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ON RATIONAL-DERIVED QUARTICS

R.H. BUCHHOLZ AND S.M. KELLY

We present a characterisation of all quartic polynomials with exactly three distinct
roots and the property that it and all its derivatives have rational roots. It turns
out that there are an infinite number of distinct such quartics, each of which
corresponds to a point on a related elliptic curve. Furthermore the collection of
these points forms a proper subgroup of the group of rational points on the curve.

DEFINITION: A polynomial, p(x), in Q[sc] is a rational-derived quartic if and only
if it and all its derivatives have rational roots. Similarly p(x), in Z[x] is an integer-
derived quartic if and only if it and all its derivatives have integer roots.

DEFINITION: We denote by Vn(Q) the set of all rational-derived polynomials of
degree n.

1. INTRODUCTION

A number of authors have considered the problem of finding integer-derived polyno-
mials. See for example [1, 2, 3, 4] which contain results completely describing solutions
for degrees 1, 2 and 3, and providing two infinite families of integer-derived polynomials
for all degrees greater than 1. Carroll, in particular, makes a conjecture that 7*4(Z)
contains essentially only one polynomial with three or more distinct roots (apart from
translation, reseating or reflection about the x-axis), namely

p(x) = (x + 167)2(x - 141)(s - 193).

This was shown [5] to be incorrect by the discovery of two non-equivalent poly-
nomials. (See the discussion above Table 1.) We have found that there are in fact
an infinite number of non-equivalent such polynomials which are characterised by the
following theorem.

Consider the following elliptic curve and subgroup of rational points:

E : Y2 = X(X - 48)(X + 6),
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THEOREM. All rational-derived quartics of the form y = x2(x — l)(x — a) for

o ^ O . l are given by a = (5X + Y + 30)/9(JT + 2) wiere (X, Y) 6 EA(Q).

This throws doubt on the conclusions of Carroll that Vn(Z) contains only 2 infinite
families of integer-derived polynomials for n ^ 5, which was based on his conjecture
above.

2. QUARTICS

If we classify all quartics on the basis of the number of distinct roots then only the
case of 4 distinct roots remains unsolved. As shown in the references mentioned above,
rational-derived quartics with one distinct root are all equivalent to an infinite family,
namely y — (x — a) .

All quartics with two distinct roots fall into two categories: namely the form
y = (x — a) (x — b) or the form y = (x — a) (x — b) . Only the first gives an infi-
nite family of rational-derived quartics for all a, b G Q while the second family provides
no rational-derived quartics.

Any quartic with 3 distinct roots must be a translation, reflection or rescaling of

(1) y = x2(x-l)(x-a).

Notice that any rational-derived quartic (RDQ) can be rescaled by the least common
multiple of the denominators of all the roots to produce an integer-derived quartic
(IDQ), and any IDQ is automatically an RDQ so it is sufficient to characterise all
RDQ's. Another reason for working over Q is that the root of the third derivative is
always rational for rational a.

The first and second derivatives have rational roots if and only if the discriminants
of the quadratic parts are rational squares. Specifically we require that 9a2 — 14a + 9
and 9o2 —6a+ 9 are simultaneously rational squares. An important observation is that
such solutions form a subset of the solution space to the product of these two quadratic
forms being a rational square. Consequently we consider the rational points on the
curve

(2) Y2 = (9X2 - 14X + 9) (9X2 - 6X + 9).

Firstly we rescale the quartic using the transformation X = U/9, Y = V/9 to give

V2 = UA - 20U3 + 2A6U2 - 162017 + 6561.

Next we remove the cubic term by setting U = W + 5 to give

V2 = W4 + 96W2 - 160W + 2736.
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Mordell's bi-rational transformation of a quartic to a cubic [6, p.139], namely W —

(T + 40)/2(S + 16), V = 25 - W2 - 16 leads to

T2 = 4(5 + 14)(5 - 34)(5 + 20).

One final reseating T = 2y, S = x — 14 gives the elliptic curve in standard form:

(3) E : y2 = x(x - 48)(z + 6).

