ÞÞ ¼ HiðX1;Oð3H � 2E1ÞÞ

¼ HiðPGðC;Lð2p � 2qÞÞ;i2
Cð3ÞÞ

ð1Þ

Now, beginning anew with Lð2pÞ, apply Theorem 3.1 to Lð2pÞ. This yields

f :eXX ¼ X3 ! X2 ! X1 ! X0 ¼ PH0ðC;Lð2pÞÞ
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where Xiþ1 ¼ Bl ~SiSi
ðXiÞ. We deduce the desired vanishing from the sequence

0 ! O ~XX ðkH � 4E1 � 2E2 � E3Þ ! O ~XX ðkH � 3E1 � 2E2 � E3Þ

! OE1 ðkH � 3E1 � 2E2 � E3Þ ! 0;

where k 2 Z is arbitrary. The fact that H2ðPH0ðC;Lð2p � 2qÞÞ;i2
Cð3ÞÞ ¼ 0 (this is

true from Equation (1) and Proposition 2.4) implies that

R2f	OE1ðkH � 3E1 � 2E2 � E3Þ ¼ 0:

By Proposition 3.4, if R1f	OE1 ðkH � 3E1 � 2E2 � E3Þ ¼ 0, then the cohomology
along the ¢bers vanishes, implying the groups in (1) vanish (note the higher direct
images vanish by Lemma 2.6).

R1f	O ~XX ðkH � 3E1 � 2E2 � E3Þ ¼ 0 is shown in Lemma 3.5.
R2f	O ~XX ðkH � 4E1 � 2E2 � E3Þ ¼ 0 is more dif¢cult and is shown in Lemma 3.9.&

LEMMA 3.5. Under the hypotheses of Theorem 3.3, apply Theorem 3.1 to obtain
f :X3 ! X0. Then R1f	OX3ðkH � 3E1 � 2E2 � E3Þ ¼ 0.

Proof. From Lemma 3.2 parts 3 and 4, we have R1f	OX3 ðkH � E3Þ ¼ 0. Using
part 3 of Lemma 2.6 to check the vanishing of R0f	 of the rightmost term of
sequences of the form

0 ! OX3ðkH � E2 � E3Þ ! OX3 ðkH � E3Þ ! OE2 ðkH � E3Þ ! 0

and

0 ! OX3ðkH � E1 � 2E2 � E3Þ ! OX3ðkH � 2E2 � E3Þ

! OE1 ðkH � 2E2 � E3Þ ! 0

gives R1f	OX3 ðkH � 3E1 � 2E2 � E3Þ ¼ 0. &

LEMMA 3.6. Let C � Pn be a smooth curve embedded by a nonspecial line bundle L
satisfying ðN2Þ. Apply Theorem 3.1 to obtain f : X2 ! X0. Then H2ðX2;OðkH�

2E1 � E2ÞÞ ¼ 0 for kX 3.

Remark 3.7. It may appear as if we have already shown this in the proof of
Theorem 3.3. Indeed, we know the result holds for k ¼ 3. However, the special cir-
cumstances involved in the demonstration that HiðX2;Oð3H � 2E1 � E2ÞÞ ¼

Hiði2
Cð3ÞÞ do not apply when kX 4. Speci¢cally, we need not have H0ði2

CðkÞÞ �
H0ðiS1ðkÞÞ for kX 4.

Proof of Lemma 3.6. As before, Equation (1) and Proposition 2.4 imply the result
for k ¼ 3. Hence, we show H2ðX2;OðkH � E1 � E2ÞÞ ¼ 0 for kX 4. By restricting
to E1 and computing direct images (recall E1 ! C is £at), this immediately implies
H2ðX2;OðkH � 2E1 � E2ÞÞ ¼ 0 for kX 4.
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Because H2ðX2;OðkH � E1ÞÞ ¼ 0, it suf¢ces to show

H1ð ~SS1;OðkH � E1ÞÞ ¼ 0:

We prove Hið ~SS1;Oðð4� iÞH � E1ÞÞ ¼ 0 and the result follows by a regularity argu-
ment (note that ~SS1 is smooth and OðHÞ globally generated). As before, we have
H3ð ~SS1;OðH � E1ÞÞ ¼ 0 because the restriction of OðH � E1Þ to a ¢ber of the
P1-bundle is OP1 ð�1Þ. The fact that H1ð ~SS1;Oð3H � E1ÞÞ ¼ 0 follows immediately
from projective normality and the ¢rst paragraph.
The ¢nal step is to note ~SS1 \ E1 ¼ C � C (this follows from [2]), hence we have the

exact sequence

0 ! O ~SS1
ð2H � 2E1Þ ! O ~SS1

ð2H � E1Þ ! OC�Cð2H � E1Þ ! 0

which we push down f : ~SS1 ! S2C. As O ~SS1
ð2H � E1Þ is trivial along the ¢bers, it is

the pull back of a line bundle l on S2C. As the restriction of f to C � C is £at
of degree two, f	OC�Cð2H � E1Þ ffi l
 ðOS2C � eÞ for some line bundle e.
Therefore, H2ðC � C;Oð2H � E1ÞÞ ¼ 0 implies H2ð ~SS1;Oð2H � E1ÞÞ ¼ 0. It is,
however, not dif¢cult to verify that OC�Cð2H � E1Þ ffi OC�CðL˙L 
i

