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Abstract
In this paper, we prove some orthogonality relations for representations arising from deep level Deligne–Lusztig
schemes of Coxeter type. This generalizes previous results of Lusztig [Lus04], and of Chan and the second author
[CI21b]. Applications include the study of smooth representations of p-adic groups in the cohomology of p-adic
Deligne–Lusztig spaces and their relation to the local Langlands correspondences. Also, the geometry of deep level
Deligne–Lusztig schemes gets accessible, in the spirit of Lusztig’s work [Lus76].
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1. Introduction

In the last fifteen years, various p-adic and deep level analogues of classical Deligne–Lusztig varieties
attracted a lot of attention; see, in particular, [Lus04, Boy12, CS17, Cha20, CI23, Iva23]. The interest
in them is justified by the fact that they allow application of methods from classical Deligne–Lusztig
theory to study representations of p-adic groups. Furthermore, they are very interesting geometric objects
in their own right (like the classical Deligne–Lusztig varieties are). In this article, we consider deep
level Deligne–Lusztig schemes of Coxeter type and prove orthogonality relations for the corresponding
representations, extending a classical result of [DL76] to the deep level setup.

Let k be a nonarchimedean local field with uniformizer𝜛 and O𝑘 be its ring of integers. We assume
that the residue field O𝑘/𝜛 is a finite field F𝑞 with q elements. Let 𝑘̆ denote the completion of a maximal
unramified extension of k with residue field F𝑞 . Let G be an unramified connected reductive group over
k, T ⊆ G a k-rational unramified maximal torus, and U the unipotent radical of a 𝑘̆-rational Borel
subgroup of G containing T. Let G = Gx be a (connected) parahoric O𝑘 -group scheme with generic
fiber G, whose corresponding facet x in the Bruhat–Tits building (over 𝑘̆) of the adjoint group of G lies
in the apartment of T, and let T ⊆ G denote the schematic closure of T in G.

Fix an integer 𝑟 ≥ 1. Let 𝐺 = G (O𝑘/𝜛
𝑟 ) and 𝑇 = T (O𝑘/𝜛

𝑟 ). In [Lus04, Sta09, CI21b], a certain
(perfect) F𝑞-scheme 𝑆T,U = 𝑆x,T,U,𝑟 equipped with a natural 𝐺 × 𝑇-action was defined. In a sense, it
can be regarded as a deep level analogue of a classical Deligne–Lusztig variety.1 As in the classical
Deligne–Lusztig theory, the cohomology of 𝑆T,U attaches to any character 𝜃 : 𝑇 → Q

×

ℓ (ℓ ≠ char F𝑞) the
G-representation 𝑅T,U(𝜃) =

∑
𝑖∈Z(−1)𝑖𝐻𝑖

𝑐 (𝑆T,U,Qℓ)𝜃 . One of the central features within the classical
Deligne–Lusztig theory is the Deligne–Lusztig orthogonality relation, which computes (in the classical
case, that is, 𝑟 = 1, x hyperspecial) the inner product of two virtual representations 𝑅T,U(𝜃), 𝑅T′,U′ (𝜃 ′)
[DL76, Thm. 6.8].

The goal of the present article is to generalize the abovementioned classical orthogonality relations
to deep level schemes 𝑆T,U of Coxeter type. There is a meaningful notion of a Coxeter pair (T,U) (cf.
Section 2.6), which essentially means that 𝑆T,U is the deep level analogue of a classical Deligne–Lusztig
variety of Coxeter type. In that case, the intersection of the apartment of T with the k-rational Bruhat–
Tits building of the adjoint group is just one vertex, xT, and (as we assumed G to be unramified) this
vertex must necessarily be hyperspecial (cf. Section 2.6). The following theorem is our main result.
Theorem 3.2.3. Let (T,U), (T′,U′) be Coxeter pairs with x = xT = xT′ (then, automatically, x is
hyperspecial). Assume that 𝑞 > 5. Then for all 𝑟 ≥ 1 and all 𝜃 : 𝑇 → Q

×

ℓ , 𝜃 ′ : 𝑇 ′ → Q
×

ℓ , we have

〈𝑅T,U(𝜃), 𝑅T′,U′ (𝜃 ′)〉𝐺 = #
{
𝑤 ∈ 𝑊 (T,T′)𝐹 : 𝜃 ′ = 𝑤𝜃

}
,

where𝑊 (T,T′) = T( 𝑘̆)\{𝑔 ∈ G( 𝑘̆) : 𝑔T′ = T}, and F denotes the Frobenius action.
Note that the assumption on q in the theorem and the corollaries below can be strengthened depending

on the root system of G; see Condition (3). Formerly, Theorem 3.2.3 was known only under the quite
restrictive assumptions – namely, that either 𝑟 = 1, or 𝜃 or 𝜃 ′ is regular (i.e., ‘highly nontrivial’ on
ker(T (O𝑘/𝜛

𝑟 ) → T (O𝑘/𝜛
𝑟−1))) or G = GL𝑛 (cf. Remark 3.2.2).

From Theorem 3.2.3 one easily deduces (cf. [Lus04, Cor. 2.4]) that the virtual representations 𝑅T,U (𝜃)
behave in a quite reasonable way:

1For example, if 𝑟 = 1 and x hyperspecial, then there is a natural map from 𝑆T,U into some classical Deligne–Lusztig variety
attached to the special fibers of G, T , U ; this map induces an isomorphism of ℓ-adic cohomology groups, up to a degree shift.
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Corollary 1.0.1. Let (T,U) be a Coxeter pair, let 𝜃 : 𝑇 → Q
×

ℓ be a character, and assume that 𝑞 > 5.
Then the following hold:
(1) 𝑅T,U(𝜃) only depends on T and 𝜃, but not on U.
(2) 𝑅T,U(𝜃) is up to sign an irreducible representation of G if and only if the stabilizer of 𝜃 in𝑊 (T)𝐹

is trivial.
The most interesting application of our main result arises when it is combined with the recent deep

results of Chan–Oi [CO23], who studied the representations 𝑅T,U(𝜃) in a similar context. The setup
of the main result (Theorem B) of loc. cit. is more general than ours in that all pairs (T,U) with T
an elliptic torus and arbitraty U were considered, and at the same time, more restrictive in that the
character 𝜃 had to be regular (called 0-toral resp. extra toral in [CO23]). Now the main result of [CO23]
compares 𝑅T,U(𝜃) for regular 𝜃’s with Yu’s construction of supercuspidal representaions [Yu01]. In
fact, the method of Chan–Oi works in a considerably bigger generality than just for regular 𝜃’s – namely,
for all toral characters2 𝜃 – provided that additionally the irreducibility of the G (O𝑘 )-representation
±𝑅T,U (𝜃) is known; cf. [CO23, Rem. 7.4]. For regular 𝜃’s, this G (O𝑘 )-irreducibility was known due to
[Lus04, Sta09, CI21b]. Now, Theorem 3.2.3 grants exactly this irreducibility for arbitrary 𝜃 with trivial
stabilizer in𝑊 (T)𝐹 , at least if one restricts attention to Coxeter pairs. Thus, just as explained in [CO23,
Rem. 7.4], our results allows to extend [CO23, Thm. 7.2] from regular 𝜃’s to all toral 𝜃’s:
Corollary 1.0.2 ([CO23], Theorem 7.2 or Theorem B + Theorem 3.2.3). Let (T,U) be a Coxeter pair,
assume that 𝑞 > 5, and let 𝜃 : T(𝑘) → Q

×

ℓ be smooth and toral. Then ±𝑅T,U(𝜃) is isomorphic to the
representation attached to (T, 𝜃) through the theory of Yu’s cuspidal types (cf. [Yu01] resp. [CO23,
§3]). In particular, cIndG(𝑘)

T(𝑘)G (O𝑘 )
(±𝑅T,U (𝜃)) is irreducible supercuspidal and provides a geometric

realization of Yu’s construction of supercuspidal G(𝑘)-representations.
Let us also mention that for G = GL𝑛 (or one of its inner forms), the special case of Theorem 3.2.3 was

one of the main ingredients in the proof of the main result of [CI23], which states that the cohomology of
a certain p-adic Deligne–Lusztig space 	𝑋 	𝑤 (𝑏), endowed with an action of GL𝑛 (𝑘) ×T(𝑘), realizes the
local Langlands and Jacquet–Langlands correspondences for a big portion of representations of GL𝑛 (𝑘).
In [Iva23], the spaces 	𝑋 	𝑤 (𝑏) were recently defined for all unramified connected reductive k-groups G.
Correspondingly, our Theorem 3.2.3 is supposed to be the key tool in studying the G(𝑘)-representations
appearing in the cohomology of p-adic Deligne–Lusztig spaces (of Coxeter type) attached to general
G. Ultimately, this should lead to a purely local realization of a big part of the local Langlands
correspondence in the style of Deligne–Lusztig theory.

Another (related) potential application of Theorem 3.2.3 is that it opens the possibility to treat also
those G(𝑘)-representations 𝑅G

T (𝜃) for which 𝜃 has non-trivial stabilizer in 𝑊 (T)𝐹 – for example, in a
way similar to the classical case studied by Lusztig [Lus76]. For example, the case 𝜃 = 𝜃 ′ = 1 in Theorem
3.2.3 gives a tool to redefine the cuspidal unipotent representations of the p-adic group G(𝑘) via 𝑋𝑤 (𝑏).

Our proof of Theorem 3.2.3 follows an idea of Deligne and Lusztig [DL76], which consists in
extending the 𝑇 ×𝑇 ′-action on various subschemes of Σ = 𝐺\(𝑆T,U × 𝑆T′,U′ ) to an action of some torus
with finitely many fixed points. This considerably simplifies the computation of the Euler characteristic
of Σ. For G = GL𝑛 (and, essentially, for any unramified group of type 𝐴𝑛), Theorem 3.2.3 was proven
in [CI23, §4]. However, the general case requires several serious improvements, which are the core of
the present work.

2. Setup and preliminaries

2.1. Some notation

Given a group G and 𝑔, 𝑥 ∈ 𝐺, we write 𝑔𝑥 = 𝑔𝑥𝑔−1 and 𝑥𝑔 = 𝑔−1𝑥𝑔. If 𝜃 is an irreducible character of
a finite subgroup H of G, then 𝑔𝜃 is the character of 𝐻𝑔 given by 𝑔𝜃 (𝑥) := 𝜃 (𝑔𝑥𝑔−1).

2The class of toral characters is much bigger than the class of the regular ones, and in a sense ‘as close as possible’ to the class
of all 𝜃’s with trivial Weyl-stabilizer. For the precise definition and discussion of torality, we refer to [CO23, §3.3].
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Let p be a prime number. Given a ring R of characteristic p, we denote by Perf𝑅 the category of
perfect R-algebras, and by𝑊 (𝑅) the (p-typical) Witt vectors of R.

Let k be a nonarchimedean local field with residue field F𝑞 , where q is some fixed power of p. The
ring of integers of k will be denoted by O𝑘 . Let 𝜛 be a uniformizer of k. Given 𝑅 ∈ PerfF𝑞 , there
is an essentially unique 𝜛-adically complete and separated O𝑘 -algebra W(𝑅), in which 𝜛 is not a
zero-divisor and which satisfiesW(𝑅)/𝜛W(𝑅) = 𝑅. Explicitly, we have

W(𝑅) =

{
𝑊 (𝑅) ⊗𝑊 (F𝑞) O𝑘 if char 𝑘 = 0
𝑅[[𝜛]] if char 𝑘 = 𝑝

(i.e., W(𝑅) are the ramified Witt vectors, details on which can be found, for example, in [FF18,
1.2]). In particular, W(F𝑞) [1/𝜛] = 𝑘 . Fix an algebraic closure F𝑞 of F𝑞 and put O𝑘̆ = W(F𝑞) and
𝑘̆ =W(F𝑞) [1/𝜛]. The field 𝑘̆ is the 𝜛-adic completion of a maximal unramified extension of k.

2.2. Loop functors

Let X be an O𝑘̆ -scheme. We have the functor of positive loops and its truncations for 𝑟 ≥ 1 (also called
Greenberg functors, following [Gre61])

𝐿+X : Perf
F𝑞

→ Sets, (𝐿+X ) (𝑅) = X (W(𝑅))

𝐿+𝑟X : Perf
F𝑞

→ Sets, (𝐿+𝑟X ) (𝑅) = X (W(𝑅)/𝜛𝑟W(𝑅)).

If X is affine of finite type over O𝑘̆ , then 𝐿+X and 𝐿+𝑟X are representable by affine perfect schemes,
and the latter is of perfectly finite type over F𝑞 , as follows from [Gre61].

Moreover, if X is equipped with an O𝑘 -rational structure (i.e., X = X0 ⊗O𝑘 O𝑘̆ for an O𝑘 -scheme
X0), then 𝐿+X and 𝐿+𝑟X both come equipped with geometric Frobenius automorphisms (over F𝑞),
which we denote by 𝐹 : 𝐿+X → 𝐿+X resp. 𝐹 : 𝐿+𝑟X → 𝐿+𝑟X .

2.3. Perfect schemes and ℓ-adic cohomology

We fix a prime ℓ ≠ 𝑝 and an algebraic closure Qℓ of Qℓ . Without further reference, we will make use of
the formalism of étale cohomology with compact support, as developed in [Del77]. If 𝑓 : 𝑋 → Spec F𝑞
is a (separated) morphism of finite type, then we put 𝐻𝑖

𝑐 (𝑋,Qℓ) = 𝑅
𝑖 𝑓!Qℓ , where Qℓ is the constant

local system of rank 1 on X. Then 𝐻𝑖
𝑐 (𝑋,Qℓ) is a finite dimensional Qℓ-vector space, which is zero for

almost all 𝑖 ∈ Z, and we may form the ℓ-adic Euler characteristic 𝐻∗
𝑐 (𝑋) =

∑
𝑖∈Z(−1)𝑖𝐻𝑖

𝑐 (𝑋,Qℓ) of X,
which is an element of the Grothendieck group of finite dimensional Qℓ-vector spaces.

For an introduction to perfect schemes, we refer to [Zhu17, Appendix A]. If X is a perfect scheme
over F𝑞 , such that the structure morphism 𝑓 : 𝑋 → Spec F𝑞 is (separated and) of perfectly finite type,
we may choose any model 𝑓0 : 𝑋0 → Spec F𝑞 of finite type over F𝑞 , such that f is the perfection of
𝑓0. Then the étale sites of X and 𝑋0 agree, so that 𝐻∗

𝑐 (𝑋) = 𝐻
∗
𝑐 (𝑋0). Hence, the above cohomological

formalism extends to (separated) perfectly finitely presented perfect schemes over F𝑞 . In particular,
𝐻∗
𝑐 (𝑋) makes sense as a virtual (finite) Qℓ-vector space. If X is acted on by a finite group G, we may

similarly consider the G-equivariant Euler characteristic 𝐻∗
𝑐 (𝑋), which is an object in the Grothendieck

group of Qℓ [𝐺]-modules.
Below (in Section 7.2), we often encounter the following situation. Let X and G be as in the preceding

paragraph. Suppose that X is affine and that there is a torus T over F𝑞 which acts on X, and that this
action commutes with the G-action. Then

𝐻∗
𝑐 (𝑋) = 𝐻

∗
𝑐 (𝑋

𝑇 ) (1)
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as Qℓ [𝐺]-modules, as follows from [DM91, 10.15]. This will apply to schemes Σ̂𝑤 , Σ̃𝑤 constructed in
Sections 5.1,5.2. We also must apply this to the schemes 𝑌𝑣,𝑤 (resp. 𝑍𝑣,𝑤 ) constructed in Section 5.3,
which are locally closed subschemes of Σ̂𝑣,𝑤 of which we do not know that they are affine. However, the
action of the torus T on 𝑌𝑣,𝑤 (resp. 𝑍𝑣,𝑤 ) will be the restriction of an action of the same T on Σ̂𝑤 (resp.
Σ̂𝑣 ). In this situation, the proof of [DM91, 10.15] still applies and hence (1) still holds for 𝑌𝑣,𝑤 , 𝑍𝑣,𝑤 .

In the rest of this article, all schemes over F𝑞 or F𝑞 will be separated, perfect and of perfectly
finite type (unless specified otherwise). Whenever we consider objects over F𝑞 or F𝑞 , we simply write
‘scheme’ for ‘perfect scheme’.

2.4. Groups, parahoric models and Moy–Prasad quotients

Let G be a connected reductive group over k which splits over 𝑘̆ . For 𝐸 ∈ {𝑘, 𝑘̆}, let B(G, 𝐸) be the
Bruhat–Tits building of the adjoint group of G. The Frobenius of 𝑘̆/𝑘 induces automorphisms of G( 𝑘̆)
and B(G, 𝑘̆), both denoted by F, and we have G( 𝑘̆)𝐹 = G(𝑘) and B(G, 𝑘̆)𝐹 = B(G, 𝑘).