Reseating and translating Carroll's IDQ leads to an RDQ of the form of (1) with
a = 90/77. Hence the point (X,Y) = (90/77,291.171/772) ties on (2). Using the
transformations above implies that the point (x,y) — (75,405) G E(Q). Notice that all
rational points on (3) correspond to rational points on (2), but only those which also
force 9X2 — 14X + 9 to be a rational square (and hence automatically force 9X2 —
6X + 9 G Q 2 ) lead to values of o which make (1) an RDQ.

3. CHARACTERISING R D Q ' S FROM E

3.1 RATIONAL POINTS ON E(Q) . Recall that all RDQ's of the form given by equation
(1) correspond to a subset of the rational points on the elliptic curve given by equation
(3). Hence we need to characterise all the rational points on E. Standard theory tells us
that the rational points form a group, which we denote by E(Q) . It turns out that the
group E(Q) has torsion free part isomorphic to Z and has torsion subgroup isomorphic
to the Klein 4-group.

3.1.1 TORSION SUBGROUP. Let EtOT,(Q) denote the torsion subgroup of E(Q). The
disr.riTniTia.nt., A , of E is given by A = 21 631 0 and hence reducing the curve modulo
5 (which does not divide A ) leads to a non-singular curve. In fact a short calculation

shows that
/ Z \ Z Z

IP I 1 ~ /T\
\0£i/ &£j leu

By the Nagel-Lutz theorem [7, pp.221-222], the torsion subgroup of E(Q) must
be a subgroup of i3(Z/5Z). We now show that there are no points of order 4 and
hence -Etor»(Q) m u s t be Z/2Z © Z/2Z as the only points of order 2 on E are just
(x,y) - (-6,0),(0,0) or (48,0). Suppose there exists a point P = (xo,yo) G E(Q)
such that 4P = O, where O denotes the additive identity of the curve E. Then
IP = (xi, j/i) must be one of the order 2 points. The equation of the tine through P is
y = A(z — x0) +yo and intersecting this with E gives a cubic in x:
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Since the sum of the roots is the negative of the coefficient of x2 , we obtain 2a:o

42 + A2. Substituting A = f'(xo)/2yo - (3x1 - 84x0 - 288)/2y0 into this expression
leads to a quartic equation in x0:

l + (576 + 168x^x1 + 1152a;izo + 82944 = 0.

Each of the three cases for X\ results in a contradiction.

i. x\ = 0 => x\ — —288 which has no rational solutions,
ii. x\ — — 6 =>• x0 = 12, or — 24 both of multiplicity 2 but not lying on E.

iii. x\ = 48 => xo = 48 ± 36>/2 both of multiplicity 2 but irrational.

Hence there are no points of order 4 and Etor,(Q) - {O, ( - 6 ,0 ) , (0,0), (48,0)}.

3.1.2 RANK OF E . To determine the rank (that is, the number of linearly independent
generators of the torsion-free part) of E we consider the isogeny </>, as in [7, p.302],
defined by

which maps E to its 2-isogenous curve, E given by

~E : Y2 = Xs + 84X2 + 2916X.

We also make use of the usual 2-descent homomorphism, a, given by

a{O) = 1 mod (Q*)2,

a((0,0)) = -288mod(Q*)2,

o((z,y)) = x mod(Q*)2.

The following figure summarises the relationship between the elliptic curves, map-
pings and groups mentioned above.

6
IP Tp

2 Q/(Q*)2

Figure 1.

From Tate's Theorem [8, pp.89-98] we know that the rank of E, denoted by r(E),

is given by
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For any point (x,y) G E(Q) we can take x = dr2fa2, y = u/v where gcd(r, a) = 1,
d is squarefree and gcd(u,t>) = 1 which substituted into E gives

(4) dt2 = (dr2 - 48s2) (dr2 + 6s2)

for some rational t. Since a((x,y)) = d mod (Q*) we see that the number of distinct
images of points from the elliptic curve in Q*/(Q*) is given by the number of distinct
d for which (4) has at least one non-trivial solution, that is r, a ^ 0. This lets us bound
| a ( £ ( Q ) ) | and similarly | a ( £ ( Q ) ) | and hence the rank of E.