2
DÞ, and

the vanishing follows from the fact that L is nonspecial and very ample. &

As we will make three Formal Function calculations of essentially the same type,
we state an elementary result:

PROPOSITION 3.8. Let r:X ! Y be a morphism of projective varieties; X smooth,
Y normal. Let F be a locally free sheaf on X and assume y 2 Y is a point such that:

(1) Xy is smooth
(2) HiðXy;F yÞ ¼ 0
(3) HiðXy;N	
a

Xy=X 
F yÞ ¼ 0 for all aX 1

Then Rir	F is not supported at y.
Proof. This follows by induction after tensoring the sequence:

0 ! SaN	 ! OX=i
aþ1
Xy

! OX=i
a
Xy

! 0

by F . As we work overC, hypothesis 3 implies Hi of the left term vanishes. By 2, the
Theorem on Formal Functions [12, III.11.1] implies the completion ðRir	FÞ

^

y ¼ 0.
As Rir	F is coherent, the result follows (e.g. by [1, Ex.10.3]). &

LEMMA 3.9. With notation and hypotheses as in Lemma 3.5, we have
R2f	OX3ðkH � rE1 � 2E2 � E3Þ ¼ 0 for rX 3.

Proof. We proceed via Proposition 3.8. As

R2f	F :¼ R2f	OX3ðkH � rE1 � 2E2 � E3Þ

is supported on S2 � X0, we need to check three classes of ¢bers.
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First, let x 2 S2 n S1. Then Bx ¼ f �1ðxÞ ffi PH0ðC;Lð2p � 2ZÞÞ ¼ Pn�4 where
Z 2 S3C determines the unique 3-secant P2 containing x. The restriction of F to
such a ¢ber is simply OPn�4 ð1Þ, hence H2ðOBx ðFÞÞ ¼ 0. The conormal sequence
for Bx � E3 � X3 is

0 ! OBxð�E3Þ ! N	
Bx=X3

! �OBx ! 0

The required vanishings follow after twisting by ðN	
Bx
Þ

a
ðFÞ.

Let x 2 S1 n C. Then Bx ¼ f �1ðxÞ ffi BlCðP
n�2

Þ with the embedding C ,!PH0

ðC;Lð2p � 2ZÞÞ ¼ Pn�2 where Z 2 S2C determines the unique secant line containing
x. The restriction of F to such a ¢ber is OBx ð2H � EÞ where PicðBxÞ ¼ ZHþZE.
Therefore, H2ðOBxðFÞÞ ¼ 0 by projective normality of the above embedding. The
conormal sequence for Bx � E2 � X3 is

0 ! OBxð�E2Þ ! N	
Bx=X3

! �OBx ! 0

and as above the required vanishing follows after twisting by ðN	
Bx
Þ

a
ðFÞ.

If x 2 C, then

Bx ¼ f �1ðxÞ ffi Bl ~SS1
ðPnCÞ;

where

Pn
¼ PH0ðC;Lð2p � 2xÞÞ:

The restriction of F to such a ¢ber is OBxðrH � 2E1 � E2Þ where PicðBxÞ ¼

ZHþZE1 þZE2. By Lemma 3.6, H2ðOBxðFÞÞ ¼ 0 for rX 3 and the vanishing
of tensor powers of the conormal bundle follows exactly as above. &

We immediately recover Rathmann’s result:

COROLLARY 3.10. Assume degðLÞX 2g þ 3. Then

(1) H1ðPn;i2
CðkÞÞ ¼ 0 for kX 3 and i

2
C is 5-regular

(2) i
2
C is 4-regular if and only if the Gauss^Wahl map FL:^

2GðLÞ ! GðK 
 L2Þ is
surjective (e.g. when degðLÞX 3g þ 2, [6])

Proof. For the ¢rst, we need only note that a line bundle of degree at least 2g þ 3
satis¢es condition ðN2Þ [11].
For the second statement, we need only add that under our hypotheses, surjectivity

of FL is equivalent to the vanishing H2ðPn;i2
Cð2ÞÞ ¼ 0 ([23, 1.7.3]). &

4. Extended Vanishing

In this section we extend Corollary 3.10 to a result suggested by Bertram [4, 4.3]:

THEOREM 4.1. Let C � Pn be a smooth curve satisfying ðN1Þ and assume
H1ðPn;i2

CðkÞÞ ¼ 0 for kX 3. Then HiðPn;ia
CðkÞÞ ¼ 0 for kX 2a � 1, iX 1.
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Proof. For i > 2 the result is again automatic by Lemma 2.6, and i ¼ 2 is in
Proposition 2.4.
Recall fPnPn

¼ BlCðP
n
Þ. To settle the case i ¼ 1, let V ¼ GðfPnPn;Oð2H � EÞÞ and let

j:fPnPn
! Ps be the morphism induced by OePnPn

ð2H � EÞ. We have the diagram:

0 0 0???y
???y

???y
0 ! j	ðO1

Ps ð1ÞÞ 
 OePnPn
ðH � EÞ ! V 
OePnPn

ðH � EÞ ! OePnPn
ð3H � 2EÞ ! 0???y

???y
???y

0 ! j	ðO1
Ps ð1ÞÞ 
 OePnPn

ðHÞ ! V 
OePnPn
ðHÞ ! OePnPn

ð3H � EÞ ! 0???y
???y

???y
0 ! j	ðO1

Ps ð1ÞÞ 
 OEðHÞ ! V 
OEðHÞ ! OEð3H � EÞ ! 0???y
???y

???y
0 0 0

Twisting the entire diagram byOePnPn
ð2H � EÞ, we see from the top row that showing

H1ði3
Cð5ÞÞ ¼ 0 is equivalent to showing

H1ðE;j	ðO1
Ps ð1ÞÞ 
 OEð3H � EÞÞ ¼ 0:

However, from the pictured diagram, it is easy to see that H1ði2
Cð3ÞÞ ¼ 0 is equiv-

alent to the vanishing H1ðE;j	ðO1
Ps ð1ÞÞ 
 OEðHÞÞ ¼ 0. Therefore, twisting the last

row by j	ðO1
Ps ð1ÞÞ we need H2ðE;j	ðO1

Psð1ÞÞ
2 
OEðHÞÞ ¼ 0.
Clearly, it suf¢ces to prove that the higher direct images of the blow down to the

curve vanish. As E ! C is £at, we only need vanishing along the ¢bers, which
are isomorphic to Pn�2. However, j maps a ¢ber of E ! C isomorphically to a
linearly embedded subspace Pn�2

� Ps, and the vanishing follows easily.
Repeating this argument after tensoring by OePnPn

ðmð2H � EÞÞ yields the stated
result. &

Analogous to Corollary 3.10, we have:

COROLLARY 4.2. Assume degðLÞX 2g þ 3. Then

(1) H1ðPn;ia
CðkÞÞ ¼ 0 for kX 2a � 1 and i

a
C is ð2a þ 1Þ-regular

(2) i
a
C is 2a-regular if and only if FL is surjective.

Proof. Part 1 is Theorem 3.3 applied to Theorem 4.1. Part 2 is the earlier statement
that FL is surjective exactly when H2ðPn;i2

Cð2ÞÞ ¼ 0 applied to Theorem 4.1. &

We further have the immediate result on points:
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COROLLARY 4.3. Let G ¼ C \ H be a hyperplane section of a linearly normal
smooth curve of degree at least 2g þ 3. Then H1ðia

GðkÞÞ ¼ 0 for kX 2a, and the
vanishing holds for k ¼ 2a � 1 if and only if FL is surjective. &

Note that the vanishing for kX 2a is, more generally, true for any set of 2n � 1 points
in Pn�1 in linearly general position by [7, 8].
Combining [6, Thm 1] with [8, 3.7] yields the amusing:

PROPOSITION 4.4. Let C be a smooth curve embedded by a line bundle of degree
3g þ 1. Then C is hyperelliptic if and only if the general hyperplane section lies
on a rational normal curve (in the hyperplane). &

The procedure detailed in Section 3 should be extendible via Theorem 3.1 to give
further vanishing statements for higher degree embeddings. In the very interesting
cases of canonical embeddings and higher dimensional varieties it seems that some
sort of converse (‘ascending degree’) procedure must be worked out. The main
dif¢culty in the canonical case is that canonical curves cannot arise in the ¢bers
of the blow up. For varieties of higher dimension, similar problems occur in that
the ¢bers in the blow up are copies of the original variety blown up at a point (though
the technique should at least reveal information in these cases). A somewhat greater
obstacle is the lack of a structure theorem as strong as Theorem 3.1, though parts of
this have been worked out in [19] and [20].
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