Let Tori𝑘̆/𝑘 (G) be the set of k-rational 𝑘̆-split maximal tori of G. Given T ∈ Tori𝑘̆/𝑘 (G), we denote
by 𝑋∗(T) (resp. 𝑋∗(T)) the group of characters (resp. cocharacters) of T, and by Φ(T,G) ⊆ 𝑋∗(T) the
set of roots of T in G. Given 𝛼 ∈ Φ(T,G), U𝛼 denotes the corresponding root subgroup. Furthermore,
we denote by F the automorphism of 𝑋∗(T) resp. 𝑋∗(T) induced by the Frobenius of 𝑘̆/𝑘 . Let A(T, 𝑘̆)
denote the apartment of T in B(G, 𝑘̆), and put A(T, 𝑘) = A(T, 𝑘̆)𝐹 .

From the theory of Bruhat–Tits, we can attach to any point x ∈ B(G, 𝑘) a connected parahoric O𝑘 -
model Gx of G [BT84, §4.6, 5.2.6]. It is smooth affine and has generic fiber G. The group Gx (O𝑘̆ )

admits a Moy–Prasad filtration by subgroups Gx (O𝑘̆ )𝑟 for 𝑟 ∈ R̃≥0 = R≥0 ∪ {𝑟+ : 𝑟 ∈ R≥0} [MP94,
§2]. By [Yu15, 8.2 Cor., §9.1], there exists a unique smooth affine O𝑘 -model G𝑟x of G satisfying
G𝑟x (O𝑘̆ ) = Gx (O𝑘̆ )𝑟 . It is obtained from Gx by a series of dilatations along the unit section.

For the rest of this article, we fix an integer 𝑟 ≥ 1. We consider the fpqc-quotient

G = G𝑟 = 𝐿
+Gx/𝐿

+G (𝑟−1)+
x (2)

of sheaves on PerfF𝑞 . It is representable by a (perfect) affine F𝑞-group scheme, perfectly of finite type
over F𝑞 [CI21a, Prop. 4.2(ii)]. We denote this group scheme, as well as its base change to F𝑞 , again by
G. The F𝑞-group G admits a geometric Frobenius automorphism 𝐹 : G→ G attached to its F𝑞-rational
structure. We have

G(F𝑞) = Gx (O𝑘̆ )/Gx(O𝑘̆ )(𝑟−1)+ and G(F𝑞) = G
𝐹 = Gx (O𝑘 )/G (𝑟−1)+

x (O𝑘 )

(by taking Galois cohomology and using that G𝑟 ′x is pro-unipotent for 𝑟 ′ > 0; see [MP94, §2.6]). For
more details on this setup and for a more explicit description of G in terms of root subgroups, we refer
to [CI21b, §2.4,2.5] (such an explicit description will not be used below).
Remark 2.4.1. Instead of (2), we could work with the seemingly more natural object 𝐿+𝑟Gx (r-truncated
positive loops of Gx). However, the advantage of the normalization in (2) is that G1 is canonically
isomorphic to the reductive quotient of the special fiber Gx ⊗O𝑘 F𝑞 (cf. [MP94, §3.2]), whereas 𝐿+1Gx
identifies with the special fiber of Gx, which is less useful. On the other side, if x is hyperspecial (as will
be the case in our main result Theorem 3.2.3), then 𝐿+𝑟Gx = G𝑟 .

2.5. Subschemes of G

Let H ⊆ G be a smooth closed 𝑘̆-subgroup. The schematic closure H ⊆ Gx of H is a flat closed O𝑘̆ -
subgroup scheme of Gx by [BT84, 1.2.6,1.2.7]. Applying 𝐿+𝑟 gives a closed immersion 𝐿+𝑟Hx ⊆ 𝐿+𝑟Gx
by [Gre61, Cor. 2 on p. 639]. We define the closed F𝑞-subgroup H ⊆ G as the image of 𝐿+𝑟H under
𝐿+𝑟Gx � G. If H is already defined over k, then H is defined over O𝑘 , and hence, H is defined over F𝑞 .
In this case, we usually will write 𝐻 := H(F𝑞).

https://doi.org/10.1017/fms.2024.55 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.55


6 O. Dudas and A. B. Ivanov

Furthermore, for each 0 < 𝑟 ′ ≤ 𝑟 , we have a natural homomorphism H = H𝑟 → H𝑟 ′ , and we denote
its kernel by H𝑟 ′𝑟 (resp. simply H𝑟 ′).

In particular, this procedure applies to any T ∈ Tori𝑘̆/𝑘 (G), any root subgroup U𝛼 (with𝛼 ∈ Φ(T,G))
and the unipotent radical U of any 𝑘̆-rational Borel subgroup containing T. This gives the subgroups
T,U𝛼,U ⊆ G, etc., and we will use this notation without further reference.

2.6. Coxeter pairs and Coxeter tori

Suppose that G is unramified (that is, quasi-split over k and split over 𝑘̆). Let T0 ⊆ B0 ⊆ G be a k-rational
Borel subgroup and a k-rational maximal torus of G contained in it. Let 𝑊0 = 𝑁G (T0) ( 𝑘̆)/T0( 𝑘̆) be
the Weyl group of T0. It is a Coxeter group with the set of simple reflections 𝑆0 determined by B0.
The Frobenius of 𝑘̆/𝑘 induces an automorphism 𝜎 of𝑊0 fixing the set of simple reflections. Changing
(T0,B0) amounts to replacing (𝑊0, 𝑆0, 𝜎) by a triple canonically isomorphic to it (just as in [DL76,
1.1]). In particular, whenever we have a vertex x ∈ B(G, 𝑘) as in Section 2.4, we may assume that
x ∈ A(T0, 𝑘).

Any pair (T,B) with T ∈ Tori𝑘̆/𝑘 (G), and B a 𝑘̆-rational Borel subgroup containing it, determines
the triple (𝑊, 𝑆, 𝐹), where W is the Weyl group of T, S the set of simple reflections determined by B and
𝐹 : 𝑊 → 𝑊 is induced by the Frobenius. There is a uniquely determined coset 𝑔T0( 𝑘̆) ⊆ G( 𝑘̆) with
𝑔 (T0,B0) = (T,B), and we have 𝑔−1𝐹 (𝑔) ∈ 𝑁G(T0) ( 𝑘̆) mapping to some element 𝑤 = 𝑤T,B ∈ 𝑊0.
In this case, the triples (𝑊, 𝑆, 𝐹) and (𝑊0, 𝑆0,Ad𝑤 ◦ 𝜎) are canonically isomorphic, and we may (and
will) identify them.

Definition 2.6.1.

(i) Given 𝑤 ∈ 𝑊0, we say that 𝑤𝜎 (or by abuse of language w) is a twisted Coxeter element if a (any)
reduced expression of w contains precisely one simple reflection from any 𝜎-orbit on 𝑆0. If𝑊0 is
irreducible, the order h of 𝑤𝜎 is called the Coxeter number of (𝑊0, 𝜎).

(ii) We say that (T,B) (resp. (T,U), where U is the unipotent radical of B) is a Coxeter pair, if 𝑤T,B𝜎
is a twisted Coxeter element.

(iii) If (T,B) is a Coxeter pair, we say that T ∈ Tori𝑘̆/𝑘 (G) is a Coxeter torus.

Recall that a torus T ∈ Tori𝑘̆/𝑘 (G) is called elliptic (or k-minisotropic) if one of the following
equivalent conditions holds: (i) 𝑋∗(T)𝐹 = 𝑋∗(Z(G)◦)𝐹 , where Z(G)◦ is the connected component
of the center of G; (ii) the group T(𝑘) has a unique fixed point (necessarily a vertex) x = xT in
B(G, 𝑘) = B(G, 𝑘̆)𝐹 . Any Coxeter torus is elliptic. Note that the property of a torus to be Coxeter (resp.
elliptic) is stable under the equivalence relation of stable conjugacy.

Lemma 2.6.2. Suppose G is unramified.

(i) If T is a Coxeter torus, then xT is a hyperspecial vertex.
(ii) T ↦→ xT induces a natural bijection between G(𝑘)-conjugacy classes of Coxeter tori and G(𝑘)-

orbits on the set of hyperspecial points of B(G, 𝑘).
(iii) If (T,U), (T′,U′) are Coxeter pairs with xT = xT′ , then there is some 𝑔 ∈ Gx (O𝑘̆ ) with 𝑔 (T,U) =

(T′,U′).

Proof. For (i), we may pass to the adjoint group of G. Then G �
∏

𝑖 G𝑖 , with G𝑖 simple and of adjoint
type, and B(G, 𝑘̆) � ∏

𝑖 B(G𝑖 , 𝑘̆). It thus suffices to prove the result in the case G is k-simple and
of adjoint type. Then G = Res𝑘′/𝑘G′ is the restriction of scalars along a finite unramified extension
𝑘 ′/𝑘 of an unramified absolutely simple group G′ over 𝑘 ′. Each maximal k-torus of G is of the form
T = Res𝑘′/𝑘T′ for a maximal 𝑘 ′-torus T′ ⊆ G′. We may identify B(G, 𝑘) = B(G′, 𝑘 ′), and under this
identification, xT corresponds to xT′ . Thus, we are reduced to the case that G is absolutely simple. In
this case, all Coxeter tori are G(𝑘)-conjugate by [Ree08, Prop. 8.1(i)]. Moreover, by [DeB06, Thm.
3.4.1], there is at least the G(𝑘)-conjugacy class of Coxeter tori attached to a (any) hyperspecial vertex
x of B(G, 𝑘̆) and a (any) Coxeter torus in Gx ⊗O𝑘 F𝑞 . Now the map in (ii) is well defined by (i) and

https://doi.org/10.1017/fms.2024.55 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.55


Forum of Mathematics, Sigma 7

[Kal19, Lemma 3.4.12(3)]. Its bijectivity and part (iii) follow from now from [DeB06, Thm. 3.4.1] and
the fact that in a finite Weyl group, all twisted Coxeter elements are conjugate. �

If T ∈ Tori𝑘̆/𝑘 (G) is arbitrary and x ∈ A(T, 𝑘), then we have the torus T ⊆ Gx, and the subgroup
T𝑟 ⊆ G𝑟 for any 𝑟 > 0 (as in Section 2.5). This gives the two Weyl groups

𝑊x(T,G) := 𝑊 (T1,G1) ⊆ 𝑊 (T,G)

attached to T (and x). We denote them by 𝑊x and W if T,G are clear from the context. If x is a
hyperspecial vertex – which is by Lemma 2.6.2 necessarily the case whenever T is Coxeter – then the
situation simplifies to G1 = 𝐿+1Gx = Gx ⊗O𝑘 F𝑞 and𝑊x = 𝑊 .

2.7. A condition on q

Identifying 𝑋∗(G𝑚) with Z, we have the perfect pairing of Z-lattices

𝑋∗(T1) × 𝑋∗(T1) → Z, (𝛼, 𝜈) ↦→ 〈𝛼, 𝜈〉

such that 〈𝐹𝛼, 𝜈〉 = 〈𝛼, 𝐹𝜈〉 for all 𝛼, 𝜈. This pairing also induces the analogous pairing for Tad
1 (where

Tad is the image of T in the adjoint quotient of G) and for the Q-vector spaces obtained by extension of
scalars.

Recall that the choice of U is equivalent to the choice of a set of simple roots Δ ⊆ Φ(T,G), and it
endows W with a structure of a Coxeter group. The simple roots Δ form a basis of 𝑋∗(Tad

1 )Q. We will
denote by {𝛼∗ : 𝛼 ∈ Δ} ⊆ 𝑋∗(Tad

1 )Q the set of fundamental coweights, defined as the basis of 𝑋∗(Tad
1 )Q

dual to Δ . Let 𝛼0 denote the highest root. We will prove the orthogonality relations of Coxeter-type
Deligne–Lusztig characters under the following restriction on q:

𝑞 > 𝑀 := max
𝛼∈Δ

〈𝛼0, 𝛼
∗〉. (3)

Note that this condition depends only on the group G𝑘̆ and on no other choice (like that of Δ). For the
irreducible types, we can explicitly compute the constant M from Condition (3): type 𝐴𝑛: 𝑀 = 1; types
𝐵𝑛, 𝐶𝑛, 𝐷𝑛: 𝑀 = 2; types 𝐺2, 𝐸6: 𝑀 = 3; types 𝐹4, 𝐸7: 𝑀 = 4; type 𝐸8: 𝑀 = 6. In general, the constant
M for G𝑘̆ is the maximum of the values of M over all connected components of the Dynkin diagram of
G𝑘̆ . In particular, (3) holds whenever 𝑞 > 5.

3. Deep level Deligne–Lusztig induction

We work in the setup of Section 2.4. In particular, the connected reductive 𝑘̆-split group G/𝑘 , the point
x ∈ B(G, 𝑘), and the integer 𝑟 ≥ 1 are fixed. We omit x and r from notation, and we write G for the
O𝑘 -group Gx, and G, T, etc. for G𝑟 , T𝑟 , etc.

3.1. The schemes 𝑆T,U

Let T ∈ Tori𝑘̆/𝑘 (G), such that x ∈ A(T, 𝑘). Let B = TU be a Borel subgroup, defined over 𝑘̆ , containing
T, and with unipotent radical U. As in Section 2.5, we have the corresponding closed subgroup U ⊆ G,
defined over F𝑞 . Following [Lus04, CI21b], consider the F𝑞-scheme

𝑆x,T,U,𝑟 ��
��

��

𝐹U��

��
G

LG �� G
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where 𝐿G : G → G, 𝑔 ↦→ 𝑔−1𝐹 (𝑔) is the Lang map. We usually write 𝑆T,U for 𝑆x,T,U,𝑟 , as x, r
remain constant throughout the article. The finite group 𝐺 × 𝑇 = G(F𝑞) × T(F𝑞) acts on 𝑆T,U by
(𝑔, 𝑡) : 𝑥 ↦→ 𝑔𝑥𝑡−1. For a character 𝜃 : 𝑇 → Q

×

ℓ , we obtain the virtual G-representation

𝑅T,U(𝜃) = 𝑅x,T,U,𝑟 (𝜃) :=
∑
𝑖∈Z

(−1)𝑖𝐻𝑖
𝑐 (𝑆T,U,Qℓ)𝜃 ,

where the subscript 𝜃 indicates that we take the 𝜃-isotypic component. By inflation, we may regard
𝑅T,U (𝜃) as a virtual smooth G (O𝑘 )-representation.

Remark 3.1.1. The varieties 𝑆T,U are closely related to classical Deligne–Lusztig varieties. Indeed, the
groupU∩𝐹U acts by right multiplication on 𝑆T,U, and we may form the quotient 𝑋T,U = 𝑆T,U/U∩𝐹U.
If 𝑟 = 1, then 𝑋T,U is equal to the classical Deligne–Lusztig variety 𝑋T1⊆B1 attached to the reductive
F𝑞-group G1; cf. [DL76, 1.17(ii), 1.19] and Remark 2.4.1.

Remark 3.1.2. In the light of Remark 3.1.1, 𝑋T,U are deep level analogs of classical Deligne–Lusztig
varieties. Moreover, the fibers of the morphism 𝑆T,U → 𝑋T,U are isomorphic to the perfection of a
fixed finite-dimensional affine space over F𝑞 . It follows that 𝐻∗

𝑐 (𝑆T,U) = 𝐻∗
𝑐 (𝑋T,U). In turn, 𝑋T,U is

the r-truncated integral version of the p-adic Deligne–Lusztig spaces 𝑋𝑤 (𝑏) (or rather their coverings
	𝑋 	𝑤 (𝑏)) defined in [Iva23]. Cf. Section 4.1 below.

3.2. Main result

Let (T,U), (T′,U′) be two pairs where T,T′ ∈ Tori𝑘̆/𝑘 (G) satisfy x ∈ A(T, 𝑘) ∩ A(T′, 𝑘), and U
(resp. U′) is the unipotent radical of a 𝑘̆-rational Borel subgroup of G containing T (resp. T′). We have
the groups T ,T, 𝑇,U ,U attached to T,U by Section 2.5, and similarly for T′,U′.

Using Remark 3.1.1, the classical orthogonality relations for Deligne–Lusztig characters [DL76,
Thm. 6.8] can be expressed as follows: for 𝑟 = 1 and any characters 𝜃 : 𝑇 → Q

×

ℓ , 𝜃 ′ : 𝑇 ′ → Q
×

ℓ , we have

〈𝑅T,U(𝜃), 𝑅T′,U′ (𝜃 ′)〉𝐺 = #
{
𝑤 ∈ 𝑊 (T1,T

′
1)
𝐹 : 𝜃 ′ = 𝑤𝜃

}
, (4)

where

𝑊x (T,T′) = 𝑊 (T1,T
′
1) = T1\{𝑔 ∈ G1 : 𝑔T′1 = T1} (5)

is the transporter principal homogeneous space under 𝑊x(T,G). We may ask for a generalization of
this to deeper levels.

It is natural to ask whether (4) holds in general – that is, for arbitrary G, x, r, T, T′, U, U′, 𝜃, 𝜃 ′. In
this generality, the answer is no, as the following example shows.