Now d | —288a4 which implies that d | 6 as d is squarefree. When d = 1, —2,3, —6
we find that there are non-trivial solutions, namely

(r,s,t) = (36,3,1080), (1,1,10), (4,1,0), (1,1,0)

respectively. The remaining four values of d have no solutions. When d = — 1 equation
(4) becomes

-t2 = r4 + 4 2 r V - 288a4.

Considering this modulo 3 implies that both t and r are divisible by 3. So letting
t - 3T and r - 3R leads to

-T2 = 9fl4 + 1 4 . 3 E V - 25a4.

But this forces T and s to be divisible by 3 which contradicts gcd (r,a) — 1. Hence
there can be no solutions in this case which implies that — 1 ^ a(i?(Q)). However
we already know that - 2 , 3 , - 6 G a(E(Q)). This implies that 2 , - 3 , 6 £ a(E(Q)).

Otherwise, for example, —2 x 2 = —4 = —1 mod (Q*)2 and so —1 must be in a(E(Q))

which is a contradiction. Hence | a (£(Q)) | = 4 .

Applying the same process to E leads to the search for solutions to

(5) DT2 = D2# + 84DR2S2 + 291654.

As before D \ 6. For Z) = 1,6 we have the solutions

(R,S,T) = (10,1,146), (1,1,24)

respectively. The remaining six values of D have no solutions. When D = — 1 equation

(5) becomes
- T 2

 = (fl2 2

This has no non-trivial real solutions let alone integer solutions. Similarly for D ~

—2, —3, —6 there are no possible solutions. When D = 2 equation (5) becomes

T2 = 2R* + 84i*2S2 + 145854.
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Now 2 | T so we make the substitution T — IT to give

Reducing this modulo 3 leads to the conclusion that three divides both R and T . Using

this last fact in the same way lets us remove the powers of three from the coefficient of

•S4 and finally show that 3 | 5 which contradicts the fact that gcd (R, S) = 1. Hence

there are no solutions in this case. Now 3 $ a(i?(Q)) since otherwise for example

3 x 6 = 2 mod (Q*)2 which implies that 2 G a(E(Q)) . Thus |a(E(Q)) | = 2.

Finally this shows that the rank of E is one. Hence E(Q) = {mP + nQ} where

P e {(-6,0), (0,0),(48,0)}, Q = (75,405), m = 0,1 and n G Z.

Thus E(Q) ^ Z/2Z©Z/2Z©Z.

3.2 RDQ'S FORM A SUBGROUP OF E(Q). Having characterised E(Q) we searched for
points in E(<Q>) which corresponded to RDQ's. We discovered that all small multiples
of the point (75,405) did in fact correspond to RDQ's and in addition, (—6,0) added
to any of these multiples also gave an RDQ. We call a point on E(Q) which corresponds
to an RDQ a rational-derived point (RDP). Using the transformations which convert
equation (2) into equation (3) gives us a mapping a : E(Q) i-> Q defined by

5x + y + 30
a = a ( * ' y ) = 9(s + 2) •

Specifically, any (x,y) G i?(Q) which is an RDP corresponds to an a G Q for which (1)
is an RDQ.

LEMMA 1. H (x,y) G £(Q) is any RDP then -((x,y) + (75,405)) is also an
RDP.

PROOF: Firstly let (x,y) = -((x,y) + (75,405)) and a = a((x,y)). Notice that if
(x,y) is an RDP then there exists r G Q such that

(6) 9a2-14a + 9 = r2.

It is sufficient to show that a satisfies

9a2 - 14a + 9 = r2

for some r G Q. Intersecting the line through (x,y) and (75,405) with E gives

_ _ 75x2 - 963z - 21600 - 810j/

*~ ( s - 7 5 ) 2

_ _ -1154251/ + 10287ya! + 8748000 + 290142Qg - 405z3 - 57105a;2

V
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Hence
_ _ 693yz + 20925y + 406755a; + 465750 - 10755x2

° ~ (z - 75)(77x2 - 1263a; - 810y - 10350)

If we write a = n/d and a = n/d then

nn-dd= -693a;4 + 8181z3 + 1078434a2 + 6026400a; + 693y2z + 20925y2.

Now using E to eliminate y2 leads to rin — dd = 0 and hence da — 1. Replacing a by
I / a in (6) gives

9 - 14a + 9a2 = (ra)2

as required. U

COROLLARY . It X = (x,y) £ E(Q) is any RDP and Q = (75,405) then

LEMMA 2 . II (x,y) e E(Q) is any RDP then (x, -y) is also an RDP.

PROOF: Again let (x,y) = {x,-y) then a- (5x - y + 30)/(9(a; + 2)). As before

it is sufficient to show that a satisfies

9a2 - 14a + 9 = r2

for some r g Q . Solving the equations for a, a in terms of x,y leads to

60 - 18a - 18a
x =

y =

9a + 9a - 10
180(a + a)

9a + 9a - 10

Substituting this into the elliptic curve gives a quadratic in a, namely

(90a - 77)a2 + (90a2 - 254a + 90)a + a(90 - 77a) = 0.

Solving this for a and substituting into equation (6) we obtain

4(90a - 77)V = P l - 10pJ/aps

where

pi = 36450a4 - 86670a3 + 101331a2 - 74504a + 41301

p2 = (9a2 - 14a + 9) (9a2 - 6a + 9)

p3 = 405a2 - 513a - 134.
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Squaring and then completing the square where appropriate results in

(90S - 77)2 [{ (513a2 - 542a + 513) +4r2(90a - 77)}2 -400r2 (9a2 - 14a + 9)(9a + 2)2 j

being identically zero. If a ^ 77/90 then we have

513)+4r2(9Oa-77) 2

20r(9a + 2)

Since x,y € Q we have a,r £ Q and hence the right hand side above is a rational

square. U

From these two lemmata we can conclude that addition of points and negation of
points on E preserves the property of being an RDP.

THEOREM 1 . Tie set of all rational-derived points forms a subgroup Es(Q) of
E(Q) where ES(Q) = { m(-6,0) + n(75,405) },m = 0,l and n£Z.

PROOF: Recall that (x,y) = (-6,0) is an RDP hence any element of ES(Q) is an
RDP. So we just need to show that any RDP is an element of .Es(Q). Suppose not,
then there exists an RDP (x,y) £ E(Q)\Es(Q) such that (x,y) can be expressed in
the form

J (48,0) + n(75,405) or
= 1 (0,0) + n(75,405).

If any such (x,y) is an RDP then by repeated application of Lemmata 1 and 2 we see
that (x,y) - n(75,405) must also be an RDP. This implies that either (0,0) or (48,0)
must be an RDP. Now a((0,0)) = 5/3 and a((48,0)) = 3/5 neither of which satisfy
9a2 - 14a + 9 G Q2 and hence (0,0) and (48,0) are not RDP's, which contradicts our
premise. U

3.3 FURTHER REFINEMENT OF E S ( Q ) . We now notice that Es(Q) is degenerate in the
sense that four different points correspond to the same rational derived quartic. In fact,
the mapping a : -Es(Q) •-» Q is two-to-one while the RDQ's corresponding to a and
I/a are equivalent. We require the following two technical lemmata, the first of which
is analogous to Lemma 1, and the second showing that the mapping a is one-to-one
when restricted to a subgroup of Es(Q) •

LEMMA 3 . If X = (x,y) e E{Q) is any RDP and P = (-6,0) then

PROOF: Firstly let (x,y) = ( -6 ,0) + (x,y) and a = a((x,y)) Following the line
of reasoning used in Lemma 1, we intersect the line through (x,y) and (—6,0) with E
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and negate the y coordinate to give

6(48 - a) -324y

*~ x+6 y " ( x + 6 ) 2 "

Hence
_ _ -9(5z - y + 30)
a ~ (x + 6)(x - 75) '

Again writing a = n/d and a = n/d then

nn-dd = 9(x3 - 42z2 - 288a; - y2) = 0.