Example 3.2.1 (This example was explained to us by an anonymous referee). Let G = GL2, T = T′ a
split torus, x a hyperspecial point in the apartment of T, 𝑟 = 2, 𝜃 = 𝜃 ′ = 1. Let U be the unipotent radical
of any Borel B containing T. Then 𝑅T,U(1) � Ind𝐺𝐵1 has three irreducible components: the trivial and
the Steinberg representations (both inflated from level 𝑟 = 1) and a further irreducible representation of
dimension 𝑞2 − 1. Thus, 〈𝑅T,U(1), 𝑅T,U(1)〉𝐺 = 3 ≠ 2 = #𝑊 (T)𝐹 .

However, the generalization of (4) is known in many cases, summarized in the following remark.

Remark 3.2.2. The generalization of the formula (4) holds in the following cases:

(i) If 𝑟 = 1 by [DL76, Thm. 6.8].
(ii) If 𝑟 ≥ 2, and 𝜃 or 𝜃 ′ is regular in the sense of [Lus04] (roughly, ‘regular’ = ‘highly nontrivial

on ker(𝑇𝑟 → 𝑇𝑟−1)’) by [Lus04] if G reductive and char 𝑘 > 0, resp. [Sta09] if G reductive and
char 𝑘 = 0, resp. [CI21b] in general.

(iii) If G = inner form of GL𝑛, and (T,U), (T′,U′) are Coxeter pairs, by [CI23, Thm. 4.1].
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In this article, we concentrate on the Coxeter case and prove the following generalization of Remark
3.2.2(iii).

Theorem 3.2.3. Suppose G is unramified, and (T,U), (T′,U′) are Coxeter pairs with x = xT = xT′ .
Suppose that Condition (3) holds for q and the root system of G. Then for all 𝑟 ≥ 1 and all 𝜃 : 𝑇 → Q

×

ℓ ,
𝜃 ′ : 𝑇 ′ → Q

×

ℓ , we have

〈𝑅T,U(𝜃), 𝑅T′,U′ (𝜃 ′)〉𝐺 = #
{
𝑤 ∈ 𝑊x (T,T′)𝐹 : 𝜃 ′ = 𝑤𝜃

}
, (6)

where𝑊x (T,T′) is as in (5).

We will show Theorem 3.2.3 when (T,U) = (T′,U′) is a given Coxeter pair and W is irreducible.
The various reductions needed to deduce the theorem from this particular case are studied in the next
section.

4. Reductions

The purpose of this section is to show that it is enough to prove Theorem 3.2.3 when (T,U) = (T′,U′)

is a given Coxeter pair and W is irreducible. There is a small price to pay, and one will actually need to
show a stronger statement – namely, Theorem 4.2.1 – which behaves well with respect to our reductions.

4.1. Changing Coxeter pairs

Suppose G is unramified and x is hyperspecial. Then G is a reductive group over O𝑘 , and we have
G = 𝐿+𝑟G (cf. Remark 2.4.1). Let T0 ⊆ B0 ⊆ G be as in Section 2.6, such that x ∈ A(T0, 𝑘) and
𝑊0 = 𝑁G(T0) ( 𝑘̆)/T0( 𝑘̆). Then T0 ⊆ B0 ⊆ G are a maximal torus and a Borel subgroup containing it
and defined over O𝑘 . Let U0 (resp. U0) be the unipotent radical of B (resp. B0).

The O𝑘 -group G is quasi-split, B0 ⊆ G is a rational Borel subgroup, and the quotient G/B0 is
projective over O𝑘 ; cf. [Con14, Thm. 2.3.6]. Then G admits a Bruhat decomposition in the following
sense: letting G act diagonally on (G/B0)

2, there are G-stable reduced subschemes O(𝑤) ⊆ (G/B0)
2

for each 𝑤 ∈ 𝑊0, flat over O𝑘 , such that for any geometric point 𝑥 ∈ SpecO𝑘 , the fiber O(𝑤)𝑥 is the G𝑥-
orbit of (1 · B0,𝑥 , 	𝑤 · B0,𝑥) in (G/B0)

2
𝑥 like in the usual Bruhat decomposition, where 	𝑤 ∈ 𝑁G (T0) (O𝑘̆ )

is any lift of w. Analogously, for any 𝑤 ∈ 𝑊0, we have a reduced subscheme 	O( 	𝑤) ⊆ (G/U0)
2, flat over

O𝑘 , such that for each x as above, 	O( 	𝑤)𝑥 is the G𝑥-orbit of (1 · U0,𝑥 , 	𝑤 · U0,𝑥) in (G/U0)𝑥 .
We have the following integral analogue of [Iva23, Def. 7.3].

Definition 4.1.1. Let 𝑤 ∈ 𝑊0 and 	𝑤 ∈ 𝑁G (T0) (O𝑘̆ ). Define the integral p-adic Deligne–Lusztig spaces
𝑋G
𝑤 (1), and 	𝑋G

	𝑤 (1) by Cartesian diagrams of functors on Perf
F𝑞

𝑋G
𝑤 (1) ��

��

𝐿+O(𝑤)

��
𝐿+(G/B0)

(id,𝐹 ) �� 𝐿+(G/B0) × 𝐿
+(G/B0)

and
	𝑋G
	𝑤 (1) ��

��

𝐿+ 	O( 	𝑤)

��
𝐿+(G/U0)

(id,𝐹 ) �� 𝐿+(G/U0) × 𝐿
+(G/U0)

Similarly, replacing 𝐿+ by 𝐿+𝑟 everywhere, define their r-truncations 𝑋G,𝑟
𝑤 (1), 	𝑋G,𝑟

	𝑤 (1).

The functors 𝑋G
𝑤 (1), 	𝑋G,𝑟

	𝑤 (1) are representable by (perfect) F𝑞-schemes; the latter are of perfectly
finite presentation. If 	𝑤 maps to w, then there is a natural map 	𝑋G,𝑟

	𝑤 (1) → 𝑋G,𝑟
𝑤 (1). Let T0,𝑤 de-

note the torus over O𝑘 , which is obtained from T0 by twisting the Frobenius action by Ad(𝑤); then
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𝐺 × T0,𝑤 (O𝑘/𝜛
𝑟 ) acts on 	𝑋G,𝑟

	𝑤 (1), G acts on 𝑋G,𝑟
𝑤 (1), and the above map is G-equivariant finite étale

T0,𝑤 (O𝑘/𝜛
𝑟 )-torsor. Recall the definition of the space 𝑋T,U from Remark 3.1.1.

Lemma 4.1.2. Suppose T ∈ Tori𝑘̆/𝑘 (G) such that x ∈ A(T, 𝑘). Identify 𝑊 (T,G) with 𝑊0, and let
𝑤 ∈ 𝑊0 be the element satisfying 𝐹U = 𝑤U. Then we may identify T with T0,𝑤 (O𝑘/𝜛

𝑟 ). Let 	𝑤 ∈

𝑁G (T0) (O𝑘̆ ) be an arbitrary lift of w. Then 𝑋T,U � 	𝑋G,𝑟
	𝑤 (1), equivariant for the 𝐺 × 𝑇-actions.

Proof. This has the same proof as [DL76, 1.19]. There are no subtleties due to the loop functor cf. the
similar results of [Iva23, Prop. 11.1 and Lem. 11.3]. �

To 	𝑋G,𝑟
	𝑤 (1) we may apply the technique of Frobenius-cyclic shift. Let ℓ denote the length function

on the Coxeter group (𝑊0, 𝑆0).

Lemma 4.1.3. Suppose 𝑤 = 𝑤1𝑤2, 𝑤′ = 𝑤2𝐹 (𝑤1) ∈ 𝑊0, such that ℓ(𝑤) = ℓ(𝑤1) + ℓ(𝑤2) = ℓ(𝑤′).
Then there is a G-equivariant isomorphism 𝑋G,𝑟

𝑤 (1) � 𝑋G,𝑟
𝑤′ (1). If 	𝑤, 	𝑤′, 	𝑤1, 	𝑤2 ∈ G (O𝑘̆ ) are lifts of

𝑤, 𝑤′, 𝑤1, 𝑤2, satisfying 	𝑤 = 	𝑤1 	𝑤2, 	𝑤′ = 	𝑤2𝐹 ( 	𝑤1), then there is a 𝐺 × 𝑇-equivariant isomorphism
	𝑋G,𝑟
	𝑤 (1) � 	𝑋G,𝑟

	𝑤′ (1).

Proof. The same proof as in [DL76, 1.6] applies. Again, the use of the (positive, truncated) loop functor
causes no problems; cf. [Iva23, Lem. 7.23]. �

As a corollary we deduce the following:

Corollary 4.1.4. Suppose G is unramified, and (T,U), (T′,U′) are Coxeter pairs with x = xT = xT′

(in particular, x hyperspecial). Then 𝑋T,U � 𝑋T′,U′ (𝐺 × 𝑇 � 𝐺 × 𝑇 ′-equivariantly). In particular,
𝐻∗
𝑐 (𝑆T,U) � 𝐻∗

𝑐 (𝑆T′,U′ ). To show Theorem 3.2.3, it suffices to do so under the additional assumption
(T′,U′) = (T,U) is a fixed Coxeter pair.

Proof. We prove the first statement. By Lemma 4.1.2, it suffices to show that whenever 𝑤, 𝑤′ ∈ 𝑊0 are
two twisted Coxeter elements, 	𝑋G,𝑟

	𝑤 (1) � 	𝑋G,𝑟
	𝑤′ (1). First, when 	𝑤1, 	𝑤2 ∈ 𝑁G (T0) (O𝑘̆ ) are two lifts of w,

then 	𝑋G,𝑟
	𝑤1

(1) � 	𝑋G,𝑟
	𝑤2

(1) equivariantly (same argument as on [DL76, p. 111], along with an application
of Lang’s theorem to the connected F𝑞-group 𝐿+𝑟T0 with Frobenius Ad(𝑤) ◦ 𝐹). Using this, the first
statement of the corollary follows from Lemma 4.1.3 along with the fact that all twisted Coxeter elements
are conjugate by a sequence of cyclic shifts in𝑊0 (cf. the corresponding discussion in [Iva23, §7.5]).

The second claim follows from the first and Remark 3.1.2, and the third claim follows from the
second. �

4.2. First step toward the proof of Theorem 3.2.3

In the proof of Theorem 3.2.3, we follow the general strategy of [DL76, §6] and [Lus04]. Let the setup
be as in the beginning of Section 3.2. Attached to (T,U), (T′,U′) we may consider the F𝑞-scheme

Σ := U,U
′

Σ := 𝐺\(𝑆T,U × 𝑆T′,U′ ) (7)
� {(𝑥, 𝑥 ′, 𝑦) ∈ 𝐹U × 𝐹U′ × G : 𝑥𝐹 (𝑦) = 𝑦𝑥 ′}.

We will write U,U′Σ, whenever the choice of U,U′ is relevant, and simply Σ whenever it is clear from
context. In (7), the group G acts diagonally on 𝑆T,U × 𝑆T′,U′ , and the second isomorphism is given by
(𝑔, 𝑔′) ↦→ (𝑥, 𝑥 ′, 𝑦) with 𝑥 = 𝑔−1𝐹 (𝑔), 𝑥 ′ = 𝑔′−1𝐹 (𝑔′), 𝑦 = 𝑔−1𝑔′, just as in [DL76, 6.6]. Now 𝑇 × 𝑇 ′

acts on Σ by (𝑡, 𝑡 ′) : (𝑥, 𝑥 ′, 𝑦) ↦→ (𝑡𝑥𝑡−1, 𝑡 ′𝑥 ′𝑡 ′−1, 𝑡𝑦𝑡 ′−1), and an application of the Künneth formula
shows that 〈

𝑅T,U(𝜃), 𝑅T′,U′ (𝜃 ′)
〉
𝐺
= dim

Qℓ
𝐻∗
𝑐 (Σ,Qℓ)𝜃⊗𝜃′ .

Let pr : G = G𝑟 → G1 denote the natural projection. We have the locally-closed decomposition G1 =∐
𝑣 ∈𝑊 (T1 ,T

′
1)
U1 	𝑣T

′
1U

′
1. This induces a𝑇 ×𝑇 ′-stable locally closed decomposition Σ =

∐
𝑣 ∈𝑊 (T1 ,T

′
1)
Σ𝑣 ,
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with

Σ𝑣 = {(𝑥, 𝑥 ′, 𝑦) ∈ Σ : 𝑦 ∈ pr−1(U1 	𝑣T
′
1U

′
1)}, (8)

where 	𝑣 is an arbitrary lift of v to G(F𝑞) fixed once and for all. To prove formula (6) for the given
T,T′,U,U′, 𝜃, 𝜃 ′, it suffices to show

dim
Qℓ
𝐻∗
𝑐 (Σ𝑣 ,Qℓ)𝜃⊗𝜃′ =

{
1 if 𝐹 (𝑣) = 𝑣 and 𝜃 ′ = 𝑣𝜃.

0 otherwise.
(9)

We shall show that a stronger statement holds for a specific choice of a Coxeter pair. Let Z = 𝑍 (G)
be the center of G and 𝑍 := Z𝐹 be its rational points. The group Z embeds diagonally in 𝑇 × 𝑇 ′, and
its action on Σ (hence on its cohomology) is trivial. The action of 𝑇 ×𝑍 𝑇 ′ on Σ extends to an action of
(T ×Z T′)𝐹 , and the cohomology of the cell Σ𝑣 for that action is given by the following theorem.

Theorem 4.2.1. Suppose G that is unramified and that condition (3) holds for q and the root system of
G. Then there exists a Coxeter pair (T,U) such that for all 𝑣 ∈ 𝑊 ,

𝐻∗
𝑐 (
U,UΣ𝑣 ) =

{
𝐻0
𝑐 (( 	𝑣T)

𝐹 ,Qℓ) if 𝑣 ∈ 𝑊𝐹 ,

0 otherwise,
(10)

as virtual (T ×Z T′)𝐹 -modules.

Equation (9) follows easily from this theorem. Indeed, if 𝜃 |𝑍 ≠ 𝜃 ′
|𝑍

, then 𝐻∗
𝑐 (Σ𝑣 )𝜃⊗𝜃′ = 0 since Z

acts trivially on Σ𝑣 . However, since 𝑇 ×𝑍 𝑇 ′ ⊂ (T×Z T′)𝐹 , Theorem 4.2.1 implies that the cohomology
of Σ𝑣 as a virtual 𝑇 ×𝑍 𝑇-module is the same as the cohomology of ( 	𝑣T)𝐹 for which the analogue of
(9) clearly holds.

The proof of Theorem 4.2.1 in the case where W is irreducible will be given in Section 7. The
reduction to that case is the purpose of the remainder of this section.

4.3. Reduction to the almost simple case

Let G be an arbitrary unramified connected reductive group over k. Let 𝜋 : G̃ → G be the simply
connected covering of the derived group of G. Let Z denote the center of G. Adjoint buildings of G and
G̃ agree, and we have the parahoric O𝑘 -model G̃ of G̃, corresponding to the same point as G. Moreover,
𝜋 extends uniquely to a map 𝜋 : G̃ → G [BT84, 1.7.6], which, in turn, induces the map 𝜋 : G̃→ G. Put
T̃ = 𝜋−1 (T), T̃ = 𝜋−1 (T ), T̃ = 𝜋−1(T), and similarly for U, Z, etc.

Remark 4.3.1. If 𝑟 = 1, then G̃→ G is the simply connected covering of the derived group of G, and
the situation is precisely as in [DL76, 1.21-1.27]).

The map 𝜋 induces maps on rational points 𝐺 = G̃(F𝑞) → G(F𝑞) = 𝐺, and similarly, 𝑇 → 𝑇 . In
particular, any character 𝜒 of T pulls back to a character 𝜒̃ of 𝑇 . Now the general case of Theorem 3.2.3
follows from the next proposition.

Proposition 4.3.2. If Theorem 4.2.1 holds for G̃, T̃, then it holds for G, T.

Proof. Let S = T × T and 𝑆 = 𝑇 × 𝑇 (resp. S̃ = 𝜋−1(S) and 𝑆 = S̃(F𝑞)). We have the spaces 𝑋 = 𝑆T,U
and 𝑋 = 𝑆T̃,Ũ carrying actions of 𝐺 × 𝑇 and 𝐺 × 𝑇 , respectively. Moreover, we also have the quotients
Σ = (𝑋 × 𝑋)/𝐺 and Σ̃ = (𝑋 × 𝑋)/𝐺 acted on by S and 𝑆, respectively. The 𝐺 × 𝑇-action on X factors
through the action of the quotient 𝐺 ×𝑍 𝑇 = 𝐺 × 𝑇/{(𝑧, 𝑧−1) : 𝑧 ∈ 𝑍}, which, in turn, extends to an
action of the bigger group (G ×Z T)𝐹 given by the same formula. Similarly, the S-action on Σ factors
through an action of 𝑆/𝑍 (Z embedded diagonally), which extends to an action of (S/Z)𝐹 given by
same formula. These two extensions of actions also hold when we put a (̃·) over each of the objects.
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Recall the notion of the induced space from [DL76, 1.24]: if 𝛼 : 𝐴 → 𝐵 is a homomorphism of
finite groups, and Y a space on which A acts, then the induced space Ind𝐵𝐴𝑌 = Ind𝛼𝑌 is the (unique
up to unique isomorphism) B-space I, provided with an A-equivariant map 𝑌 → 𝐼, which satisfies
Hom𝐵 (𝐼, 𝑉) = Hom𝐴(𝑌,𝑉) for any B-space V.

Lemma 4.3.3. Let 𝛾 : (S̃/Z̃)𝐹 → (S/Z)𝐹 be the natural map induced by 𝜋. Then Σ = Ind𝛾Σ̃. Moreover,
for 𝑣 ∈ 𝑊 , we have Σ𝑣 = Ind𝛾Σ̃𝑣 .

Proof. We have the natural map 𝛼 : (S̃×Z̃ G̃)𝐹 → (S×Z G)𝐹 . Kernel and cokernel of 𝛼 are canonically
isomorphic to the kernel and cokernel of 𝛽 : S̃𝐹 → S𝐹 (same argument as [DL76, 1.26] with S instead
of T). One checks that 𝑋 = IndT

𝐹

T̃𝐹
𝑋 . Thus, similar as in [DL76, 1.25],

𝑋 × 𝑋 = Ind𝛽𝑋 × 𝑋 = Ind𝛼𝑋 × 𝑋. (11)

Now, we have the commutative diagram with exact rows:

1 �� G̃𝐹 ��

��

(S̃ ×Z̃ G̃)𝐹 ��

𝛼

��

(S̃/Z̃)𝐹 ��

𝛾

��

1

1 �� G𝐹 �� (S ×Z G)𝐹 �� (S/Z)𝐹 �� 1

(12)

which is obtained from the same diagram for the algebraic groups (with all F’s removed) by taking
Galois cohomology and using Lang’s theorem and connectedness of G, G̃. Now the first claim of the
lemma formally follows from (12) and (11), using that Σ = (𝑋 × 𝑋)/G𝐹 and Σ̃ = (𝑋 × 𝑋)/G̃𝐹 . Let
(𝑋 × 𝑋)𝑣 ⊆ 𝑋 × 𝑋 be the preimage of Σ𝑣 under 𝑋 × 𝑋 � Σ𝑣 , and similarly for (𝑋 × 𝑋)𝑣 . The
same argument as above shows that to prove the second claim of the lemma it suffices to show that
(𝑋 × 𝑋)𝑣 = Ind𝛽 (𝑋 × 𝑋)𝑣 . Both are locally closed subvarieties of 𝑋 × 𝑋 = Ind𝛽 (𝑋 × 𝑋) (the latter
by functoriality of Ind). Let now (𝑔, 𝑔′) ∈ 𝑋 × 𝑋 , and let (𝜏, 𝜏′) ∈ S, (𝑔̃, 𝑔̃′) ∈ 𝑋 × 𝑋 be such that
(𝑔, 𝑔′) = (𝜋(𝑔̃)𝜏, 𝜋(𝑔̃′)𝜏′). WritingG𝑣 := pr−1(U1 	𝑣T1U

′
1) ⊆ G and similarly for G̃𝑣 ⊆ G̃, and recalling

(7) and (8), we have

(𝑔, 𝑔′) ∈ (𝑋 × 𝑋)𝑣 ⇐⇒ 𝑔−1𝑔′ ∈ G𝑣

⇐⇒ 𝜏−1𝜋(𝑔̃)−1𝜋(𝑔̃′)𝜏′ ∈ G𝑣

⇐⇒ 𝜏−1𝜋(𝑔̃−1𝑔̃′)𝜏′ ∈ G𝑣

⇐⇒ 𝑥̃−1𝑥̃ ′ ∈ G̃𝑣

⇐⇒ (𝑔̃, 𝑔̃′) ∈ (𝑋 × 𝑋)𝑣 ,

where in the fourth step we used that TG𝑣T = G𝑣 and that 𝜋−1(G𝑣 ) = G̃𝑣 . Thus, Ind𝛽 (𝑋 × 𝑋)𝑣 and
(𝑋 × 𝑋)𝑣 agree on geometric points, and as both are locally closed perfect subschemes of 𝑋 × 𝑋 , they
must be equal. �

However, if 𝑣 ∈ 𝑊 , then we also have ( 	𝑣T)𝐹 = Ind𝛾 ( 	𝑣T̃)𝐹 as (S/Z)𝐹 -varieties. Therefore, Proposi-
tion 4.3.2 follows from Lemma 4.3.3. �

Assume now that G is semisimple and simply connected. In this case, there is some 𝑠 ≥ 1 such
that G �

∏𝑠
𝑖=1 G𝑖 , where each G𝑖 is an almost simple and simply connected unramified reductive k-

group. We have then similar product decompositions for the Bruhat–Tits buildings, the parahoric models
G � ∏

𝑖 G𝑖 , their Moy–Prasad filtrations, the maximal tori, their Weyl groups, the unipotent radicals
of the Borels, etc. Upon applying the functor G ↦→ 𝐿+G/𝐿+G (𝑟−1)+, this induces an isomorphism
𝑋T,U �

∏
𝑖 𝑋T𝑖 ,U𝑖 , and finally an isomorphism Σ �

∏
𝑖 Σ𝑖 (with obvious notation), equivariant for the
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action of 𝑇 ×𝑇 =
∏

𝑖 (𝑇𝑖 ×𝑇𝑖). Applying the Künneth formula shows that Theorem 4.2.1 holds for G,T
whenever it holds for all G𝑖 , T𝑖 .

Finally, if G is almost simple and simply connected, then there is some 𝑚 ≥ 1, and an absolutely
almost simple group Ĝ over 𝑘𝑚, the degree m subextension of 𝑘̆/𝑘 , such that G � Res𝑘𝑚/𝑘Ĝ is the
restriction of scalars of Ĝ. We thus may assume that G = Res𝑘𝑚/𝑘Ĝ. The Bruhat–Tits buildingsℬ(G, 𝑘)
and ℬ(Ĝ, 𝑘𝑚) are canonically isomorphic. Let x be a vertex of ℬ(G, 𝑘) with attached parahoric O𝑘 -
model G of G, and let x also denote the corresponding vertex of ℬ(Ĝ, 𝑘𝑚), with attached parahoric
O𝑘𝑚 -model Ĝ of Ĝ. Then there is a canonical isomorphism G = ResO𝑘𝑚 /O𝑘

Ĝ inducing the identity on
generic fibers [HR20, Prop. 4.7]. Reducing modulo𝜛𝑟 and applying [BGA18, Thm. 10.2] (with 𝑒 = 1),
we deduce a canonical identificationG = ResF𝑞𝑚/F𝑞 Ĝ, whereG, Ĝ are attached to G, Ĝ as in Section 2.5.

We have T = Res𝑘𝑚/𝑘 T̂ for a Coxeter torus of Ĝ/𝑘𝑚, and we may identify𝑊 =
∏𝑚

𝑖=1𝑊 , where𝑊 is
the Weyl group of T̂. Furthermore, under this identification, one can assume that F acts by 𝐹 ((𝑤𝑖)𝑚𝑖=1) =

(𝐹 (𝑤𝑚), 𝑤1, . . . , 𝑤𝑚−1), where 𝐹 is the Frobenius of𝑊 . In particular,𝑊𝐹 = {(𝑤1, . . . , 𝑤1) : 𝐹 (𝑤1) =
𝑤1} � (𝑊)𝐹 . Choose U such that 𝐹 (U) = 𝑐U, where 𝑐 = (𝑐̂, 1, . . . , 1) ∈ 𝑊 and 𝑐̂ ∈ 𝑊 is the twisted
Coxeter element of 𝑊 satisfying 𝐹 (Û) = 𝑐̂Û. Then (T,U) is a Coxeter pair. Now, if we consider the
decomposition G

F𝑞
�
∏𝑚

𝑖=1 ĜF𝑞 , the equation 𝑥𝐹 (𝑦) = 𝑦𝑥 ′ for (𝑥, 𝑥 ′, 𝑦) ∈ U × U × G can be written

(𝑥1, . . . , 𝑥𝑚) (𝐹 (𝑦𝑚), 𝑦1, . . . , 𝑦𝑚−1) = (𝑦1, . . . , 𝑦𝑚) (𝑥
′
1, . . . , 𝑥

′
𝑚),

which, in turn, is equivalent to

𝑥̂𝐹 (𝑦1) = 𝑦1𝑥̂
′ and ∀𝑖 ∈ {2, . . . , 𝑚} 𝑦𝑖 = 𝑥𝑖𝑦𝑖−1 (𝑥

′
𝑖)
−1,

where 𝑥̂ := 𝑥1𝐹 (𝑥𝑚𝑥𝑚−1 . . . 𝑥2) and 𝑥̂ ′ := 𝑥 ′1𝐹 (𝑥
′
𝑚𝑥

′
𝑚−1 . . . 𝑥

′
2). Therefore, we can remove all the 𝑦𝑖’s for

𝑖 ≥ 2 to show that

Σ = {((𝑥𝑖), (𝑥
′
𝑖), 𝑦1) ∈ U × U × Ĝ : 𝑥̂𝐹 (𝑦1) = 𝑦1𝑥̂

′}.

This scheme lies over the scheme Σ̂ = {(𝑥̂, 𝑥̂ ′, 𝑦1) ∈ Û × Û × Ĝ : 𝑥̂𝐹 (𝑦1) = 𝑦1𝑥̂
′} attached to Ĝ, via the

natural map (𝑥𝑖), (𝑥
′
𝑖), 𝑦1 ↦→ (𝑥̂, 𝑥̂ ′, 𝑦1). All fibers of this map are isomorphic to the perfection of a fixed

affine space of some dimension, so that 𝐻∗
𝑐 (Σ) = 𝐻

∗
𝑐 (Σ̂). This shows that Theorem 4.2.1 holds for G

whenever it holds for Ĝ.
Summarizing the results obtained in this section, we have that Theorem 4.2.1 holds whenever it

holds for any absolutely almost simple group. In particular, we shall, and we will, only consider the case
where W is irreducible in Sections 6 and 7.

5. Extensions of action

Throughout this section, we work in the general setup of Section 2.4. We fix two arbitrary pairs (T,U),
(T′,U′) with x ∈ A(T, 𝑘) ∩ A(T′, 𝑘). Then we have the corresponding subgroups U,U′ ⊆ G and for
𝑣 ∈ 𝑊 (T1,T

′
1), the scheme Σ𝑣 = U,U

′
Σ𝑣 as in (8). Pushing further the ideas from [DL76, (6.6.2)] and

[CI23, §4.3 and §4.4], we will extend the action of the finite group 𝑇 ×𝑇 ′ on Σ𝑣 to the actions of various
bigger groups.

5.1. Lusztig’s extension

First, we have the extension of action due to Lusztig (and a minimal variation of it). The geometric
points G1(F𝑞) of the group G1 = ker(G → G1) can be written as a product of all ‘root subgroups’
U𝛼 (F𝑞), 𝛼 ∈ Φ(T,G) contained in it, and these can be taken in any order [BT72, (6.4.48)], so we have
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pr−1 (U1 	𝑣T
′
1U

′
1) = U 	𝑣G

1T′U′

= U 	𝑣
[
(𝑣

−1
U)1(𝑣

−1
U− ∩ U′−)1U′1T′1

]
T′U′

= U 	𝑣T′K1U′,

where we put

K := KU,U′,𝑣 := 𝑣−1
U− ∩ U′−.

Then Σ𝑣 can be rewritten as

Σ𝑣 = {(𝑥, 𝑥 ′, 𝑦) ∈ Σ : 𝑦 ∈ U 	𝑣T′K1U′}.

Consider

Σ̂𝑣 = {(𝑥, 𝑥 ′, 𝑦′, 𝜏, 𝑧, 𝑦′′) ∈ 𝐹U × 𝐹U′ × U × T′ × K1 × U′ : 𝑥𝐹 (𝑦′ 	𝑣𝜏𝑧𝑦′′) = 𝑦′ 	𝑣𝜏𝑧𝑦′′𝑥 ′}, (13)

with an action of 𝑇 × 𝑇 ′ given by

(𝑡, 𝑡 ′) : (𝑥, 𝑥 ′, 𝑦′, 𝜏, 𝑧, 𝑦′′) ↦→ (𝑡𝑥𝑡−1, 𝑡 ′𝑥 ′𝑡 ′−1, 𝑡𝑦′𝑡−1, 	𝑣−1𝑡 	𝑣𝜏𝑡 ′, 𝑡 ′𝑧𝑡 ′−1, 𝑡 ′𝑦′′𝑡 ′−1).

Then we have an obvious 𝑇 × 𝑇 ′-equivariant map Σ̂𝑣 → Σ𝑣 , (𝑥, 𝑥 ′, 𝑦′, 𝜏, 𝑧, 𝑦′′) ↦→ (𝑥, 𝑥 ′, 𝑦′ 	𝑣𝜏𝑧𝑦′′),
which is a Zariski-locally trivial fibration with fibers isomorphic to the perfection of a fixed affine space.
Then the ℓ-adic Euler characteristic does not change, so that we have an equality of virtual 𝑇 × 𝑇 ′-
modules

𝐻∗
𝑐 (Σ𝑣 ) = 𝐻

∗
𝑐 (Σ̂𝑣 ). (14)

Now make the change of variables 𝑥𝐹 (𝑦′) ↦→ 𝑥, 𝑥 ′𝐹 (𝑦′′)−1 ↦→ 𝑥 ′, so that

Σ̂𝑣 � {(𝑥, 𝑥 ′, 𝑦′, 𝜏, 𝑧, 𝑦′′) ∈ 𝐹U × 𝐹U′ × U × T′ × K1 × U′ : 𝑥𝐹 ( 	𝑣𝜏𝑧) = 𝑦′ 	𝑣𝜏𝑧𝑦′′𝑥 ′}. (15)

Lemma 5.1.1 ([Lus04], 1.9). (i) This 𝑇 × 𝑇 ′-action on Σ̂𝑣 extends to an action of the closed subgroup

𝐻𝑣 = {(𝑡, 𝑡 ′) ∈ T × T′ : 	𝑣−1𝑡−1𝐹 (𝑡) 	𝑣 = 𝑡 ′−1𝐹 (𝑡 ′) centralizes K = (𝑣
−1
U ∩ U′)−}

of T × T′, given by

(𝑥, 𝑥 ′, 𝑦′, 𝜏, 𝑧, 𝑦′′) ↦→ (𝐹 (𝑡)𝑥𝐹 (𝑡)−1,𝐹 (𝑡 ′)𝑥 ′𝐹 (𝑡 ′)−1, 𝐹 (𝑡)𝑦′𝐹 (𝑡)−1, . . .

. . . 	𝑣−1𝑡 	𝑣𝜏𝑡 ′−1, 𝑡 ′𝑧𝑡 ′−1, 𝐹 (𝑡 ′)𝑦′′𝐹 (𝑡 ′)−1)

for (𝑡, 𝑡 ′) ∈ T × T′.
(ii) Similarly, the 𝑇 × 𝑇 ′-action on Σ̂𝑣 extends to an action of the closed subgroup

𝐻 ′
𝑣 = {(𝑡, 𝑡 ′) ∈ T × T′ : 𝐹 ( 	𝑣)−1𝑡𝐹 (𝑡)−1𝐹 ( 	𝑣) = 𝑡 ′𝐹 (𝑡 ′)−1 centralizes 𝐹 (K) = 𝐹 (𝑣

−1
U ∩ U′)−}

of T × T′, given by

(𝑡, 𝑡 ′) : (𝑥, 𝑥 ′, 𝑦′, 𝜏, 𝑧, 𝑦′′) ↦→ (𝑡𝑥𝑡−1, 𝑡 ′𝑥 ′𝑡 ′−1, 𝑡𝑦′𝑡−1, 	𝑣−1𝑡 	𝑣𝜏𝑡 ′−1, 𝑡 ′𝑧𝑡 ′−1, 𝑡 ′𝑦′′𝑡 ′−1).