Clearly this leads to da = 1 as required. D

LEMMA 4 . IS we define a proper subgroup EA(Q) of ES(Q) where EA(Q) =
{n(75,405)},n G Z then a : EA(Q) K+ Q is one-to-one.

PROOF: Consider two points (x,y),(x,y) G E^(Q). Now a((x,y)) — a((x,y)) if
and only if

5x + y + 30 _ 5g + y + 30
9(a;-|-2) 9(z + 2)

and hence y(a + 2) - y(x + 2) = 20(aT- x).

Squaring this and using E leads to

2yy(x + 2)(x + 2) = (z + 2)(aT + 2)(z2z + xx2 + 2x2 - 88aTz + 2x2 - 288i" - 288z).

Again squaring and using E we obtain

(x + 2)(x + 2)(x - x)2 \{(x + 2)x + (2x - 288)}2 + 800zz] = 0.

Hence we have one of the following four cases:

i. x = - 2

ii. x--2,

iii. x = x, or

iv. {(x + 2)z + (2x - 288)}2 = -800zz.

Notice that for any point (x,y) G £^A(Q)
 w e rnust have x ^ 48 as n(75,405) remains

on the unbounded component of E by Bezout's Theorem. Case (iv) implies that x
and x must have opposite sign unless xx = 0 in which case the only possible solutions
are (x,x) = (0,144), (144,0) again contradicting the result of Bezout's Theorem.
Similarly cases (i) and (ii) can never occur. So the only remaining case is x — x which
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when substituted back into the expression for a([x,y)) = a((x,y)) gives y = y. Thus
a is one-to-one. D

THEOREM 2 . The set of all rational-derived quartics with exactly three distinct

roots is generated by 2

PROOF: Let P = (-6,0), Q = (75,405) and X = (x,y) be any RDP. Since

X 6 Es(Q>) we can write X = mP + nQ m = 0,1. Now if m — 1 we get by Lemma 3

a(P + nQ) =
a(nQ)

as IP = O. Observe that the quartic y = x2(x — l)(x — I/a) is equivalent, under
rescaling, to y = x2(x — l)(x — a) and so does not provide a new RDQ. Hence when
X = P + nQ we obtain the same RDQ as when X = nQ. Thus it is sufficient to
consider the case m = 0. Now let n = —r for r ^ 1. Then

o(-rQ) =

by the Corollary to Lemma 1. This implies that it is sufficient to consider the posi-
tive multiples of Q as any negative multiple of Q will not provide us with any new
RDQ's. Now by Lemma 4 we have | Jm(a) |=| EA(Q) |- Since Q is a point of infinite
order, every (positive) multiple of Q on E is distinct and consequently #RDQ's =

N 0 . D

By way of illustration, the table on the following page lists the first four elements of
EA(Q), the resulting a value under the bijection from Lemma 4 and the non-zero roots
of the corresponding integer-derived quartic. Note that the first example is equivalent
to Carroll's IDQ and the second and third examples had been previously found by
Galvin and MacDougall.

4. CONCLUSION

This completely determines all rational-derived quartics with exactly three distinct
roots. The remaining unsolved degree 4 case is that with four distinct roots and at
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present a computer search has not found any examples.

n

1

2

3

4

n(75,405)

(75,405)

/5329 129283\

V 100 ' 1000 )

f2447877675

V 4713241 '

116043549439635N

10232446211 /

/978328360054081

V 6685637635600 '

25593591021206391940079\

17286785808865496000 )

a

90/77

167167

497610

128665027260

69283212011

7010366636418797651

4173952380480465660

non-zero roots of IDQ

308,360

668668,1990440

-514660109040,

277132848044

16695809521921862640,

28041466545675190604

Correspondence between elements of EA(Q) and IDQ's

ADDED IN PROOF. Recent correspondence has revealed that both Richard Guy and
Don Zagier had similar results, in unpublished form, as far back as 1989.
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