Proof. (ii) is proven in [Lus04, 1.9]. The proof of part (i) is completely analogous. �
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5.2. Another extension of action

To extend the action differently, we replace the resolution Σ̂𝑣 → Σ𝑣 by a different one. For that purpose,
note that the (F𝑞-points of the) closed subgroup

(𝑣
−1
U− ∩ U′−)1 · (𝑣

−1
U− ∩ U′) (16)

of 𝑣−1
U− can be described as being cut out by a certain concave function on Φ(T,G). More precisely,

it is equal to the quotient of𝑈 𝑓 (in the sense of Bruhat–Tits [BT72, §6.2]) with 𝑓 : Φ∪ {0} → R̃ being
the function

𝑓 (𝛼) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞ if 𝛼 = 0 or 𝛼 ∈ Φ(T, 𝑣−1 U)

0 if 𝛼 ∈ Φ(T, 𝑣−1 U ∩ U′)

1 if 𝛼 ∈ Φ(T, 𝑣−1 U ∩ U′−)

by the normal subgroup ker(𝐿+G → G𝑟 ) (F𝑞) ∩𝑈 𝑓 (which is itself of the form𝑈 𝑓 ′ for a further concave
function 𝑓 ′). By [BT72, 6.4.48], the order of the roots in the product expression appearing in (16) can
be chosen arbitrary; thus, the group (16) is also equal to

(𝑣
−1
U− ∩ U′− ∩ 𝐹U′−)1 · (𝑣

−1
U− ∩ U′ ∩ 𝐹U′−) · (𝑣

−1
U− ∩ U′− ∩ 𝐹U′)1 · (𝑣

−1
U− ∩ U′ ∩ 𝐹U′) (17)

= (𝑣
−1
U− ∩ 𝐹U′−)′ · (𝑣

−1
U− ∩ 𝐹U′)′,

where (𝑣
−1
U− ∩ 𝐹U′−)′ denotes the closed subgroup of 𝑣−1

U− ∩ 𝐹U′− determined by the appropriate
concave function on roots (and similarly for (𝑣−1

U− ∩ 𝐹U′)′). Then on F𝑞-points, we have

pr−1(U1 	𝑣T
′
1U

′
1) = pr−1 (U1 	𝑣T

′
1(

𝑣−1
U−

1 ∩ U′
1))

= U 	𝑣T′G1(𝑣
−1
U− ∩ U′)

= U 	𝑣T′(𝑣
−1
U− ∩ U′−)1(𝑣

−1
U− ∩ U′),

using that G1(F𝑞) decomposes into the product of ‘root subgroups’ U𝛼 (F𝑞) contained in it, taken in
any order. Using this and the expression (17) of the group (16), we can rewrite

Σ𝑣 = {(𝑥, 𝑥 ′, 𝑦) ∈ 𝐹U × 𝐹U′ × U 	𝑣T′(𝑣
−1
U− ∩ 𝐹U′−)′(𝑣

−1
U− ∩ 𝐹U′)′ : 𝑥𝐹 (𝑦) = 𝑦𝑥 ′}.

Now consider

Σ̃𝑣 := {(𝑥, 𝑥 ′, 𝑦′, 𝜏, 𝑧1, 𝑦
′′
1 ) ∈ 𝐹U × 𝐹U′ × U × T′ × (𝑣

−1
U− ∩ 𝐹U′−)′ × (𝑣

−1
U− ∩ 𝐹U′)′ :

𝑥𝐹 (𝑦′ 	𝑣𝜏𝑧1𝑦
′′
1 ) = 𝑦

′ 	𝑣𝜏𝑧1𝑦
′′
1 𝑥

′},

with 𝑇 × 𝑇 ′-action given by

(𝑡, 𝑡 ′) : (𝑥, 𝑥 ′, 𝑦′, 𝜏, 𝑧1, 𝑦′′1 ) ↦→ (𝑡𝑥𝑡−1, 𝑡 ′𝑥 ′𝑡 ′−1, 𝑡𝑦′𝑡−1, 	𝑣−1𝑡 	𝑣𝜏𝑡 ′, 𝑡 ′𝑧1𝑡
′−1, 𝑡 ′𝑦′′1 𝑡

′−1).

Then the map Σ̃𝑣 → Σ𝑣 , (𝑥, 𝑥 ′, 𝑦′, 𝜏, 𝑧1, 𝑦′′1 ) ↦→ (𝑥, 𝑥 ′, 𝑦′ 	𝑣𝜏𝑧1𝑦
′′
1 ) is a 𝑇 ×𝑇 ′-equivariant Zariski-locally

trivial fibration, with fibers isomorphic to the perfection of some fixed affine space. In particular, we
again have an equality of virtual 𝑇 × 𝑇 ′-modules

𝐻∗
𝑐 (Σ𝑣 ) = 𝐻

∗
𝑐 (Σ̃𝑣 ). (18)
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Now we make the change of variables 𝑥𝐹 (𝑦′) ↦→ 𝑥, 𝑦′′1 𝑥
′ ↦→ 𝑥 ′, so that

Σ̃𝑣 := {(𝑥, 𝑥 ′, 𝑦′, 𝜏, 𝑧1, 𝑦
′′
1 ) ∈ 𝐹U × 𝐹U′ × U × T′ × (𝑣

−1
U− ∩ 𝐹U′−)′ × (𝑣

−1
U− ∩ 𝐹U′)′ :

𝑥𝐹 ( 	𝑣𝜏𝑧1𝑦
′′
1 ) = 𝑦

′ 	𝑣𝜏𝑧1𝑥
′},

with the action of 𝑇 × 𝑇 ′ given by the same formula as before.

Lemma 5.2.1. (i) The action of 𝑇 × 𝑇 ′ on Σ̃𝑣 extends to an action of the closed subgroup

𝐻 ′′
𝑣 = {(𝑡, 𝑡 ′) ∈ T × T′ : 	𝑣−1𝐹−1 (𝑡)−1𝑡 	𝑣 = 𝑡 ′−1𝐹−1(𝑡 ′) centralizes 𝑣−1

U− ∩ 𝐹U′−},

of T × T′ given by

(𝑡, 𝑡 ′) : (𝑥, 𝑥 ′, 𝑦′, 𝜏, 𝑧1, 𝑦′′1 ) ↦→ (𝑡𝑥𝑡−1, 𝑡 ′𝑥 ′𝑡 ′−1, 𝑡𝑦′𝑡−1, 	𝑣−1𝑡 	𝑣𝜏𝑡 ′−1, 𝑡 ′𝑧1𝑡
′−1, 𝐹 (𝑡 ′)𝑦′′1 𝐹 (𝑡

′)−1).

(ii) The action of 𝑇 × 𝑇 ′ on Σ̃𝑣 extends to an action of the closed subgroup

𝐻 ′′′
𝑣 = {(𝑡, 𝑡 ′) ∈ T × T′ : 	𝑣−1𝐹−1(𝑡)−1𝑡 	𝑣 = 𝑡 ′−1𝐹−1(𝑡 ′) centralizes 𝑣−1

𝐹U− ∩ U′−},

of T × T′ given by

(𝑡, 𝑡 ′) : (𝑥, 𝑥 ′, 𝑦′, 𝜏, 𝑧1, 𝑦′′1 ) ↦→ (𝑡𝑥𝑡−1, 𝑡 ′𝑥 ′𝑡 ′−1, 𝑡𝑦′𝑡−1, 	𝑣−1𝑡 	𝑣𝜏𝑡 ′−1, 𝑡 ′𝑧1𝑡
′−1, 𝐹−1 (𝑡 ′)𝑦′′1 𝐹

−1 (𝑡 ′)−1).

Proof. The proof is a computation similar to Lemma 5.1.1. �

5.3. An isomorphism

The extensions of actions from Sections 5.1 and 5.2 suffice to prove Theorem 3.2.3 in type 𝐴𝑛, as was
done in [CI23, Thm. 4.1]. The proof was, however, based on a particular combinatorial property of this
type. For the general case, we need the following new idea. One immediately checks that

𝛼 = U,U
′

𝛼 : U,U
′

Σ → U,𝐹U′Σ

(𝑥, 𝑥 ′, 𝑦) ↦→ (𝑥, 𝐹 (𝑥 ′), 𝑦𝑥 ′)

is an 𝑇 × 𝑇 ′-equivariant isomorphism. In general, it does not preserve the locally closed pieces Σ𝑣 .
However, we have the following lemma.

Lemma 5.3.1. For 𝑣, 𝑤 ∈ 𝑊 (T1,T
′
1), let 𝑌𝑣,𝑤 ⊆ U,𝐹U

′
Σ̂𝑤 be defined by the Cartesian diagram

𝑌𝑣,𝑤 ��

��

U,𝐹U′ Σ̂𝑤

��
𝛼(U,U

′
Σ𝑣 ) ∩

U,𝐹U′Σ𝑤
�� U,𝐹U′Σ𝑤

where the left lower entry is the scheme-theoretic intersection inside U,𝐹U′Σ𝑤 . Then𝑌𝑣,𝑤 is stable under
the action of 𝐻𝑤 on U,𝐹U′ Σ̂𝑤 defined in Lemma 5.1.1(i).

Proof. In terms of the presentation (13) of U,𝐹U′ Σ̂𝑤 where we denote the coordinates by
𝑥1, 𝑥

′
1, 𝑦

′
1, 𝜏1, 𝑧1, 𝑦

′′
1 , consider the morphism

𝑦′1 	𝑤𝜏1𝑧1𝑦
′′
1 𝐹

−1(𝑥 ′1)
−1 : Σ̂𝑤 → G.
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The subscheme𝑌𝑣,𝑤 is the preimage under this morphism of pr−1(U1 	𝑣T
′
1U

′
1). Now we apply the change

of coordinates (𝑥1𝐹 (𝑦1) ↦→ 𝑥1, 𝑥 ′1𝐹 (𝑦
′′
1 )

−1 ↦→ 𝑥 ′1) from (13) to (15). Then the expression 𝐹−1 (𝑥 ′1)
−1

in the old coordinates gets 𝑦′′−1
1 𝐹−1(𝑥 ′1)

−1 in the new coordinates. Thus, in the new coordinates,
𝑌𝑣,𝑤 ⊆ U,𝐹U

′
Σ̂𝑤 is the preimage under

𝑦 := 𝑦′1 	𝑤𝜏1𝑧1𝐹
−1 (𝑥 ′1)

−1 : Σ̂𝑤 → G

of pr−1 (U1 	𝑣T
′
1U

′
1) ⊆ G. We have to show that for any F𝑞-algebra R and any (𝑡, 𝑡 ′) ∈ 𝐻𝑤 (𝑅), the map

(𝑡, 𝑡 ′) : 𝑌𝑣,𝑤,𝑅 → U,𝐹U′ Σ̂𝑤,𝑅 factors through 𝑌𝑣,𝑤,𝑅 ⊆ U,𝐹U
′
Σ̂𝑤,𝑅 – that is, 𝑦 ◦ (𝑡, 𝑡 ′) : 𝑌𝑣,𝑤,𝑅 → G𝑅

factors through the locally closed subset pr−1(U1 	𝑣T
′
1U

′
1)𝑅 ⊆ G𝑅. It suffices to do so on points. Let

(𝑋1, 𝑋
′
1, 𝑌

′
1 , 𝑇1, 𝑍1, 𝑌

′′
1 ) ∈ 𝑌𝑣,𝑤 (𝑅

′) for some R-algebra 𝑅′. Then

𝑦 ◦ (𝑡, 𝑡 ′) (𝑋1, 𝑋
′
1, 𝑌

′
1 , 𝑇1, 𝑍1, 𝑌

′′
1 ) = 𝑦(𝐹 (𝑡)𝑋1𝐹 (𝑡)

−1, 𝐹 (𝑡 ′)𝑋 ′
1𝐹 (𝑡

′)−1, 𝐹 (𝑡)𝑌 ′
1𝐹 (𝑡)

−1,

	𝑤−1𝑡 	𝑤𝑇1𝑡
′−1, 𝑡 ′𝑍1𝑡

′−1, 𝐹 (𝑡 ′)𝑌 ′′
1 𝐹 (𝑡

′)−1)

= 𝐹 (𝑡)𝑌 ′
1𝐹 (𝑡)

−1𝑡 	𝑤𝑇1𝑍1𝐹
−1 (𝑋 ′

1)
−1𝑡 ′−1

= 𝐹 (𝑡)𝑌 ′
1𝐹 (𝑡)

−1︸�����������︷︷�����������︸
∈U(𝑅′)

· 𝑡︸︷︷︸
∈T(𝑅′)

· 𝑌 ′−1
1︸︷︷︸

∈U(𝑅′)

·𝑌 ′
1 	𝑤𝑇1𝑍1𝐹

−1 (𝑋 ′
1)

−1︸�������������������︷︷�������������������︸
∈pr−1 (U1 	𝑣T

′
1U

′
1) (𝑅

′)

by assumption

· 𝑡 ′−1︸︷︷︸
∈T′ (𝑅′)

.

The last expression clearly lies in pr−1(U1 	𝑣T
′
1U

′
1) (𝑅

′), and we are done. �

Let us also look at the converse situation. The inverse of 𝛼 is given by (𝑥1, 𝑥
′
1, 𝑦1) ↦→

(𝑥1, 𝐹
−1 (𝑥 ′1), 𝑦1𝐹

−1 (𝑥 ′1)
−1).

Lemma 5.3.2. For 𝑣, 𝑤 ∈ 𝑊 (T1,T
′
1) let 𝑍𝑣,𝑤 ⊆ U,U

′
Σ̂𝑣 be defined by the Cartesian diagram

𝑍𝑣,𝑤 ��

��

U,U′ Σ̂𝑣

��
U,U′Σ𝑣 ∩ 𝛼

−1(U,𝐹U
′
Σ𝑤 ) �� U,U′Σ𝑣

where the left lower entry is the scheme-theoretic intersection inside U,𝐹U′Σ𝑤 . Then 𝑍𝑣,𝑤 is stable
under the action of 𝐻 ′

𝑣 on U,U′ Σ̂𝑣 defined in Lemma 5.1.1(ii).

Proof. In terms of the presentation (13) of U,U′ Σ̂𝑣 where we denote the coordinates by 𝑥, 𝑥 ′, 𝑦′, 𝜏, 𝑧, 𝑦′′,
consider the morphism

𝑦′ 	𝑣𝜏𝑧𝑦′′𝑥 ′ : Σ̂𝑣 → G.

Then 𝑍𝑣,𝑤 is the preimage under this morphism of pr−1 (U1 	𝑤T
′
1𝐹U

′
1). Now we make the change of

coordinates (𝑥𝐹 (𝑦) ↦→ 𝑥, 𝑥 ′𝐹 (𝑦′′)−1 ↦→ 𝑥 ′) from (13) to (15). Then the expression 𝑥 ′ in the old
coordinates becomes 𝑥 ′𝐹 (𝑦′′) in the new coordinates. Hence, in the new coordinates, 𝑍𝑣,𝑤 is the
preimage of pr−1(U1 	𝑤T

′
1𝐹U

′
1) under

𝑦1 := 𝑦′ 	𝑣𝜏𝑧𝑦′′𝑥 ′𝐹 (𝑦′′) : Σ̂𝑣 → G.

Let R be an F𝑞-algebra and (𝑡, 𝑡 ′) ∈ 𝐻 ′
𝑣 (𝑅). As in the proof of Lemma 5.3.1, we have to show

that 𝑦1 ◦ (𝑡, 𝑡 ′) : 𝑍𝑣,𝑤,𝑅 → G𝑅 factors through pr−1 (U1 	𝑤T
′
1𝐹U

′
1)𝑅 ⊆ G𝑅. Let (𝑋, 𝑋 ′, 𝑌 ′, 𝑇, 𝑍,𝑌 ′′) ∈
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𝑍𝑣,𝑤 (𝑅
′) for some R-algebra 𝑅′. Then

𝑦1 ◦ (𝑡, 𝑡 ′) (𝑋, 𝑋 ′, 𝑌 ′, 𝑇, 𝑍,𝑌 ′′) = 𝑦1 (𝑡𝑋𝑡
−1, 𝑡 ′𝑋 ′𝑡 ′−1, 𝑡𝑌 ′𝑡−1, 	𝑣−1𝑡 	𝑣𝑇𝑡 ′−1, 𝑡 ′𝑍𝑡 ′−1, 𝑡 ′𝑌 ′′𝑡 ′−1)

= 𝑡𝑌 ′ 	𝑣𝑇𝑍𝑌 ′′𝑋 ′𝑡 ′−1𝐹 (𝑡 ′)𝐹 (𝑌 ′′)𝐹 (𝑡 ′)−1

= 𝑡︸︷︷︸
∈T(𝑅′)

·𝑌 ′ 	𝑣𝑇𝑍𝑌 ′′𝑋 ′𝐹 (𝑌 ′′)︸������������������︷︷������������������︸
∈pr−1 (U1 	𝑤T′1𝐹U

′
1) (𝑅

′)

by assumption

· 𝐹 (𝑌 ′′)−1︸����︷︷����︸
∈𝐹U′ (𝑅′)

· 𝑡 ′−1︸︷︷︸
∈T′ (𝑅′)

· 𝐹 (𝑡 ′)𝐹 (𝑌 ′′)𝐹 (𝑡 ′)−1︸�������������������︷︷�������������������︸
∈𝐹U′ (𝑅′)

.

The last expression lies in pr−1 (U1 	𝑤T
′
1𝐹U

′
1) (𝑅

′), and we are done. �

Remark 5.3.3. There seem to be no analogues of these lemmas for Σ̃𝑣 (from Section 5.2) instead of Σ̂𝑣 .

6. Regularity of certain subgroups

The purpose of this section is to show that the groups 𝐻𝑣 , 𝐻
′
𝑣 , . . . produced in Section 5 contain

connected F𝑞-reductive subgroups under which the varieties Σ̂𝑣 and Σ̃𝑣 have finitely many fixed points.
This will be the key for computing their cohomology, as given in Theorem 4.2.1. Note that this strategy
was already used in [Lus04, 1.9(e)], but with much bigger versions of 𝐻𝑣 .

Throughout this section, we work in the setup of Theorem 3.2.3. In particular, G is unramified, x is
hyperspecial, and (T,U), (T′,U′) are Coxeter pairs with x = xT = xT′ . Thanks to the reduction results
in Section 4.3 we will assume in addition that G is absolutely almost simple over k (i.e., that the Dynkin
diagram of the split group G𝑘̆ is connected).

6.1. Pull-back of a cocharacter under the Lang map

We may identify the groups of cocharacters 𝑋∗(T1), 𝑋∗(T), and similarly for characters. The Frobenius
F acts on 𝑋∗(T1), 𝑋∗(T1), and these actions induce Q-linear automorphisms of the Q-vector spaces
𝑋∗(T1)Q, 𝑋∗(T1)Q. Let Gad be the adjoint quotient of G and Tad the image of T in Gad, such that 𝑋∗(Tad)
is a quotient of 𝑋∗(T), and 𝑋∗(Tad) ⊆ 𝑋∗(T).

For 𝜒 ∈ 𝑋∗(T1), we are interested in (the connected component of the) subgroup

𝐻𝜒 = {𝑡 ∈ T1 : 𝑡−1𝐹 (𝑡) ∈ im(𝜒 : G𝑚 → T1)} ⊆ T1. (19)

Lemma 6.1.1. Let 𝜒 ∈ 𝑋∗(T1). There exists 0 ≠ 𝜇 ∈ 𝑋∗(T1) such that 𝐹𝜇− 𝜇 ∈ Q · 𝜒. Such 𝜇 is unique
up to a scalar and we have 𝐻◦

𝜒 = im(𝜇).
Proof. By [DM91, Prop. 13.7], the map 𝐹 − 1: 𝑋∗(T1) → 𝑋∗(T1) is injective and has finite cokernel.
Therefore, there exists 0 ≠ 𝜇 ∈ 𝑋∗(T1), unique up to a scalar, such that 𝐹𝜇− 𝜇 ∈ Q · 𝜒. This implies that
im(𝜇) is a one-dimensional subtorus of T1 contained in 𝐻𝜒. Since 𝐻𝜒 is one-dimensional, this forces
im(𝜇) = 𝐻◦

𝜒. �

Recall from §2.7 that {𝛼∗ : 𝛼 ∈ Δ} ⊆ 𝑋∗(T
ad
1 )Q is the set of fundamental coweights, defined as the

basis of 𝑋∗(Tad
1 )Q dual to Δ .

Proposition 6.1.2. Assume Condition (3) holds for q and G. Then there exists a set of simple roots
Δ ⊂ Φ(T,G) such that
(i) F acts on 𝑋∗(T) as 𝑞𝑐𝜎 where 𝜎 satisfies 𝜎(Δ) = Δ , 𝑐 ∈ 𝑊 and 𝑐𝜎 is a twisted Coxeter element

of (𝑊, 𝜎) such that

ℓ(𝑐𝜎(𝑐) · · ·𝜎𝑖−1(𝑐)) = 𝑖ℓ(𝑐)

for all 0 ≤ 𝑖 ≤ ℎ/2, where h is the Coxeter number of (𝑊, 𝜎).
(ii) For all 𝛼 ∈ Δ , and all 𝛾 ∈ Φ(T,G), we have 𝐻◦

𝛼∗ � ker(𝛾).
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Proof. Let 𝜏 = 𝑞−1𝐹. Then the order of 𝜏 is h. Let 𝑔 ∈ G be such that T0 = 𝑔T. By assumption on T,
the endomorphism 𝑔𝜏 of 𝑋∗(T0) lies in the𝑊0-conjugacy class of twisted Coxeter elements (this class
is unique by [Spr74, Thm. 7.6]). Therefore, the same holds for 𝜏 in W. Let 𝜁 = exp(2𝜋i/ℎ). By [Spr74,
Thm. 7.6], the 𝜁-eigenspace of 𝜏 on 𝑋∗(Tad)C is one-dimensional and is not contained in any reflection
hyperplane. Let 0 ≠ 𝑣 ∈ 𝑋∗(Tad)C be an eigenvector of 𝜏 for the eigenvalue 𝜁 such that Re(〈𝑣, 𝛼∨〉) ≠ 0
for all 𝛼 ∈ Φ(T,G). Then as shown in the proof [Spr74, Prop. 4.10], the condition Re(〈𝑣, 𝛼∨〉) > 0
defines a set of positive roots Φ+ ⊂ Φ(T,G) – hence, a basis Δ . Let 𝑐 ∈ 𝑊 be the unique element in W
such that 𝑐(Δ) = 𝜏(Δ) and 𝜎 = 𝑐−1𝜏. Then 𝜎(Δ) = Δ and (i) follows from [BM97, Prop. 6.5].

Let 𝛼 ∈ Δ be a simple root and 𝛾 ∈ Φ(T,G) be any root. The orbit of 𝛾 under 𝜏 = 𝑞−1𝐹 = 𝑐𝜎 has
exactly h elements; see [Spr74, Thm. 7.6]. If 𝑉 = 〈𝜏𝑖 (𝛾) : 𝑖 = 0, . . . , ℎ − 1〉 is the C-vector subspace
of 𝑋∗(Tad)C spanned by the orbit, then 𝜏 restricts to an automorphism of V of order h. In particular, it
must contain the eigenvector v defined above. Since 𝛼∗ is a non-negative combination of simple coroots,
we deduce that Re(〈𝑣, 𝛼∗〉) > 0, which forces 〈𝜏𝑖 (𝛾), 𝛼∗〉 ≠ 0 for some i. Let 𝑖0 ∈ {0, . . . , ℎ − 1} be
maximal such that 〈𝜏𝑖 (𝛾), 𝛼∗〉 ≠ 0. Then

ℎ−1∑
𝑖=0

〈𝐹𝑖 (𝛾), 𝛼∗〉 =
ℎ−1∑
𝑖=0
𝑞𝑖 〈𝜏𝑖 (𝛾), 𝛼∗〉

= 𝑞𝑖0 〈𝜏𝑖0 (𝛾), 𝛼∗〉 +
𝑖0−1∑
𝑖=0
𝑞𝑖 〈𝜏𝑖 (𝛾), 𝛼∗〉

so that �����
ℎ−1∑
𝑖=0

〈𝐹𝑖 (𝛾), 𝛼∗〉

����� ≥ 𝑞𝑖0 |〈𝜏𝑖0 (𝛾), 𝛼∗〉| −
𝑖0−1∑
𝑖=0
𝑞𝑖 |〈𝜏𝑖 (𝛾), 𝛼∗〉|

≥ 𝑞𝑖0 −

𝑖0−1∑
𝑖=0
𝑞𝑖𝑀 = 𝑞𝑖0 − 𝑀

𝑞𝑖0 − 1
𝑞 − 1

≥ 𝑞𝑖0 − (𝑞 − 1)
𝑞𝑖0 − 1
𝑞 − 1

= 1

since by Condition (3), we have 𝑞 − 1 ≥ 𝑀 . This proves that
∑ℎ−1
𝑖=0 〈𝐹𝑖 (𝛾), 𝛼∗〉 ≠ 0. Now recall that

𝐹ℎ = 𝑞ℎ on 𝑋∗(T). We have (𝐹 − 1)
∑ℎ−1
𝑖=0 𝐹

𝑖 = 𝐹ℎ − 1 = 𝑞ℎ − 1; therefore, (𝐹 − 1) is invertible on
𝑋∗(T)Q and (𝐹 − 1)−1 = (𝑞ℎ − 1)−1 ∑ℎ−1

𝑖=0 𝐹
𝑖 . We deduce that

〈(𝐹 − 1)−1𝛾, 𝛼∗〉 = 〈𝛾, (𝐹 − 1)−1𝛼∗〉 ≠ 0.

Consequently, for any 0 ≠ 𝜇 ∈ (𝐹 − 1)−1Q · 𝛼∗ ∩ 𝑋∗(T), we have 〈𝛾, 𝜇〉 ≠ 0. Using Lemma 6.1.1 we
get 𝐻◦

𝛼∗ = im(𝜇), and we deduce that 𝐻◦
𝛼∗ � ker(𝛾). �

6.2. A consequence

We have the short exact sequence of F𝑞-groups

0 → T1 → T→ T1 → 0,

which is (canonically) split by the Teichmüller lift. Moreover, we have an isomorphism T � T1 × T1
which sends the unipotent part Tunip to T1 and the reductive part Tred to T1. This also applies to T′
instead of T.
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Let now L be a proper Levi subgroup of G containing T, and let 𝑣 ∈ 𝑊 (T1,T
′
1). We will be interested

in the closed subgroup

𝐻L,𝑣 ,𝑟 = {(𝑡, 𝑡 ′) ∈ T × T′ : 𝑡−1𝐹 (𝑡) = 	𝑣𝑡 ′−1𝐹 (𝑡 ′) 	𝑣−1 centralizes L} ⊆ T × T′. (20)

Being affine and commutative, 𝐻L,𝑣 ,𝑟 decomposes into the product of its unipotent and reductive parts,
𝐻L,𝑣 ,𝑟 � 𝐻L,𝑣 ,𝑟 ,unip × 𝐻L,𝑣 ,𝑟 ,red, and we have 𝐻L,𝑣 ,𝑟 ,red ⊆ Tred × T

′
red � T1 × T

′
1.

Proposition 6.2.1. Assume Condition (3) holds for q and G. Suppose that (T,U), (T′,U′) are such that
the corresponding sets of simple roots satisfy the conclusion of Proposition 6.1.2. Let L, v be as above.
Consider the connected component 𝐻◦

L,𝑣 ,𝑟 ,red of the reductive part of 𝐻L,𝑣 ,𝑟 . Let H (resp. 𝐻 ′) denote
the image of 𝐻◦

L,𝑣 ,𝑟 ,red under

𝐻◦
L,𝑣 ,𝑟 ,red ↩→ 𝐻L,𝑣 ,𝑟 → T × T

′ � T1 × T
′
1

pr
� T1,

(resp. the image of the same map with T1 on the right replaced by T′1). Then for all 𝛾 ∈ Φ(T,G), H is
not contained in the subtorus ker(𝛾) ⊆ T1, and similarly for 𝐻 ′ and all 𝛾′ ∈ Φ(T′,G).

Proof. Enlarging L makes its centralizer smaller; hence, we may assume that L is a maximal proper
Levi subgroup containing T. We show only the claim for H; the one for 𝐻 ′ has a similar proof. Let

𝐻L,𝑟 = {𝑡 ∈ T : 𝑡−1𝐹 (𝑡) centralizes L} ⊆ T.

The projection to the first factor 𝐻L,𝑣 ,𝑟 → 𝐻L,𝑟 , (𝑡, 𝑡 ′) ↦→ 𝑡 is surjective (by Lang’s theorem for the
connected group T′), and hence induces also a surjection on the reductive parts and hence also on their
connected components, so it suffices to show that the connected component of

𝐻 ′
1 := im

(
𝐻◦

L,𝑟 ,red ↩→ 𝐻L,𝑟 → T� T1

)
is not contained in ker(𝛾) for any 𝛾 ∈ Φ(T,G).

By maximality of L, there exists a system of simple positive roots Δ1 ⊆ Φ(T,G) and some 𝛼 ∈ Δ1
such that L is generated by T and all U𝛽 , U−𝛽 with 𝛽 ∈ Δ1 \ {𝛼}. Alternatively, we can characterize L
as follows: Δ1 forms a basis of 𝑋∗(Tad)Q, and we have the fundamental coweights {𝛽∗}𝛽∈Δ1 which form
the dual basis of 𝑋∗(Tad)Q. Then L is equal to the centralizer in G of a (any) lift of 𝛼∗ to 𝑋∗(T)Q (again
denoted 𝛼∗). By Proposition 6.1.2, the subgroup 𝐻◦

𝛼∗ of T1 studied in Section 6.1 is not contained in
ker(𝛾) for any 𝛾 ∈ Φ(T,G). Thus, it suffices to show that 𝐻 ′

1 ⊇ 𝐻◦
𝛼∗ .

We have the Teichmüller lift TM: T1 → T, inducing an isomorphism T1
∼
→ Tred onto the reductive

part of T. Restricted to 𝐻◦
𝛼∗ , TM induces an isomorphism TM: 𝐻◦

𝛼∗

∼
→ TM(𝐻◦

𝛼∗ ) onto a subgroup of
Tred.

Lemma 6.2.2. For any 𝑡 ∈ TM(𝐻◦
𝛼∗ ), 𝑡−1𝐹 (𝑡) centralizes U𝛽,𝑟 for all 𝛽 ∈ Φ(T,L), and consequently,

it centralizes L𝑟 . In particular, we have TM(𝐻◦
𝛼∗ ) ⊆ 𝐻L,𝑟 .

Proof of Lemma 6.2.2. Teichmüller lift commutes with Frobenius F; hence, the map 𝑡 ↦→

𝑡−1𝐹 (𝑡) : 𝐻◦
𝛼∗ → im(𝛼∗) induces a map 𝑡 ↦→ 𝑡−1𝐹 (𝑡) : TM(𝐻◦

𝛼∗ ) → TM(im(𝛼∗)). Thus, we have
to show that TM(im(𝛼∗)) ⊆ T centralizes U𝛽,𝑟 .

We have the homomorphism T → Aut(U𝛽) given by the action of T on U𝛽 . The group U𝛽 = U𝛽,𝑟
comes with a filtration by closed subgroups U𝑖𝛽 = ker(U𝛽,𝑟 → U𝛽,𝑖) (0 ≤ 𝑖 ≤ 𝑟), and the action of T𝑟
preserves this filtration (i.e., the above homomorphism factors through a homomorphism

T→ Autfil(U𝛽),
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where Autfil(U𝛽) ⊆ Aut(U𝛽) is the subgroup of automorphisms preserving the filtration). This subgroup
fits into an exact sequence

1 → Autfil,0 (U𝛽) → Autfil(U𝛽) → 𝑄 → 1,

where Autfil,0 (U𝛽) is the subgroup of automorphisms inducing the identity on the graded object gr•U𝛽 =⊕𝑟−1
𝑖=0 U

𝑖
𝛽,𝑖+1, and Q is defined by exactness of the above sequence. The composition

TM(im(𝛼∗)) ⊆ T𝑟 → Autfil (U𝛽)

factors through Autfil,0 (U𝛽). Indeed, the image of TM(im(𝛼∗)) in T1 lies in im(𝛼∗) ⊆ ker(𝛽) (the latter
inclusion holds as 〈𝛽, 𝛼∗〉 = 0); hence, it acts trivially on U𝑖𝛽,𝑖+1 for each 0 ≤ 𝑖 ≤ 𝑟 − 1. But Autfil,0(U𝛽)

is unipotent, whereas 𝑇𝑀 (im(𝛼∗)) � im(𝛼∗) is a torus. Hence, the resulting morphism

TM(im(𝛼∗)) → Autfil,0 (U𝛽)

is trivial. This proves the lemma. �

By Lemma 6.2.2, TM(𝐻◦
𝛼∗ ) ⊆ 𝐻L,𝑟 . Being reductive and connected, TM(𝐻◦

𝛼∗ ) is thus contained
in 𝐻◦

L,𝑟 ,red. This shows that the image of 𝐻◦
L,𝑟 ,red in T1 contains the image of TM(𝐻◦

𝛼∗ ), which is just
𝐻◦
𝛼∗ . �

Corollary 6.2.3. Under the assumptions of Proposition 6.2.1, let 𝐻 (resp. 𝐻 ′) denote the image of the
map

𝐻◦
L,𝑣 ,𝑟 ,red ↩→ 𝐻L,𝑣 ,𝑟 → T × T

′ pr
� T

(resp. the image of the same map with T on the right replaced by T′). Let V be the subgroup of G
corresponding to the unipotent radical V of an arbitrary Borel subgroup of G containing T. Then
V𝐻 = {1} (i.e., the only element of V fixed by the adjoint action of 𝐻 is 1). The analogous statement
holds for T′,V′, 𝐻 ′.

Proof. We prove only the first claim. The proof of the second is similar. Any element of V(F𝑞) has
a unique presentation as a product of elements in the subgroups U𝛾 corresponding to root subgroups
U𝛾 ⊆ G for 𝛾 ∈ Φ(T,V), and this product decomposition is compatible with the adjoint action of T.
This reduces the corollary to the claim that U𝐻𝛾 = {1} for all 𝛾 ∈ Φ(T,V). For the latter, we can use
induction on 1 ≤ 𝑟 ′ ≤ 𝑟: it suffices to show that if 𝑥 ∈ U𝐻𝑖

𝛾,𝑟 and x projects to 1 under U𝛾,𝑟 → U𝛾,𝑟 ′−1,
then it projects to 1 under U𝛾,𝑟 → U𝛾,𝑟 ′ . The adjoint action of T1 on U𝑟 ′−1

𝛾,𝑟 ′ can be described as follows:
fix an isomorphism G𝑎,𝑘̆

∼
→ U𝛾 , which is part of an épinglage for G. It induces an isomorphism

𝑢𝑟−1
𝛾,𝑟 ′ : G𝑎,F𝑞

∼
→ U𝑟

′−1
𝛾,𝑟 ′ , and the adjoint action is given by Ad(𝑡) (𝑢𝑟 ′−1

𝛾,𝑟 ′ (𝑥)) = 𝑢𝑟
′−1
𝛾,𝑟 ′ (𝛾(𝑡)𝑥). Now the

result follows, as the image of 𝐻 in T1 is not contained in ker(𝛾) by Proposition 6.2.1. �

7. Cohomology of Σ

As in Section 6, we assume that G is an unramified absolutely almost simple group. Moreover, we will
assume that Condition (3) holds for G and q. We fix a Coxeter pair (T,U) as in Proposition 6.1.2. In
particular, the action of F on W is given by 𝐹 (𝑤) = 𝑐 · 𝜎(𝑤) · 𝑐−1, where 𝜎 is an automorphism of W
permuting the simple reflections and 𝑐𝜎 is a twisted Coxeter element of (𝑊, 𝜎). The purpose of this
section is to show that (10) holds for such a Coxeter pair. This will imply Theorem 3.2.3 for general
unramified groups.
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7.1. Nonemptyness of cells

We give here conditions for a cell U,U′Σ𝑣 to be empty (see (8) for the definition of the cell). Unlike
Theorem 4.2.1, which is stated in the case where U = U′, we will work here with more general Coxeter
pairs.

Proposition 7.1.1. Let 𝑎 ∈ Z and set U′ := 𝐹𝑎 (U). If 𝑣 ∈ 𝑊 is such that U,U′Σ𝑣 ≠ ∅, then at least one
of the following holds:

(i) 𝑣 ∈ 𝑊𝐹 ;
(ii) 𝑣−1 U ∩ U′ is contained in a proper Levi subgroup of G containing T.

Proof. Recall from Proposition 6.1.2 that 𝐹 = 𝑞𝑐𝜎 with 𝑐𝜎 a twisted Coxeter element. Given 𝑣 ∈ 𝑊 ,
let us consider the condition

𝑣−1B1𝐹 (B1𝑣) ∩ B
′
1𝐹 (B

′
1) ≠ ∅. (21)

From the definition of U,U′Σ𝑣 , we see that if U,U′Σ𝑣 is nonempty, then there exist 𝑥 ∈ 𝐹 (B1), 𝑥 ′ ∈ 𝐹 (B′1)
and 𝑦 ∈ B1𝑣B

′
1 such that 𝑥𝐹 (𝑦) = 𝑦𝑥 ′. Writing 𝑦 = 𝑏𝑣𝑏′ with 𝑏 ∈ B1 and 𝑏′ ∈ B′1, we deduce that

𝑣−1𝑏−1𝑥𝐹 (𝑏𝑣) = 𝑏′𝑥 ′𝐹 (𝑏′)−1 so that (21) holds. Therefore, it is enough to show that if (21) holds for
v, then (i) or (ii) hold as well.

Since 𝐹 (B) = 𝑐B, we have B′1 = 𝐹𝑎 (B1) = 𝑑B1 with 𝑑 = 𝑐𝜎(𝑐) · · ·𝜎𝑎−1(𝑐) = (𝑐𝜎)𝑎𝜎−𝑎. Using
the fact that 𝑑−1𝐹 (𝑑) = 𝜎𝑎 (𝑐)𝑐−1, we get

𝑣−1B1𝐹 (B1𝑣) ∩ B
′
1𝐹 (B

′
1) =

(
𝑣−1B1

𝑐B1𝐹 (𝑣)
)
∩
(
𝑑B1𝑑

−1𝐹 (𝑑)𝑐B1𝐹 (𝑑
−1)

)
=
(
𝑣−1B1𝑐B1𝜎(𝑣)𝑐

−1) ∩ (
𝑑B1𝜎

𝑎 (𝑐)B1𝜎(𝑑
−1)𝑐−1)

= 𝑣−1
( (
B1𝑐B1𝜎(𝑣𝑑)

)
∩
(
𝑣𝑑B1𝜎

𝑎 (𝑐)B1
) )
𝜎(𝑑−1)𝑐−1.

Therefore, (21) is equivalent to (
B1𝑐B1𝜎(𝑣𝑑)

)
∩
(
𝑣𝑑B1𝜎

𝑎 (𝑐)B1
)
≠ ∅,

which, in turn, is equivalent to

(B1𝑐B1𝜎(𝑣𝑑)B1) ∩ (B1𝑣𝑑B1𝜎
𝑎 (𝑐)B1) ≠ ∅. (22)

Let Δ ⊆ Φ(T,G) be the set of simple roots corresponding to U. Since 𝑐𝜎 is a twisted Coxeter
element, there exists a set of representatives of 𝜎-orbits of simple reflections 𝑠1, . . . , 𝑠𝑟 with 𝑟 = |Δ/𝜎 |
such that 𝑐 = 𝑠1𝑠2 · · · 𝑠𝑟 . Given 𝐼 ⊂ {1, . . . , 𝑟}, we will denote by 𝑊𝐼 the smallest 𝜎-stable parabolic
subgroup of W containing 𝑠𝑖 for all 𝑖 ∈ 𝐼 and by 𝑐𝐼 =

∏
𝑖∈𝐼 𝑠𝑖 the element of 𝑊𝐼 obtained from c by

keeping the simple reflections labelled by I. Note that 𝑐𝐼𝜎 is a twisted Coxeter element of (𝑊𝐼 , 𝜎).
Assume that (22) holds. Since c contains each simple reflection at most once, the Bruhat cells B1𝑢B1

contained in B1𝑐B1𝜎(𝑣𝑑)B1 (resp. in B1𝑣𝑑B1𝜎
𝑎 (𝑐)B1) are attached to elements 𝑢 ∈ 𝑊 of the form

𝑢 = 𝑐𝐼𝜎(𝑣𝑑) for some 𝐼 ⊂ {1, . . . , 𝑟} (resp. 𝑢 = 𝑣𝑑𝜎𝑎 (𝑐𝐽 ) for some 𝐽 ⊂ {1, . . . , 𝑟}). Consequently, if
(22) holds, then there exists 𝐼, 𝐽 ⊂ {1, . . . , 𝑟} such that 𝑐𝐼𝜎(𝑣𝑑) = 𝑣𝑑𝜎𝑎 (𝑐𝐽 ). Set 𝑤 := 𝑤0𝑣𝑑 where 𝑤0
is the longest element of W. Since 𝜎(𝑤0) = 𝑤0, we have (𝑤0𝑐𝐼 )𝜎(𝑤) = 𝑤𝜎𝑎 (𝑐𝐽 ). Let 𝐾 ⊂ {1, . . . , 𝑟}
be such that𝑊𝐾 := 𝑤0𝑊𝐼 . Then 𝑤0𝑐𝐼𝜎 is a twisted Coxeter element of𝑊𝐾 (but not necessarily equal to
𝑐𝐾𝜎). By [GP00, Prop. 2.1.7], one can write 𝑤 = 𝑤1𝑥𝑤2 where 𝑥 ∈ 𝑊 is K-reduced-J (i.e., of minimal
length in𝑊𝐾 𝑥𝑊𝐽 ) and (𝑤1, 𝑤2) ∈ 𝑊𝐾 ×𝑊𝐽 . Since x is K-reduced-J, we claim that

𝑊𝐽 ∩ 𝑥−1𝑊𝐾𝜎(𝑥) =

{
𝑊𝐽∩𝐾 𝑥 if 𝜎(𝑥) = 𝑥
∅ otherwise.
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The proof of this claim follows, for example, from the proof of [GP00, Thm. 2.1.12]. Indeed, if
𝑊𝐽 ∩ 𝑥−1𝑊𝐾𝜎(𝑥) is nonempty, then there exists 𝑦 ∈ 𝑊𝐽 and 𝑧 ∈ 𝑊𝐾 such that 𝑥𝑦 = 𝑧𝜎(𝑥). Since x
is reduced-J and 𝜎(𝑥) is K-reduced, we have necessarily ℓ(𝑦) = ℓ(𝑧). Let 𝑦 = 𝑦1 · · · 𝑦𝑚 be a reduced
expression of y. We define inductively 𝑧𝑖 ∈ 𝑊𝐾 and 𝑥𝑖 a K-reduced element by the conditions 𝑥0 = 𝑥
and 𝑥𝑖−1𝑦𝑖 = 𝑧𝑖𝑥𝑖 for all 𝑖 = 1, . . . , 𝑚. In particular, 𝑧 = 𝑧1 · · · 𝑧𝑚 and 𝑥𝑚 = 𝜎(𝑥). By Deodhar’s Lemma
[GP00, Lem. 2.1.2], we have ℓ(𝑧𝑖) = 1 and 𝑥𝑖 = 𝑥𝑖−1 for all i (the case 𝑧𝑖 = 1 does not happen since
ℓ(𝑧) = ℓ(𝑦) = 𝑚). In particular, 𝜎(𝑥) = 𝑥 and the result of [GP00, Thm. 2.1.12] applies.

Recall that 𝜎(𝑊𝐼 ) = 𝑊𝐼 and 𝜎(𝑊𝐽 ) = 𝑊𝐽 . The equality (𝑤0𝑐𝐼 )𝜎(𝑤) = 𝑤𝜎𝑎 (𝑐𝐽 ) forces 𝑊𝐽 ∩

𝑥−1𝑊𝐾𝜎(𝑥) to be nonempty; therefore, 𝜎(𝑥) = 𝑥. Now the element

𝑤2𝜎
𝑎 (𝑐𝐽 )𝜎(𝑤2)

−1 = 𝑥−1𝑤−1
1 (𝑤0𝑐𝐼 )𝜎(𝑤1𝑥) = 𝑥

−1 (𝑤−1
1 𝑤0𝑐𝐼𝑤

−1
0 𝜎(𝑤1))𝑥

lies in𝑊𝐽 ∩ 𝑥
−1 (𝑊𝐾 )𝑥 and is 𝜎-conjugate to a twisted Coxeter element of𝑊𝐽 . Since Coxeter elements

are elliptic, this forces 𝑊𝐽∩𝐾 𝑥 = 𝑊𝐽 ; hence, 𝐽 ⊂ 𝐾 𝑥 . Similarly, we find 𝐾 ⊂ 𝑥𝐽; hence, 𝑥𝐽 = 𝐾 . In
particular, one can write 𝑤 = 𝑤′𝑥 with 𝑤′ ∈ 𝑊𝐾 .

Let us now look more precisely at what elements 𝑢 ∈ 𝑊 can appear. If B1𝑣𝑑𝜎
𝑎 (𝑐𝐽 )B1 ⊂

B1𝑣𝑑B1𝜎
𝑎 (𝑐)B1 with 𝐽 = { 𝑗1 < 𝑗2 < · · · < 𝑗𝑚}, then for all 𝑖 = 0, . . . , 𝑚 and all 𝑗𝑖 < 𝑙 < 𝑗𝑖+1,

we must have 𝑣𝑑𝜎𝑎 (𝑠 𝑗1 · · · 𝑠 𝑗𝑖 𝑠𝑙) < 𝑣𝑑𝜎
𝑎 (𝑠 𝑗1 · · · 𝑠 𝑗𝑖 ), with the convention that 𝑗0 = 0, 𝑗𝑚+1 = 𝑟 + 1

and 𝑠 𝑗0 = 1. However, 𝑤 = 𝑤′𝑥 with 𝑤′ ∈ 𝑊𝐾 and x is K-reduced. Since 𝑥𝐽 = 𝐾 , we can write
𝐾 = {𝑘1, . . . , 𝑘𝑚} with 𝑥𝑠 𝑗𝑖𝑥−1 = 𝑠𝑘𝑖 . Then the condition

𝑤𝜎𝑎 (𝑠 𝑗1 · · · 𝑠 𝑗𝑖 𝑠𝑙) > 𝑤𝜎
𝑎 (𝑠 𝑗1 · · · 𝑠 𝑗𝑖 )

can be written

𝑤′𝜎𝑎 (𝑠𝑘1 · · · 𝑠𝑘𝑖𝑥𝑠𝑙) > 𝑤
′𝜎𝑎 (𝑠𝑘1 · · · 𝑠𝑘𝑖𝑥).

Now, since 𝑤′𝜎𝑎 (𝑠𝑘1 · · · 𝑠𝑘𝑖 ) ∈ 𝑊𝐾 and 𝑥𝑠𝑙 ∉ 𝑊𝐾 , this forces 𝑥𝜎𝑎 (𝑠𝑙) > 𝑥; hence, 𝑥𝑠𝑙 > 𝑥 (recall that
𝜎(𝑥) = 𝑥). Indeed, if 𝛼𝑙 denotes the simple root associated to 𝑠𝑙 , then 𝑤′𝜎𝑎 (𝑠𝑘1 · · · 𝑠𝑘𝑖𝑥) (𝛼𝑙) > 0
by assumption. Since 𝑥(𝛼𝑙) is not in Φ𝐾 , the root subsystem associated to 𝑊𝐾 , the element
𝑤′𝜎𝑎 (𝑠𝑘1 · · · 𝑠𝑘𝑖 ) ∈ 𝑊𝐾 cannot change the sign of 𝑥(𝛼𝑙); therefore, 𝑥(𝛼𝑙) > 0. Since l runs over
all the elements in {1, . . . , 𝑟} \ 𝐽 and x is reduced-J, this proves that 𝑥𝑠 > 𝑥 for all simple reflections s
in I, and therefore, 𝑥 = 1 since x is 𝜎-stable. Consequently, 𝑣𝑑 = 𝑤0𝑤 = 𝑤0𝑤

′ ∈ 𝑤0𝑊𝐾 = 𝑊𝐽𝑤0. If
𝐽 ≠ {1, . . . , 𝑟}, then 𝑑−1𝑣−1 U ∩ U = 𝑑−1

(𝑣
−1 U ∩ U′) is contained in the Levi subgroup of G correspond-

ing to𝑊𝐽 ; hence, (ii) holds. Otherwise, 𝐼 = 𝐽 = 𝐾 = {1, . . . , 𝑟}, and the relation 𝑐𝐼𝜎(𝑣𝑑) = 𝑣𝑑𝜎𝑎 (𝑐𝐽 )
is just 𝑐𝜎(𝑣𝑑) = 𝑣𝑑𝜎𝑎 (𝑐), which with 𝑑 = (𝑐𝜎)𝑎𝜎−𝑎 gives 𝑣 ∈ 𝑊𝑐𝜎 = 𝑊𝐹 ; hence, (i) holds. �

7.2. Comparison of various cells

In this section, we prove that (10) holds for the Coxeter pair (T,U). Note that the Coxeter number h (the
order of 𝑐𝜎) is even unless W is of type 𝐴𝑛 with n even and 𝜎 trivial. In particular, if h is odd, then 𝜎
acts trivially on W. Proposition 6.1.2 implies that when h is even, we have 𝑐𝜎(𝑐) · · ·𝜎ℎ/2−1 (𝑐) = 𝑤0,
the longest element in W.

Lemma 7.2.1. Assume that 𝑣 ∈ 𝑊 \𝑊𝐹. Then

𝐻∗
𝑐 (
U,UΣ𝑣 ) = 0

as a virtual (T ×Z T)𝐹 -module.

Proof. If U,UΣ𝑣 is empty, then the statement is trivial. Otherwise, Proposition 7.1.1 ensures that 𝑣−1 U∩U
is contained in a proper Levi subgroup L of G containing T. In particular, the torus H := 𝐻◦

L,𝑣 ,𝑟 ,red
defined in §6.2 is contained in 𝐻𝑣 , which by Lemma 5.1.1 acts on Σ̂𝑣 . Using Corollary 6.2.3, we see

https://doi.org/10.1017/fms.2024.55 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.55


24 O. Dudas and A. B. Ivanov

that (U,UΣ̂𝑣 )
H is empty since 𝐹 (𝑣) ≠ 𝑣. By (1), this shows that 𝐻∗

𝑐 (
U,UΣ̂𝑣 ) = 0. The same holds for

U,UΣ𝑣 since it is related to U,UΣ̂𝑣 by a (T ×Z T)𝐹 -equivariant map Σ̂𝑣 → Σ𝑣 which is a Zariski-locally
trivial fibration with fibers isomorphic to the perfection of a fixed affine space. �

Given 𝑎 ∈ Z and 𝑣 ∈ 𝑊𝐹 , we define the virtual (T ×Z T)𝐹 -modules

ℎ𝑎,𝑣 := 𝐻∗
𝑐 (
U,𝐹𝑎 (U)Σ𝑣 ,Qℓ) = 𝐻

∗
𝑐 (
U,𝐹𝑎 (U) Σ̂𝑣 ,Qℓ) = 𝐻

∗
𝑐 (
U,𝐹𝑎 (U) Σ̃𝑣 ,Qℓ),

ℎ̃𝑣 := 𝐻0
𝑐 (( 	𝑣T)

𝐹 ,Qℓ) = Qℓ ( 	𝑣T)
𝐹 .

Note that ℎ𝑎,𝑣 depends only on the class of a modulo h, the Coxeter number.

Lemma 7.2.2. Let 𝑐𝑎 = (𝑐𝜎)𝑎𝜎−𝑎. Assume that either

◦ h is even and 𝑣𝑐𝑎 ∈ {𝑤0, 𝑐𝑤0, 𝑤0𝜎
𝑎 (𝑐−1)}; or

◦ h is odd and 𝑣𝑐𝑎 = 𝑐 �ℎ/2�±1.

Then ℎ𝑎,𝑣 = ℎ̃𝑣 .

Proof. Assume first that h is even. If 𝑣𝑐𝑎 = 𝑤0, then 𝑣−1
U∩ 𝐹𝑎 (U) = 𝑣−1

U∩ 𝑐𝑎U = 𝑐𝑎 ( (𝑣𝑐𝑎)
−1
U∩U) =

𝑐𝑎 (U− ∩U) = 1. Hence, the group 𝐻𝑣 ⊆ T×T′, which acts on Σ̂𝑣 by Lemma 5.1.1, is equal to the group
𝐻L,𝑣 ,𝑟 from (20) attached to the Levi subgroup L = T. By Corollary 6.2.3 applied to L = T, the map

	𝑣𝜏 ∈ ( 	𝑣T)𝐹 ↦−→ (1, 1, 1, 𝜏, 1, 1) ∈ Σ̂𝑣

induces a (T ×Z T)𝐹 -equivariant isomorphism

( 	𝑣T)𝐹 � (Σ̂𝑣 )
(𝐻𝑣 )

◦
red ,

and the result follows. If 𝑣𝑐𝑎 = 𝑤0𝜎
𝑎 (𝑐−1), then we have 𝑣𝑐𝑎+1 = 𝑣𝑐𝑎𝜎𝑎 (𝑐) = 𝑤0, so that 𝑣−1

U− ∩

𝐹 (𝐹𝑎 (U−)) = 𝑣−1
U− ∩ 𝑐𝑎+1U− = 𝑐𝑎+1 ( (𝑣𝑐𝑎+1)

−1
U− ∩ U−) = 𝑐𝑎+1 (𝑤0U− ∩ U−) = 1. Hence, the group 𝐻 ′′

𝑣

which acts on Σ̃𝑣 by Lemma 5.2.1(i) is equal to 𝐻L,𝑣 ,𝑟 from (20) for L = T, and we can conclude as in
the case 𝑣𝑐𝑎 = 𝑤0 above (using Σ̃𝑣 instead of Σ̂𝑣 ). Finally, if 𝑣𝑐𝑎 = 𝑐𝑤0, then we have 𝑐𝑎𝑤0 = 𝑣−1𝑐,
so that 𝑣−1

(𝐹 (U−)) ∩ 𝐹𝑎 (U−) = 𝑣−1𝑐U− ∩ 𝑐𝑎U− = 𝑐𝑎𝑤0U− ∩ 𝑐𝑎U− = 𝑐𝑎 (𝑤0U− ∩ U−) = 1. Hence, the
group 𝐻 ′′′

𝑣 which acts on Σ̃𝑣 by Lemma 5.2.1(ii) is equal to 𝐻L,𝑣 ,𝑟 from (20) for L = T, and we again
can conclude as in the case 𝑣𝑐𝑎 = 𝑤0 (using Σ̃𝑣 instead of Σ̂𝑣 ).

When h is odd, then W is of type 𝐴𝑛 with n even and 𝜎 = 1. In that case, ℎ = 𝑛 + 1 and ℓ(𝑐) = 𝑛. By
Proposition 6.1.2, we have ℓ(𝑐𝑛/2) = 𝑛2/2 and ℓ(𝑐𝑛/2+1) = ℓ(𝑐−𝑛/2) = 𝑛2/2. Therefore, if 𝑘 = �ℎ/2� ±1,
we have ℓ(𝑤0𝑐𝑘 ) = 𝑛(𝑛+1)/2−𝑛2/2 = 𝑛/2 < 𝑛, which forces𝑤0𝑐𝑘 to lie in a proper parabolic subgroup
of W. Consequently, 𝑣−1

U ∩ 𝐹𝑎 (U) = 𝑣−1
U ∩ 𝑐𝑎U = 𝑐𝑎 ( (𝑣𝑐𝑎)

−1
U ∩ U) = 𝑐𝑎 ( (𝑤0𝑐𝑘 )

−1
U− ∩ U) lies in a

proper Levi subgroup L of G containing T. By Lemma 5.1.1, the group 𝐻L,𝑣 ,𝑟 from (20) acts on Σ̂𝑣 ,
and we once more conclude as in the case when h is even and 𝑣𝑐𝑎 = 𝑤0. �

The key observation is the following proposition.

Proposition 7.2.3. Let 𝑎 ∈ Z/ℎZ and 𝑣 ∈ 𝑊𝐹 . We have ℎ𝑎,𝑣 = ℎ𝑎+1,𝑣 , unless𝜎 is trivial and 𝑣 = 𝑤0𝑐
−𝑎

or 𝑣 = 𝑤0𝑐
−𝑎−1.

Proof. As in Section 5.3, we have the isomorphism 𝛼 : U,𝐹𝑎 (U)Σ → U,𝐹𝑎+1 (U)Σ, and the cell U,𝐹𝑎 (U)Σ𝑣

decomposes into finitely many locally closed (T ×Z T)𝐹 -stable pieces:

U,𝐹𝑎 (U)Σ𝑣 =
⋃
𝑤 ∈𝑊

𝛼−1
(
𝛼
(
U,𝐹𝑎 (U)Σ𝑣

)
∩ U,𝐹

𝑎+1 (U)Σ𝑤

)
. (23)
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As in Lemma 5.3.1, we have the (T ×Z T)𝐹 -stable piece 𝑎𝑌𝑣,𝑤 := 𝑌𝑣,𝑤 ⊆ U,𝐹
𝑎+1 (U) Σ̂𝑣 , and it satisfies

𝐻∗
𝑐 (

𝑎𝑌𝑣,𝑤 ) = 𝐻
∗
𝑐

(
𝛼
(
U,𝐹𝑎 (U)Σ𝑣

)
∩ U,𝐹

𝑎+1 (U)Σ𝑤

)
.

This and (23) give

ℎ𝑎,𝑣 =
∑
𝑤 ∈𝑊

𝐻∗
𝑐 (

𝑎𝑌𝑣,𝑤 ,Qℓ). (24)

By Lemma 5.3.1, 𝑎𝑌𝑣,𝑤 ⊆ U,𝐹𝑎+1 (U) Σ̂𝑤 is stable under the 𝐻𝑤 -action on U,𝐹𝑎+1 (U) Σ̂𝑤 as in Lemma
5.1.1(i). If 𝑤−1 U∩𝐹𝑎+1 (U) is contained in a proper Levi subgroup of G containing T, then using again the
argument as in the proof of Lemma 7.2.1, we have 𝐻∗

𝑐 (
𝑎𝑌𝑣,𝑤 ,Qℓ) = 0 (cf. Section 2.3). Consequently,

by Proposition 7.1.1 applied toU′ = 𝐹𝑎+1(U), we only need to consider the case where 𝑤 ∈ 𝑊𝐹 , so that

ℎ𝑎,𝑣 =
∑

𝑤 ∈𝑊 𝐹

𝐻∗
𝑐 (

𝑎𝑌𝑣,𝑤 ,Qℓ). (25)

Analogously, one can decompose the cell U,𝐹𝑎+1 (U)Σ𝑣 into finitely many locally closed (T×Z T)𝐹 -stable
pieces as follows:

U,𝐹𝑎+1 (U)Σ𝑣 =
⋃
𝑤 ∈𝑊

𝛼
(
U,𝐹𝑎 (U)Σ𝑤

)
∩ U,𝐹

𝑎+1 (U)Σ𝑣 ,

and using Lemmas 5.3.2 and 5.1.1(ii) instead of Lemmas 5.3.1 and 5.1.1(i), we show

ℎ𝑎+1,𝑣 =
∑

𝑤 ∈𝑊 𝐹

𝐻∗
𝑐 (

𝑎𝑌𝑤,𝑣 ,Qℓ). (26)

Lemma 7.2.4. Let 𝑣, 𝑤 ∈ 𝑊𝐹 . Assume that 𝑎𝑌𝑣,𝑤 ≠ ∅ and 𝑣 ≠ 𝑤. Then 𝜎 is trivial, 𝑣 = 𝑤0𝑐
−𝑎 and

𝑣 = 𝑤𝑐.

Proof. The scheme 𝑎𝑌𝑣,𝑤 can only be nonempty if 𝛼
(
U,𝐹𝑎 (U)Σ𝑣

)
∩U,𝐹

𝑎+1 (U)Σ𝑤 ≠ ∅. If this is the case,
there must exist a point (𝑥, 𝑥 ′, 𝑦) ∈ U,𝐹

𝑎 (U)Σ𝑣 , such that 𝛼(𝑥, 𝑥 ′, 𝑦) = (𝑥, 𝐹 (𝑥 ′), 𝑦𝑥 ′) ∈ U,𝐹
𝑎+1 (U)Σ𝑤 .

Let 𝑦1 = 𝑦𝑥 ′, and let 𝑥 ′, 𝑦̄, 𝑦̄1 denote the images of 𝑥 ′, 𝑦, 𝑦1 in G1. Write B1 = T1U1. Given 𝑘 ∈ Z, we
write 𝑐𝑘 = (𝑐𝜎)𝑘𝜎−𝑘 so that 𝐹𝑘 (B) = 𝑐𝑘B. We then have

𝑦̄ ∈ B1𝑣𝐹
𝑎 (B1) = B1𝑣𝑐𝑎B1𝑐

−1
𝑎 , 𝑥 ′ ∈ 𝐹𝑎+1(U1) =

𝑐𝑎+1U1, and
𝑦̄1 ∈ B1𝑤𝐹

𝑎+1 (B1) = B1𝑤𝑐𝑎+1B1𝑐
−1
𝑎+1. (27)

From the latter two of these three conditions, it follows that 𝑦̄ = 𝑦̄1𝑥
′−1 ∈ B1𝑤𝑐𝑎+1B1𝑐

−1
𝑎+1, and we

deduce from the first condition in (27) that B1𝑤𝑐𝑎+1B1𝑐
−1
𝑎+1 ∩ B1𝑣𝑐𝑎B1𝑐

−1
𝑎 contains 𝑦̄, and hence is

nonempty. Multiplying by 𝑐𝑎 from the right and using that 𝑐𝑎+1 = 𝑐𝑎𝜎𝑎 (𝑐), we get(
B1𝑤𝑐𝑎+1B1𝜎

𝑎 (𝑐−1)
)
∩
(
B1𝑣𝑐𝑎B1

)
≠ ∅. (28)

By [Spr74, Thm. 7.6(v)], there exists 𝑘, 𝑙 ∈ {0, 1, . . . , ℎ − 1} such that 𝜎𝑘 = 𝜎𝑙 = 1 and 𝑣 = 𝑐𝑘 , 𝑤 = 𝑐𝑙 .
Therefore, the previous equation can be written(

B1𝑐𝑙+𝑎+1B1𝜎
𝑎 (𝑐−1)

)
∩
(
B1𝑐𝑘+𝑎B1

)
≠ ∅.
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This implies that (
B1𝑐𝑙+𝑎+1B1𝜎

𝑎 (𝑐−1)B1
)
∩
(
B1𝑐𝑘+𝑎B1

)
≠ ∅(

B1𝑐𝑙+𝑎+1B1
)
∩ (B1𝑐𝑘+𝑎B1𝜎

𝑎 (𝑐)B1
)
≠ ∅.

(29)

As in the proof of Proposition 7.1.1, recall that the elements 𝑢 ∈ 𝑊 such that B1𝑢B1 ⊂

B1𝑐𝑘+𝑎B1𝜎
𝑎 (𝑐)B1 are of the form 𝑐𝑘+𝑎𝜎𝑎 (𝑐𝐼 ), where 𝑐𝐼 is obtained by removing some simple reflec-

tions in c. Therefore, by (29), we have 𝑐𝑘+𝑎𝜎𝑎 (𝑐𝐼 ) = 𝑐𝑙+𝑎+1 for some 𝑐𝐼 ≤ 𝑐, yielding 𝑘 ∈ {𝑙, 𝑙 + 1}.
In addition, when ℓ(𝑐𝑘+𝑎+1) = ℓ(𝑐) + ℓ(𝑐𝑘+𝑎) (or when ℓ(𝑐𝑙+𝑎) = ℓ(𝑐−1) + ℓ(𝑐𝑙+𝑎+1)), only 𝑐𝐼 = 𝑐
can appear, in which case, 𝑘 = 𝑙, and hence, 𝑣 = 𝑤, which contradicts the assumptions of the Lemma.
Therefore, we have 𝑘 = 𝑙 + 1, ℓ(𝑐𝑘+𝑎+1) ≠ ℓ(𝑐) + ℓ(𝑐𝑘+𝑎) and ℓ(𝑐𝑘+𝑎−1) ≠ ℓ(𝑐−1) + ℓ(𝑐𝑘+𝑎). Conse-
quently, ℓ(𝑐𝑘+𝑎) > ℓ(𝑐𝑘+𝑎±1); therefore, 𝑐𝑘+𝑎 = 𝑤0. Note that we also have 𝜎 = 𝜎𝑘𝜎−𝑙 = 1, and the
lemma follows. �

Now we finish the proof of Proposition 7.2.3. Applying Lemma 7.2.4, we deduce from equation
(25) that ℎ𝑎,𝑣 = 𝐻∗

𝑐 (
𝑎𝑌𝑣,𝑣 ,Qℓ) unless 𝜎 = 1 and 𝑣 = 𝑤0𝑐

−𝑎. Similarly, equation (26) yields ℎ𝑎+1,𝑣 =
𝐻∗
𝑐 (

𝑎𝑌𝑣,𝑣 ,Qℓ) unless 𝜎 = 1 and 𝑣𝑐 = 𝑤0𝑐
−𝑎. Therefore, if 𝜎 ≠ 1 or if 𝑣 ∉ {𝑤0𝑐

−𝑎, 𝑤0𝑐
−𝑎−1}, we have

ℎ𝑎,𝑣 = 𝐻∗
𝑐 (

𝑎𝑌𝑣,𝑣 ,Qℓ) = ℎ𝑎+1,𝑣 , (30)

which finishes the proof. �

Proof of Theorem 4.2.1. By Lemma 7.2.1, it suffices to show that ℎ0,𝑣 = ℎ̃𝑣 for all 𝑣 ∈ 𝑊𝐹 . Recall that
by [Spr74, Thm. 7.6(v)] the elements in𝑊𝐹 are of the form 𝑐𝑘 = (𝑐𝜎)𝑘𝜎−𝑘 for some 𝑘 ∈ Zwith𝜎𝑘 = 1.

If 𝜎 is nontrivial, then there exists 𝑎 ∈ Z such that 𝑣𝑐𝑎 = 𝑤0 (for example, 𝑎 = ℎ/2 − 𝑘). By Lemma
7.2.2, we have ℎ𝑎,𝑣 = ℎ̃𝑣 , and from Proposition 7.2.3, we deduce that ℎ0,𝑣 = ℎ𝑎,𝑣 = ℎ̃𝑣 .

If 𝜎 = 1, then 𝑣 = 𝑐𝑘 . Without loss of generality, we can assume that 𝑣 ≠ 𝑤0 (equivalently, 𝑘 ≠ ℎ/2)
since in that case, Lemma 7.2.2 applies. Assume first that 0 ≤ 𝑘 < ℎ/2. Then 𝑣𝑐𝑎 = 𝑐𝑘+𝑎 ≠ 𝑤0 for all
0 ≤ 𝑎 < ℎ/2 − 𝑘 . Therefore. by Proposition 7.2.3, we have ℎ0,𝑣 = ℎ𝑎,𝑣 in that case. If h is even, then
𝑣𝑐ℎ/2−𝑘−1 = 𝑤0𝑐

−1, in which case, ℎℎ/2−𝑘−1,𝑣 equals ℎ̃𝑣 by Lemma 7.2.2. If h is odd, then ℎ �ℎ/2�−𝑘,𝑣
equals ℎ̃𝑣 by Lemma 7.2.2 again. When ℎ/2 < 𝑘 < ℎ, we have ℎ0,𝑣 = ℎ−𝑎,𝑣 for all 0 ≤ 𝑎 < ℎ/2 + 𝑘 ,
and a similar argument applies. �
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